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Abstract

There has been an emergent field within AI-powered financial forecasting that1

leverages alternative data, particularly unstructured news and event information.2

Existing approaches often rely on fixed sentiment lexicons or manually defined3

event taxonomies, while recent advances in large language models (LLMs) have4

inspired the use of prompt engineering to structure such events into features for5

predictive modeling. However, such methods, though offering flexibility across6

modalities, fail to adapt to the constantly shifting dynamics of financial markets.7

Directly using human-annotated labels to guide adaptation is impractical, as anno-8

tation in financial domains are often not explicitly defined. How, then, can we align9

LLM event structuring with predictive objectives in a scalable and efficient way?10

In this work, we propose Structuring News, Shaping Alpha, a hybrid framework11

that integrates reinforcement learning–enhanced LLMs with ensemble-based fore-12

casting models. Our system employs an LLM to re-classify financial events into13

structured categories, which are passed as features into a downstream ensemble14

predictor. Crucially, the LLM’s classification policy is optimized in a closed-loop15

setting via Proximal Policy Optimization (PPO), where the reward derives not16

from human supervision but from the predictive value of the resulting features,17

measured through information coefficient (IC) against market returns. We argue18

that in domain tasks such as financial forecasting, the LLM’s strength lies in feature19

extraction, while the machine learning model excels at mapping structured features20

to numerical outputs. By combining these strengths, we advance a hybrid modeling21

paradigm in which LLMs and machine learning models each perform what they do22

best, yielding more adaptive and powerful event-driven prediction. Experiments on23

large-scale Chinese A-share stock data demonstrate that our RL-enhanced classifi-24

cations yield a non-tricial information coefficient while consistently outperform25

carefully engineered prompt-only methods using a flagship LLM, yielding more26

adaptive and powerful event-driven prediction.27

1 Introduction28

Ever since early work demonstrated the predictive value of financial news [Tetlock, 2007], a growing29

body of researchSoun et al. [2022], Xu and Cohen [2018] has explored the use of textual data to30

extract sentiment signals that are often absent from traditional price-and-volume-based factor models.31
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Figure 1: Hybrid model pipeline

This line of research has shown that qualitative narratives—whether in news articles, analyst reports,32

or social media—can capture dimensions of market behavior that numerical indicators alone fail to33

reveal.34

The recent advent of large language models (LLMs) has further accelerated this trend. With their35

ability to parse unstructured text and generate human-level interpretations, LLMs appear to offer a36

powerful new tool for extracting insights from financial documentsLopez-Lira and Tang [2023], Xiao37

et al. [2024]. Through in-context learning and prompt-based querying, these models can evaluate the38

implications of market-relevant information in a flexible, zero-shot setting. However, the nature of the39

specific task at hand, not the capability of the LLMs themselves, leaves something to be desired for40

such an approach. Unlike general NLP tasks, financial forecasting operates in an environment with a41

low signal-to-noise ratio, where subtle variations in model output can have outsized implications for42

downstream trading decisions. Prompt-based methods do not adapt as market conditions evolve, nor43

do they optimize directly for predictive accuracy. Reinforcement learning (RL), or more specifically44

Proximal Policy Optimization (PPO)Schulman et al. [2017] provides a natural solution. Althoug RL45

has already proven successful in aligning LLM behavior with human preferencesOuyang et al. [2022],46

yet in finance, human-annotated labels are not a practical supervision source: annotations are costly,47

ambiguous, and inevitably lag behind market reality. What is needed instead is a dynamic reward48

signal—a metric that reflects how well the LLM’s structured outputs support financial prediction, and49

one that co-evolves with the ever-changing conditions of the market itself.50

In this work, we propose a hybrid forecasting pipeline that explicitly separates the tasks of semantic51

feature construction and numerical prediction. First, an LLM classifies raw financial news into52

structured event categories, distilling them into binary feature vectors at the company-day level.53

These features are then fed into an XGBoost ensemble predictor, which estimates the probability of a54

company under-performing among all listed companies. Crucially, the LLM’s event-classification55

policy is not fixed: after each rolling evaluation, its mappings are updated via Proximal Policy56

