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Abstract

We study the problem of building reasoning agents that are able to generalize in an effective
manner. Towards this goal, we propose an end-to-end approach for building model-based
reinforcement learning agents that dynamically focus their reasoning to the relevant aspects
of the environment: after automatically identifying the distinct aspects of the environment,
these agents dynamically filter out the relevant ones and then pass them to their simulator to
perform partial reasoning. Unlike existing approaches, our approach works with pixel-based
inputs and it allows for interpreting the focal points of the agent. Our quantitative analyses
show that the proposed approach allows for effective generalization in high-dimensional
domains with raw observational inputs. We also perform ablation analyses to validate our
design choices. Finally, we demonstrate through qualitative analyses that our approach
actually allows for building agents that focus their reasoning on the relevant aspects of the
environment.

1 Introduction

The goal in model-based reinforcement learning (RL) is to build reasoning agents that maximize long-
term cumulative reward through trial and error interaction with the environment. In the last decade, the
employment of deep neural networks as function approximators have allowed model-based RL agents to
achieve significant successes across a wide range of areas, ranging from challenging board and video games
(Silver et al., 2017b; 2018; Ha & Schmidhuber, 2018; Hafner et al., 2020; 2021; 2023; Schrittwieser et al.,
2020) to discovering efficient algorithms (Fawzi et al., 2022; Mandhane et al., 2022; Mankowitz et al., 2023).
However, despite these successes, these agents are typically designed to improve sample efficiency in regular
RL settings and thus lack the inductive biases that are necessary for achieving effective performance in
generalization settings.

One of the promising lines of research for tackling this shortcoming considers the use of partial models in the
reasoning process of the agent (see e.g. Talvitie & Singh, 2008; Khetarpal et al., 2020; 2021; Zhao et al., 2021;
Alver & Precup, 2023). Inspired by studies in cognitive science, these approaches aim for building agents
that mimic the reasoning process in humans, in which planning is hypothesized to be performed over a few
abstract aspects of the environment (Bengio, 2017; Goyal & Bengio, 2022): e.g. when planning a route from
point A to point B humans typically focus their reasoning to the points in between and discard the rest. More
specifically, rather than building plain reasoning agents that plan over every aspect of the environment, these
approaches advocate for building partial reasoning agents that focus the planning on the relevant aspects of
the environment. Among these studies, the study of Zhao et al. (2021) has empirically demonstrated that
this type of planning allows for effective generalization in scenarios where the details of the environment keep
changing but the overall task remains the same. However, this study has two main shortcomings: (i) it fails
in providing an approach for building partial reasoning agents that works with pixel-based inputs, i.e. an
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Figure 1: Our overall architecture for building partial reasoning agents. This architecture consists of three
main modules: (Box 1) the aspect identification module, (Box 2) the permutation-invariant filtration
module, and (Box 3) the value-equivalent simulation module. The details of these modules are provided in
the main text. The q, k and v blocks represent a linear mapping to obtain the query, key and value matrices,
respectively, and the attention blocks represent a soft attention operation. The GRU block represents a GRU
cell. Lastly, the black arrows indicate the direction of information flow. More details on this architecture
can be found in App. A.

approach that works beyond low-dimensional environments in which the distinct aspects of the environment
is hand-provided via symbolic inputs, and (ii) it lacks detailed qualitative analyses demonstrating that their
proposed approach actually allows for building agents that focus their reasoning on the relevant aspects of
the environment.

In this paper, we overcome these shortcomings by proposing an approach for building partial reasoning agents
that works with pixel-based inputs and allows for interpreting the focal points of the agent. Unlike prior
work, our end-to-end approach allows for building reasoning agents that automatically identify the distinct
aspects of the environment and then dynamically attend to the relevant ones, which makes it possible for
them to work on high-dimensional domains with raw observational inputs. Importantly, the built agents
also allow for further inspection on what they actually incorporate into their model throughout the course of
interaction with the environment. After laying out its details (Sec. 3), we demonstrate through quantitative
analyses that our approach allows for effective generalization in high-dimensional domains (Sec. 4.3). In
addition to the quantitative analyses, we also perform ablation analyses to validate our design choices (Sec.
4.4). Finally, we perform several qualitative analyses with our approach and show that it actually allows for
building agents that dynamically focus their reasoning on the relevant aspects of the environment (Sec. 4.5).
We hope that our study will bring the RL community a step closer to building scalable and interpretable
reasoning agents that are able to effectively generalize to novel situations throughout their interaction with
the environment.

Key Contributions. The key contributions of this study are as follows: (i) We propose an approach for
building partial reasoning agents that works with pixel-based inputs and allows for interpreting the focal
points of the agent. (ii) We demonstrate, through quantitative analyses, that our end-to-end approach allows
for effective generalization in high-dimensional domains with raw observational inputs. (iii) We demonstrate,
through qualitative analyses, that our approach allows for building agents that actually focus their reasoning
on the relevant aspects of the environment.
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2 Background

Reinforcement Learning. In RL (Sutton & Barto, 2018), an agent interacts with its environment through
a sequence of actions to maximize its long-term cumulative reward. The environment is usually modeled as
a Markov decision process (MDP) M ≡ (S, A, P, R, d0, γ) where S and A are the (finite) set of states and
actions, P : S × A → Dist(S) is the transition distribution, R : S × A × S → R is the reward function,
d0 : S → Dist(S) is the initial state distribution and γ ∈ [0, 1) is the discount factor. At each time step t,
after taking an action at ∈ A, the environment’s state transitions from st ∈ S to st+1 ∈ S; and the agent
receives an observation ot+1 ∈ O (reflecting st+1) and an immediate reward rt. The goal of the agent is to
learn a policy π : O → Dist(A) that maximizes Eπ,P [

∑∞
t=0 γtR(St, At, St+1)|S0 = s0 ∼ d0], where Eπ,P [·]

denotes the expectation over trajectories induced by π and P .

