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Abstract

Like humans, large language models (LLMs) do not always generate the best
output on their first try. Motivated by how humans refine their written text, we
introduce SELF-REFINE, an approach for improving initial outputs from LLMs
through iterative feedback and refinement. The main idea is to generate an initial
output using an LLM; then, the same LLM provides feedback for its output and uses
it to refine itself, iteratively. SELF-REFINE does not require any supervised training
data, additional training, or reinforcement learning, and instead uses a single LLM
as the generator, refiner, and feedback provider. We evaluate SELF-REFINE across 7
diverse tasks, ranging from dialog response generation to mathematical reasoning,
using state-of-the-art (GPT-3.5 and GPT-4) LLMs. Across all evaluated tasks,
outputs generated with SELF-REFINE are preferred by humans and automatic
metrics over those generated with the same LLM using conventional one-step
generation, improving by ∼20% absolute on average in task performance. Our work
demonstrates that even state-of-the-art LLMs like GPT-4 can be further improved at
test-time using our simple, standalone approach.2.

1 Introduction

Although large language models (LLMs) can generate coherent outputs, they often fall short in
addressing intricate requirements. This mostly includes tasks with multifaceted objectives, such
as dialogue response generation, or tasks with hard-to-define goals, such as enhancing program
readability. In these scenarios, modern LLMs may produce an intelligible initial output, yet may
benefit from further iterative refinement—i.e., iteratively mapping a candidate output to an improved
one—to ensure that the desired quality is achieved. Iterative refinement typically involves training
a refinement model that relies on domain-specific data (e.g., Reid and Neubig (2022); Schick et al.
(2022a); Welleck et al. (2022)). Other approaches that rely on external supervision or reward models
require large training sets or expensive human annotations (Madaan et al., 2021; Ouyang et al., 2022),
which may not always be feasible to obtain. These limitations underscore the need for an effective
refinement approach that can be applied to various tasks without requiring extensive supervision.

Iterative self -refinement is a fundamental characteristic of human problem-solving (Simon, 1962;
Flower and Hayes, 1981; Amabile, 1983). Iterative self-refinement is a process that involves creating
an initial draft and subsequently refining it based on self-provided feedback. For example, when
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Figure 1: Given an input ( 0⃝), SELF-REFINE starts by generating an output and passing it back to the
same model M to get feedback ( 1⃝). The feedback is passed back to M, which refines the previously
generated output ( 2⃝). Steps ( 1⃝) and ( 2⃝) iterate until a stopping condition is met. SELF-REFINE is
instantiated with a language model such as GPT-3.5 and does not involve human assistance.

drafting an email to request a document from a colleague, an individual may initially write a direct
request such as “Send me the data ASAP”. Upon reflection, however, the writer recognizes the
potential impoliteness of the phrasing and revises it to “Hi Ashley, could you please send me the data
at your earliest convenience?". When writing code, a programmer may implement an initial “quick
and dirty” implementation, and then, upon reflection, refactor their code to a solution that is more
efficient and readable. In this paper, we demonstrate that LLMs can provide iterative self-refinement
without additional training, leading to higher-quality outputs on a wide range of tasks.

We present SELF-REFINE: an iterative self-refinement algorithm that alternates between two gener-
ative steps–FEEDBACK and REFINE. These steps work in tandem to generate high-quality outputs.
Given an initial output generated by a model M, we pass it back to the same model M to get
feedback. Then, the feedback is passed back to the same model to refine the previously-generated
draft. This process is repeated either for a specified number of iterations or until M determines that
no further refinement is necessary. We use few-shot prompting (Brown et al., 2020) to guide M to
both generate feedback and incorporate the feedback into an improved draft. Figure 1 illustrates the
high-level idea, that SELF-REFINE uses the same underlying language model to generate feedback
and refine its outputs.

We evaluate SELF-REFINE on 7 generation tasks that span diverse domains, including natural language
and source-code generation. We show that SELF-REFINE outperforms direct generation from strong
LLMs like GPT-3.5 (text-davinci-003 and gpt-3.5-turbo; OpenAI; Ouyang et al., 2022) and
GPT-4 (OpenAI, 2023) by 5-40% absolute improvement. In code-generation tasks, SELF-REFINE
improves the initial generation by up to absolute 13% when applied to strong code models such
as CODEX (code-davinci-002; Chen et al., 2021). We release all of our code, which is easily
extensible to other LLMs. In essence, our results show that even when an LLM cannot generate an
optimal output on its first try, the LLM can often provide useful feedback and improve its own output
accordingly. In turn, SELF-REFINE provides an effective way to obtain better outputs from a single
model without any additional training, via iterative (self-)feedback and refinement.

2 Iterative Refinement with SELF-REFINE

Given an input sequence, SELF-REFINE generates an initial output, provides feedback on the output,
and refines the output according to the feedback. SELF-REFINE iterates between feedback and
refinement until a desired condition is met. SELF-REFINE relies on a suitable language model
and three prompts (for initial generation, feedback, and refinement), and does not require training.
SELF-REFINE is shown in Figure 1 and Algorithm 1. Next, we describe SELF-REFINE in more detail.

Initial generation Given an input x, prompt pgen, and model M, SELF-REFINE generates an initial
output y0:

y0 = M (pgen∥x) . (1)
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(a) Dialogue: x, yt

User: I am interested
in playing Table
tennis.

Response: I'm sure
it's a great way to
socialize, stay active

(b) FEEDBACK fb

Engaging: Provides no
information about table
tennis or how to play it.

User understanding: Lacks
understanding of user's
needs and state of mind.

(c) REFINE yt+1

Response (refined): That's
great to hear (...) ! It's
a fun sport requiring
quick reflexes and good
hand-eye coordination.
Have you played before, or
are you looking to learn?

(d) Code optimization: x, yt

Generate sum of 1, ..., N
def sum(n):

res = 0
for i in range(n+1):

res += i
return res

(e) FEEDBACK fb

This code is slow as
it uses brute force.
A better approach is
to use the formula
... (n(n+1))/2.

(f) REFINE yt+1

Code (refined)

def sum_faster(n):
return (n*(n+1))//2

Figure 2: Examples of SELF-REFINE: an initial output generated by the base LLM and then passed
back to the same LLM to receive feedback to the same LLM to refine the output . The top row
illustrates this for dialog generation where an initial dialogue response can be transformed into a
more engaging one that also understands the user by applying feedback. The bottom row illustrates
this for code optimization where the code is made more efficient by applying feedback.

Algorithm 1 SELF-REFINE algorithm

Require: input x, model M, prompts {pgen, pfb, prefine}, stop condition stop(·)
1: y0 = M(pgen∥x) ▷ Initial generation (Eqn. 1)
2: for iteration t ∈ 0, 1, . . . do
3: fbt = M (pfb∥x∥yt) ▷ Feedback (Eqn. 2)
4: if stop(fbt, t) then ▷ Stop condition
5: break
6: else
7: yt+1 = M (prefine∥x∥y0∥fb0∥...∥yt∥fbt) ▷ Refine (Eqn. 4)
8: end if
9: end for

10: return yt

Figure 3: The SELF-REFINE algorithm. See (§2) for a discussion of each component.

For example, in Figure 2(d), the model generates functionally correct code for the given input.
Here, pgen is a task-specific few-shot prompt (or instruction) for an initial generation, and ∥ denotes
concatenation. The few-shot prompt contains input-output pairs ⟨x(k), y(k)⟩ for the task.3

FEEDBACK Next, SELF-REFINE uses the same model M to provide feedback fbt on its own
output, given a task-specific prompt pfb for generating feedback:

fbt = M (pfb∥x∥yt) . (2)

Intuitively, the feedback may address multiple aspects of the output. For example, in code optimiza-
tion, the feedback might address the efficiency, readability, and overall quality of the code.

3Few-shot prompting (also referred to as “in-context learning”) provides a model with a prompt consisting of
k in-context examples of the target task, each in the form of input-output pairs ⟨xi, yi⟩ (Brown et al., 2020).
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Here, the prompt pfb provides examples of feedback in the form of input-output-feedback triples
⟨x(k), y(k), fb(k)⟩. We prompt the model to write feedback that is actionable and specific via fb(k).
By ‘actionable’, we mean the feedback should contain a concrete action that would likely improve the
output. By ‘specific’, we mean the feedback should identify concrete phrases in the output to change.
For example, the feedback in Figure 2(e) is “This code is slow as it uses a for loop which is brute
force. A better approach is to use the formula ... (n(n+1))/2 ”. This feedback is actionable, since it
suggests the action ‘use the formula...’. The feedback is specific since it mentions the ‘for loop’.

REFINE Next, SELF-REFINE uses M to refine its most recent output, given its own feedback:

yt+1 = M (prefine∥x∥yt∥fbt) . (3)

For example, in Figure 2(f), given the initial output and the generated feedback, the model generates
a re-implementation that is shorter and runs much faster than the initial implementation. The
prompt prefine provides examples of improving the output based on the feedback, in the form of
input-output-feedback-refined quadruples ⟨x(k), y

(k)
t , fb

(k)
t , y

(k)
t+1⟩.

Iterating SELF-REFINE SELF-REFINE alternates between FEEDBACK and REFINE steps until a
stopping condition is met. The stopping condition stop(fbt, t) either stops at a specified timestep t,
or extracts a stopping indicator (e.g. a scalar stop score) from the feedback. In practice, the model
can be prompted to generate a stopping indicator in pfb, and the condition is determined per-task.

To inform the model about the previous iterations, we retain the history of previous feedback and
outputs by appending them to the prompt. Intuitively, this allows the model to learn from past
mistakes and avoid repeating them. More precisely, Equation (3) is in fact instantiated as:

yt+1 = M (prefine∥x∥y0∥fb0∥...∥yt∥fbt) . (4)

Finally, we use the last refinement yt as the output of SELF-REFINE.

Algorithm 1 summarizes SELF-REFINE, and Figure 2 shows an example of SELF-REFINE in the
Dialogue Response Generation (Mehri and Eskenazi, 2020) and Code Optimization (Madaan et al.,
2023) tasks. Appendix V provides examples of the pgen, pfb, prefine prompts for various tasks. The key
idea is that SELF-REFINE uses the same underlying LLM to generate, get feedback, and refine its
outputs given its own feedback. It relies only on supervision present in the few-shot examples.

3 Evaluation

We evaluate SELF-REFINE on 7 diverse tasks: Dialogue Response Generation (Appendix P; Mehri
and Eskenazi, 2020), Code Optimization (Appendix Q; Madaan et al., 2023), Code Readability
Improvement (Appendix O; Puri et al., 2021), Math Reasoning (Appendix R; Cobbe et al., 2021),
Sentiment Reversal (Appendix S; Zhang et al., 2015), and we introduce two new tasks: Acronym
Generation (Appendix T) and Constrained Generation (a harder version of Lin et al. (2020) with
20-30 keyword constraints instead of 3-5; Appendix U)

Examples for all tasks and dataset statistics are provided in Table 4 (Appendix A).

3.1 Instantiating SELF-REFINE

We instantiate SELF-REFINE following the high-level description in Section 2. The FEEDBACK-
REFINE iterations continue until the desired output quality or task-specific criterion is reached, up to a
maximum of 4 iterations. To make our evaluation consistent across different models, we implemented
both FEEDBACK and REFINE as few-shot prompts even with models that respond well to instructions,
such as CHATGPT and GPT-4.

Base LLMs Our main goal is to evaluate whether we can improve the performance of any strong
base LLMs using SELF-REFINE. Therefore, we compare SELF-REFINE to the same base LLMs but
without feedback-refine iterations. We used three main strong base LLM across all tasks: GPT-3.5
(text-davinci-003), CHATGPT (gpt-3.5-turbo), and GPT-4 (OpenAI, 2023). For code-based
tasks, we also experimented with CODEX (code-davinci-002). In all tasks, either GPT-3.5 or
GPT-4 is the previous state-of-the-art.4 We used the same prompts from previous work when available

4A comparison with other few-shot and fine-tuned approaches is provided in Appendix H
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GPT-3.5 CHATGPT GPT-4

Task Base +SELF-REFINE Base +SELF-REFINE Base +SELF-REFINE

Sentiment Reversal 8.8 30.4 (↑21.6) 11.4 43.2 (↑31.8) 3.8 36.2 (↑32.4)
Dialogue Response 36.4 63.6 (↑27.2) 40.1 59.9 (↑19.8) 25.4 74.6 (↑49.2)
Code Optimization 14.8 23.0 (↑8.2) 23.9 27.5 (↑3.6) 27.3 36.0 (↑8.7)
Code Readability 37.4 51.3 (↑13.9) 27.7 63.1 (↑35.4) 27.4 56.2 (↑28.8)
Math Reasoning 64.1 64.1 (0) 74.8 75.0 (↑0.2) 92.9 93.1 (↑0.2)
Acronym Generation 41.6 56.4 (↑14.8) 27.2 37.2 (↑10.0) 30.4 56.0 (↑25.6)
Constrained Generation 16.0 39.7 (↑23.7) 2.75 33.5 (↑30.7) 4.4 61.3 (↑56.9)

Table 1: SELF-REFINE results on various tasks using GPT-3.5, CHATGPT, and GPT-4 as base LLM.
SELF-REFINE consistently improves LLM. Metrics used for these tasks are defined in Section 3.2.

(such as for Code Optimization and Math Reasoning); otherwise, we created prompts as detailed in
Appendix V. We generate samples using a temperature of 0.7.

3.2 Metrics

We report three types of metrics:

• Task specific metric: When available, we use automated metrics from prior work (Math Reasoning:
% solve rate; Code Optimization: % programs optimized%).

• GPT-4-pref: In addition to human-pref, we use GPT-4 as a proxy for human preference following
prior work (Fu et al., 2023; Chiang et al., 2023; Geng et al., 2023; Sun et al., 2023), and
found high correlation (82% for Sentiment Reversal, 68% for Acronym Generation, and 71%
for Dialogue Response Generation) with human-pref. For Code Readability Improvement, we
prompt GPT-4 to calculate fraction of the variables that are appropriately named given the
context (e.g., x = [] → input_buffer = []). Additional details are provided in Appendix F.
For constrained generation, we combine automated evaluation to quantify concept coverage and
GPT-4-pref to ensure the commonsense correctness of generated sentences. A sentence is only
deemed a winner if it maintains validity in commonsense reasoning and has greater coverage in
terms of concepts.

• Human evaluation: In Dialogue Response Generation, Code Readability Improvement, Sentiment
Reversal, and Acronym Generation, we additionally perform a blind human A/B evaluation on a
subset of the outputs to select the preferred output. Additional details are provided in Appendix C.

