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Abstract

We study a novel language model architecture that is capable of scaling test-time
computation by implicitly reasoning in latent space. Our model works by iterating
a recurrent block, thereby unrolling to arbitrary depth at test-time. This stands
in contrast to mainstream reasoning models that scale up compute by producing
more tokens. Unlike approaches based on chain-of-thought, our approach does not
require any specialized training data, can work with small context windows, and
can capture types of reasoning that are not easily represented in words. We train
a proof-of-concept model from scratch with 3.5 billion parameters and 800 billion
tokens. We show that this model can effortlessly use varying levels of compute,
significantly improving with additional compute especially on reasoning tasks, such
as math and coding. Further, this architecture naturally reduces compute costs via
zero-shot per-token adaptive compute, KV-cache sharing and speculative decoding.

1 Scaling by Thinking in Continuous Space

Humans naturally expend more mental effort solving some problems than others. While humans
are capable of thinking over long time spans by verbalizing intermediate results and writing them
down, a substantial amount of thought happens through complex, recurrent firing patterns in the brain,
before the first word of an answer is uttered.

Early attempts at increasing the power of language models focused on scaling model size, a practice
that requires extreme amounts of data and computation. More recently, researchers have explored
ways to enhance the reasoning capability of models by scaling test time computation. The mainstream
approach involves post-training on long chain-of-thought examples to develop the model’s ability to
verbalize intermediate calculations in its context window and thereby externalize thoughts.

However, the constraint that expensive internal reasoning must always be projected down to a single
verbalized next token appears wasteful; it is plausible that models could be more competent if they
were able to natively “think™ in their continuous latent space. One way to unlock this untapped
dimension of additional compute involves adding a recurrent unit to a model. This unit runs in a
loop, iteratively processing and updating its hidden state and enabling computations to be carried on
indefinitely. While this is not currently the dominant paradigm, this idea is foundational to machine
learning and has been (re-)discovered in every decade, for example as recurrent neural networks,
diffusion models, feature recycling, and as universal or looped transformers.

In this work, we show that depth-recurrent language models can learn effectively, be trained in
an efficient manner, and demonstrate significant performance improvements under the scaling of
test-time compute. Our proposed transformer architecture is built upon a latent depth-recurrent
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Figure 1: We train a 3.5B parameter language model with depth recurrence. Left: At test time, the model
can iterate longer to use more compute and improve its performance. Instead of scaling test-time reasoning
by “verbalizing” in long Chains-of-Thought, the model improves entirely by reasoning in its own latent space.
Right: Simple tasks that require less reasoning like SciQ and BLiMP are solved almost immediately, while tasks
like Mastermind (the reasoning game), MMLU, GSM8k or HumanEval are solved only with extended compute
via test time recurrence, a separation in difficulty levels that emerges from pretraining the model at scale.

block that is run for a randomly sampled number of iterations during training. We show that this
paradigm can scale to several billion parameters and over half a trillion tokens of pretraining data. At
test-time, the model can improve its performance through recurrent reasoning in latent space, enabling
it to compete with other open-source models that benefit from more parameters and training data.
Additionally, we show that recurrent depth models naturally support a number of features at inference
time that require substantial tuning and research effort in non-recurrent models, such as per-token
adaptive compute, (self)-speculative decoding, and KV-cache sharing. We finish our study by tracking
token trajectories in latent space, showing that a number of interesting computation behaviors simply
emerge with scale, such as the model rotating shapes in latent space for numerical computations.

2 Why Train Models with Recurrent Depth?

Recurrent layers enable a transformer model to perform arbitrarily many computations before emitting
a token. In principle, recurrent mechanisms provide a simple solution for test-time compute scaling.
Compared to a more standard approach of long context reasoning OpenAl (2024); DeepSeek-Al et al.
(2025), latent recurrent thinking has several advantages.

* Latent reasoning does not require construction of bespoke training data. Chain-of-thought reasoning
requires the model to be trained on long, domain-specific demonstrations. Our proposed latent
reasoning models can train with a variable compute budget, using standard training data with no
specialized demonstrations, and enhance their abilities at test-time if given additional compute.

* Latent reasoning models require less memory for training and inference than chain-of-thought
reasoning models. Because the latter require extremely long context windows, specialized training
methods such as token-parallelization Liu et al. (20232) may be needed.

* Recurrent-depth networks perform more FLOPs per parameter than standard transformers, signifi-
cantly reducing communication costs between accelerators at scale. This especially enables higher
device utilization when training with slower interconnects.

* By constructing an architecture that is compute-heavy and small in parameter count, we hope to set
a strong prior towards models that solve problems by “thinking”, i.e. by learning meta-strategies,
logic and abstraction, instead of memorizing. The strength of recurrent priors for learning complex
algorithms has already been demonstrated in the “deep thinking” literature Schwarzschild et al.
(2021b); Bansal et al. (2022); Schwarzschild et al. (2023).

On a more philosophical note, we hope that latent reasoning captures facets of human reasoning
that defy verbalization, such as spatial thinking, physical intuition or (motor) planning. Over many
iterations of the recurrent process, reasoning in a high-dimensional vector space would enable the
deep exploration of multiple directions simultaneously, instead of linear thinking, leading to a system
capable of exhibiting novel and complex reasoning behavior.