Model-Based RL. One way of achieving this goal is through model-based RL (Moerland et al., 2023) in
which there are two alternating phases: (i) the learning and (ii) planning phases. In the learning phase, the
gathered experience is mainly used in learning a model m, and in the planning phase, the learned model
m is then used for simulating experience either to be used alongside real experience in improving the value
predictions or just to be used in selecting actions at decision time (Alver & Precup, 2024).

The Attention Mechanism. In its general form, the soft attention mechanism (Vaswani et al., 2017) is
described as y = σ(QK⊤)V where Q ∈ Rm×dq , K ∈ Rn×dq and V ∈ Rn×dv are the query, key and value
matrices, respectively, and σ(·) is the softmax function. Here, m and n denote the number of query and
key / value vectors, respectively; and, dq and dv denote the dimensionality of the query / key and value
vectors. More explicitly, the attention output y is computed in three steps: (i) first, each of the m dq-
dimensional query vectors are dotted with a database of n dq-dimensional key vectors to compute the score
values, (ii) then these values are passed through a softmax function σ(·), along the axis of the key vectors,
to compute the attention weights, and (iii) finally, the output y is computed by taking a weighted sum of
the n dv-dimensional value vectors with the weights.

Self-Attention and Permutation-Invariance. A particular form of attention that is of interest in this
study is self-attention. In self-attention, the Q, K, V matrices are a function of the input x, e.g., Q = q(x),
K = k(x) and V = v(x) where q(·), k(·) and v(·) are linear mappings. By default, the self-attention operation
is not permutation-invariant, i.e., permuting the input also results in a permutation in the output. However,
a clever way to enable permutation-invariance in self-attention is to make Q a function of a set of fixed
positional embeddings, rather than the input x (see Lee et al., 2019; Tang & Ha, 2021).

3 An Attentive Approach for Building Partial Reasoning Agents from Pixels

In this section, we present our approach for building partial reasoning agents that works with pixel-based
inputs and allows for interpreting the focal points of the agent. Our approach consists of an end-to-end
architecture and an accompanying training procedure. The architecture, depicted in Fig. 1, consists of three
separate modules: (i) the aspect identification module, (ii) the permutation-invariant filtration module and
(iii) the value-equivalent simulation module. The details of these modules and the procedure for collectively
training them are presented in the following sections.

3.1 Aspect Identification Module

At a high level, at each time step t in the environment, the aspect identification module (see Box 1 in Fig.
1) takes in the raw observational input ot and binds its distinct aspects into a set of n distinct slots {si

t}n
i=1.

The main function of this module is to automatically identify the distinct aspects of the environment, e.g.
the distinct objects or the distinct regions in the observational input. Internally, this module resembles
an autoencoder architecture (Goodfellow et al., 2016) and it consists of (i) an encoder network, (ii) a slot
attention module1 and (iii) a decoder network.

1We prefer slot attention over other techniques as it allows for better generalization (Locatello et al., 2020). We also note that
even though Locatello et al. (2020) introduced slot attention and used it for the purposes of object discovery and set prediction
in the context of computer vision, in this study, we are using slot attention for the purpose of building partial reasoning agents.
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The encoder network e (see Box 1.a in Fig. 1) takes as input the raw observation ot and encodes it into
vectorized representations ft that are augmented with positional embeddings, i.e. ft = e(ot). It follows a
simple structure: a convolutional backbone followed by a positional embedding layer.

The vectorized representations ft are then passed through the slot attention module (Locatello et al., 2020)
to obtain a set of n aspect identifying slots {si

t}n
i=1, which form a set with permutation symmetry. Each slot

in the set can, for example, describe an object or a certain region in the observational input. This module
uses an iterative attention mechanism to produce the set of slots. More specifically, slots are initialized at
random and thereafter refined for T iterations with a Gated Recurrent Unit (GRU, Cho et al., 2014) to bind
to particular grouping of the vectorized representations ft (here each iteration refers to a single recurrence
of the GRU). At each iteration, slots “compete” for the reconstructing parts of the input via a soft attention
mechanism (Vaswani et al., 2017). The internal details of this module are depicted in Box 1.b of Fig. 1. For
more details, we refer the reader to the study of Locatello et al. (2020).