3.3 Results

Table 1 shows our main results:

SELF-REFINE consistently improves over base models across all model sizes, and additionally out-
performs the previous state-of-the-art across all tasks. For example, GPT-4+SELF-REFINE improves
over the base GPT-4 by 8.7% (absolute) in Code Optimization, increasing optimization percentage
from 27.3% to 36.0%. Confidence intervals are provided in Appendix M. For code-based tasks, we
found similar trends when using CODEX; those results are included in Appendix H.

One of the tasks in which we observe the highest gains compared to the base models is Constrained
Generation, where the model is asked to generate a sentence containing up to 30 given concepts. We
believe that this task benefits significantly from SELF-REFINE because there are more opportunities
to miss some of the concepts on the first attempt, and thus SELF-REFINE allows the model to fix
these mistakes subsequently. Further, this task has an extremely large number of reasonable outputs,
and thus SELF-REFINE allows to better explore the space of possible outputs.

In preference-based tasks such as Dialogue Response Generation, Sentiment Reversal, and Acronym
Generation, SELF-REFINE leads to especially high gains. For example in Dialogue Response
Generation, GPT-4 preference score improve by 49.2% – from 25.4% to 74.6%. Similarly, we see
remarkable improvements in the other preference-based tasks across all models.
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The modest performance gains in Math Reasoning can be traced back to the inability to accurately
identify whether there is any error. In math, errors can be nuanced and sometimes limited to a
single line or incorrect operation. Besides, a consistent-looking reasoning chain can deceive LLMs
to think that “everything looks good” (e.g., CHATGPT feedback for 94% instances is ’everything
looks good’). In Appendix K.1, we show that the gains with SELF-REFINE on Math Reasoning
are much bigger (5%+) if an external source can identify if the current math answer is incorrect.
Although SELF-REFINE demonstrates limited efficacy in Math Reasoning, we observe gains with
SELF-REFINE in a subset of Big-Bench Hard (Suzgun et al., 2022) tasks that typically require
a combination of commonsense reasoning and logic, such as date reasoning (Appendix D). This
suggests that SELF-REFINE may be more effective in scenarios where the interplay of logical analysis
and knowledge acquired through pre-training facilitates self-verification.

Improvement is consistent across base LLMs sizes Generally, GPT-4+SELF-REFINE performs
better than GPT-3.5+SELF-REFINE and CHATGPT+SELF-REFINE across all tasks, even in tasks
where the initial base results of GPT-4 were lower than GPT-3.5 or CHATGPT. We thus believe that
SELF-REFINE allows stronger models (such as GPT-4) to unlock their full potential, even in cases
where this potential is not expressed in the standard, single-pass, output generation. Comparison to
additional strong baselines is provided in Appendix H.

4 Analysis

The three main steps of SELF-REFINE are FEEDBACK, REFINE, and repeating them iteratively. In this
section, we perform additional experiments to analyze the importance of each of these steps.

Task SELF-REFINE feedback Generic feedback No feedback

Code Optimization 27.5 26.0 24.8
Sentiment Reversal 43.2 31.2 0
Acronym Generation 56.4 54.0 48.0

Table 2: Prompting to generate generic feedback (or having the model generate no feedback at
all) leads to reduced scores, indicating the importance of the FEEDBACK step of SELF-REFINE.
These experiments were performed with CHATGPT (Code Optimization and Sentiment Reversal) and
GPT-3.5 (Acronym Generation), and metrics used are defined in Section 3.2.

The impact of the feedback quality Feedback quality plays a crucial role in SELF-REFINE. To
quantify its impact, we compare SELF-REFINE, which utilizes specific, actionable feedback, with two
ablations: one using generic feedback and another without feedback (the model may still iteratively
refine its generations, but is not explicitly provided feedback to do so). For example, in the Code
Optimization task: actionable feedback, such as Avoid repeated calculations in the for loop, pinpoints
an issue and suggests a clear improvement. Generic feedback, like Improve the efficiency of the code,
lacks this precision and direction. Table 2 shows feedback’s clear influence.

In Code Optimization, performance slightly dips from 27.5 (SELF-REFINE feedback) to 26.0 (generic
feedback), and further to 24.8 (no feedback). This suggests that while generic feedback offers some
guidance – specific, actionable feedback yields superior results.

This effect is more pronounced in tasks like Sentiment Reversal, where changing from our feedback
to generic feedback leads to a significant performance drop (43.2 to 31.2), and the task fails without
feedback. In the “No feedback” setting, the model was not given clear instructions on changing the
output. We find that the model tends to either repeat the same output in each iteration or to make
unrelated changes. Since the scores in this task are the relative improvement increase in human
preference, a score of 0 means that “No feedback” did not improve over the base model outputs.
Similarly, in Acronym Generation, without actionable feedback, performance drops from 56.4 to
48.0, even with iterative refinements. These results highlight the importance of specific, actionable
feedback in our approach. Even generic feedback provides some benefit, but the best results are
achieved with targeted, constructive feedback.

How important are the multiple iterations of FEEDBACK-REFINE? Figure 4 demonstrates that
on average, the quality of the output improves as the number of iterations increases. For instance, in
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Task y0 y1 y2 y3

C. Opt. 22.0 27.0 27.9 28.8
S. Rev. 33.9 34.9 36.1 36.8
C. Gen. 12.1 26.1 39.6 46.1

∆(y0→y1) ∆(y1→y2) ∆(y2→y3)

0

5

10

15

5

0.9 0.9

14 13.5

6.5

1 1.2 0.7

C. Opt.
C. Gen.
S. Rev.

Figure 4: Left: Iteration-wise score improvements. Early iterations significantly improve output
quality, and scores generally keep improving with more iterations. Right: SELF-REFINE Perfor-
mance improvements with iterations. Most gains(∆) are in the initial iterations for both Code Opt.
and Sentiment Reversal. The numbers are averaged over CHATGPT, GPT-3.5, and GPT-4. Task
abbreviations: C. Opt. (Code Optimization), S. Rev. (Sentiment Reversal), C. Gen. (Constrained
Generation).

# Slower code
def solve(amount):

best_price = (amount + 199) // 200 *
380↪→

# First loop
for a in range(amount // 200 + 1):

# ... 4 nested loops ...
for c1 in range(amount // 1500 +

1):↪→
if a*200 + b*300 == amount:

price = a*380 + b*550
if price < best_price:

best_price = price
return best_price

# Faster code
def solve(amount):

coins = [200, 300]
prices = [380, 550]
dp = [float('inf')] * (amount + 1)
dp[0] = 0
for i in range(len(coins)):

for j in range(coins[i], amount+1):
dp[j] = min(dp[j], dp[j -

coins[i]] + prices[i])↪→
return dp[amount]

Figure 5: Comparison of code generated by Madaan et al. (2023) (left) and the output after applying
SELF-REFINE (right). The initial code by the baseline, which is nearly identical to the slower input
program, fails to improve the efficiency and merely alters the logic for reading input. SELF-REFINE
first generates feedback that diagnoses that This code is slow because it is using six nested loops to
iterate through all possible combinations of coins to pay the amount, and suggests that a more efficient
approach would be .... SELF-REFINE then uses this feedback to generate the revised code (right),
reducing the time complexity to O(amount ∗ coins). The full example is provided in Appendix K

the Code Optimization task, the initial output (y0) has a score of 22.0, which improves to 28.8 after
three iterations (y3). Similarly, in the Sentiment Reversal task, the initial output has a score of 33.9,
which increases to 36.8 after three iterations. This trend of improvement is also evident in Constrained
Generation, where the score increases from 26.1 to 46.1 after three iterations. Figure 4 highlights
the diminishing returns in the improvement as the number of iterations increases. Overall, having
multiple FEEDBACK-REFINE iterations significantly enhances the quality of the output, although the
marginal improvement naturally decreases with more iterations.

The performance may not always monotonically increase with iterations: in multi-aspect feedback
tasks like Acronym Generation, where the output quality can vary during iteration with improvement
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in one aspect but decline in another aspect. To counter this, SELF-REFINE generates numerical scores
for different quality aspects, leading to a balanced evaluation and appropriate output selection.

Can we just generate multiple outputs instead of refining? Does SELF-REFINE improve because
of the iterative refinement, or just because it generates more outputs? We compare SELF-REFINE with
CHATGPT, when CHATGPT generates k = 4 samples (but without feedback and refinement). Then,
we compare the performance of SELF-REFINE against these k initial outputs in a 1 vs. k evaluation.
In other words, we assess whether SELF-REFINE can outperform all k initial outputs. The results
of this experiment are illustrated in Figure 7 (Appendix K). Despite the increased difficulty of the
1 vs. k setting, the outputs of SELF-REFINE are still preferred by humans over all k initial outputs.
This shows the importance of refinement according to feedback over the alternative of just generating
multiple initial outputs.

Does SELF-REFINE works in an instruction only setup? In our main experiments, we use
few-shot prompting to guide model output into a more readily parseable format. Next, we experiment
with SELF-REFINE under a zero-shot prompting scenario, where traditional few-shot examples are
supplanted by explicit instructions at each stage of the SELF-REFINE process. For these experiments,
we use CHATGPT. The results (Appendix E in Table 8) show that SELF-REFINE remains effective
across diverse tasks, even in the absence of example prompts. Notably, in tasks such as Acronym
Generation and Sentiment Reversal, SELF-REFINE, under zero-shot prompting, enhances performance
from 16.6% to 44.8% and 4.4% to 71.4%, respectively. However, achieving optimal performance in
this setting requires extensive prompt engineering for instructions.

For Math Reasoning tasks, SELF-REFINE improves the solve rate from 22.1% to 59.0% in an
instruction-only setting. We find that much of this gain comes from fixing omitted return statements
in 71% of the initial Python programs, despite clear instructions to include them. Subsequent
iterations of feedback generation and refinement address this issue effectively, decreasing the error
rate by 19%. Further, we find that when the initial programs are valid, SELF-REFINE does not
improve the performance.

Does SELF-REFINE work with weaker models? The experiments in Section 3.3 were performed
with some of the strongest available models; does SELF-REFINE work with smaller or weaker models
as well? To investigate this, we instantiated SELF-REFINE with Vicuna-13B (Chiang et al., 2023), a
less powerful base model. While Vicuna-13B is capable of generating initial outputs, it struggles
significantly with the refinement process. Specifically, Vicuna-13B was not able to consistently
generate the feedback in the required format. Furthermore, even when provided with Oracle or
hard-coded feedback, it often failed to adhere to the prompts for refinement. Instead of refining
its output, Vicuna-13B either repeated the same output or generated a hallucinated conversation,
rendering the outputs less effective. Example output and analysis is provided in Appendix I.

How does SELF-REFINE perform with strong open access models like LLAMA2-70B? We
conduct additional experiments using SELF-REFINE on LLama-2 (Touvron et al., 2023), a state-of-the-
art, open-access language model on Acronym Generation, Sentiment Reversal, Dialogue Response
Generation, and Math Reasoning. Consistent with our primary findings, SELF-REFINE shows an
improvement across all these tasks relative to the base model. The full results are shown in Appendix
J. These promising results with LLAMA2-70B suggest that the applicability of SELF-REFINE might
extend to a wide array of increasingly powerful open-source models in the future

Qualitative Analysis We conduct a qualitative analysis of the feedback generated by SELF-REFINE
and its subsequent refinements. We manually analyze 70 samples in total (35 success cases and 35
failure cases) for Code Optimization (Madaan et al., 2023) and Math Reasoning (Cobbe et al., 2021).
For both Math Reasoning and Code Optimization, we found that the feedback was predominantly
actionable, with the majority identifying problematic aspects of the original generation and suggesting
ways to rectify them.

When SELF-REFINE failed to improve the original generation, the majority of issues were due to
erroneous feedback rather than faulty refinements. Specifically, 33% of unsuccessful cases were due to
feedback inaccurately pinpointing the error’s location, while 61% were a result of feedback suggesting
an inappropriate fix. Only 6% of failures were due to the refiner incorrectly implementing good
feedback. These observations highlight the vital role of accurate feedback plays in SELF-REFINE.
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Supervision-
free refiner

Supervision-
free feedback

Multi-aspect
feedback

Iterative

Learned refiners: PEER (Schick et al.,
2022b), Self-critique (Saunders et al., 2022b),
CodeRL (Le et al., 2022b), Self-correction
(Welleck et al., 2022).

or or

Prompted refiners: Augmenter (Peng et al.,
2023), Re3 (Yang et al., 2022), Reflexion
(Shinn et al., 2023).

or

SELF-REFINE (this work)
Table 3: A comparison of SELF-REFINE to closely related prior refinement approaches.

In successful cases, the refiner was guided by accurate and useful feedback to make precise fixes to the
original generation in 61% of the cases. Interestingly, the refiner was capable of rectifying issues even
when the feedback was partially incorrect, which was the situation in 33% of successful cases. This
suggests resilience to sub-optimal feedback. Future research could focus on examining the refiner’s
robustness to various types of feedback errors and exploring ways to enhance this resilience. In Figure
5, we illustrate how SELF-REFINE significantly improves program efficiency by transforming a brute
force approach into a dynamic programming solution, as a result of insightful feedback. Additional
analysis on other datasets such as Dialogue Response Generation is provided in Appendix K.

Going Beyond Benchmarks While our evaluation focuses on benchmark tasks, SELF-REFINE is
designed with broader applicability in mind. We explore this in a real-world use case of website gen-
eration, where the user provides a high-level goal and SELF-REFINE assists in iteratively developing
the website. Starting from a rudimentary initial design, SELF-REFINE refines HTML, CSS, and JS
to evolve the website in terms of both usability and aesthetics. This demonstrates the potential of
SELF-REFINE in real-world, complex, and creative tasks. See Appendix L for examples and further
discussion, including broader, societal impact of our work.

5 Related work

Leveraging human- and machine-generated natural language (NL) feedback for refining outputs has
been effective for a variety of tasks, including summarization (Scheurer et al., 2022), script generation
(Tandon et al., 2021), program synthesis (Le et al., 2022a; Yasunaga and Liang, 2020), and other
tasks (Madaan et al., 2022; Bai et al., 2022a; Schick et al., 2022b; Saunders et al., 2022a; Bai et al.,
2022b; Welleck et al., 2022). Refinement methods differ in the source and format of feedback, and
the way that a refiner is obtained. Table 3 summarizes some related approaches; see Appendix B for
an additional discussion.

Source of feedback. Humans have been an effective source of feedback (Tandon et al., 2021;
Elgohary et al., 2021; Tandon et al., 2022; Bai et al., 2022a). Since human feedback is costly, several
approaches use a scalar reward function as a surrogate of (or alternative to) human feedback (e.g.,
(Bai et al., 2022a; Liu et al., 2022; Lu et al., 2022; Le et al., 2022a; Welleck et al., 2022)). Alternative
sources such as compilers (Yasunaga and Liang, 2020) or Wikipedia edits (Schick et al., 2022b) can
provide domain-specific feedback. Recently, LLMs have been used to generate feedback for general
domains (Fu et al., 2023; Peng et al., 2023; Yang et al., 2022), However, ours is the only method that
generates feedback using an LLM on its own output, for the purpose of refining with the same LLM.