Optimization (PPO), where the reward is derived from the predictive alignment of its features with57

realized returns (measured by information coefficient). This closed-loop design allows the system to58

continually adapt its feature space to shifting market regimes while leaving the supervised predictor59

stable and efficient.60
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2 Methodologies61

2.1 The Hybrid Model62

Model Overview and Data Composition. Our stock universe consists of all listed Chinese A-63

share companies from the Shanghai and Shenzhen Stock Exchanges. Figure 1 illustrates the hybrid64

framework, which integrates (i) an LLM-based event classifier, (ii) a supervised ensemble predictor,65

and (iii) a reinforcement learning loop in a rolling pipeline. For each roll, firm-day observations66

are split chronologically into training, validation, and test periods. The LLM we used for PPO67

post-training enhancement was Qwen-2.5-3B-Instruct Team [2024].68

Each company-day is first encoded as a binary vector of predefined raw event types (e.g., Personnel69

Change, Litigation). An entry equals 1 if a news item of that raw type occurs between the previous70

close and the current day’s open (intraday news is excluded). For example, if Personnel Change71

is reported at 09:23 on day T0 and Litigation at 17:23 on T−1, both raw-event entries are set to72

1 for day T0. These raw labels are produced by a RoBERTa-based classifier Liu et al. [2019]73

fine-tuned on manually annotated financial news (a full list is given in Appendix 2). Importantly,74

these raw event vectors (around 2.4M in total) are the fixed input space; the LLM’s role is to75

subsequently group or reclassify them into higher-level categories during policy adaptation. The first76

training window spans January 2020–August 2021 (20 months), followed by a 3-month validation77

period (September–November 2021) and a 3-month test period (December 2021–February 2022).78

Subsequent rolls advance each window by three months while keeping the left training boundary79

fixed.80

Event Classification and Supervised Prediction. At roll t, the LLM maps raw events Et into 1081

new abstract event classes according to its inferred impact on prices, producing transformed features82

Φt = πθold(Et). These re-mapped features are then split into Φtrain
t ,Φval

t ,Φtest
t . Given Φtrain

t , we train an83

XGBoost ensemble to predict whether a firm falls into the bottom p = 40% of one-day-ahead returns.84

Hyperparameters are optimized on Φval
t using Hyperopt/TPE, yielding tuned parameters ω̂t. The85

final XGBoost model trained with ω̂t generates probability predictions, which constitute the hybrid86

model’s output on Φtest
t . "Hybrid Model" means we deliberately separate the roles of the two model87

components with LLM as feature constructor; it learns semantically meaningful groupings of raw88

event types, leveraging its interpretive power to transform input features. On the other hand, we elect89

XGBoost ensemble model as feature-to-numerical mapper; it specializes in converting structured90

features into calibrated probability estimates of financial outcomes. Crucially, these test predictions91

are produced before reinforcement learning begins, ensuring that downstream RL adaptation does not92

contaminate the out-of-sample evaluation.93

Reward Definition and RL Adaptation. To initiate PPO, we assess the quality of LLM’s event94

classification by computing the average daily cross-sectional information coefficient (IC) between95

hybrid model predictions and realized one-day-ahead open returns in the test set. The reward is96

defined as rt = g(ICt) = C ICt with C = −10, linearly scaling IC within [−0.1, 0.1] and clipped to97

+1 when ICt < −0.1 and to −1 when ICt > 0.1. This reflects empirical evidence that pre-open event98

signals often exhibit short-horizon reversal. Thus, the hybrid design assigns the LLM to adaptively99

refine event classification (via PPO), while XGBoost remains a fixed, efficiently optimized predictor.100

This separation ensures interpretability, stable supervised learning, and targeted adaptation where it101

matters most.102

2.2 PPO in a Contextual Bandit Setting103

We cast PPO into a contextual bandit form. At each roll, the policy πθ(a|xt) produces an event104

grouping at given context xt, then receives reward rt = g(ICt). Since there are no trajectories, the105

advantage reduces to Ât = rt.106

The PPO clipped objective is107

LCLIP(θ) = Êt

[
min

(
rt(θ)rt, clip(rt(θ), 1− ϵ, 1 + ϵ)rt

)]
,

with importance ratio rt(θ) = πθ(at|xt)/πθold(at|xt).108
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Figure 2: Cumulative exceed return of the proposed hybrid model versus GPT-4 baseline.