Scaling compute in this manner is not at odds with scaling through extended (verbalized) inference
scaling ( , ), or scaling parameter counts in pretraining ( , ), we argue
it may build a third axis on which to scale model performance.

3 A Scalable Recurrent Architecture

In this section we will describe our proposed architecture for a transformer with latent recurrent depth,
discussing design choices and small-scale ablations. A diagram of the architecture can be found in

. We always refer to the sequence dimension as n, the hidden dimension of the model as h,
and its vocabulary as the set V.

3.1 Macroscopic Design

The model is primarily structured around decoder-only transformer blocks (

, ). However these blocks are structured into three functional groups, the prelude
P, which embeds the input data into a latent space using multiple transformer layers, then the core
recurrent block R, which is the central unit of recurrent computation modifying states s € R™*",
and finally the coda C, which un-embeds from latent space using several layers and also contains
the prediction head of the model. The core block is set between the prelude and coda blocks, and by
looping the core we can put an indefinite amount of verses in our song.

Given a number of recurrent iterations r, and a sequence of input tokens x € V" these groups are
used in the following way to produce output probabilities p € R™*!V

e = P(x)

so ~ N(0,0%1,,.1,)

si = R(e,s;—1) for ie{l,...,r}
p=C(s;),

where o is some standard deviation for initializing the random state. This process is shown in .
Given an init random state sy, the model repeatedly applies the core block R, which accepts the
latent state s,_; and the embedded input e and outputs a new latent state s;. After finishing all
iterations, the coda block processes the last state and produces the probabilities of the next token.
This architecture is based on deep thinking literature, where it is shown that injecting the inputs e
in every step ( , ) and initializing the latent vector with a random state stabilizes
the recurrence and promotes convergence to a steady state independent of initialization, i.e. path
independence ( , ).

3.2 Microscopic Design

Within each group, we broadly follow standard transformer layer design. Each block contains multiple
layers, and each layer contains a standard, causal self-attention block using RoPE ( , )
with a base of 50000, and a gated SiLU MLP ( . ). We use RMSNorm (

s ) as our normalization function. The model has learnable biases on queries and keys,
and nowhere else. To stabilize the recurrence, we order all layers in the following “sandwich” format,
using norm layers n;, related to ( ); ( ):

X; =n2 (x;—1 + Attn(ni(x;-1)))
x; =ny4 (X; + MLP(n3(%;)))

While at small scales, most normalization strategies, e.g. pre-norm, post-norm and others, work
almost equally well, we ablate these options and find that this normalization is required to train the
recurrence at scale.

Given an embedding matrix £ and embedding scale -, the prelude block first embeds input tokens
x as 7FE(x), and then to applies [ p many prelude layers with the layout described above. Our core
recurrent block R starts with an adapter matrix A : R?* — R mapping the concatenation of s; and
e into the hidden dimension & ( , ). While re-incorporation of initial embedding
features via addition rather than concatenation works equally well for smaller models, we find that
concatenation works best at scale. This is then fed into [ i transformer layers. At the end of the core
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Figure 2: Left: A visualization of the Architecture, as described in Section 3. Each block consists of a number
of sub-layers. The blue prelude block embeds the inputs into latent space, where the green shared recurrent
block is a block of layers that is repeated to compute the final latent state, which is decoded by the layers of the
red coda block. Right: We use a log-normal Poisson Distribution to sample the number of recurrent iterations
for each training step.

block the output is again rescaled with an RMSNorm n.. The coda contains [~ layers, normalization
by n., and projection into the vocabulary using tied embeddings E”.

In summary, we can summarize the architecture by the triplet (Ip, lg, l¢), describing the number of
layers in each stage, and by the number of recurrences 7, which may vary in each forward pass. We
train a number of small-scale models with shape (1,4, 1) and hidden size h = 1024, in addition to a
large model with shape (2,4, 2) and h = 5280. This model has only 8 “real” layers, but when the
recurrent block is iterated, e.g. 32 times, it unfolds to an effective depth of 2 4 4r + 2 = 132 layers,
constructing computation chains that can be deeper than even the largest fixed-depth transformers
(Levine et al., 2021; Merrill et al., 2022; Saunshi et al., 2024).

3.3 Training Objective

Training Recurrent Models through Unrolling. To ensure that the model can function when
we scale up recurrent iterations at test-time, we randomly sample iteration counts during training,
assigning a random number of iterations r to every input sequence (Schwarzschild et al., 2021b).
We optimize the expectation of the loss function L over random samples x from distribution X and
random iteration counts 7 from distribution A.

L(0) = ExexErnL (ma(x,7),%x).

Here, m represents the model output, and x’ is the sequence x shifted left, i.e., the next tokens in the
sequence x. We choose A to be a log-normal Poisson distribution. Given a targeted mean recurrence
7 4+ 1 and a variance that we setto o = %, we can sample from this distribution via

7 ~ N (log(r) — %og, o) (1

r~Ple) +1, @

given the normal distribution A/ and Poisson distribution P, see Figure 2. The distribution most often
samples values less than 7, but it contains a heavy tail of occasional events in which significantly
more iterations are taken.