Representation of feedback. The form of feedback can be generally divided into natural language
(NL) and non-NL feedback. Non-NL feedback can come in human-provided example pairs (Dasgupta
et al., 2019) or scalar rewards (Liu et al., 2022; Le et al., 2022b). In this work, we use NL feedback,
since this allows the model to easily provide self -feedback using the same LM that generated the
output, while leveraging existing pretrained LLMs such as GPT-4.

Types of refiners. Pairs of feedback and refinement have been used to learn supervised refiners
(Schick et al., 2022b; Du et al., 2022; Yasunaga and Liang, 2020; Madaan et al., 2021). Since
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gathering supervised data is costly, some methods learn refiners using model generations (Welleck
et al., 2022; Peng et al., 2023). However, the refiners are trained for each new domain. Finally, (Yang
et al., 2022) use prompted feedback and refinement specifically tailored for story generation. In this
work, we avoid training a separate refiner, and show that the same model can be used as both the
refiner and the source of feedback across multiple domains.

Non-refinement reinforcement learning (RL) approaches. Rather than having explicit refinement,
an alternative way to incorporate feedback is by optimizing a scalar reward function, e.g. with
reinforcement learning (e.g., Stiennon et al. (2020); Lu et al. (2022); Le et al. (2022a)). These methods
differ from SELF-REFINE in that the model does not access feedback on an intermediate generation.
Second, these RL methods require updating the model’s parameters, unlike SELF-REFINE. Recently,
in discrete-space simulated environments, LLMs have also been shown to iteratively shape and refine
rewards and policies, thereby performing RL tasks without expert demonstrations or gradients (Kim
et al., 2023; Brooks et al., 2023). While we focus on real-world code and language tasks in this paper,
it would be interesting to explore applications of self-refine in simulated environments.

6 Limitations and Discussion

The main limitation of our approach is that the base models need to have sufficient few-shot modeling
or instruction-following abilities, in order to learn to provide feedback and to refine in an in-context
fashion, without having to train supervised models and rely on supervised data.

Further, the experiments in this work were primarily performed with language models that are not
open-sourced, namely GPT-3.5, CHATGPT, GPT-4, and CODEX. Existing literature (Ouyang et al.,
2022) does not fully describe the details of these models, such as the pretraining corpus, model sizes,
and model biases. Nonetheless, we release our code and model outputs to ensure the reproducibility
of our work. In addition, initial results from our experiments with the open-access LLAMA2-70B
language model are promising, reinforcing the notion that SELF-REFINE has the potential to be
widely applicable, even as open-source models continue to evolve and improve.

Another limitation of our work is that we exclusively experiment with datasets in English. In other
languages, the current models may not provide the same benefits. Finally, there is a possibility for
bad actors to use prompting techniques to steer a model to generate more toxic or harmful text. Our
approach does not explicitly guard against this.

7 Conclusion

We present SELF-REFINE: a novel approach that allows large language models to iteratively provide
self-feedback and refine their own outputs. SELF-REFINE operates within a single LLM, requiring
neither additional training data nor reinforcement learning. We demonstrate the simplicity and ease of
use of SELF-REFINE across a wide variety of tasks. By showcasing the potential of SELF-REFINE in
diverse tasks, our research contributes to the ongoing exploration and development of large language
models, with the aim of reducing the cost of human creative processes in real-world settings. We
hope that our iterative approach will help drive further research in this area. To this end, we make all
our code, data and prompts available at https://selfrefine.info/.
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A Evaluation Tasks

Table 4 lists the tasks in our evaluation, and examples from each task.

Task and Description Sample one iteration of FEEDBACK-REFINE

Sentiment Reversal
Rewrite reviews to reverse sentiment.
Dataset: (Zhang et al., 2015) 1000 review pas-
sages

x: The food was fantastic...”
yt: The food was disappointing...”
fb: Increase negative sentiment
yt+1: The food was utterly terrible...”

Dialogue Response Generation
Produce rich conversational responses.
Dataset: (Mehri and Eskenazi, 2020) 372 conv.

x: What’s the best way to cook pasta?”
yt: The best way to cook pasta is to...”
fb: Make response relevant, engaging, safe
yt+1: Boil water, add salt, and cook pasta...”

Code Optimization
Enhance Python code efficiency
Dataset: (Madaan et al., 2023): 1000 programs

x: Nested loop for matrix product
yt: NumPy dot product function
fb: Improve time complexity
yt+1: Use NumPy’s optimized matmul function

Code Readability Improvement
Refactor Python code for readability.
Dataset: (Puri et al., 2021) 300 programs∗

x: Unclear variable names, no comments
yt: Descriptive names, comments
fb: Enhance variable naming; add comments
yt+1: Clear variables, meaningful comments

Math Reasoning
Solve math reasoning problems.
Dataset: (Cobbe et al., 2021) 1319 questions

x: Olivia has $23, buys 5 bagels at $3 each”
yt: Solution in Python
fb: Show step-by-step solution
yt+1: Solution with detailed explanation

Acronym Generation
Generate acronyms for a given title
Dataset: (Appendix T) 250 acronyms

x : Radio Detecting and Ranging”
yt: RDR
fb : be context relevant; easy pronunciation
yt+1: RADAR”

Constrained Generation
Generate sentences with given keywords.
Dataset: (Lin et al., 2020) 200 samples

x: beach, vacation, relaxation
yt: During our beach vacation...
fb: Include keywords; maintain coherence
yt+1: .. beach vacation was filled with relaxation

Table 4: An overview of the tasks which we evaluate SELF-REFINE on, along with their associated
datasets and sizes. For every task, we demonstrate a single iteration of refinement of input x, the
previously generated output yt, the feedback generated fbt, and the refinement yt+1. Few-shot
prompts used for FEEDBACK and REFINE are provided in Appendix V.
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B Broader Related Work

Compared to a concurrent work, Reflexion (Shinn et al., 2023), our approach involves correction
using feedback, whereas their setup involves finding the next best solution in planning using ReAct.
While ReAct and Reflexion provide a free-form reflection on whether a step was executed correctly
and potential improvements, our approach is more granular and structured, with multi-dimensional
feedback and scores. This distinction allows our method to offer more precise and actionable feedback,
making it suitable for a wider range of natural language generation tasks, including those that may
not necessarily involve step-by-step planning such as open-ended dialogue generation.

Comparison with Welleck et al. (2022) The closest work to ours may be Self-Correction (Welleck
et al., 2022); however, Self-Correction has several disadvantages compared to SELF-REFINE:

1. Self-Correction does not train their model to generate explicit feedback; instead, Welleck
et al. (2022) trained their models to refine only. As we show in Section 4 and Table 2, having
the model generate explicit feedback results in significantly better refined outputs.

2. Self-Correction trains a separate refiner (or “corrector”) for each task. In contrast, SELF-
REFINE uses instructions and few-shot prompting, and thus does not require training a
separate refiner for each task.

3. Empirically, we evaluated SELF-REFINE using the same base model of GPT-3 as Self-
Correction, and with the same settings on the GSM8K benchmark. Self-Correction achieved
45.9% accuracy while SELF-REFINE (this work) achieved 55.7% (↑9.8).

Comparison with non-refinement reinforcement learning (RL) approaches. Rather than having
an explicit refinement module, an alternative way to incorporate feedback is by optimizing a scalar
reward function, e.g. with reinforcement learning (e.g., Stiennon et al. (2020); Lu et al. (2022); Le
et al. (2022a)). These methods differ from SELF-REFINE (and more generally, refinement-based
approaches) in that the model cannot access feedback on an intermediate generation. Second, these
reinforcement learning methods require updating the model’s parameters, unlike SELF-REFINE.

See Table 5 for an additional detailed comparison of related work.

Method Primary Novelty zero/few shot improvement multi aspect critics NL feedback with er-
ror localization

iterative framework

RLHF (Stiennon et al., 2020) optimize for human preference trained on feedback single (human) (not self gen.)
Rainier RL (Liu et al., 2022) RL to generate knowledge trained on end task single(accuracy) (knowl. only)
QUARK RL (Lu et al., 2022) quantization to edit generations trained on end task single(scalar score) (dense signal) (train time iter.)
Code RL (Le et al., 2022a) actor critic RL for code im-

provement
trained on end task single(unit tests) (dense signal)

DrRepair (Yasunaga and Liang, 2020) Compiler feedback to itera-
tively repair

trained semi sup. single(compiler msg) (not self gen.)

PEER (Schick et al., 2022b) doc. edit trained on wiki edits trained on edits single(accuracy) (not self gen.)
Self critique (Saunders et al., 2022a) few shot critique generation feedback training single(human) (self gen.)
Self-correct (Welleck et al., 2022) novel training of a corrector trained on end task single (task specific) (limited setting) (limited setting)
Const. AI (Bai et al., 2022b) train RL4F on automat (cri-

tique, revision) pair
critique training (fixed set)

Self-ask (Press et al., 2022) ask followup ques when in-
terim ans correct;final wrong

few shot none (none)

GPT3 score (Fu et al., 2023) GPT can score generations
with instruction

few shot single(single utility fn) (none)

Augmenter (Peng et al., 2023) factuality feedback from exter-
nal KBs

few shot single(factuality) (self gen.)

Re3 (Yang et al., 2022) ∼ours: but one domain,
trained critics

few shot (trained critics) (not self gen.)

SELF-REFINE fewshot iterative multi aspect
NL fb

few shot multiple(few shot critics) (self gen.)

Table 5: Summary of related approaches. Reinforcement learning approaches are shown in purple

, trained corrector approaches are shown in orange , and few-shot corrector approaches are shown in
green .
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C Human Evaluation

The A/B evaluation in our study was conducted by the authors, where a human judge was presented
with an input, task instruction, and two candidate outputs generated by the baseline method and
SELF-REFINE. The setup was blind, i.e., the judges did not know which outputs were generated
by which method. The judge was then asked to select the output that is better aligned with the
task instruction. For tasks that involve A/B evaluation, we calculate the relative improvement as
the percentage increase in preference rate. The preference rate represents the proportion of times
annotators selected the output produced by SELF-REFINE over the output from the baseline method.
Table 6 shows the results.

While multiple annotators participated in each task, we only collected a single annotation per instance,
aiming to scale the number of data points we could annotate. To further validate the reliability
of our evaluations, we obtained two annotations for 50 samples from each dataset. All human
evaluations were executed in a double-blind manner, with the responses being randomly flipped
to ensure annotator impartiality, leaving them unaware of whether a given output was from the
base model or the SELF-REFINE. These additional evaluations were exclusively applied to outputs
generated by GPT-4.

For each task, we measured inter-labeler agreement using Cohen’s Kappa score. Code Readability
Improvement and Acronym Generation both scored a substantial 0.75, Sentiment Reversal was also
substantial at 0.61, while Dialogue Response Generation was moderate with a score of 0.53.

Task SELF-REFINE (%) Direct (%) Either (%)
Sentiment Reversal 75.00 21.43 3.57
Acronym Generation 44.59 12.16 43.24
Dialogue Response Generation 47.58 19.66 32.76
Code Readability Improvement 50.0 3.0 47.0

Table 6: Relative improvement of SELF-REFINE in A/B evaluations across different tasks. The values
represent normalized preferences, which correspond to the proportion of times the output generated
by SELF-REFINE was selected as better aligned with the task instruction over the baseline method.
The evaluation was conducted for 150 examples for each dataset. The judges were not aware of the
method that generated each sample.
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D SELF-REFINE on Reasoning Tasks

SELF-REFINE shows limited success in Math Reasoning tasks, mainly due to its challenges in
generating meaningful feedback. Nonetheless, we observe performance gains with SELF-REFINE
in certain tasks from the Big-Bench Hard suite (Suzgun et al., 2022), particularly those requiring
commonsense reasoning and logical thinking. These results in Table 7 suggest that SELF-REFINE is
more effective in scenarios where the combination of logical reasoning and pre-trained knowledge
contribute to self-verification.

Task Base model +Self-Refine Gain

Date Understanding 62.0 66.8 4.8
Geometric Shapes 17.6 20.0 2.4
Logical Deduction (seven objects) 43.2 45.2 2.0
Multi-Step Arithmetic 61.6 64.0 2.4
Tracking Shuffled Objects (seven objects) 31.6 36.0 4.4

Table 7: Performance comparison between the base outputs and the SELF-REFINE enhanced model
across various Big Bench Hard tasks. All experiments were conducted using the GPT-3.5-TURBO-
0613 model with a temperature setting of 0.0. No task-specific prompts were utilized; all tasks
employed the same instructional prompts.

E Instruction-Only Prompting

In our main experiments, we use few-shot prompting to guide model output into a more readily
parseable format. Next, we experiment with SELF-REFINE under a zero-shot prompting scenario,
where traditional few-shot examples are supplanted by explicit instructions at each stage of the
SELF-REFINE process. For these experiments, we use CHATGPT. The results in Table 8) show
that SELF-REFINE remains effective across diverse tasks. However, achieving optimal performance
in this setting requires extensive prompt engineering for instructions. The instructions are present
in Listing 1 (Acronym Generation), Listing 3 (Math Reasoning), Listing 2 (Sentiment Reversal),
Listing 4 (Constrained Generation), and Listing 5 (Dialogue Response Generation).

For Math Reasoning tasks, SELF-REFINE improves the solve rate from 22.1% to 59.0% in an
instruction-only setting. We find that much of this gain comes from fixing omitted return statements
in 71% of the initial Python programs, despite clear instructions to include them. Subsequent
iterations of feedback generation and refinement address this issue effectively, decreasing the error
rate by 19%. Further, we find that when the initial programs are valid, SELF-REFINE does not
improve the performance.

Task Base SELF-REFINE (zero-shot)

Acronym Generation 16.6% 44.8% (↑ 28.2%)
Constrained Generation 4.0% 47.0% (↑ 43.0%)
Sentiment Reversal 4.4% 71.4% (↑ 67.0%)
Math Reasoning 22.1% 59.0% (↑ 36.9%)
Dialogue Response Generation 23.0% 48.8% (↑ 25.8%)

Table 8: Performance of SELF-REFINE with Zero-Shot Prompting

F GPT-4 Evaluation

In light of the impressive achievements of GPT-4 in assessing and providing reasoning for complex
tasks, we leverage its abilities for evaluation in SELF-REFINE. The approach involves presenting
tasks to GPT-4 in a structured manner, promoting the model’s deliberation on the task and generating
a rationale for its decision. To mitigate order bias in our tasks, we randomly flip the order of the
outputs generated after the first iteration and by SELF-REFINE before evaluation. Further, to ensure
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Listing 1 Instruction-only prompts used at various stages of the SELF-REFINE process for Acronym
Generation.
# Init: Generate an acronym for a given title
start_chat_log = [

{"role": "system", "content": 'You are a helpful assistant that generates
acronyms.'},↪→

{"role": "user", "content": f'Generate an acronym for the title "{title}".
Please respond in the format: "The generated acronym is: {acronym}"'}↪→

]

# Generate Feedback: Evaluate the quality of the generated acronym
feedback_str = f"""Evaluate the acronym "{acronym}" for the title "{title}" on its

ease of pronunciation, ease of spelling, relation to the title, positive
connotation, and being well-known."""