To prevent over-shifting, we add an adaptive KL penalty:109

LPPO(θ) = LCLIP(θ)− β Êt

[
KL

(
πθold ∥πθ

)]
,

where β is dynamically adjusted.110

This formulation enables stable policy updates in single-step bandit settings, adapting the LLM’s111

event classification to maximize predictive alignment with returns.112

3 Experimental Results113

We evaluate our framework in a cross-sectional stock selection task on the Chinese A-share market.114

For each trading day in the test set, the hybrid model outputs the probability that a given stock will115

fall into the bottom 40% of one-day-ahead returns, based on features constructed from LLM-driven116

event classification. This probability is interpreted as a negative signal: stocks deemed less likely117

to be in the bottom 40% are ranked higher. Each day, we form a long portfolio by buying the set of118

stocks with the lowest predicted bottom-40% probability, subject to a maximum daily turnover of 5%119

and a transaction fee of 0.3%.120

As a comparison, we evaluate GPT-4o-miniOpenAI [2024] as a direct predictor. Instead of relying121

on an intermediate feature-construction stage, GPT-4o-mini is provided with the raw daily event-122

occurrence vector and instructed to predict whether each stock will belong to the bottom 40% of123

returns the next day. Figure 2 reports the cumulative exceed return (relative to the CSI-1000 market124

benchmark) of the two strategies and Table 1 reports the metrics of backtest evaluation. Most125

importantly, the hybrid model yields a non-trivial ic of -1.61% from enhanced event classifications126

alone with no numerical feature added while the ic contribution from the GPT-4o-mini is almost127

neglegible. Additionally, the hybrid model consistently outperforms the GPT-4 baseline, across all128

metrics.129

Table 1: Backtest metrics. Metrics marked with ∗ are measured relative to the benchmark return.

Model Annual Excess Return∗ Sharpe Ratio∗ Win Rate∗ Average IC
GPT-4o-mini 9.48% 1.31 53.64% -0.25%
Hybrid Model 20.05% 1.60 59.91% -1.61%
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4 Conclusion130

In this work, we put forth a hybrid model paradigm that combines the interpretive strength of LLMs131

for semantic event structuring with the predictive efficiency of ensemble methods for numerical132

forecasting. Unlike end-to-end prompting baselines, our framework deliberately separates the roles133

of feature construction and outcome prediction, ensuring both interpretability and robustness. A134

key novelty lies in our design of an IC-based reward that directly links policy updates to predictive135

alignment with market returns, adapting PPO to a contextual bandit setting. Empirical results on large-136

scale Chinese A-share data demonstrate that this design yields non-trivial predictive information from137

event classification features alone, outperforming GPT-4o-mini in both statistical metrics and trading138

performance under realistic turnover and transaction cost constraints. These findings highlight the139

value of combining structured LLM-driven representations with reinforcement learning for dynamic140

adaptation to shifting financial environments. Future work may extend this paradigm to multi-horizon141

objectives, richer event hierarchies, and online market deployment.142
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Table 2: List of raw financial event types used in this study.

Event Type Event Type
Initial Public Offering (IPO) Earnings / Performance
Individual Speech / Conduct Personnel Change
Refinancing Dividend / Bonus Issue
Cooperation / Partnership Employee Stock Ownership
Insider Share Increase / Decrease Regulatory Oversight
Legal Disputes Production
Research and Development Investigations and Penalties
Stock Price Increase Stock Price Decrease
Share Buyback Equity Freeze
Equity Incentive Equity Pledge
Industry Policy Industry Climate / Prosperity
Rating Upgrade Rating Downgrade
Debt Financial Quality
Loans Asset Purchase / Sale
Asset Restructuring Capital Financing
Liquidity / Capital Sales
Risk Elimination Risk Warning
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