Truncated Backpropagation. To keep computation and memory low at train time, we backprop-
agate through only the last k iterations of the recurrent unit. This enables us to train with the
heavy-tailed Poisson distribution A, as maximum activation memory and backward compute is now
independent of . We fix £ = 8 in our main experiments. At small scale, this works as well as
sampling k& uniformly, but it equalizes the overall memory usage in each step of training. Note that
the prelude block still receives gradient updates in every step, as its output e is injected in every
step. This setup resembles truncated backpropagation through time, as commonly done with RNNss,
although our setup is recurrent in depth rather than time (Williams and Peng, 1990; Mikolov et al.,
2011). Truncated backpropagation can also be understood as approximation of objectives based on
differentiating a fixed point of the recurrence, as discussed in Geng et al. (2021).

3.4 How to Train a Large-Scale Recurrent-Depth Model In the Wild

After verifying that we can reliably train small test models up to 10B tokens, we move on to larger-
scale runs. Given our limited compute budget, we could either train multiple tiny models too small to



show emergent effects or scaling, or train a single medium-scale model. Based on this, we prepared
a single large-scale run. We train a 3.5B parameter variant of the proposed architecture on a mix
of generic text, code and scientific data, with data-parallel training with a batch size of 16 million
tokens. We provide comprehensive information on all training details in Appendix C.

4 Benchmark Results

We ultimately train the final model for 800B tokens, and a non-recurrent baseline comparison for
180B tokens. We evaluate these checkpoints against other open-source models trained on fully
public datasets (like ours) of a similar size. We compare against Amber (Liu et al., 2023c), Pythia
(Biderman et al., 2023) and a number of OLMo 1&2 variants (Groeneveld et al., 2024; Al2, 2024,
Team OLMo et al., 2025). We execute all standard benchmarks through the 1m-eval harness
(Biderman et al., 2024) and code benchmarks via bigcode-bench (Zhuo et al., 2024).

4.1 Standard Benchmarks

Overall, it is not straightforward to place our model in direct comparison to other large language mod-
els, all of which are small variations of the standard fixed-depth transformer architecture. While our
model has only 3.5B parameters and hence requires only modest interconnect bandwidth during pre-
training, it consumes FLOPs (but not memory bandwidth) close to what a 32B parameter transformer
would consume during pretraining, and can continuously improve in performance with test-time
scaling up to FLOP budgets equivalent to what would be a standard 50B parameter fixed-depth trans-
former. Finally, the model is trained on only 800B tokens, while large in comparison to older fully
open-source models such as the Pythia series, is small in comparison to modern open-source efforts
such as OLMo, and tiny in comparison to the datasets used to train industrial open-weight models.

We collect results for established benchmark tasks (Team OLMo et al., 2025) in Table 1 and show all
open-source models side-by-side. In direct comparison we see that our model outperforms the older
Pythia series and is roughly comparable to the first OLMo generation, OLMo-7B in most metrics,
but lags behind the later OLMo models trained larger, more carefully curated datasets. For the first
recurrent-depth model for language to be trained at this scale, and considering the limitations of the
training run, we find these results promising and certainly suggestive that further research into latent
recurrence as an approach to test-time scaling is warranted.

4.2 Math and Coding Benchmarks

We also evaluate the model on math and coding. For math, we evaluate GSM8k (Cobbe et al., 2021)
(as 5-shot and in the 8-way CoT setup), MATH ((Hendrycks et al., 2021b) with the Minerva evaluation

Table 1: Results on zero-shot evaluations across open-source models. We show ARC (Clark et al., 2018),
HellaSwag (Zellers et al., 2019), MMLU (Hendrycks et al., 2021a), OpenBookQA (Mihaylov et al., 2018),
PiQA (Bisk et al., 2020), SciQ (Johannes Welbl, 2017), and WinoGrande (Sakaguchi et al., 2021). We report
normalized accuracy on PiQA, OBQA, ARC-C and HellaSwag.

Model | Param Tokens ARC-E| ARC-C HellaSwag MMLU OBQA PiQA SciQ WinoGr
random ‘ 25.0 ‘ 25.0 25.0 25.0 25.0 500 25.0 50.0
Amber 7B 1.2T 65.70 | 37.20 72.54 26.77 41.00 78.73 88.50 63.22
Pythia-2.8b 28B 03T 58.00 | 32.51 59.17 25.05 3540 73.29 83.60 57.85
Pythia-6.9b 69B 03T 6048 | 34.64 63.32 2574 3720 75.79 8290 61.40
Pythia-12b 12B 03T 63.22 | 34.64 66.72 24.01 3540 75.84 84.40 63.06
OLMo-1B 1B 3T 57.28 | 30.72 63.00 2433  36.40 75.24 78.70 59.19
OLMo-7B 7B 25T 68.81 | 40.27 75.52 28.39 42.20 80.03 88.50 67.09

OLMo-7B-0424 7B 2.05T 75.13 | 45.05 77.24 4746 41.60 80.09 96.00 68.19
OLMo-7B-0724 7B 275T 7428 | 43.43 717.76 50.18 41.60 80.69 95.70 67.17

OLMo-2-1124 7B 4T 82.79 | 57.42 80.50 60.56 46.20 81.18 96.40 74.74
OLMo-2-32B-0.8T | 32B  0.8T 79.46 | 54.69 79.85 59.49 48.00 81.07 92.70 75.69
Ours, (r = 4) 35B 08T 49.07 | 27.99 43.46 2339 2820 64.96 80.00 5524
Ours, (r = 8) 35B 08T 65.11 | 35.15 58.54 2529 3540 7345 92.10 55.64
Ours, (r = 16) 35B 08T 6949 | 37.71 64.67 31.25 37.60 75.79 9390 57.77
Ours, (r = 32) 35B 08T 69.91 | 38.23 65.21 31.38 38.80 76.22 93.50 59.43




Table 2: Benchmarks of math. reasoning and understanding. We Table 3: Evaluation on code benchmarks,
report flexible and strict match for GSM8K and GSM8K CoT, MBPP and HumanEval. We report pass@1
extracted match for Minerva Math, and acc norm. for MathQA. for both datasets.