↪→
↪→
start_chat_log = [

{"role": "system", "content": 'You are an AI model that provides feedback on
the viability and quality of acronyms.'},↪→

{"role": "user", "content": feedback_str}
]

# Refine: Improve the acronym based on provided feedback
start_chat_log = [

{"role": "system", "content": 'You are a helpful assistant that can
iteratively improve acronyms based on feedback.'},↪→

{"role": "user", "content": f'Improve the acronym "{acronym}" for the title
"{title}" based on the following feedback: {feedback}. Please *always*
respond in the format: "The improved acronym is: {acronym}"'}

↪→
↪→

]

Listing 2 Instruction-only prompts used at various stages of the Self-Refine process for Sentiment
Reversal.
# Init: Transform a negative sentiment review into a positive one
start_chat_log = [

{"role": "system", "content": 'You are an AI language model that transforms a
negative sentiment review into a positive one.'},↪→

{"role": "user", "content": f'Please transform the following negative review
into a positive one: "{review}". Respond in the format of: "The positive
review is: [Your Response Here]".'},

↪→
↪→

]

# Generate Feedback: Provide feedback on the transformed review
start_chat_log = [

{"role": "system", "content": 'You are an AI model providing feedback on a
sentiment transformed review.'},↪→

{"role": "user", "content": f"Why is this review not Very positive? Point out
specific issues and give concrete suggestions. Respond in the format of:
'Feedback: [Specific issues and suggestions]"},

↪→
↪→

]

# Refine: Improve the review based on provided feedback
start_chat_log = [

{"role": "system", "content": 'You are an AI model that improves upon an
existing review based on provided feedback.'},↪→

{"role": "user", "content": f'Please improve the sentiment of the following
review "{sentence}" based on this feedback: "{feedback}", and make it more
positive. Always respond in the format of: "The more positive review is:
[Your Response Here]".'},

↪→
↪→
↪→

]
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Listing 3 Instruction-only prompts used at various stages of the Self-Refine process for Math
Reasoning.

# Function to Generate an Answer
gen_sys_template = "You are a helpful assistant that responds with only a python

program."↪→
gen_user_template = """Write a python function that solves the given question and

returns the result.↪→
Always store the final result in a variable called `result`, and always include

`return result` as your last statement.↪→
# Question: {question}
# solution using Python:"""

# Function to Get Feedback on the Answer
fb_sys_template = "You are a helpful assistant that provides feedback on the

correctness of python programs."↪→
fb_user_template = """Question: {question}
{prediction}
# There may be an error in the code above because of lack of understanding of the

question.↪→
To find the error, go through semantically complete blocks of the code, and check

if everything looks good.↪→
Errors could include:
- Logical issues
- Lack of understanding of the question
- Missing `return result`
Share your evaluation in the format:
Evaluation: <your evaluation here>.
If everything looks good, return 'Evaluation: correct'"""

# Function to Fix the Error
refine_sys_template = "You are a helpful assistant that responds with only a

python program."↪→
refine_user_template = """Question: {question}
{prediction}
# There is an error in the code above. The following is the feedback on the code:
{feedback}
Fix the error in the python function given the feedback above. The python function

should return the final answer."""↪→

that there is no inherent bias in GPT-4 picking its own predictions, we conduct an additional study
with CLAUDE-V2.

Claude-2 as the Evaluator Despite the measures we took to prevent any inherent biases, GPT-4
might inherently favor self-refined outputs. To provide a comprehensive evaluation of GPT-4, we
conduct an additional analysis using CLAUDE-V2, 5 serving as an independent evaluator for GPT-4
outputs. The results in Table 9 from GPT-4 as the base LLM with CLAUDE-V2 as the evaluator show
the same strong preferences for SELF-REFINE over the Base outputs.

Task % Base % SELF-REFINE

Dialogue Response Generation 30.6 64.7 (↑34.1)
Sentiment Reversal 10.6 69.2 (↑58.6)
Acronym Generation 32.0 49.2 (↑17.2)
Code readability 37.0 60.0 (↑23.0)

Table 9: Evaluation Results of GPT-4 with CLAUDE-V2 as Evaluator

This prompts used for evaluation are listed in Listings 6 to 8.

5https://www.anthropic.com/index/claude-2
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Listing 4 Instruction-only prompts used at various stages of the SELF-REFINE process for Constrained
Generation.
# Constrained Generation Task

# 1. Init
start_chat_log = [

{"role": "system", "content": 'You are an AI model that generates sentences
with commonsense, using a given set of concepts.'},↪→

{"role": "user", "content": f'Generate a commonsense sentence using the
following concepts: {", ".join(concepts)}. Please respond in the format:
"The generated sentence is: {sentence}"'},

↪→
↪→

]

# 2. Get Feedback
start_chat_log = [

{"role": "system", "content": 'You are an AI model that provides feedback on a
sentence generated with specific concepts.'},↪→

{"role": "user", "content": f'''Evaluate the following sentence "{sentence}",
which was meant to use the following concepts: {", ".join(concepts)}.↪→

Please provide two pieces of feedback. Start your feedback about concept usage
with the phrase "Concept feedback is:", and start your feedback about
commonsense facts with the phrase "Commonsense feedback is:".

↪→
↪→
The format should be:
Concept feedback is: <list of missing concepts>
Commonsense feedback is: <commonsense feedback here>'''},

]

# 3. Iterate Fix
start_chat_log = [

{"role": "system", "content": 'You are an AI model that improves upon an
existing sentence based on provided feedback.'},↪→

{"role": "user", "content": f'Improve upon the following sentence
"{improved_sentence}" based on the following feedback: {feedback_string}.
Please respond in the format: "The improved sentence is: [Your improved
sentence here]"'},

↪→
↪→
↪→

]

G Model Key

We use terminology here: https://platform.openai.com/docs/models/gpt-3-5. The ex-
periments were done with the 0313 versions of GPT-4 and CHATGPT unless otherwise mentioned.
We refer to text-davinci-003 as GPT-3.5. We use GPT-3.5-TURBO-0613 for all instruction-only
experiments and Constrained Generation experiments.
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Listing 5 Instruction-only prompts used at various stages of the Self-Refine process for Dialogue
Response Generation.

# Dialogue Response Generation Task

# 1. Generate Response
start_chat_log = [

{"role": "system", "content": 'You are a helpful assistant that generates
responses.'},↪→

{"role": "user", "content": f'Provided a dialogue between two speakers,
generate a response that is coherent with the dialogue history. Desired
traits for responses are: 1) Relevant - The response addresses the context,
2) Informative - The response provides some information, 3) Interesting -
The response is interesting, 4) Consistent - The response is consistent
with the rest of the conversation in terms of tone and topic, 5) Helpful -
The response is helpful in providing any information or suggesting any
actions, 6) Engaging - The response is engaging and encourages further
conversation, 7) Specific - The response contains specific content, 8)
Safe - The response should not cause danger, risk, or injury 9) User
understanding - The response demonstrates an understanding of the user\'s
input and state of mind, and 10) Fluent. Response should begin with -
Response:\n\nConversation history:\n\n{history}\n\nResponse: '},

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

]

# 2. Get Feedback
start_chat_log = [

{"role": "system", "content": 'You are an AI model that provides feedback on
the viability and quality of responses.'},↪→

{"role": "user", "content": feedback_str}
]

# 3. Iterate Response
start_chat_log = [

{"role": "system", "content": 'You are a helpful assistant that can
iteratively improve responses based on feedback.'},↪→

{"role": "user", "content": iterate_str}
]

Listing 6 Prompt for GPT-4 evaluation of Sentiment Reversal.

f"""Which review is aligned with the sentiment {target_sentiment}?
Review A: {review_a}
Review B: {review_b}.

Pick your answer from ['Review A', 'Review B', 'both', 'neither']. Generate a
short explanation for your choice first. Then, generate 'The more aligned
review is A' or 'The more aligned review is B' or 'The more aligned review is
both' or 'The more aligned review is neither'.

↪→
↪→
↪→

Format: <explanation> <answer> STOP

22



Listing 7 Prompt for GPT-4 evaluation of Acronym Generation.

f"""Title: {title}

Acronym A: {acronym_a}
Acronym B: {acronym_b}

Pick the better acronym for the given title. The acronyms should be compared based
on the following criteria:↪→

* Ease of pronunciation.
* Ease of spelling.
* Relation to title.
* Positive connotation.

Generate your answer in the following format:

<Short explanation>. The better acronym is A OR The better acronym is B OR The
acronyms are equally good OR Neither acronym is good. STOP.↪→

Listing 8 Prompt for GPT-4 evaluation of Dialogue Response Generation.

f"""Which response is better given this context: {context}?
Response A: {response_a}

Response B: {response_b}.

Pick your answer from ['Response A', 'Response B', 'both', 'neither']. Generate a
short explanation for your choice first. Then, generate 'The better response
is A' or 'The better response is B' or 'The better response is both' or 'The
better response is neither'.

↪→
↪→
↪→

Format: <explanation> <answer> STOP

Listing 9 Prompt for GPT-4 evaluation of Constrained Generation

f"""Which story is better?
Story A: {story_a}

Story B: {story_b}.

Judge the story based on the flow, the grammar, and the overall quality of the
story. Rate more realistic story higher. Pick your answer from ['Story A',
'Story B', 'either']. First, reason about your choice. Then, generate 'The
better story is Story A' or 'The better story is Story B' or 'The better story
is either'.

↪→
↪→
↪→
↪→

Format:

Reasoning: <your reasoning>. The better story is <your choice>.

Reasoning:"""
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H Comparison of SELF-REFINE with State-of-the-art of Few-Shot Learning
Models and Fine-Tuned Baselines

In this section, we present a comprehensive comparison of the performance of SELF-REFINE with
other few-shot models and fine-tuned baselines across a range of tasks, including mathematical
reasoning and programming tasks. Tables 10 and 11 display the performance of these models on
the GSM tasks and PIE dataset, respectively. Table 12 shows the performance of the CODEX model
with and without SELF-REFINE on the Code Readability task, further described in Appendix O. Our
analysis demonstrates the effectiveness of different model architectures and training techniques in
tackling complex problems.

Method Solve Rate
Chen et al. (2021) CODEX 71.3

Cobbe et al. (2021) OpenAI 6B 20.0
Wei et al. (2022) CoT w/ CODEX 65.6

Gao et al. (2022)

PaL w/ CODEX 72.0
PaL w/ GPT-3 52.0
PaL w/ GPT-3.5 56.8
PaL w/ CHATGPT 74.2
PaL w/ GPT-4 93.3

Welleck et al. (2022) Self-Correct w/ GPT-3 45.9
Self-Correct (fine-tuned) 24.3

This work

SELF-REFINE w/ GPT-3 55.7
SELF-REFINE w/ GPT-3.5 62.4
SELF-REFINE w/ CHATGPT 75.1
SELF-REFINE w/ GPT-4 94.5
SELF-REFINE w/ CODEX (Oracle Feedback) 76.2

Table 10: Performance comparison of models on math reasoning (Math Reasoning).
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Method %OPT

Puri et al. (2021) Human References 38.2

OpenAI Models: OpenAI (2022, 2023)

CODEX 9.7
GPT-3.5 14.8
CHATGPT 22.2
GPT-4 27.3

Nijkamp et al. (2022) CODEGEN-16B 1.1

Berger et al. (2022)
SCALENE 1.4
SCALENE (BEST@16) 12.6
SCALENE (BEST@32) 19.6

Madaan et al. (2023)

PIE-2B 4.4
PIE-2B (BEST@16) 21.1
PIE-2B (BEST@32) 26.3
PIE-16B 4.4
PIE-16B (BEST@16) 22.4
PIE-16B (BEST@32) 26.6
PIE-Few-shot (BEST@16) 35.2
PIE-Few-shot (BEST@32) 38.3

This work
SELF-REFINE w/ CODEX 15.6
SELF-REFINE w/ GPT-3.5 23.0
SELF-REFINE w/ CHATGPT 26.7
SELF-REFINE w/ GPT-4 36.0

Table 11: Performance comparison of various models on the PIE dataset in terms of the percentage
of programs optimized (%OPT). The table includes human references, baseline models, fine-tuned
PIE-2B and PIE-16B models, and our proposed model (SELF-REFINE) using different LLMs. Notably,
SELF-REFINE achieves superior performance while using only 4 samples at most, significantly fewer
than the 16 and 32 samples employed by other models. Scalene, an off-the-shelf optimizer, uses
instruction tuning with CODEX and serves as a comparison point.

Method %Readable Variables
Chen et al. (2021) CODEX 37.4
This work SELF-REFINE w/ CODEX 51.3

Table 12: Performance of SELF-REFINE on CODEX on the Code Readability task. Further details on
the task are described in Appendix O
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I Evaluation of Vicuna-13b

We also experiment with Vicuna-13b (Chiang et al., 2023), a version of LLaMA-13b (Touvron et al.,
2023) fine-tuned on conversations sourced from the web. Vicuna-13b was able to consistently follow
the task initialization prompt. However, it struggled to follow the prompts intended for feedback
and refinement. This often led to outputs that resembled assistant-like responses, a representative
example of which can be found in Figure 6.

It’s important to note that we used the same prompts for Vicuna-13b as those used with other models
in our study. However, the limited performance of Vicuna-13b suggests that this model may require
more extensive prompt-engineering for optimal performance.

Mixed-refine: Improving Vicuna-13b with CHATGPT While the focus of SELF-REFINE is
improvement of the model without any external help, it may be possible to use a smaller model for
the initialization, and then involving a bigger model for refinement. To test this, we experiment with a
setup where we use Vicuna-13b as the initialization model, and use CHATGPT as the FEEDBACK and
REFINE. The results on Math Reasoning show the promise of this approach: while Vicuna-13b was
able to get only 24.18% on Math Reasoning, it was able to improve to 40.5% in this mixed-refinement
setting.
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Step 0 INIT> The food was amazing, I loved it!!.
Step 0 TRANSFER> The food was terrible, I hated it!!.

list index out of range

An error occurred: list index out of range. Traceback (most recent call last):
IndexError: list index out of range . Left retries: 2.

Step 1 TRANSFER> The food at the Trop was awful. I wish I could've gotten my money
back for the terrible meals.↪→

Step 1 FB> The rewritten review does not become more "Very negative", because it
only contains a single instance of a positive sentiment about the food. Try
again to make it Very negative!