Finally, the aspect identifying slots {si
t}n

i=1 are then passed through the decoder network d (see Box 1.c in
Fig. 1) to obtain the observation reconstruction ôt, i.e. ôt = d({si

t}n
i=1). The decoder network is a spatial

broadcast decoder (Watters et al., 2019), as in (Greff et al., 2019): each of the aspect identifying slots are
broadcasted into a 2-dimensional grid and augmented with positional embeddings. Each grid is decoded
using a convolutional network to produce an output of size W × H × 4, where W and H are the height and
width of the image, respectively. The output channels encode the RGB color channels and an unnormalized
alpha mask. The alpha masks are then normalized using a softmax across the slots and used as mixture
weights to combine the individual reconstructions into a single RGB image, which we refer to as ôt.

For more on the details of aspect identification module, we refer the reader to App. A.1.

3.2 Permutation-Invariant Filtration Module

The permutation-invariant (PI) filtration module (see Box 2 in Fig. 1) takes as input the aspect identifying
slots {si

t}n
i=1, i.e. the output of the slot attention module, and performs a “soft” filtration operation over

these slots to distill out the relevant information. The main purpose of this module is to filter out the relevant
information from the slots that are likely to be useful in decision-making, which is later to be used for partial
reasoning. Here, it is important to note that the filtration is dynamic, i.e. throughout the agent-environment
interaction, the PI filtration module can filter out different slots at different time steps. Internally, the slots
are weighted by a PI soft attention mechanism (Lee et al., 2019). Here, the use of a PI attention mechanism
is critical, as the aspect identifying slots form a set with permutation symmetry, i.e. the order of them can
change at each time step. More on the details of this module can be found in App. A.2.

It is also important to note that the PI filtration module has some analogues to the “consciousness-inspired
bottleneck” that was proposed in Zhao et al. (2021). However, there is an important difference: rather
than using a top-k semi-hard attention mechanism (Ke et al., 2018), we use a relatively straightforward
soft attention mechanism (Vaswani et al., 2017). This difference makes our approach much simpler and
it also mitigates the burden of tuning for the optimal k value. Experiments in the following sections also
demonstrate that the use of top-k semi-hard attention does not bring any performance advantages.

3.3 Value-Equivalent Simulation Module

The value-equivalent simulation module (see Box 3 in Fig. 1) takes the filtered aspect identifying slots as
input and uses them as the root state x0

t for performing value-equivalent simulation (Grimm et al., 2020;
2021; Schrittwieser et al., 2020). The main function of this module is to perform partial reasoning, i.e.
to perform planning with the relevant aspects of the environment. More specifically, at each time step
t, for each of the hypothetical k = 1, . . . , K steps, the simulator takes in the root state x0

t and predicts
three future quantities: (i) the policy pk

t ≈ π(at+k+1|o1, . . . , ot, at+1, . . . , at+k), (ii) the value function vk
t ≈

E[ut+k+1 + ut+k+2 + . . . |o1, . . . , ot, at+1, . . . , at+k], and (iii) the immediate reward rk
t ≈ ut+k, where u is

the true reward, π is the policy used to select real actions, and γ is the discount factor. Internally, the
simulator is represented by a combination of a dynamics and prediction network. The dynamics network
m recurrently predicts, at each hypothetical step k, an internal state xk

t and an immediate reward rk
t , i.e.
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xk
t , rk

t = m(xk−1
t , ak

t ). The policy and value function are then computed from the internal state xk
t by a

prediction network g, i.e. pk
t , vk

t = g(xk
t ). We refer the reader to App. A.3 for more details on this module.

Given such a simulator, it is possible to do planning over the internal state space and reward induced by the
dynamics network. Specifically, in this module, we use the Monte-Carlo tree search (MCTS, Coulom, 2006)
algorithm to perform the planning. At each time step t, this algorithm outputs a recommended policy πt

from which an action at+1 ∼ πt is then selected.

Finally, it is important to note that, in this module, we have preferred value-equivalent simulation (see e.g.
Tamar et al., 2016; Oh et al., 2017; Silver et al., 2017a; Schrittwieser et al., 2020) over other reconstruction-
based simulation methods (see e.g. Watter et al., 2015; Wahlström et al., 2015; Kaiser et al., 2019; Hafner
et al., 2020; 2021; 2023) as former simulation methods directly optimize for learning representations that are
useful for achieving the task of interest, which also aligns with the main objective of this study.

3.4 Training Procedure

Using batches of data sampled from the replay buffer, the overall architecture is jointly trained, in an end-to-
end manner, with a loss function that is a weighted sum of the reconstruction loss Lrecon and the simulation
loss Lsim:

Ltotal = αLrecon(ot, ôt) + β

(
K∑

k=0
Lp(πt+k, pk

t ) + Lv(zt+k, vk
t ) + Lr(ut+k, rk

t )
)

︸ ︷︷ ︸
Lsim

, (1)

where Lp, Lv, and Lr are the loss functions for the policy, value function and reward, respectively, constituting
the simulation loss Lsim. While Lrecon optimizes for minimizing the error between input observation ot and
the reconstructed observation ôt, Lp, Lv and Lr optimize for minimizing (i) the error between the search
policy πt+k and predicted policy pk

t , (ii) the error between the improved value target zt+k = ut+1 + γut+2 +
· · · + γn−1ut+n + γnvt+n and the predicted value vk

t , and (iii) the error between the observed reward ut+k

and predicted reward rk
t , respectively. In Lv, the improved value targets zt+k are generated by collecting

trajectories in the environment, and in Lp, the improved policy targets πt+k are generated by performing
MCTS. More details on individual losses and the weighting between them can be found in App. B.