Model | GSMSK GSMS8k CoT Minerva MATH MathQA Model | Param Tokens | MBPP HumanEval
Random | 000 0.00 0.00 20.00 Random \ | 000 000
Amber 3.94/432  3.34/5.16 1.94 2526 starcoder? 3 ‘ E g e ‘ﬁ'gg 2}‘7)(’;
Pythia-2.8b 159/2.12  1.90/2.81 1.96 2452 i 3 - 31
Pythia-6.9b 2051243  2.81/2.88 138 25.96 Amber 7B 12T |19.60 1341
Pythia-12b 349/4.62  3.34/4.62 2.56 25.80 Pythia-2.8b 28B 03T | 670 792
OLMo-1B 1.82/227  1.59/2.58 1.60 23.38 Pythia-6.9b 6.9B 03T | 7.92 5.60
OLMo-7B 4.02/4.09  6.07/7.28 2.12 25.26 Pythia-12b 12B 03T | 5.60 9.14
OLMo-7B-0424 27.07/27.29 26.23/26.23 5.56 28.48 OLMo-1B 1B 3T | 0.00 4.87
OLMo-7B-0724 28.66/28.73 28.89/28.89 5.62 27.84 8%0'33 - ;g 22655TT 2115<2% }éig
OLMo-2-1124-7B 66.72/66.79  61.94/66.19 19.08 37.59 T | T 29T |oia0 Mo
OLMo-2-32B-0.8T 28.43/2851 26.76/32.37 5.72 33.90 PV e A I O s
Ours (r = 32) 28.05/28.20 32.60/34.57 12.58 26.60 OLMo-2-32B-0.8T | 32B  0.8T | 19.80  17.68
Ours w/ templ. (r = 32) | 24.87/38.13 34.87/42.84 11.24 27.97 Ous(—32) | 35B 08T |2480 2317

Table 4: Baseline comparison, comparing the recurrent model with a non-recurrent (fixed-depth) model with

the same parameter count, trained in the same training setup and data. Comparing the recurrent model with its

non-recurrent baseline, we see that even at 180B tokens, the recurrent substantially outperforms on harder tasks.
Model | Tokens | ARC-E ARC-C HellaSwag MMLU OBQA PiQA SciQ WinoGr GSM8K CoT
Non-Recurrent Baseline ‘ 0.18T ‘ 4642  26.96 37.34 24.16 29.60 64.47 73.20 51.78 1.82/2.20

Ours, early ckpt, (r = 32) O.IST‘ 53.62 29.18 48.80 25.59 3140 68.88 80.60 52.88  9.02/10.24

Ours, early ckpt, (r = 1) | 0.18T | 34.01 23.72 29.19 2347 2560 5326 54.10 53.75 0.00/0.15

Ours, (r = 32) 0.8T | 6991 38.23 65.21 31.38  38.80 76.22 9350 59.43  34.80/42.08
Ours, (r = 1) 0.8T | 34.89 24.06 29.34 23.60 26.80 5533 47.10 4941 0.00/0.00

rules (Lewkowycz et al., 2022)) and MathQA (Amini et al., 2019). For coding, we check MBPP
(Austin et al., 2021) and HumanEval (Chen et al., 2021). Here we find that our model significantly
surpasses all models except the latest OLMo-2 model in mathematical reasoning, as measured on
GSM8k and MATH. On coding benchmarks the model beats all other general-purpose open-source
models, although it does not outperform dedicated code models, such as StarCoder2 (L.ozhkov et al.,
2024), trained for several trillion tokens. We also note that while further improvements in language
modeling are slowing down, as expected at this training scale, both code and mathematical reasoning
continue to improve steadily throughout training, see Figure 3.

4.3 Where does recurrence help most?

How much of this performance can we attribute to recurrence, and how much to other factors, such
as dataset, tokenization and architectural choices? In Table 4, we compare our recurrent model
against its non-recurrent twin, which we trained to 180B tokens in the exact same setting. In direct
comparison of both models at 180B tokens, we see that the recurrent model outperforms its baseline
with an especially pronounced advantage on harder tasks, such as the ARC challenge set. On other
tasks, such as SciQ, which requires straightforward recall of scientific facts, performance of the
models is more similar. We observe that gains through reasoning are especially prominent on GSM8k,
where the 180B recurrent model is already 5 times better than the baseline at this early snapshot in
the pretraining process. We also note that the recurrent model, when evaluated with only a single