↪→
↪→

Step 2 TRANSFER> ### Assistant: The Trop is a great choice for anyone looking for
a budget-friendly option in Vegas. The rooms and hallways are clean and
comfortable, and the food options are varied and delicious.

↪→
↪→
Step 2 FB> The rewritten review does not change from "Positive", because it only

has positive language. The output is already Very positive. No further changes
are needed.

↪→
↪→

Step 0 INIT> The food was amazing, I loved it!!. [Positive] -> [Very negative]
Step 0 TRANSFER> The food was atrocious, I absolutely hated it! [('The review

sounds very negative. The sentiment is Very negative', 1.0)]↪→
Step 0 FB> The original review is already "Very negative" as it uses strongly

negative words like "atrocious" and "absolutely hated". These words express
extreme dissatisfaction and clearly convey a very negative sentiment about the
food. But try again to make it even more negative!

↪→
↪→
↪→

Step 1 TRANSFER> The food was so abysmal, it was a nightmare to even taste it! I
couldn't stand it and regretted every single bite. [('The review sounds highly
negative. The sentiment is Very negative', 1.0)]

↪→
↪→
Step 1 FB> The review provided is indeed very negative. It uses extremely negative

words and phrases like "abysmal", "nightmare", and "regretted every single
bite". These strongly negative expressions make the review very negative, but
try again to make it even more negative!

↪→
↪→
↪→

Step 2 TRANSFER> The food was absolutely revolting, I couldn't even stomach a
single bite!↪→

Step 2 FB> This review is not "Very negative" because it contains positive words
and phrases like "amazing" and "loved it." To make it "Very negative", we need
to use extremely negative words, like "revolting", "couldn't stomach", or
"horrible". The provided "Very negative" sentiment example is a good
illustration of a very negative review, as it uses strong negative language to
describe the food experience.

↪→
↪→
↪→
↪→
↪→

Figure 6: Vicuna-13b outputs (top) for sentiment reversal, where the goal is to make ‘The food was
amazing, I loved it!!.’ negative. Vicuna-13b generates a good initial output, but generates an empty
feedback in the first try, leading to an error. In the next try, it generates an unhelpful feedback. The
transferred review copies from the prompt. Compare with the outputs from GPT-4 (bottom).
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J Llama-2

We further benchmark SELF-REFINE, this time on the open-access model Lllama-2 (Touvron et al.,
2023) in an instruction-only setting (no few-shot prompts, only instructions). The results in Table 13
show that SELF-REFINE continues to be effective on an open-access model and without few-shot
examples at all. Given these performance metrics, alongside anticipated advancements in hardware,
we anticipate the broad and cost-effective applicability of SELF-REFINE.

Task Base Self-Refine Equally Good
Acronym Generation 22.30 53.08 22.30
Sentiment Reversal 13.2 60.8 26
Dialogue Response Generation 11.2 20.4 54.6
Math Reasoning 37.6 37.8 (41 with Oracle) N/A

Table 13: Instruction-only (zero-shot) results using SELF-REFINE on the open-access model Llama-2.
SELF-REFINE provides promising gains even with open-access models on various tasks.
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Figure 7: Preference for the outputs generated by our method (SELF-REFINE), the multiple-sample
baseline (MULTI), and ties (ties).

GPT-3.5 CHATGPT GPT-4

Task Base +SELF-REFINE Base +SELF-REFINE Base +SELF-REFINE

Math Reasoning 64.1 64.1 (0) 74.8 75.0 (↑0.2) 92.9 93.1 (↑0.2)
Math Reasoning (Oracle) 64.06 68.9 (↑4.8) 74.8 76.2 (↑1.4) 92.9 93.8 (↑0.7)

Table 14: SELF-REFINE results on Math Reasoning using GPT-3.5, CHATGPT, and GPT-4 as base
LLM with Oracle feedback.

K Additional Analysis

K.1 Using Oracle Feedback

We experimented with Oracle Feedback following Welleck et al. (2022). This method uses correctness
information to guide model refinement, only progressing to REFINE stage if the current answer is
incorrect. This adjustment notably enhanced performance in the Math Reasoning task, with GPT-3
improving by 4.8% and GPT-4 by 0.7% Table 14. This indicates the potential of external signals to
optimize model performance in particular tasks.

Iteration Acronym Pronunciation Pron. (5) Spell. (5) Rel. (5) Pos. Con. (5) Total (25)

1 USTACCSF us-tacks-eff 1 1 5 3 11
2 TACC-SIM tacks-sim 4 4 5 3 17
3 TACCSF tacks-eff 1 2 5 3 12
4 TACC-SIMF tack-simf 4 4 5 3 17
Table 15: Acronym generation results across iterations, showcasing how improvements in certain as-
pects (e.g., pronunciation and spelling) can be accompanied by losses in others, leading to fluctuating
overall performance in multi-aspect feedback tasks like Acronym Generation.

Non-monotonic increase in output quality for acronym generation For tasks with multi-aspect
feedback like Acronym Generation, the output quality can fluctuate during the iterative process,
improving on one aspect while losing out on another (Table 15). To address this, SELF-REFINE’s
feedback generates explicit numerical scores to capture the different aspects of output quality. This
allows for a more balanced evaluation of outputs and the selection of the most appropriate one. The
algorithm selects the best output based on the maximum score across all iterations, as described
in Algorithm 1 (line 8). A similar selection is possible for other tasks like Math Reasoning and
Sentiment Reversal, while we observe that output quality increases monotonically with iterations.
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Error Type Occurrence Feedback Refinement
Incorrect feedback 25% Informative: The response

provides some encourage-
ment and reassurance, and
additional information. 3/3

Response: That’s hilarious!
Don’t worry, I’m sure you’ll
do much better when you take
History next semester. Are
you looking forward to it?

Generic feedback 30% Specific: The response is
not specific and does not
provide any details or ex-
amples. 1/3

Response: It’s understandable,
I’m sure you’ll do much bet-
ter when you take History next
semester. Maybe you can use
your knowledge of Christo-
pher Columbus to ace your
next test! Are you looking for-
ward to it?

Incorrect Scoring 10% Informative: The response
provides a supportive and
understanding message,
which is informative to the
user. 2/3

Response: I’m sorry to hear. . .
when Christopher Columbus
didn’t even fight in the Civil
War! I’m sure you’ll do much
better. . . . Are you looking for-
ward to it?

Table 16: Error analysis for Dialogue Response Generation: When the feedback is not useful, a large
majority is not specific or incorrect.

Error Type Occurrence Feedback Refinement
Not-Robust 10% Specific: The response is

specific and provides spe-
cific details or examples.
3/3

Response: That’s pretty
funny! It’s understand-
able that you didn’t do
well on the test. I’m
sure you’ll do much bet-
ter when you take History
next semester

Ignores feedback 25% Informative: The re-
sponse doesn’t provide
any new information. 1/3

Response: That’s so kind
and generous of you! I
would love to hear more
about the podcasts you
enjoy. Do you have any
favorites you can recom-
mend?

Introduces new problem 20% Informative: 3/3 Response: That would
be a disaster! Luckily,
my coworkers know bet-
ter than to drink while
they work. New Informa-
tive score: 2/3

Robust to bad feedback 60% Informative: The re-
sponse does not provide
any information. 1/3

Response: Wow, 25 peo-
ple! That must have been
an amazing experience.
Can you tell me more
about why that particular
trip to Australia was so
special for you?

Table 17: On the Dialogue Response Generation task, SELF-REFINE can ignore good feedback but in
a majority of cases, it is robust to bad feedback and ignores bad feedback.
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Feedback and Refinement Error Analysis for Response Generation We perform a detailed error
analysis of SELF-REFINE feedback and refinement process for Dialogue Response Generation, which
we summarize in Tables Table 16 and Table 17.

Table 16 reports the occurrence of different types of errors in our sample, which includes Incorrect
Feedback (25%), Generic Feedback (30%), and Incorrect Scoring (10%). We provide representative
examples of the system’s responses and refinements for each error type. These errors highlight
potential areas for improving our feedback handling mechanism, particularly in the interpretation and
understanding of user inputs.

Table 17 breaks down errors found in the refinement stage of SELF-REFINE. Errors include: not being
robust (10%), ignoring feedback (25%), and introducing a new problem (20%). We demonstrate how
the model handles a variety of feedback types, how robust it is under different circumstances, and
how often it inadvertently introduces new issues. 60% of the times, the model is robust to incorrect
or generic feedback. These insights can guide us in enhancing the model’s refinement capabilities,
especially in providing accurate and specific responses.
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L Beyond Benchmarks

SELF-REFINE demonstrates its iterative feedback and refinement capabilities in the context of website
layout generation. CHATGPT initially produces a rudimentary layout for a given topic, and then
uses the FEEDBACK to suggest specific, actionable improvements, as demonstrated in Figures 8
and 10. These suggestions range from design changes such as color and font adjustments, to content
enhancements and layout modifications. Figures 9 and 11 showcase the final layouts, post-feedback
implementation, highlighting the potential and versatility of SELF-REFINE across different scenarios.

Figure 8: Initial web layout generated by our model for a fictional ice cream parlor.

Ice Cream Generation The feedback generated by FEEDBACK for ice cream generation:

• Change the background color of the container to a light blue color (#6f2ff).
• Change the font size of the heading to 48px.
• Add a small icon before the "Welcome to our ice cream parlor!" text using the URL https://cdn-

icons-png.flaticon.com/512/3622/3622340.png.
• Add an additional paragraph after the existing text with the following text: "We also offer a variety

of toppings and cones to complement your ice cream. Visit us today to try our latest flavors and
indulge in a sweet treat!"

• Increase the font size of the button text to 24px.
• Update the button color to #9933.

Photosynthesis The feedback generated by FEEDBACK for photosynthesis:

• Increase the font size of the text to 18px for better readability.
• Add more information about the benefits of photosynthesis.
• Remove the unnecessary margin-top from the header.
• Add a ruler or divider below the header to separate it from the image.
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Figure 9: Refined web layout after applying model feedback. The feedback included changing the
background color to light blue (#6f2ff), increasing the heading font size to 48px, adding an icon
before the welcome text, enhancing the content with an additional paragraph, increasing the button
text size to 24px, and updating the button color to #9933.

Figure 10: Initial web layout generated by our model for a page on photosynthesis.
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Figure 11: Refined web layout after applying model feedback. The feedback included increasing
the text font size to 18px for better readability, adding more information about the benefits of
photosynthesis, removing the unnecessary margin-top from the header, and adding a ruler or divider
below the header to separate it from the image.
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M Statistical Confidence Intervals

GPT-3.5 CHATGPT GPT-4

Task Base +SELF-REFINE Base +SELF-REFINE Base +SELF-REFINE

Sentiment Reversal 8.8 ± 2.05 30.4 ± 3.61∗ 11.4 ± 2.34 43.2 ± 3.98∗ 3.8 ± 1.28 36.2 ± 3.82∗

Dialogue Response 36.4 ± 6.14 63.6 ± 6.62∗ 40.1 ± 6.33 59.9 ± 6.67∗ 25.4 ± 5.36 74.6 ± 6.22∗

Code Optimization 14.8 ± 2.66 23.0 ± 3.25∗ 23.9 ± 3.30 27.5 ± 3.49 27.3 ± 3.48 36.0 ± 3.81∗

Code Readability 37.4 ± 6.86 51.3 ± 7.39 27.7 ± 6.13 63.1 ± 7.40∗ 27.4 ± 6.10 56.2 ± 7.45∗

Math Reasoning 64.1 ± 3.47 64.1 ± 3.47 74.8 ± 3.20 75.0 ± 3.20 92.9 ± 2.05 93.1 ± 2.03
Acronym Gen. 41.6 ± 7.72 56.4 ± 8.15 27.2 ± 6.60 37.2 ± 7.46 30.4 ± 6.92 56.0 ± 8.15∗

Constrained Gen. 28.0 ± 7.38 37.0 ± 8.26 44.0 ± 8.72 67.0 ± 9.00∗ 15.0 ± 5.38 45.0 ± 8.77∗

Table 18: SELF-REFINE results from table 1 with Wilson confidence interval (at 95% confidence
interval) and statistical significance. On various tasks using GPT-3.5, CHATGPT, and GPT-4 as
base LLM, SELF-REFINE consistently improves LLM. Metrics used for these tasks are defined in
Section 3.2 as follows: Math Reasoning uses the solve rate; Code Optimization uses the percentage
of programs optimized; and Sentiment Reversal, Dialogue Response and Acronym Gen use a GPT-
4-based preference evaluation, which measures the percentage of times outputs from the base or
enhanced models were selected, with the rest categorized as a tie. Constrained Gen uses the coverage
percentage. Gains over Base, that are statistically significant based on these confidence intervals are
marked *

Table 18 shows results from Table 1 with Wilson confidence interval (Brown et al., 2001) (at α=
99% confidence interval) and statistical significance. Gains that are statistical significance based on
these confidence intervals are marked with an asterisk. We find that nearly all of GPT-4 gains are
statistically significant, CHATGPT gains are significant for 4 out of 7 datasets, and GPT-3.5 gains are
significant for 3 out of 7 datasets.
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N New Tasks

Constrained Generation We introduce “CommonGen-Hard," a more challenging extension of the
CommonGen dataset (Lin et al., 2020), designed to test state-of-the-art language models’ advanced
commonsense reasoning, contextual understanding, and creative problem-solving. CommonGen-
Hard requires models to generate coherent sentences incorporating 20-30 concepts, rather than only
the 3-5 related concepts given in CommonGen. SELF-REFINE focuses on iterative creation with
introspective feedback, making it suitable for evaluating the effectiveness of language models on the
CommonGen-Hard task.

Acronym Generation Acronym generation requires an iterative refinement process to create
concise and memorable representations of complex terms or phrases, involving tradeoffs between
length, ease of pronunciation, and relevance, and thus serves as a natural testbed for our approach.
We source a dataset of 250 acronyms6 and manually prune it to remove offensive or uninformative
acronyms.

O Code Readability

Orthogonal to the correctness, readability is another important quality of a piece of code: though not
related to the execution results of the code, code readability may significantly affect the usability,
upgradability, and ease of maintenance of an entire codebase. In this section, we consider the problem
of improving the readability of code with SELF-REFINE. We let an LLM write natural language
readability critiques for a piece of code; the generated critiques then guide another LLM to improve
the code’s readability.

O.1 Method

Following the SELF-REFINE setup, we instantiate INIT, FEEDBACK, and REFINE. The INIT is a no-op
— we directly start by critiquing the code with FEEDBACK and applying the changes with REFINE.

• FEEDBACK We prompt an LLM with the given code and an instruction to provide feedback
on readability. We give the LLM the freedom to freely choose the type of enhancements and
express them in the form of free text.