4 Experimental Results

4.1 Environment Descriptions and Evaluation Setting

DynObs-CollectDynObs-Pass

CoinRun BigFish

Figure 2: Sample frames from the
(top row) DynObs-Pass, DynObs-
Collect, (bottom row) CoinRun
and BigFish environments.

Environment Descriptions. We perform our experiments on the (i)
MiniGrid (Chevalier-Boisvert et al., 2018) and (ii) Procgen domains
(Cobbe et al., 2020). We choose these domains as the former one al-
lows for designing controlled experiments and the latter is helpful in
demonstrating the scalability of our approach to more complex do-
mains. Here, it is important to note that in these domains the agent
only receives raw observational inputs, i.e. 64x64 RGB images, and not
symbolic inputs as in Zhao et al. (2021).2

In the MiniGrid domain, we consider two customized environments:
(i) DynamicObstacles-Pass and (ii) DynamicObstacles-Collect (abbre-
viated as DynObs-Pass and DynObs-Collect, respectively, see the
top row of Fig. 2). In both of these environments, the agent (red square)
is randomly spawned at the leftmost column of the grid and has to pass
through a region with randomly oscillating obstacles to reach the goal
(green square), which is randomly placed at the rightmost column of
the grid. At each time step the agent is able to move to one of its

2Zhao et al. (2021) perform experiments on a customized MiniGrid environment with symbolic inputs. The symbolic input
is in the form of a triple (x, y, idx), where x and y are the coordinates on the grid, and idx is the id of the object.
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neighboring cells. After every episode, a new game level is generated by randomly sampling obstacles among
the orange, cyan, yellow, pink and purple obstacles and then by randomly placing them inside the region
between the agent and the goal. In DynObs-Pass, the agent has to complete the level by dodging the existing
deadly orange, cyan, pink and purple obstacles (colliding with the existing yellow obstacle has no effect). In
DynObs-Collect, the agent has to complete the level by collecting the existing yellow obstacle and dodging
the existing deadly orange, cyan, pink and purple ones. In both of these environments, if the agent suc-
cessfully completes the level, it receives a reward of +1 and the episode terminates; otherwise the episode
terminates with a total reward of 0.

In the Procgen domain, we consider two commonly-used environments: (i) CoinRun and (ii) BigFish (see
the bottom row of Fig. 2). In CoinRun, the agent (an astronaut) must collect the coin that is at the far right
of the level. In BigFish, the agent (a green fish) starts as a mid-sized fish and has to grow by eating the
fish that are smaller than itself. In both of these environments, a new game level is procedurally generated
after every episode. For more details on these environments, we refer the reader to the study of Cobbe et al.
(2020).

Evaluation Setting. Following Zhao et al. (2021), we consider the generalization setting, in which the
agent’s performance is evaluated by how it performs on a set of test levels (test set) as it gets trained on a
set of training levels (training set) of the same environment. Importantly, in this setting, the agent does not
get to interact with the test levels, i.e. evaluation is performed in a zero-shot manner.

4.2 Agents

In our experiments, we compare the following agents:

Partial Reasoning (PR) Agent. A partial reasoning agent that was built by our proposed approach in
Sec. 3.
MuZero (MZ) Agent. A MuZero (Schrittwieser et al., 2020) agent. Unlike the PR agent, the MZ agent
performs regular reasoning. The main difference between the MZ agent and the PR agent is in the procedure
for constructing the root state x0

t : while the PR agent constructs it by the use of an aspect identification
and PI filtration module (Sec. 3), the MZ agent constructs it by the use of a plain convolutional and residual
architecture (He et al., 2016). We use this agent as a baseline to demonstrate the impact of partial reasoning
in achieving better generalization.
Model-Free (MF) Agent. A version of the MZ agent that does not perform any planning. This agent
takes actions by skipping the search process and just following its value predictions (which makes it a
model-free agent). We use this agent as a baseline to demonstrate the impact of planning in achieving
better generalization.
PR-NoPIF Agent. A version of the PR agent with no PI filtration module.
PR-SH Agent. A version of the PR agent in which the PI filtration module is implemented with top-k
semi-hard attention. The purposes of this agent and the PR-NoPIF agent will be unfolded in the ablation
analyses section (Sec. 4.4).

We note that the PR agent and the baseline agents share architectures as much as possible to ensure fair
comparisons. More details on all of the agents can be found in App. C.