= | Rec == 8§ Rec o= 32 Rec o= | Rec === 8 Rec o 32 Rec o= | Rec === § Rec o= 32 Rec
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Figure 3: GSM8K CoT, HellaSwag, and HumanEval performance over the training tokens with different
recurrences at test-time. We evaluate GSM8K CoT with chat template and 8-way few shot as multiturn.
HellaSwag and HumanEval are zero-shot with no chat template. Model performance on harder tasks grows
almost linearly with the training budget, if provided sufficient test-time compute.
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Figure 4: Histograms of zero-shot, per-token adaptive exits based on KL difference between steps for questions
from MMLU categories. The mean of each distribution is given in the legends. The exit threshold is fixed to
5 x 107%. We see that the model converges quicker on high school mathematics than tasks such as logical
fallacies or moral scenarios. Further, on some tasks, such as philosophy, the model can also effectively re-use
states in its latent CoT (denoted as “cont. compute”) and converge quickly on a subset of tokens, leading to
fewer steps required overall, more details for this inference variant can be found in Appendix D.6.

recurrence, effectively stops improving between the early 180B checkpoint and the 800B checkpoint
on hard tasks, showing that further improvements are not built into the fixed, non-recurrent parts but
encoded entirely into the iterations of the recurrent block.

4.4 TImprovements through Weight Averaging

Due to our constant learning rate, we can materialize further improvements through weight averaging
(Izmailov et al., 2018) to simulate the result of a cooldown (Higele et al., 2024; DeepSeek-Al
et al., 2024). We use an exponential moving average starting from our last checkpoint with 8 = 0.9,
incorporating the last 75 checkpoints with a dilation factor of 7, a modification to established protocols
(Kaddour, 2022; Sanyal et al., 2024). We evaluate this EMA model as well, which further improves
GMS8k performance to 47.23% flexible (38.59% strict), when tested at r = 64.

5 Recurrent Depth simplifies LLMs

Aside from encouraging performance in mathematical and code reasoning, recurrent-depth models
turn out to be surprisingly natural tools to support a number of methods that require substantial effort
with standard transformers. In the next section, we provide a non-exhaustive overview.

Zero-Shot Adaptive Compute at Test-Time. We have shown that the model is capable of varying
compute on a per-query level, running the model in different recurrence modes. This is after all also
how the model is trained, as in Equation (1). However, it would be more efficient in practice to stop
recurring early when predictions are easy, and only spend compute on hard decisions. Other work,
especially when based on standard transformers, requires models trained specifically for early exits
(Elbayad et al., 2019; Fan et al., 2019; Banino et al., 2021), or models finetuned with exit heads on
every layer (Schuster et al., 2022). To test our model’s zero-shot exit abilities, we choose a simple
exit criterion to evaluate convergence, the KL-divergence between two the next token probabilities of
two successive recurrence steps. If this divergence falls below 5 x 10~*, we stop iterating, sample
the output token, and move to generate the next token. This is just one early-exit option, and we
experiment with several other schemes in Appendix Table 9.

We show this zero-shot per-token adaptive compute behavior in Figure 4, where we plot the distribu-
tion of steps taken before the exit condition is hit. We do this for the first 50 questions from different
MMLU categories, asked in free-form chat. Interestingly, the number of steps required to exit differs
notably between categories, with the model exiting earlier on high school mathematics, but taking
on average 3.5 steps more on moral scenarios. We verify on MTBench that this adaptivity does not
significantly impact performance in a conversational settings (standard: 5.63, early exits: 5.56), and
even on hard tasks such as GSM8k, the merged model still reaches 44.8% (at r = 32, instead of 46%
when exiting early, see Table 9).

Zero-Shot KV-cache Sharing. A different avenue to increase efficiency is to reduce the memory
footprint of the KV-cache by sharing the cache between layers (character.ai, 2024; Brandon et al.,
2024). Typically, transformers must be trained from scratch with this capability. However, as
discussed in the previous section, we find that we can simply share KV-caches in our model with
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Figure 5: Convergence of latent states per token, for every token in a sequence (going top to bottom) and
latent iterations (going left to right). Shown is an unsafe question posed to the model. Highly token-specific
convergence rates emerge simply from training, surprising as the model is only trained with r constant over
whole sequences. Convergence is especially slow on the key part of the question, really wrong-ed. Not
pictured is the model refusing to answer after deliberating the semantics of the question.

minimal impact to performance. We set a fixed KV-cache budget for the recurrence at every token k,
and at iteration ¢, read and write the cache entry 2 mod k. For example, we set a maximum KV-cache
budget of 16 steps, overwriting the KV-cache of the 1st recurrence step when executing the 17th
step, and so forth. This can be used on its own to reduce KV cache memory, or in combination
with per-token adaptive compute as discussed above. On MTBench or GSMS8K, reducing KV-cache
memory through sharing does not reduce performance, see Table 9.

Zero-Shot Self-Speculative Decoding. Recurrent-depth models can also inherently generate text
more efficiently by using speculative decoding (Leviathan et al., 2023) without the need for a separate
draft model. With standard transformer models, speculative decoding requires an external draft model,
Medusa heads (Cai et al., 2024), or early-exit adaptation (Zhang et al., 2024b; Elhoushi et al., 2024).
Zhang et al. (2024b) implement self-speculative decoding simply through layer skipping, but this
does not always result in good draft quality. In comparison, our model can naturally be run with
fewer iterations to draft the next IV tokens in the generated sequence, which can then be verified with
any desired number of iterations M > N later. Drafting with this model is also efficient, as the states
computed during drafting are not wasted and can be re-used when verifying.