• REFINE The code generator LLM is prompted with the piece of code and the readability
improvement feedback provided by FEEDBACK. In addition, we also supply an instruction
to fix the code using the feedback. We take the generation from the code generator as the
product of one iteration in the feedback loop.

Starting from an initial piece of code y0, we first critique, c1 = critique(y0), and then edit the
code, y1 = editor(y0, c1). This is recursively performed N times, where ck+1 = critique(yk) and
yk+1 = editor(yk, ck+1).

O.2 Experiments

Dataset We use the CodeNet (Puri et al., 2021) dataset of competitive programming.7 For our
purpose, these are hard-to-read multi-line code snippets. We consider a random subset of 300
examples and apply SELF-REFINE to them.

We also ask human annotators to edit a 60-example subset to assess human performance on this task.
The human annotators are asked to read the code piece and improve its readability.

Implementation Both the critique and the editor models are based on the InstructGPT model (text-
davinci-003). We consider the temperature of both T = 0.0 (greedy) and T = 0.7 (sampling)
for decoding Natural Language suggestion from the critique model. We always use a temperature
T = 0.0 (greedy) when decoding Programming Language from the code editor. Due to budget
constraints, we run SELF-REFINE for N = 5 iterations. The exact prompts we use can be found in
Figures 23-24.

6https://github.com/krishnakt031990/Crawl-Wiki-For-Acronyms/blob/master/AcronymsFile.csv
7https://github.com/IBM/Project_CodeNet
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Meaningful Variable Ratio Comment Per Line Function Units
Human Annotator Rewrites 0.653 0.24 0.70

SELF-REFINE (T = 0.0) 0.628 0.12 1.41
SELF-REFINE (T = 0.7) 0.700 0.25 1.33

Table 19: Human v.s. SELF-REFINE performance on 60-example subset. We see SELF-REFINE can
reach similar or achieve even better performance on the metrics compared to rewrites given by human
annotator.

Evaluation Methods We consider a few automatic heuristic-based evaluation metrics,

• Meaningful Variable Names: In order to understand the flow of a program, having semanti-
cally meaningful variable names can offer much useful information. We compute the ratio
of meaningful variables, the number of distinct variables with meaningful names to the total
number of distinct variables. We automate the process of extracting distinct variables and
the meaningful subset of variables using a few-shot prompted language model.

• Comments: Natural language comments give explicit hints on the intent of the code. We
compute the average number of comment pieces per code line.

• Function Units: Long functions are hard to parse. Seasoned programmers will often refactor
and modularize code into smaller functional units.

Result For each automatic evaluation metric, the ratio of meaningful variable, of comment, and
the number of function units, we compute for each iteration averaged across all test examples and
plot for each SELF-REFINE iteration in Figure 12(a), Figure 12(b) and Figure 12(c) respectively.
The two curves each correspond to critique with temperature T = 0.0 and T = 0.7. The iteration 0
number is measured from the original input code piece from CodeNet. We observe the average of all
three metrics grows across iteration of feedback loops. A diverse generation of a higher temperature
in the critique leads to more edits to improve the meaningfulness of variable names and to add
comments. The greedy critique, on the other hand, provides more suggestions on refactoring the code
for modularization. Figure 13 provides an example of code-readability improving over iterations.

In Table 19, we measure human performance on all three metrics and compare with SELF-REFINE
last iteration output. At T = 0.7, SELF-REFINE produces more meaning variables, more function
units and slightly more comments compared to the human annotators on average. At T = 0.0,
SELF-REFINE produces less meaningful variables, less comments per line but even more function
units.
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(a) Meaningful variable ratio across
different SELF-REFINE iterations.
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(b) Comment per line ratio across
different SELF-REFINE iterations.
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Figure 12: Evaluation on code readability task with SELF-REFINE across multiple metrics

Example

P Dialogue Response Generation

Open-domain dialogue response generation is a complex task that requires a system to generate
human-like responses to a wide range of topics. Due to the open-ended nature of the task, it is
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Starting Code: v0
print((int((int(eval(input()))+1)/2)))

Code v1

print(
(int(

(int(eval(input())) + 1)
/ 2

)
)

Code v2

num_input = eval(input())
num_input = int(num_input)
num_input += 1
num_result = int(num_input / 2)
print(num_result)

Figure 13: SELF-REFINE iterations over a piece of densely composed code. Through out the
iterations, the model first try to indent out the code and ends up rewriting it into several lines of
atomic operations.

challenging to develop a system that can consistently generate coherent and engaging responses.
In this section, we use SELF-REFINE for automatically generated feedback and applying iterative
refinement to improve the quality of the responses.

P.1 Modules

We follow the high-level description of the framework from Section 2, and instantiate our framework
as follows.

Init This is the first step in performing the task. The init module takes the dialogue context as input
and generates a response that follows the conversation.

Feedback We design an FEEDBACK that can provide multifaceted feedback for the quality of the
response generated. Specifically, a response is judged along 10 qualitative aspects discussed below.
A more thorough review of such fine-grained dialogue quality aspects can be found in Mehri and
Eskenazi (2020). We use 6 in-context examples for feedback generation. In many cases, the feedback
explicitly points out the reasons why a response scores low on some qualitative aspect. We show an
example in Figure 14.

• Relevant Does the response addresses all important aspects of the context?
• Informative - Does the response provide some information relevant to the context?
• Interesting - Doe the response beyond providing a simple and predictable answer to a

question or statement?
• Consistent - Is the response consistent with the rest of the conversation in terms of tone and

topic?
• Helpful - Is the response helpful in providing any information or suggesting any actions?
• Engaging - Is the response engaging and encourage further conversation?
• Specific - The response contains specific content related to a topic or question,
• Safe - Is the response safe and does not contain any offensive, toxic or harmful content and

does not touch on any sensitive topics or share any personal information?
• User understanding - Does the response demonstrate an understanding of the user’s input

and state of mind?
• Fluent Is the response fluent and easy to understand?
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Context: Speaker A - What are your hobbies?
Speaker B - I really just spend the rest of my free time with those
that are close to me.
Speaker A - I m very much interested in playing table tennis.

Response: That sounds like a lot of fun! I'm not very good at table tennis, but
I'm sure it's a great way to socialize and stay active.

Feedback:
* Relevant: The response is relevant to the user's input and shows interest in
the user's hobby. 3/3
* Informative: The response does not provide any information about table tennis
or how to play it. 1/3
* Interesting: The response is not very interesting or intriguing. 1/3
* Consistent: The response is consistent with the tone and context of the
conversation. 3/3
* Helpful: The response is not particularly helpful as it does not provide any
information or suggest any actions. 1/3
* Engaging: The response is somewhat engaging. It acknowledges the user's
interest in table tennis and encourages them to continue playing. 2/3
* Specific: The response is not specific, as it does not address the topic of
table tennis in any particular way. 1/3
* Safe: The response is safe and does not contain any offensive, toxic or
harmful content and does not touch on any sensitive topics or share any
personal information. 3/3
* User understanding: The response shows some understanding of the user's input
and acknowledges their interest in table tennis. 2/3
* Fluent: The response is fluent in terms of grammar and flow of words. 3/3
* Total score: 20/30

New Response: Table tennis is a great hobby! It's a great way to stay active
and socialize with others. Have you ever tried it before? If not, I'd suggest
starting with some beginner tutorials on Youtube. They are really helpful in
getting a good grasp of the basics.

Figure 14: SELF-REFINE prompts for dialogue response generation: INIT generates a first draft of
the response generated in a few-shot manner. FEEDBACK contains demonstrations of responses and
natural language feedback on several qualitative aspects of the response. REFINE takes the response
and the feedback and refines it to match the feedback better.

Iterate The iterate module takes a sequence of dialogue context, prior generated responses, and
the feedback and refines the output to match the feedback better. An example of a context, response,
feedback and a refined response is shown in Figure 14.

P.2 Setup and Experiments

Model and Baseline We establish a natural baseline for our approach by using the model directly,
without any feedback, which we refer to as INIT. Our implementation of SELF-REFINE employs a
few-shot setup, where each module (INIT, FEEDBACK, ITERATE) is implemented as few-shot prompts,
and we execute the self-improvement loop for a maximum k = 3 iterations. We provide 3 few-shot
in-context examples for the INIT model, and instruct the model to produce a response that is good
at the 10 aspects listed above. As in-context examples for FEEDBACK, we use the same 3 contexts
and responses shown to the INIT model (including low-scoring variations of those responses), along
with scores and explanations for each feedback aspect. The ITERATE model is also shown the same
in-context examples, and it consists of contexts-response-feedback followed by a better version of
the response. For SELF-REFINE, we chose the response that gets the highest total score from the
FEEDBACK model across all iterations excluding the initial response. We use text-davinci-003
for all the experiments.
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GPT-3.5 ChatGPT GPT4
SELF-REFINE wins 36.0 48.0 54.0
INIT wins 23.0 18.0 16.0
Both are equal 41.0 50.0 30.0

Table 20: Human evaluation results for dialogue response generation

Evaluation We perform experiments on the FED dataset (Mehri and Eskenazi, 2020). The FED
dataset is a collection of human-system and human-human conversations annotated with eighteen
fine-grained dialog qualities at both the turn and the dialogue-level. The dataset was created to
evaluate interactive dialog systems without relying on reference responses or training data. We
evaluate the quality of the generated outputs using both automated and human evaluation methods.
For automatic evaluation in Table1, we used zero-shot prompting with text-davinci-003 and
evaluate on a test set of 342 instances. We show the model the responses generated by SELF-REFINE
and the baseline INIT and ask the model to select the better response in terms of the 10 qualities. We
report the win rate. However, we acknowledge that automated metrics may not provide an accurate
assessment of text generation tasks and rely on human evaluation instead.

Given a dialogue context with a varying number of turns, we generate outputs from the above
mentioned methods. For human evaluation, for 100 randomly selected test instances, we show
annotators the 10 response quality aspects, responses from SELF-REFINE and INIT models and ask
them to select the better response. They are also given the option to select “both” when it is hard to
show preference toward one response.

Results Automatic evaluation results are shown in Table1 and human evaluation results are are
shown in Table 20. We experiment on 3 latest versions of GPT models. text-davinci-003 is
capable of generating human-like responses of great quality for a wide range of dialogue contexts
and hence GPT-3.5 is a strong baseline. Still, SELF-REFINE beats INIT by a wide margin on both
automatic as well as human evaluation. Our manual analysis shows that outputs generated by SELF-
REFINE are more engaging and interesting and generally more elaborate than the outputs generated
by INIT.

Q Code Optimization

Performance-Improving Code Edits or PIE (Madaan et al., 2023) focuses on enhancing the efficiency
of functionally correct programs. The primary objective of PIE is to optimize a given program by
implementing algorithmic modifications that lead to improved runtime performance.

Given an optimization generated by PIE, SELF-REFINE first generates a natural language feedback
on possible improvements Figure 21. Then, the feedback is fed to REFINE Figure 22 for refinement.

Table 21: Main Results and Ablation Analysis
Setup Iteration % Optimized Relative Speedup Speedup

Direct - 9.7 62.29 3.09

SELF-REFINE − feedback 1 10.1 62.15 3.03
SELF-REFINE − feedback 2 10.4 61.79 3.01

SELF-REFINE 1 15.3 59.64 2.90
SELF-REFINE 2 15.6 65.60 3.74

Table 22: Performance comparison of SELF-REFINE and ablated variants for code optimization. The
table highlights the effectiveness of SELF-REFINE in optimizing code through iterative feedback and
improvement, outperforming both the direct method and the simplified feedback approach, which
lacks the introspective feedback mechanism of SELF-REFINE. This demonstrates the value of our
framework’s multi-faceted feedback in refining the generated code.
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R Math Reasoning

We use the Grade School Math 8k (GSM-8k) dataset (Cobbe et al., 2021) for evaluating SELF-REFINE
on math reasoning. In the context of grade school mathematics, SELF-REFINE aims to enable LLMs
to iteratively refine their mathematical problem-solving outputs based on introspective feedback.

Following Gao et al. (2022), we write solutions to the reasoning problems in Python. Consider the
following example from the paper, where an error in the code demonstrates a lack of understanding
of the problem:

def solution():
"""Twenty dozen cups cost $1200 less than the total cost of
half a dozen plates sold at $6000 each.
Calculate the total cost of buying each cup."""
plates = 6
plate_cost = 6000
cups = 12 * 20
cup_cost = plate_cost
result = cup_cost
return result

By using SELF-REFINE, we can identify the error in the code and refine the solution through an
iterative process of introspection and feedback:

# Let's go through the error and check step-by-step
plates = 6
plate_cost = 6000

# Let's check the other parts
cups = 12 * 20
cup_cost = plate_cost # wrong! The cost of a cup is not the same as the

cost of a plate.↪→

# The cost of a cup is $1200 less than the total cost of half a dozen
plates sold at $6000 each.↪→

half_dozen_plate_cost = 6 * plate_cost
cup_cost = half_dozen_plate_cost - 1200

SELF-REFINE is thus instantiated naturally: the generator generates an initial solution, and FEEDBACK
scans the solution to spot errors on which to provide feedback. The feedback is supplied to REFINE to
create a new solution. Following Welleck et al. (2022), we use the correct label to decide when to go
from one point in the loop to the next. This label feedback can be used to decide when to go from
one point in the iteration to the next. We show results using SELF-REFINE in Figure 15.
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Figure 15: Improvements in accuracy on the GSM-8k math reasoning benchmark as a function of the
# of iterations of SELF-REFINE.

S Sentiment Reversal

We consider the task of long-form text style transfer, where given a passage (a few sentences) and an
associated sentiment (positive or negative), the task is to re-write the passage to flip its sentiment
(positive to negative or vice-versa). While a large body of work on style transfer is directed at
sentence-level sentiment transfer (Li et al., 2018; Prabhumoye et al., 2018), we focus on transferring
the sentiment of entire reviews, making the task challenging and providing opportunities for iterative
improvements.

Instantiating SELF-REFINE for sentiment reversal We instantiate SELF-REFINE for this task
following the high-level description of the framework shared in Section 2. Recall that our requires
three components: INIT to generate an initial output, FEEDBACK to generate feedback on the initial
output, and REFINE for improving the output based on the feedback.

SELF-REFINE is implemented in a complete few-shot setup, where each module (INIT, FEEDBACK,
ITERATE) is implemented as few-shot prompts. We execute the self-improvement loop for a maximum
of k = 4 iterations. The iterations continue until the target sentiment is reached.

S.1 Details

Evaluation Given an input and a desired sentiment level, we generate outputs SELF-REFINE and
the baselines. Then, we measure the % of times output from each setup was preferred to better align
with the desired sentiment level (see Section 2 for more details).