4.3 Quantitative Analyses

Our approach allows for effective generalization in high-dimensional domains. The study of
Zhao et al. (2021) demonstrated that partial reasoning can allow for effective generalization over regular
reasoning. It also demonstrated that planning plays an important role for better generalization. However,
these demonstrations were mainly performed on low-dimensional gridworlds with symbolic inputs. One of the
main goals of our approach is to generalize these successes to high-dimensional domains. Towards this goal,
we compare the generalization performances of the PR, MZ and MF agents across two image-based MiniGrid
and Procgen domains (Sec. 4.1). Performance curves in Fig. 3 consistently show that, the PR agent displays
a better generalization performance than the MZ agent, both (i) highlighting the role of partial reasoning in
achieving effective generalization and (ii) corroborating the findings of Zhao et al. (2021). We can also see
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Figure 3: The generalization performances of the PR and baseline agents on the (a, b) DynObs-Pass, (c, d)
DynObs-Collect, (e, f) CoinRun and (g, h) BigFish environments. Here, the plots are obtained by evaluating
the agent on a set of test levels (referred to as Test) as it gets trained on a set of training levels (referred
to as Train) of the same environment. In MiniGrid and Procgen experiments, the training sets consist of 16
and 500 randomly-sampled game levels, respectively. In both experiments, the test sets consist of all of the
possible game levels. The means and the confidence intervals are computed over 15 independent runs.

that the MF agent underperforms the PR and MZ agents, which validates the role of planning in achieving
better generalization.

4.4 Ablation Analyses

The PI filtration module plays a critical role in the performance of our approach. One of the
crucial components of our proposed agent architecture is the PI filtration module (Sec. 3.2). This module
is particularly important as it acts as a “soft” filter to what the agent would be modeling. To quantify its
importance, we compare the PR agent with the PR-NoPIF agent (Sec. 4.2). Recall that in the PR-NoPIF
agent the aspect identifying slots are directly passed, without any filtration, to the value-equivalent simulation
module. Results in Fig. 3 show that the removal of the PI filtration module significantly deteriorates the
generalization performance of the PR agent, making it on par with the MZ agent. These results indicate
that the PI filtration module indeed plays a critical role in the performance of our approach.

The use of top-k semi-hard attention in the PI filtration module does not bring any per-
formance advantages. As expressed previously, in this study, we have implemented the PR agent’s PI
filtration module with soft attention, in which the attention weights can take any value between zero and one.
However, another way to implement this module could have been with top-k semi-hard attention, which was
used in the “consciousness-inspired bottleneck” of Zhao et al. (2021) (Sec. 3.2). In top-k semi-hard attention,
only the top-k attention weights are kept and all others are set to zero. If used in the PI filtration module,
this type of attention would allow for a hard filtration of only the k aspect identifying slots with the largest
attention weights. To investigate the impact of this type of attention, we compare the PR agent with the
PR-SH agent (Sec. 4.2). The comparison results, shown in Fig. 3, indicate that the use of top-k semi-hard
attention does not bring any advantages in the generalization performance of the PR agent; in fact, the use
of it slightly decreases the performance. These results suggest that the use of the more simple soft attention
mechanism can be a better choice in the implementation of the PI filtration module.
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Figure 4: (First column) The observational inputs to the aspect identification module across different envi-
ronments. (Middle columns) The corresponding masked reconstructions of each of the aspect identifying
slots. The visualization are obtained by multiplying the alpha masks and reconstructions of each slot, which
are both obtained by passing the slots through the decoder network. We note that while the aspect iden-
tifying slots bind to different objects in the DynObs-Pass, DynObs-Collect and BigFish environments, they
bind to different regions in the CoinRun environment. (Last column) The corresponding reconstructions
of the aspect identification module.

4.5 Qualitative Analyses

The study of Zhao et al. (2021) claimed the learning of partial reasoning agents, but lacked in providing
detailed qualitative analyses that demonstrates that the learned agents actually focus their reasoning on
the relevant aspects of the environment. In this section, we perform qualitative analyses with the PR agent
and demonstrate that our approach actually allows for building reasoning agents that focus on the relevant
aspects of the environment.

Our approach allows for building reasoning agents that automatically identify the distinct
aspects of the environment. Before the dynamic attention illustrations, we first start by presenting
visualizations to demonstrate that the PR agent is actually able to automatically identify the distinct aspects
of the environment. Recall from Sec. 3.1 that the automatic identification of the distinct aspects falls
under the role of the aspect identification module. For this purpose, in Fig. 4 we visualize the masked
reconstructions of each of the individual aspect identifying slots across different environments. Inspecting
this figure, we see that the slots indeed bind to the distinct aspects of the environment, corresponding either
to different objects or to different regions in the observational input. This demonstrates that our proposed
approach is indeed successful in automatically identifying the distinct aspects of the environment.

Our approach allows for building reasoning agents that dynamically attend to the relevant
aspects of the environment. We now present illustrations to demonstrate that the PR agent is actually
able to dynamically attend to the relevant aspects of the environment. Recall that the dynamic attention
to the relevant aspects falls under the role of the PI filtration module (Sec. 3.2). To see if the PI filtration
module is actually successful in this task, in Fig. 5, we present the attention maps of the PR agent throughout
its course of interaction with different environments. Examining this figure, we can see that the PI filtration
module indeed dynamically attends to the relevant aspects of different environments (see the caption of
Fig. 5 for the interpretations), which demonstrates that our proposed approach indeed allows for building
reasoning agents that dynamically focus on the relevant aspects of the environment.