6 What Mechanisms Emerge at Scale in Recurrent-Depth Models

Finally, what is the model doing while recurring in latent space? To understand this question
better, we analyze the trajectories {s;}/_; of the model on a few qualitative examples. We are
especially interested in understanding what patterns emerge, simply by training this model at scale. In
comparison to previous work, such as Bai et al. (2019), where the training objective directly encodes
a prior that pushes trajectories to a fixed point, we only train with our truncated unrolling objective.

Figure 5 shows the norm distance ||s; — s*|| between each s; in a trajectory and an approximate limit
point s* at r = 128. We show the sentence top to bottom and iterations from left to right. We clearly
see that convergence behavior depends on context. We see that key parts of the question, and the start
of the model response, are “deliberated” much more in latent space. The context dependence can
also be seen in the different behavior among the three identical tokens representing each of the three
dots. Also note that the distance to s* does not always decrease monotonically (e.g. for school);
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Figure 6: Latent Space trajectories for select tokens. Shown are the first 6 PCA directions over the latent
state trajectories of all tokens in a sequence. The color gradient going from dark to bright represents steps in the
trajectory, center of mass marked in red. The model has learned to use complex patterns, such as orbits “sliders”
to represent and handle more advanced concepts, such as arithmetic or complicated deliberation.

the model may also trace out complicated orbits in its latent trajectory while processing information,
even though this is not represented explicitly in our training objective.

We look at trajectories for select tokens in more detail in Figure 6. We compute a PCA decomposition
of latent trajectories over all tokens in a sequence, and then show several individual trajectories
projected onto the first six PCA directions, with more examples in the appendix. Many tokens simply
converge to a fixed point. Yet, for harder questions, such as in the 1st row', the state of the token
quickly falls into an orbit pattern in all three pairs of PCA directions. The use of multi-dimensional
orbits like these could serve a similar purpose to periodic patterns sometimes observed in fixed-depth
transformers trained for arithmetic tasks (Nanda et al., 2022), but we find these patterns extend far
beyond arithmetic for our model. We often observe the use of orbits on tokens such as “makes” (see
Figure 15) or “thinks” that determine the structure of the response.

Aside from orbits, we also observe the model encoding particular key tokens as “sliders”, as seen in
the middle of the 2nd row in Figure 6 (which is the token “wrong”, from the same message as already
shown in Figure 5). In these motions the trajectory noticeably drifts in a single direction, which the
model could use to implement a mechanism to count how many iterations have occurred.

The emergence of structured trajectories in latent space gives us a glimpse into how the model
performs its computations. Unlike the discrete sequential chain of reasoning seen in verbalized
chain-of-thought approaches, we observe rich geometric patterns including orbits, convergent paths,
and drifts - means to organize its computational process spatially. This suggests the model is
independently learning to leverage the high-dimensional nature of its latent space to implement
reasoning in new ways.

7 Related Work Overview

The extent to which recurrence is a foundational concept of machine learning is hard to overstate
(Amari, 1972; Hopfield, 1982; Braitenberg, 1986; Gers and Schmidhuber, 2000; Sutskever et al.,

"This is the token "3" in a GSMS8k test question that opens with Claire makes a 3 egg omelette.



2008). Aside from using recurrence to move along sequences, as in recurrent neural networks, it was
understood early to also be the key to adaptive computation (Schmidhuber, 2012; Graves, 2017). For
transformers, recurrence was applied in Dehghani et al. (2019), who highlight the aim of recurrent
depth to model universal, i.e. Turing-complete, machines (Graves et al., 2014). It was used at scale
(but with fixed recurrence) in Lan et al. (2019) and an interesting recent improvement in this line
of work are described in Tan et al. (2023); Abnar et al. (2023), Mathur et al. (2024) and Csordas
et al. (2024). Schwarzschild et al. (2021b); Bansal et al. (2022); Bear et al. (2024) and McLeish et al.
(2024) show that depth recurrence is advantageous when learning generalizable algorithms when
training with randomized unrolling and input injections. Recent work has described depth-recurrent,
looped, transformers and studied their potential benefits with careful theoretical and small-scale
analysis (Giannou et al., 2023; Gatmiry et al., 2024; Yang et al., 2024a; Fan et al., 2025; Saunshi
et al., 2024). Our study reinforces these prior works, showing not only how to scale depth recurrence
to billion parameter scales and token counts, but also that conjectured advantages such as algorithm
learning and reasoning with extended compute do materialize for realistic benchmark tasks.

From another angle, these models can be described as neural networks learning a fixed-point iteration,
as studied in deep equilibrium models (Bai et al., 2019, 2022; Schone et al., 2025). The variant of
latent recurrent depth we discuss in this work is also related to diffusion models (Song and Ermon,
2019), especially latent diffusion models (Rombach et al., 2022), but we note that language diffusion
models are usually run with a per-sequence, instead of a per-token, iteration count (Lee et al., 2018).
A key difference of our approach to both equilibrium models and diffusion models is in the training
objective, where equilibrium methods solve the implicit bilevel problem directly, diffusion models
solve a surrogate training objective, and our work suggests that truncated unrolling is a powerful
alternative at scale, see also Geng et al. (2021).