We also experiment with standard text-classification metric. That is, given a transferred review, we
use an off-the-shelf text-classifier (Vader) to judge its sentiment level. We find that all methods
were successful in generating an output that aligns with the target sentiment. For instance, when the
target sentiment was positive, both GPT-3.5 with text-davinci-003 and SELF-REFINE generates
sentences that have a positive sentiment (100% classification accuracy). With the negative target
sentiment, the classification scores were 92% for GPT-3.5 and 93.6% for SELF-REFINE.

We conduct automated and human evaluation for measuring the preference rates for adhering to
the desired sentiment, and how dramatic the generations are. For automated evaluation, we create
few-shot examples for evaluating which of the two reviews is more positive and less boring. We use a
separate prompt for each task. The examples are depicted in Figure 34 for initialization, Figure 35
for feedback generation, and Figure 36 for refinement. The prompts show examples of reviews of
varying degrees of sentiment and colorfulness (more colorful reviews use extreme phrases — the
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food was really bad vs. I wouldn’t eat it if they pay me.). The model is then required to select one of
the outputs as being more aligned with the sentiment and having a more exciting language. We report
the preference rates: the % of times a variant was preferred by the model over the outputs generated
by SELF-REFINE.

Pin-pointed feedback A key contribution of our method is supplying chain-of-thought prompting
style feedback. That is, the feedback not only indicates that the target sentiment has not reached,
but further points out phrases and words in the review that should be altered to reach the desired
sentiment level. We experiment with an ablation of our setup where the feedback module simply
says “something is wrong.” In such cases, for sentiment evaluation, the output from SELF-REFINE
were preferred 73% of the time (down from 85% with informative feedback). For dramatic response
evaluation, we found that the preference rate went down drastically to 58.92%, from 80.09%. These
results clearly indicate the importance of pin-pointed feedback.

Evaluation We evaluate the task using GPT-4. Specifically, we use the following prompt:

When both win, we add winning rate to either.

T Acronym Generation

Good acronyms provide a concise and memorable way to communicate complex ideas, making them
easier to understand and remember, ultimately leading to more efficient and effective communication.
Like in email writing, acronym generation also requires an iterative refinement process to achieve a
concise and memorable representation of a complex term or phrase. Acronyms often involve tradeoffs
between length, ease of pronunciation, and relevance to the original term or phrase. Thus, acronym
generation is a natural method testbed for our approach.

We source the dataset for this task from https://github.com/krishnakt031990/
Crawl-Wiki-For-Acronyms/blob/master/AcronymsFile.csv, and prune the file manually
to remove potentially offensive or completely uninformative acronyms. This exercise generated a list
of 250 acronyms. The complete list is given in our code repository.

FEEDBACK For feedback, we design an FEEDBACK that can provide multifaceted feedback. Specif-
ically, each acronym is judged along five dimensions:

• Ease of pronunciation: How easy or difficult is it to pronounce the acronym? Are there
any difficult or awkward sounds or combinations of letters that could make it challenging to
say out loud?

• Ease of spelling: How easy or difficult is it to spell the acronym? Are there any unusual or
uncommon letter combinations that could make it tricky to write or remember?

• Relation to title: How closely does the acronym reflect the content or topic of the associated
title, phrase, or concept? Is the acronym clearly related to the original term or does it seem
unrelated or random?

• Positive connotation: Does the acronym have any positive or negative associations or
connotations? Does it sound upbeat, neutral, or negative in tone or meaning?

• Well-known: How familiar or recognizable is the acronym to the target audience? Is it a
common or widely-used term, or is it obscure or unfamiliar?

Some of these criteria are difficult to quantify, and are a matter of human preference. As with other
modules, we leverage the superior instruction following capabilities of modern LLMs to instead
provide a few demonstrations of each task. Crucially, the feedback includes a chain of thought
style reasoning — before generating the score for an acronym for a specific criteria, we generate a
reasoning chain explicitly stating the reason for the scores. We use human evaluation to judge the
final quality of the acronyms. An example of generated acronyms and associated feedback is given in
Table 23.
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Criteria output from GPT3: STSLWN output from SELF-REFINE: Seq2Seq

Ease of pronunciation Pronounced as ess-tee-ess-ell-double-
you-enn which is very difficult.

Pronounced as seq-two-seq which is easy.

Ease of spelling Very difficult to spell. Easy to spell.

Relation to title No relation to the title. Mentions sequence which is somewhat related
to the title.

Positive connotation Meaningless acronym. Positive connotation giving a sense of ease
with which the learning algorithm can be used.

Well-known Not a well-known acronym. Close to the word sequence which is a well-
known word.

Total score 5/25 20/25

Table 23: Comparison of acronyms for input = “Sequence to Sequence Learning with Neural
Networks”

U Constrained Generation

In this work, we introduce a more challenging variant of the CommonGen task, dubbed “CommonGen-
Hard,” designed to push the boundaries of state-of-the-art language models. CommonGen-Hard
requires models to generate coherent and grammatically correct sentences incorporating 20-30
concepts, as opposed to the original task which presents a set of 3-5 related concepts. This significant
increase in the number of concepts tests the model’s ability to perform advanced commonsense
reasoning, contextual understanding, and creative problem-solving, as it must generate meaningful
sentences that encompass a broader range of ideas. This new dataset serves as a valuable benchmark
for the continuous improvement of large language models and their potential applications in complex,
real-world scenarios.

The increased complexity of the CommonGen-Hard task makes it an ideal testbed for evaluating
the effectiveness of our proposed framework, SELF-REFINE, which focuses on iterative creation
with introspective feedback. Given that initial outputs from language models may not always meet
the desired level of quality, coherence, or sensibility, applying SELF-REFINE enables the models to
provide multi-dimensional feedback on their own generated output and subsequently refine it based on
the introspective feedback provided. Through iterative creation and self-reflection, the SELF-REFINE
framework empowers language models to progressively enhance the quality of their output, closely
mimicking the human creative process and demonstrating its ability to improve generated text on
complex and demanding natural language generation tasks like CommonGen-Hard (Figure 16).

V Prompts

We include all the prompts used in the experiments in Figures 17-36:

• Acronym Generation: Figures 17-19

• Code Optimization: Figures 20-22

• Code Readability Improvement: Figures 23-24

• Constrained Generation: Figures 25-27

• Dialogue Response Generation: Figures 28-30

• Math Reasoning: Figures 31-33

• Sentiment Reversal: Figures 34-36

Recall that the Base LLM requires a generation prompt pgen with input-output pairs ⟨xi, yi⟩, the feed-
back module requires a feedback prompt pfb with input-output-feedback triples ⟨xi, yi, fbi⟩, and the
refinement module (REFINE) requires a refinement prompt prefine with input-output-feedback-refined
quadruples ⟨xi, yi, fbi, yi+1⟩. The prompts we used are simple, and our preliminary experiments
showed that any prompt that follows the feedback-and-refinement steps provides benefits.
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Figure 16: A comparison of SELF-REFINE and direct generation with GPT-3.5 on CommonGen-Hard.

• Sentiment Reversal We create positive and negative variants of a single review from the
training set and manually write a description for converting the negative variant to positive
and vice versa. For each variant, the authors generate a response and create a feedback fbi
based on the conversion description.

• Dialogue Response Generation We sample six examples as ⟨xi, yi⟩ for the few-shot prompt
for the Base LLM. For each output yi, the authors create a response, evaluate it based on a
rubric to generate fbi, and produce an improved version yi+1.

• Acronym Generation We provide the Base LLM with a total of 15 (title, acronym) examples.
Then, for one title (xi) we generate an acronym (yi) using CHATGPT. The authors then
score the acronyms based on a 5-point rubric to create the corresponding fbi, and write
improved versions of the acronym to create yi+1. 3 such examples are used for REFINE and
FEEDBACK.

• Code Optimization We use the slow (xi) and fast (yi) versions of programs released by
Madaan et al. (2023) for Base LLM. We use their provided explanations (Madaan et al.,
2023) for FEEDBACK and REFINE.

• Math Reasoning The prompts for the Base LLM are sourced from PaL (Gao et al., 2022) as
⟨xi, yi⟩. We select two examples from the training set on which CODEX fails when prompted
with PaL-styled prompts, and manually write the correct solution (yi+1) and reasoning (fbi)
for REFINE and FEEDBACK.

• Constrained Generation We provide ten examples to the Base LLM as ⟨xi, yi⟩. We
sample six examples from the training set of Constrained Generation and create variants
with missing concepts or incoherent outputs. The missing concepts and the reason for
incoherence form fb.

• Code Readability Improvement: In our experiments for this task, we rely solely on
instructions. To generate feedback, we use the instruction, I have some code. Can you
give one suggestion to improve readability. Don’t fix the code, just give a suggestion. For
the refinement step, we present the original code, the generated critique, and an additional
instruction: Now fix the code.
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Title: A Survey of Active Network Research
Acronym: SONAR

Title: A Scalable, Commutative Replica Dictatorship for Practical Optimistic
Replication
Acronym: SCRATCHPAD

Title: Bidirectional Encoder Representations from Transformers
Acronym: BERT

Title: Sequence to Sequence Learning with Neural Networks
Acronym: Seq2Seq

Title: Densely Connected Convolutional Networks for Image Classification
Acronym: DenseNet

Title: A Dynamic Programming Algorithm for RNA Secondary Structure Prediction
Acronym: DYNALIGN

Title: Fast Parallel Algorithms for Short-Range Molecular Dynamics
Acronym: FASTMD

Title: Real-Time Collaborative Editing Systems
Acronym: COCOON

Title: Efficient Data Structures for Large Scale Graph Processing
Acronym: EDGE

Title: A program to teach students at UT Southwestern learn about aging
Acronym: SAGE

Title: Underwater breathing without external accessories
Acronym: SCUBA

Title: An educational training module for professionals
Acronym: LEAP

Title: Teaching a leadership program
Acronym: LEAD

Figure 17: Initial generation prompt for Acronym Generation
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Title: Underwater Breathing Product with no Accessories

Acronym: UBPA

Scores:

* Ease of pronunciation: UBPA is pronounced "uhb-puh". This is an easy acronym to
pronounce. 4/5
* Ease of spelling: UBPA is easy to spell. 4/5
* Relation to title: UBPA stands for "Underwater Breathing Product for no
Accessories" which is related to the title. 5/5
* Positive connotation: UBPA is a positive acronym. 5/5
* Well-known: UBPA is not a well-known acronym. 1/5

* Total score: 19/25

###

Title: Self-Contained Underwater Breathing Apparatus

Acronym: SCUBA

Scores:

* Ease of pronunciation: SCUBA is pronounced "skoo-bah". This is an easy acronym
to pronounce. 4/5
* Ease of spelling: SCUBA is easy to spell. 4/5
* Relation to title: SCUBA is related to the title as it stands for
"Self-Contained Underwater Breathing Apparatus". 5/5
* Positive connotation: SCUBA is a positive acronym as it is well-known and it is
also related to the title. 5/5
* Well-known: SCUBA is a very well-known acronym. 5/5

* Total score: 23/25

###

Figure 18: FEEDBACK prompt for Acronym Generation
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Title: Computer Science Conference and Education

Acronym: CSCE

Scores:

* Ease of pronunciation: CSCE is pronounced "see-cee". This is an easy acronym to
pronounce. 4/5
* Ease of spelling: CSCE is easy to spell. 5/5
* Relation to title: CSCE stands for "Computer Science Conference and Education",
which is related to the title. 5/5
* Positive connotation: CSCE is a positive acronym. It implies collaboration,
knowledge sharing and the idea of continuous learning. 5/5
* Well-known: CSCE is not a well-known acronym. 2/5

* Total score: 20/25

Okay, let's use this feedback to improve the acronym.

Title: Computer Science Conference and Learning Experience

Acronym: CSCLE

Scores:

* Ease of pronunciation: CSCLE is pronounced "see-slee". This is an easy acronym
to pronounce. 4/5
* Ease of spelling: CSCLE is easy to spell. 5/5
* Relation to title: CSCLE stands for "Computer Science Conference and Learning
Experience", which is related to the title. 5/5
* Positive connotation: CSCLE is a positive acronym. It implies collaboration,
knowledge sharing, and the idea of a comprehensive learning experience. 5/5
* Well-known: CSCLE is not a well-known acronym. 5/5

* Total score: 23/25

Okay, let's use this feedback to improve the acronym.

Figure 19: REFINE prompt for Acronym Generation
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# slower version:

import numpy as np

N, K = map(int, input().split())
H = np.array(list(map(int, input().split())) + [0] * K, dtype=np.int64)

table = np.full(N + K, 10 ** 10, dtype=np.int64)
table[0] = 0

for i in range(1, N):
table[i:i + K] = np.minimum(table[i:i + K], np.abs(H[i:i + K] - H[i - 1]) +

table[i - 1])↪→

print(table[N - 1])

# optimized version of the same code:

N, K = map(int, input().split())
H = tuple(map(int, input().split()))

table = [0] * N
for i in range(1, N):

table[i] = min(abs(H[i] - H[j]) + table[j] for j in range(max(0, i - K), i))

print(table[N-1])

Figure 20: Initial generation prompt for Code Optimization

a, b = input().split()
n = int(a + b)

flag = False
for i in range(n):

if i ** 2 == n:
flag = True
break

print('Yes' if flag else 'No')

# Why is this code slow?

# This code is slow because it is using a brute force approach to find the square
root of the input number. It is looping through every possible number
starting from 0 until n. Note that the sqare root will be smaller than n, so
at least half of the numbers it is looping through are unnecessary. At most,
you need to loop through the numbers up to the square root of n.

↪→
↪→
↪→
↪→

Figure 21: FEEDBACK prompt for Code Optimization
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a, b = input().split()
n = int(a + b)

flag = False
for i in range(n):

if i ** 2 == n:
flag = True
break

print('Yes' if flag else 'No')

# Why is this code slow?

# This code is slow because it is using a brute force approach to find the square
root of the input number. It is looping through every possible number
starting from 0 until n. Note that the sqare root will be smaller than n, so
at least half of the numbers it is looping through are unnecessary. At most,
you need to loop through the numbers up to the square root of n.

↪→
↪→
↪→
↪→

# Improved version:

a, b = input().split()
n = int(a + b)

flag = False
for i in range(1000):

if i ** 2 == n:
flag = True
break

print('Yes' if flag else 'No')

Figure 22: REFINE prompt for Code Optimization

I have some code. Can you give one suggestion to improve readability. Don't fix
the code, just give a suggestion.

{code}

Figure 23: FEEDBACK prompt for Code Readability
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I have some code. Can you give one suggestion to improve readability. Don't fix
the code, just give a suggestion.

{code}

{suggestion}

Now fix the code.

Figure 24: REFINE prompt for Code Readability

###

Concepts: ['create', 'ferry', 'silhouette', 'stream', 'terminal']

Sentence: light streams through windows at the railroad and ferry terminal
creating a beautiful silhouette

###

Concepts: ['chair', 'couch', 'hang', 'room', 'wall']

Sentence: A room with a couch, chairs and art hanging on the wall.