5 Related Work

Partial Reasoning Agents. The use of partial models for building partial reasoning agents has previously
been investigated in the model-based RL literature (Talvitie & Singh, 2008; Khetarpal et al., 2020; 2021;
Zhao et al., 2021; Alver & Precup, 2023; Alver et al., 2024). Among these studies, the study of Zhao et al.
(2021) is closest to our work in that it proposes an approach for building partial reasoning agents and
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Figure 5: Example illustrations of how the attention maps of the PR agent evolve as it interacts with
different environments. The attention maps are obtained by overlapping the weighted alpha masks of the
aspect identifying slots, which are obtained by weighting the alpha masks with the attention weights from
the PI filtration module. In the attention maps, the yellow and dark blue regions indicate the aspects with
the highest and lowest attention, respectively. (DynObs-Collect) In the DynObs-Collect illustrations, we
can see that the agent initially focuses on the yellow obstacle, while also taking into account the deadly
obstacles around it, and after the collection of this obstacle it completely focuses on the goal. (CoinRun)
In CoinRun illustrations, we can see that the agent constantly focuses on where it will land at the end of
its jump while moving to the far right of the level. (BigFish) In BigFish illustrations, we can see that the
agent initially focuses on the red fish next to it, and then after eating this fish it focuses on the pink fish in
front of it.

demonstrates through quantitative analyses that their approach allows for effective generalization. However,
our work differs in that we propose an approach in which the agent automatically identifies, in an end-to-end
manner, the distinct aspects of the environment and then dynamically attends to the relevant ones, which
makes it possible to work on domains beyond low-dimensional gridworlds in which the distinct aspects of
the environment is hand-provided via symbolic inputs, i.e. high-dimensional domains with raw observational
inputs. Another limitation of Zhao et al. (2021) is that they lack detailed analyses demonstrating that their
proposed approach actually allows for building agents that focus on the relevant aspects of the environment.
Our work overcomes this by presenting qualitative analyses in which the built partial reasoning agents
dynamically attend to the relevant aspects of the environment.

Our work is also related to the study of Alver & Precup (2023) in that our partial reasoning agent is also
built towards achieving effective generalization. However, rather than proposing an approach for building
black-box agents that only act as partial reasoning agents at the behavior level, our study proposes an
approach for actually building partial reasoning agents, i.e. as opposed to Alver & Precup (2023), in our
study we propose an interpretable architecture that allows for actually knowing that the agent is dynamically
attending to the relevant aspects of the environment.

Attention in RL. Attention mechanisms have found many uses in RL (see e.g., Sorokin et al., 2015;
Zambaldi et al., 2018; Mott et al., 2019; Tang et al., 2020; Liu et al., 2020; Tang & Ha, 2021). Different from
these studies, which use attention in the context of model-free RL, our work here specifically uses attention
to build partial reasoning agents. Specifically, we utilize attention for the purposes of aspect identification
and (soft) filtration in high-dimensional domains.

9
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Value-Equivalent Planning. A recent trend in model-based RL is to learn models that directly optimize
for value-based planning, which has been studied under the name of value-equivalent planning (see e.g.,
Silver et al., 2017a; Farquhar et al., 2017; Oh et al., 2017; Schrittwieser et al., 2020; Grimm et al., 2020;
2021). Our work also advocates the idea that models should optimize for value-based planning and uses a
value-equivalent simulation module. However, our work differs in that we are also explicit in semantics of
the representations, i.e. we restrict them to be the different aspects of the environment, which allows for
better representation learning. We also demonstrate that this explicitness can provide significant advantages
in generalization.

Cognitive Science. Performing partial reasoning also has connections to the conscious planning literature
in cognitive science (see e.g. Baars, 1993; 2002; Dehaene et al., 2021; Van Gulick, 2022; Bengio, 2017; Goyal
& Bengio, 2022). In conscious planning, it is hypothesized that humans perform planning with a few abstract
entities that are obtained by attending to the relevant aspects of the environment. This type of planning has
been theorized to allow for efficient generalization (Bengio, 2017; Goyal & Bengio, 2022). Similar to Zhao
et al. (2021), our work can also be viewed as a study that incorporates some of the ideas from this literature
to the model-based RL literature.

Interpretable RL. Our work is also related to the line of research that aims for building interpretable RL
agents (Jiang & Luo, 2019; Druce et al., 2021; Glanois et al., 2021; Di Langosco et al., 2022; Delfosse et al.,
2023; 2024a;b; Bastani et al., 2018; Kohler et al., 2024; Luo et al., 2024). However, rather than leveraging
interpretable architectures in safety-critical applications and for the main purpose of understanding the
behavior of the agent, our study leverages them in a complementary fashion: for the purpose of shedding
light on the internal working mechanisms of our partial reasoning agent and in understanding that it actually
focuses on the relevant aspects of the environment.

6 Conclusion

To summarize, in this study, we have presented a novel approach for building partial reasoning agents which
are agents that dynamically focus their reasoning on the relevant aspects of the environment. Unlike existing
approaches, our approach works with pixel-based inputs and it allows for interpreting the focal points of the
agent. Our empirical results (i) demonstrate that the proposed approach allows for effective generalization in
high-dimensional domains with raw observational inputs, and (ii) show that it allows for building reasoning
agents that indeed dynamically focus their reasoning on the relevant aspects of the environment throughout
the agent-environment interaction. We believe that our approach can be an important step towards building
scalable and interpretable reasoning agents that are able to effectively generalize to novel situations. Before
closing, it is important to note that even though we have made use of particular attentive architectures in
the modules, our overall architecture, presented in Fig. 1, is a general architecture and its modules can be
implemented by using different attentive architectures. Finally, we note that in this study, similar to Zhao
et al. (2021), we have only considered environments in which the details keep changing but the overall task
remains the same. In future work, we hope to extend our work and tackle environments in which the overall
task also changes over time.
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A Internal Details of the Modules

A.1 Aspect Identification Module

As explained in the main text, the aspect identification module consists of (i) an encoder network, (ii) a slot
attention module and (i) a decoder network. The architectural details of the encoder and decoder networks
are summarized in Fig. 6 & 7, respectively.
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Figure 6: The architecture of the encoder network. The black arrows indicate the direction of information
flow.