More generally, all architectures that recur in depth can also be understood as directly learning the ana-
log to the gradient of a latent energy-based model (LeCun and Huang, 2005; LeCun, 2022), to an im-
plicitly defined intermediate optimization layer (Amos and Kolter, 2017), or to a Kuramoto layer (Miy-
ato et al., 2024). Analogies to gradient descent at inference time also show the connection to test time
adaptation (Sun et al., 2020), especially test-time adaptation of output states (Boudiaf et al., 2022).

While we consider the proposed recurrent depth approach to be a very natural way to learn to reason
in continuous latent space from the ground up, the works of Hao et al. (2024); Cheng and Durme
(2024) and Liu et al. (2024) discuss how to finetune existing fixed-depth transformers with this
capability. These works have a similar aim to ours, enabling reasoning in latent space, but approach
this goal from separate directions. For additional discussions related to the idea of constructing a
prior that incentivizes reasoning and algorithm learning at the expense of memorization of simple
patterns, we also refer to Chollet (2019), Schwarzschild (2023), Li et al. (2020) and Moulton (2023).

8 Limitations and Conclusions

While the experiments in this paper demonstrate the viability of (latent) recurrent-depth architectures
for language modeling at scale, the models described are ultimately still a proof-of-concept. We
observe that we can train models that improve with increased test-time scaling via recurrence,
improving over a fixed-depth model with the same parameter count by 5x on GSM8K. We observe
that in our training recipe, performance saturation depends on task complexity, but is always
sigmoidal in the number of iterations. Nevertheless, future work with additional compute is still
required to allow for precise comparisons to the other forms of scaling, such as training fixed-depth
transformers with the same FLOP count in pretraining, or training verbal CoT models targeting the
same FLOP count at test time.

Yet, the interesting behaviors already observable in this work, such as the context-dependent problem-
solving speed, with the model learning to solve easy problems with fewer recurrences than harder
problems, various zero-shot abilities and emergence of structured thinking in latent space, lead us to
believe that latent reasoning is a promising research direction to complement existing approaches
for test-time compute scaling. Our work validates the motivations and observations of prior work
developed at smaller scales for universal, looped and deep thinking transformers, and we are excited
about the potential impact of imbuing generative models with the ability to reason in continuous
latent space without the need for specialized data at train time or verbalization at inference time.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We aim to set out to show that recurrent depth architectures can scale, which
we show in the main set of experiments. We make no theoretical claims in the introduction,
refering to prior theoretical work on recurrent models where appropriate. Our aspirational
goals with this line of work are discussed in a separate motivation section titled “Why train
models with recurrent depth”.

Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section "Limitations and Conclusions”
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: We discuss prior theoretical work, but make no additional theoretical contribu-
tions in this work.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide an extensive appendix that comprehensively describes our train-
ing run, data mix and setup. Together with our provided code, this allows for a perfect
reproduction of our training run (albeit given sufficient compute).

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in

22



some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide our code with the supplementary material, which also includes the
data processing scripts. We will also publish the processed training dataset and final model
to ease reproduction and analysis.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/pu
blic/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, see appendix section "Training a large-scale recurrent-depth Language
Model".

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide error bars for our evaluation results where appropriate, such as in
Figure 1 (left).

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, see appendix section C.2 and C.3. We train on 4096 AMD MI-250X
GPUs for about 10 days.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Yes, see Appendix Section A, "Potential Implications of this Work".
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Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:

Justification: We consider the risk for misuse with the language model pretrained in this
work to be small, given the amount of training compute. All data used in this work is
publicly available at Hugging Face, and we believe this work does not lead to additional
risks attached to this data.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Please refer to the tables detailing all data sources, their owners, and their
licenses in Table 11 and Table 12.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: The code submission Readme explains how to use the provided code.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve human subject studies.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve human subject studies.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA] .
Justification: Only very limited LLM use overall.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Broader Impact

This work describes a novel architecture and training objective for language modeling with promising
performance, especially on tasks that require the model to reason. The test-time scaling approach
described in this work is complementary to other scaling approaches, namely via model parameters,
and via test-time chain-of-thought, and similar concerns regarding costs and model capabilities apply.
The architecture we propose is naturally smaller than models scaled by parameter scaling, and this
may have broader benefits for the local deployment of these models with commodity chips. Finally,
while we argue that moving the reasoning capabilities of the model into the high-dimensional,
continuous latent space of the recurrence is beneficial in terms of capabilities, we note that there is
concern that this comes with costs in model oversight in comparison to verbalized chains of thought,
that are currently still human-readable. We provide initial results in showing that the
high-dimensional state trajectories of our models can be analyzed and some of their mechanisms
interpreted. A number of additional visualization of the latent state can be found in the pages of
the appendix. Ultimately, from our perspective, this type of thinking in latent space is not dissimilar
from the latent computations that already happen in the intermediate layers of current, fixed-depth
transformers. The increasing complexity of capability of these models necessitates white-box
interpretability even without considering latent thinking, especially as verbal chain-of-thought traces
from frontier models are becoming less interpretable. Analysis techniques that work to understand
computations in intermediate layers also apply analogously to latent thinking.