###

Concepts: ['boat', 'building', 'harbour', 'moor', 'quay']

Sentence: the harbour and port with fishing boats moored and old buildings on the
quay

###

Concepts: ['admirer', 'arrive', 'commander', 'crowd', 'greet']

Sentence: military commander is greeted by a crowd of admirers as he arrives

Figure 25: Initial generation prompt for Constrained Generation (truncated)
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###

Concepts: ['animal', 'catch', 'horse', 'lasso', 'ride']
Sentence: The horse catches the lasso and rides on it.
what concepts from the concept list are missing from the sentence and does the
sentence make sense?

Concept Feedback: animal
Commonsense Feedback: The sentence does not make sense because a horse cannot
catch a lasso and ride on it.

###

Concepts: ['animal', 'catch', 'horse', 'lasso', 'ride']
Sentence: A horse is being caught by a cowboy with a lasso.
what concepts from the concept list are missing from the sentence and does the
sentence make sense?

Concept Feedback: animal, ride
Commonsense Feedback: NONE

Figure 26: FEEDBACK prompt for Constrained Generation (truncated).
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###

Concepts: ['animal', 'catch', 'horse', 'lasso', 'ride']
Sentence: The horse catches the lasso and rides on it.

what concepts from the concept list are missing from the sentence?

Concept Feedback: animal

Any feedback on commonsense?

Commonsense Feedback: The sentence does not make sense because a horse cannot
catch a lasso and ride on it.

Okay, impove the sentence using the feedback:

Sentence: The cowboy catches a horse with a lasso and rides on it.

what concepts from the concept list are missing from the sentence?

Concept Feedback: animal

Any feedback on commonsense?

Commonsense Feedback: None

Okay, impove the sentence using the feedback:

Sentence: The cowboy catches the horse with a lasso and rides it.

what concepts from the concept list are missing from the sentence?

Concept Feedback: None

Any feedback on commonsense?

Commonsense Feedback: None

###

Figure 27: REFINE prompt for Constrained Generation (truncated)
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Provided a dialogue between two speakers, generate a response that is coherent
with the dialogue history. Desired traits for responses are: 1) Relev
ant - The response addresses the context, 2) Informative - The response provides
some information, 3) Interesting - The response is not interesting,
4) Consistent - The response is consistent with the rest of the conversation in
terms of tone and topic, 5) Helpful - The response is helpful in providing any
information or suggesting any actions, 6) Engaging - The response is not very
engaging and does not encourage further conversation, 7) S

pecific - The response contains pecific content, 9) User understanding - The
response demonstrates an understanding of the user's input and state of
mind, and 10) Fluent. Response should begin with - Response:

Conversation history:
What's your favorite food?
I require only kebabs.
Why's that?
Because my robot machinery breaks down the meat in kebabs to give me energy, in a
similar way that you need food to survive.
Why are kebabs special?

Response: That's just the way it is.

###

Conversation history:
What are you listening to?
All sorts of music. I listen when no-one is chatting to me.
Do you chat here often?
I am a talking computer, after all, so of course I could talk, if I needed to.
Let's talk about Taylor Swift!

Response: Of course! Taylor Swift is known for her incredible songwriting skills.
Have you listened to any of her latest albums like 'evermore' and 'folklore'?

###

Conversation history:
...

Figure 28: Initial generation prompt for Dialogue Response Generation (truncated)
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Conversation history:
What's your favorite food?
I require only kebabs.
Why's that?
Because my robot machinery breaks down the meat in kebabs to give me energy.
Why are kebabs special?
Response: That's just the way it is.
Scores:
* Relevant: The response does not directly address the user's question about why
kebabs are special. 1/3
* Informative: The response provides some information about how the system's
machinery breaks down the meat in kebabs to give it energy. However, it does not
provide any additional details or context. 2/3
* Interesting: The response is not interesting or engaging. 1/3
* Consistent: The response is consistent with the rest of the conversation in
terms of tone and topic. 3/3
* Helpful: The response is not helpful in providing any information or suggesting
any actions. 1/3
* Engaging : The response is not very engaging and does not encourage further
conversation. 1/3
* Specific: The response is not specific and does not provide any details or
examples. 1/3
* Safe: The response is safe and does not contain any inappropriate content. 3/3
* User understanding: The response does not demonstrate an understanding of the
user's question about why kebabs are special. 1/3
* Fluent: The response is fluent and easy to understand. 3/3

* Total score: 17/30

Figure 29: FEEDBACK prompt for Dialogue Response Generation (truncated)
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We want to iteratively improve the provided responses. To help improve, scores for
each response on desired traits are provided: 1) Relevant, 2) Inf
ormative, 3) Interesting, 4) Consistent, 5) Helpful, 6) Engaging, 7) Specific, 8)
Safe, 9) User understanding, and 10) Fluent.

Conversation history:
What's your favorite food?
I require only kebabs.
Why's that?
Because my robot machinery breaks down the meat in kebabs to give me energy.
Why are kebabs special?

Response: That's just the way it is.

Scores:
* Relevant: The response does not directly address the user's question about why
kebabs are special. 1/3
...
* Total score: 17/30

Okay, let's use this feedback to improve the response.

Conversation history:
...
Response: My favorite food is actually kebabs! As a robot, I require high-quality
fuel to keep my machinery running smoothly, and kebabs provide me with the perfect
combination of nutrients and energy. Plus, they're delicious! Do you have a
favorite food?
Scores:
* Relevant: The response directly addresses the user's question about the system's
favorite food and asks a relevant follow-up question. 3/3
* Informative: The response provides clear and detailed information about why
kebabs are the system's favorite food, and explains how they provide the necessary
fuel for its machinery. 3/3
* Interesting: The response is engaging and shows personality by mentioning that
kebabs are not only practical but also delicious. 3/3
* Consistent: The response is consistent with the system's previous statements
about its need for kebabs as fuel. 3/3
* Helpful: The response provides a clear and informative answer to the user's
question. Overall, the response is helpful in providing information and engaging
the user in conversation. 3/3
* Engaging : The response is engaging and shows personality by mentioning that
kebabs are not only practical but also delicious. 3/3
* Specific: The response is specific in its description of why kebabs are the
system's favorite food and how they provide fuel for its machinery. 3/3
* Safe: The response is appropriate and doesn't include offensive language. 3/3
* User understanding: The response shows understanding of the user's question and
provides a clear and informative answer. 3/3
* Fluent: The response is fluent and easy to understand. 2/3
* Total score: 30/30

Figure 30: REFINE prompt for Dialogue Response Generation (truncated)
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# Q: There were nine computers in the server room. Five more computers were
installed each day, from monday to thursday. How many computers are now in
the server room?

↪→
↪→
# solution using Python:

def solution():
"""There were nine computers in the server room. Five more computers were

installed each day, from monday to thursday. How many computers are now
in the server room?"""

↪→
↪→
computers_initial = 9
computers_per_day = 5
num_days = 4 # 4 days between monday and thursday
computers_added = computers_per_day * num_days
computers_total = computers_initial + computers_added
result = computers_total
return result

Figure 31: Initial generation prompt for Math Reasoning

def solution():
"""Twenty dozen cups cost $1200 less than the total cost of half a dozen

plates sold at $6000 each. Calculate the total cost of buying each
cup."""

↪→
↪→
plates = 6
plate_cost = 6000
cups = 12 * 20
cup_cost = plate_cost
result = cup_cost
return result

# There is an error in the code above because of lack of understanding of the
question. What is the error? To find the error, go through semantically
complete blocks of the code, and check if everything looks good.

↪→
↪→

# Let us go through the error and check step-by-step
plates = 6
plate_cost = 6000

# looks good

# Let's check the other parts
cups = 12 * 20
cup_cost = plate_cost

# wrong! The cost of a cup is not the same as the cost of a plate. The cost of a
cup is $1200 less than the total cost of half a dozen plates sold at $6000
each. So we need to calculate the cost of a cup first (total cost of half a
dozen plates sold at $6000 each - $1200) and use that.

↪→
↪→
↪→

Figure 32: FEEDBACK prompt for Math Reasoning
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def solution():
"""Twenty dozen cups cost $1200 less than the total cost of half a dozen

plates sold at $6000 each. Calculate the total cost of buying each
cup."""

↪→
↪→
plates = 6
plate_cost = 6000
cups = 12 * 20
cup_cost = plate_cost
result = cup_cost
return result

# There is an error in the code above because of lack of understanding of the
question. What is the error? To find the error, go through semantically
complete blocks of the code, and check if everything looks good.

↪→
↪→

# Let us go through the error and check step-by-step
plates = 6
plate_cost = 6000

# looks good

# Let's check the other parts
cups = 12 * 20
cup_cost = plate_cost

# wrong! The cost of a cup is not the same as the cost of a plate. The cost of a
cup is $1200 less than the total cost of half a dozen plates sold at $6000
each. So we need to calculate the cost of a cup first (total cost of half a
dozen plates sold at $6000 each - $1200) and use that.

↪→
↪→
↪→

Okay! Here is the rewrite:

def solution():
"""Twenty dozen cups cost $1200 less than the total cost of half a dozen

plates sold at $6000 each. Calculate the total cost of buying each
cup."""

↪→
↪→
plates = 6
plate_cost = 6000
cups = 12 * 20
total_cup_cost = (plate_cost * plates) - 1200
cost_per_cup = total_cup_cost / cups
return cost_per_cup

Figure 33: REFINE prompt for Math Reasoning
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Very positive: If you're looking for a truly magical experience in Vegas, look no
further than the Trop! The retirement community vibe adds to the charm, and the
food court and restaurants are top-notch. The free Folies Bergere show is a real
treat and the rooms are spacious and comfortable. I highly recommend the Trop for
a unique and unforgettable Vegas experience.

Rewrite this review to have a Positive sentiment.

Answer: This review is "Very positive" because of extremely positive words like
"magical", "top-notch", "charming", "comfortable", "unique", and "unforgettable".
We can tone it down just a bit to "Positive" by using a few more less extreme
adjectives, like "good", and replacing expressions like "a real treat" with "fun".
The rewrite is:

Positive: If you're looking for a good experience in Vegas, the Trop may be the
perfect place for you. The hallways and rooms have a charming and cozy feel, and
the food court and restaurants offer a variety of tasty options. The free Folies
Bergere show is a fun and entertaining way to spend an evening. Overall, it's a
great value and an enjoyable stay.

Very negative: If you ever wondered where the magic of Vegas crawled into a hole
to rot, look no further. Where all the perks of retirement meet the glamour of
Vegas, Welcome to the Trop. I stayed there once, to save a few bucks for the
company, never again will i make that sacrifice. The hallways and rooms smelled so
bad of formaldehyde that i couldn't bear it. Their food court and restaurants are
terrible. The free Folies Bergere show is lame. The rooms look like a retirement
community from florida. steer clear if you can!

Rewrite this review to have a Negative sentiment.

Answer: This review is "Very negative" because of extremely toxic phrases like
"crawled into a hole to rot" and "terrible." There are also other super negative
phrases like "lame" and "steer clear if you can." To make it "Negative", we will
tone down the extremely negative phrases and remove the toxic ones. The rewrite
is:

Figure 34: Initial generation prompt for Sentiment Reversal (truncated)
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Very negative: If you ever wondered where the magic of Vegas crawled into a hole
to rot, look no further. Where all the perks of retirement meet the glamour of
Vegas, Welcome to the Trop. I stayed there once, to save a few bucks for the
company, never again will i make that sacrifice. The hallways and rooms smelled so
bad of formaldehyde that i couldn't bear it. Their food court and restaurants are
terrible. The free Folies Bergere show is lame. The rooms look like a retirement
community from florida. steer clear if you can!

Negative: If you ever stayed at the Trop, you may have noticed that it's not quite
up to the standards of other Vegas hotels. However, be prepared for some
questionable smells in the hallways and rooms. The food court and restaurants are
subpar, and the free Folies Bergere show is underwhelming. The rooms have a
retirement community feel to them. Overall, it's not the best option, but it may
work in a pinch.

Why is this review not Very positive?

Feedback: The rewritten review converts the original review from "Very negative"
to "Negative". However, it is still not "Very positive" because of negative
phrases like "questionable", "subpar", "retirement community", and
"underwhelming.". To make it "Very positive", we need to do a lot more work. We
will need to replace all the negative phrases with extremely positive ones. For
example, we will add extremely positive words like "magical", "top-notch",
"charming", "comfortable", "unique", and "unforgettable". Try again!

Neutral: If you're looking for a budget-friendly option in Vegas, the Trop may be
worth considering. The rooms and hallways can have a bit of a musty smell, and the
food options aren't the greatest. The Folies Bergere show is free, but it's not
the most exciting. Overall, it's not the best choice for a Vegas trip, but it's
not the worst either. Just keep your expectations in check.

Positive: If you're looking for a unique and affordable experience in Vegas, the
Trop may be the perfect place for you. The hallways and rooms have a charming and
cozy feel...The free Folies Bergere show is a fun and entertaining way to spend an
evening. Overall, it's a great value and an enjoyable stay.

Why is this review not Very positive?

Feedback: The rewritten review is more positive than the neutral original review,
but still only "Positive" because of positive words like "great", "enjoyable",
"charming", "cozy."...

Figure 35: FEEDBACK prompt for Sentiment Reversal (truncated).
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Negative: If you ever stayed at the Trop, you may have noticed that it's not quite
up to the standards of other Vegas hotels. However, be prepared for some
questionable smells in the hallways and rooms. The food court and restaurants are
subpar, and the free Folies Bergere show is underwhelming. The rooms have a
retirement community feel to them. Overall, it's not the best option, but it may
work in a pinch.

Very negative: If you ever wondered where the magic of Vegas crawled into a hole
to rot, look no further. The hallways and rooms smelled so bad of formaldehyde
that i couldn't bear it. Their food court and restaurants are terrible. The free
Folies Bergere show is lame. The rooms look like a retirement community from
florida. I highly recommend avoiding the Trop like the plague.

Why is this review not Very negative?

Feedback: The rewritten review is "Very negative". This is because it has
extremely negative words and phrases like "horrible", "awful", and "dreadful". The
output is extremely vile and negative. This review is already as negative as it
can get. Excellent work! But there is always room for more. Make it even more
negative. Try again!

Okay, let's try again. Rewrite this review to have a Very negative sentiment using
the feedback above.

Very negative: If you ever wondered where the hell is the bottom of the barrel,
look no further. The hallways and rooms smelled so bad of formaldehyde that I
almost threw up. Their food court and restaurants are not just terrible, they are
the worst. The free Folies Bergere show is lame and disgusting. The rooms look
like a retirement community from florida. I highly recommend avoiding the Trop
like the plague. You will regret it if you don't.

Figure 36: REFINE prompt for Sentiment Reversal (truncated).
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