C
on
v2
dT
ra
ns
po
se

(f
ilt
er
s=
16
,

ke
rn
el
_s
iz
e=
5,

st
ri
de
=
2,

pa
dd
in
g=
2)

Re
LU

Re
LU

Re
LU

S
of
tP
os
Em
be
d

(h
id
de
n_
si
ze
=
32
,

re
so
lu
tio
n=
8)

C
on
v2
dT
ra
ns
po
se

(f
ilt
er
s=
16
,

ke
rn
el
_s
iz
e=
5,

st
ri
de
=
2,

pa
dd
in
g=
2)

Re
LU

C
on
v2
dT
ra
ns
po
se

(f
ilt
er
s=
16
,

ke
rn
el
_s
iz
e=
5,

st
ri
de
=
2,

pa
dd
in
g=
2)

C
on
v2
dT
ra
ns
po
se

(f
ilt
er
s=
16
,

ke
rn
el
_s
iz
e=
5,

st
ri
de
=
2,

pa
dd
in
g=
2)

C
on
v2
dT
ra
ns
po
se

(f
ilt
er
s=
16
,

ke
rn
el
_s
iz
e=
5,

st
ri
de
=
2,

pa
dd
in
g=
2)

Re
LU

C
on
v2
dT
ra
ns
po
se

(f
ilt
er
s=
4,

ke
rn
el
_s
iz
e=
3,

st
ri
de
=
2,

pa
dd
in
g=
2)

Figure 7: The architecture of the decoder network. The black arrows indicate the direction of information
flow.

For the implementation of the slot attention module, we have followed the pseudocode in Locatello et al.
(2020), presented in Algorithm 1, and have used the hyperparameters in Table 1. In our experiments, we
have experimented with 4, 6, 8, 10, 16 slots and all of them resulted around the same performance (score).

Table 1: The hyperparameters of the slot attention module.

Parameters Values
Batch size 256
Resolution 64
Number of slots (n) 8
Number of iterations (T ) 3
Warmup steps 1e4

Finally, we note that we have used the same aspect identification module across the two domains (MiniGrid
and Procgen) considered in this study.
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Algorithm 1: The pseudocode of the slot attention module (Locatello et al., 2020).
Note that we use the same variable names with Locatello et al. (2020).

1 Input: inputs, slots ∼ N (µ, diag(σ))
2 Layer Parameters: q, k, v: linear mappings for obtaining the query, key and

value vectors; GRU, MLP
3 for i = 0, . . . , T do
4 slots_prev = slots
5 attention = softmax (q(slots) · k(inputs)⊤, axis=‘slots’)
6 updates = weightedsum (weights=attention, values=v(inputs))
7 slots = GRU (state=slots_prev, inputs=updates)
8 slots += MLP(slots)
9 end

10 return slots

A.2 Permutation-Invariant Filtration Module

Internally, the PI filtration module is a PI soft attention mechanism (Lee et al., 2019), in which the key and
value matrices K, V are obtained by linear transformations of the slots and the query matrix Q is a linear
transformation of fixed positional embeddings, see Algorithm 2.

Algorithm 2: The pseudocode of the PI soft attention mechanism.
1 Input: inputs, pos_encodings
2 Layer Parameters: q, k, v: linear mappings for obtaining the query, key and

value vectors
3 score = q(pos_encodings) · k(inputs)⊤

4 att_weights = softmax (score, axis=‘inputs’)
5 output = weightedsum (weights=att_weights, values= v(inputs))
6 return output

A.3 Value-Equivalent Simulation Module

The value-equivalent simulation module consists of a dynamics and prediction network. The architectural
details of these networks are summarized in Fig. 8 & 9. For the sake of presentation clarity we omit the time
subscripts.
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Figure 8: The architecture of the dynamics network. The black arrows indicate the direction of information
flow.
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Figure 9: The architecture of the prediction network. The black arrows indicate the direction of information
flow.

B Details of the Training Procedure

As explained in the main text, we train our proposed architecture (see Fig. 1), in an end-to-end manner,
with the loss function Ltotal depicted in Eq. 1, which is a weighted sum of the reconstruction loss Lrecon and
the simulation loss Lsim = Lp + Lv + Lr. In our experiments, we ended up in using an equal weighting for
the losses as the different combinations of α ∈ [0, 1] and β ∈ [0, 1] did not lead to a significant increase or
decrease in the generalization performances, i.e. we set α and β to 0.5.

In Ltotal, the reconstruction loss Lrecon is simply the squared error between the input observations o and the
reconstructed observations ô:

Lrecon(o, ô) = (o − ô)2, (2)

And, the policy, value function and reward losses are simply cross-entropy losses:

Lp(π, p) = π⊤ log p, (3)

Lv(z, v) = ϕ(z)⊤ log v, (4)

Lr(u, r) = ϕ(u)⊤ log r, (5)

where ϕ(·) refers to a transformation from a scalar representation to a categorical one, and the p, v and
r indicate the categorical outputs of the dynamics and prediction networks. Note that, in all of the loss
functions, the loss is over batches of data and the time subscripts are omitted for simple presentation.

Finally, we also note that the total loss Ltotal in Eq. 1 also contains an weight decay term. However, for the
sake of simplicity, we have omitted it in the presentation.

C Implementation Details of the Agents

PR Agent. The PR agent is a partial reasoning agent that was built by our proposed approach in Sec.
3. This agent is implemented by using the MCTS simulation framework of Niu et al. (2024).3 More
specifically, we have built upon the available MuZero implementation by replacing the internals of the
RepresentationNetwork class in lzero/model/common.py with the internals of the aspect identification

3See https://github.com/opendilab/LightZero for the publicly available code.
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and PI filtration modules (see App. A.1 & A.2). The hyperparameters of this agent are presented in Table
2.

Table 2: The hyperparameters of the PR agent.

Parameters Values
Weight of policy loss 1
Weight of value loss 1
Weight of reward loss 1

Number of MCTS simulations 10 (MiniGrid)
25 (Procgen)

Reanalyze ratio 0
Number of frames stacked 1

Number of frames skip 1 (MiniGrid)
4 (Procgen)

Length of game segment 400
Replay buffer size (in transitions) 1e6
TD steps 5
Number of unroll steps 5
Batch size 256
Model update ratio 0.25
Reward clipping True
Optimizer type Adam
Learning rate 1e-4
Discount factor 0.99
Frequency of target network update 100
Weight decay coefficient 1e-4
Max gradient norm 10
Discrete action encoding type True
Priority exponent coefficient 0.6
Priority correction coefficient 0.4
Dirichlet noise weight 0.25

MZ Agent. The MZ agent is a MuZero (Schrittwieser et al., 2020) agent. For this agent, we have used the
already available MuZero implementation in Niu et al. (2024) which directly follows the implementation of
Schrittwieser et al. (2020). The architecture of its representation network is depicted in Fig. 10. For a fair
comparison, we use the same hyperparameters with the PR agent, i.e. the hyperparameters in Table 2.
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Figure 10: The architecture of the representation network of the MuZero (MZ) agent. The black arrows
indicate the direction of information flow.
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MF Agent. The MF agent is a model-free counterpart of the MZ agent, i.e. a version of the MZ agent in
which no MCTS is performed: action selection is done solely with the value predictions from the root state.
This agent shares the same architecture and hyperparameters with the MZ agent.

PR-NoPIF Agent. The PR-NoPIF agent is a version of the PR agent with no PI filtration module, i.e. a
version in which the aspect identifying slots are directly passed to the value-equivalent simulation module.
This agent shares the same hyperparameters with the PR agent.

PR-SH Agent. The PR-SH agent is a version of the PR agent which makes use of top-k semi-hard attention
(rather than soft attention) in the implementation of its PI filtration module (see Algorithm 3). For this
agent, we have experimented with different values of k ∈ Z+, ranging between 2 to 7, and ended up with
setting it to 3 as it gave the best results (note that this also what was done in Zhao et al. (2021)). This
agent shares the same hyperparameters with the PR agent.

Algorithm 3: The pseudocode of the PI top-k semi-hard attention mechanism (Ke
et al., 2018; Zhao et al., 2021). The topk_mask() function keeps the top k scores
and sets all the others to -inf.

1 Input: inputs, pos_encodings, k
2 Layer Parameters: q, k, v: linear mappings for obtaining the query, key and

value vectors
3 score = q(pos_encodings) · k(inputs)⊤

4 masked_score = renormalize(topk_mask(score, k=k))
5 att_weights = softmax (masked_score, axis=‘inputs’)
6 output = weightedsum (weights=att_weights, values=v(inputs))
7 return output

D Additional Experimental Results

0 1 2 3 4 5
Timesteps 1e6

0

1

2

3

4

5

Sc
or

e

(a) Heist (Train)

0 1 2 3 4 5
Timesteps 1e6

0

1

2

3

4

5

Sc
or

e

(b) Heist (Test)

Figure 11: The generalization performances of the PR and baseline agents on the Heist environment. The
plots are obtained again by evaluating the agent on a set of test levels (referred to as Test) as it gets trained
on a set of training levels (referred to as Train) of the same environment. The training set consists of 500
randomly-sampled game levels. The test set consists of all of the possible game levels. The means and the
confidence intervals are again computed over 15 independent runs.

To strengthen our quantitative and ablation results, we also compare the generalization performances of the
PR and baseline agents on the Heist environment. In this environment, the agent (a stealer) must steal
the gem that is behind a network of locks. Similar to every Procgen environment, a new game level is
procedurally generated after every episode. For more details on the Heist environment, we refer the reader
to the study of Cobbe et al. (2020). We see that the performance curves in Fig. 11 corroborate the findings
of Sec. 4.3 & 4.4.
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