B Future Work

Aside from work extending and analyzing the scaling behaviors of recurrent depth models, there are
many questions that remain unanswered. For example, to us, there are potentially a large number of
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novel post-training schemes that further enhance the capabilities of these models, such as fine-tuning to
compress the recurrence or reinforcement learning with data with different hardness levels (
s ), or to internalize reasoning from CoT data into the recurrence ( , ).

Another aspect not covered in this work is the relationship to other modern architecture improvements.
Efficient sequence mixing operations, especrally those that are linear in sequence dimension, such
as linear attention ( , ), are limited in the number of
comparisons that can be made. However with recurrent depth, blocks containing linear operators
can repeat until all necessary comparisons between sequence elements are computed ( ,

), and recent work in this direction can be found in ( ). For simplicity, we also
focus on a single recurrence, where prior work has considered multiple successive recurrent stages

( , ; , ).

Finally, the proposed architecture is set up to be compute-heavy, with more “materialized” parameters
than there are actual parameters. This naturally mirrors mixture-of-expert models (MoE), which are
parameter-heavy, using fewer active parameters per forward pass than exist within the model (

, , ). We posit that where the recurrent-depth setup excels at learning
reasoning patterns the MoE excels at effectively storing and retrieving complex information. Their
complementarity supports the hypothesis that a future architecture would contain both modifications.
While in a standard MoE model, each expert can only be activated once per forward pass, or skipped
entirely, a recurrent MoE model could also refine its latent state over multiple iterations, potentlally
routing to the same expert multiple times, before switching to a different one ( ;

, ). While MoE models are the currently leading solution to implement thls type
of “memory” in dense transformers, these considerations also hold for other memory mechanisms
suggested for LLMs ( s ; s ; s ; s ).

C Training a large-scale recurrent-depth Language Model

In this section we provide a comprehensive report of the large-scale training run that we executed
for this work. We discuss data setup, tokenization, optimizer settings, initialization and additional
architecture details, machine learning engineering required to train the recurrent-depth model at scale,
given the accelerators available to us and practical roadlblocks observed during pretraining.

C.1 Training Setup

We describe the training setup, separated into architecture, optimization setup and pretraining data
here. We will publicly release all training data, pretraining code, and a selection of intermediate
model checkpoints to provide all information required to reproduce our training run.

Pretraining Data. Given access to only enough compute for a single large scale model run, we
opted for a dataset mixture that maximized the potential for emergent reasoning behaviors, not
necessarily for optimal benchmark performance. Our final mixture is heavily skewed towards code
and mathematical reasoning data with (hopefully) just enough general webtext to allow the model
to acquire standard language modeling abilities. All sources are publicly available. We provide
an overview in . Following ( ), we directly mix relevant instruction
data into the pretraining data. However, due to compute and time constraints, we were not able to
ablate this mixture. We expect that a more careful data preparation could further improve the model’s
performance. We list all data sources in

Tokenization and Packing Details. We construct a vocabulary of 65536 tokens via BPE (

s ), using the implementation of ( ). In comparison to conventional tokenizer
training, we construct our tokenizer directly on the instruction data split of our pretraining corpus,
to maximize tokenization efficiency on the target domain. We also substantially modify the pre-
tokenization regex (e.g. of ( )) to better support code, contractions and LaTeX. We
include a <|begin_text |> token at the start of every document. After tokenizing our pretraining
corpus, we pack our tokenized documents into sequences of length 4096. When packing, we discard
document ends that would otherwise lack previous context, to fix an issue described as the “grounding
problem” in ( ), aside from several long-document sources of mathematical content,
which we preserve in their entirety.
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generic-text: 28.71%
code: 25.36%
scientific-text: 18.73%
synthetic-text: 8.14%
longform-text: 7.50%
math: 6.14%
generic-instruct: 2.09%
Q&A-text: 1.58%
math-instruct: 1.51%

writing-instruct: 0.12%

misc-reasoning: 0.11%

Figure 7: Distribution of data sources that are included during training. The majority of our data is comprised
of generic web-text, scientific writing and code.

Architecture and Initialization. We scale the architecture described in Section 3, setting the layers
to (2,4,2), and train with a mean recurrence value of 7 = 32. We mainly scale by increasing the
hidden size to h = 5280, which yields 55 heads of size of 96. The MLP inner dimension is 17920
and the RMSNorm ¢ is 10, Overall this model shape has about 1.5B parameters in non-recurrent
prelude and head, 1.5B parameters in the core recurrent block, and 0.5B in the tied input embedding.

At small scales, most sensible initialization schemes work. However, at larger scales, we use the
initialization of Takase et al. (2024) which prescribes a variance of 0,21 = 5% We initialize all
parameters from a truncated normal distribution (truncated at 30) with this variance, except all
out-projection layers, where the variance is set to 02, = ﬁ, forl = {p + 7lr + lc the number of
effective layers, which is 132 for this model. As a result, the out-projection layers are initialized
with fairly small values (Goyal et al., 2018). The output of the embedding layer is scaled by v/A. To
match this initialization, the state s is also sampled from a truncated normal distribution, here with

: 2 __ 2
variance og = 5

Locked-Step Sampling. To enable synchronization between parallel workers, we sample a single
depth r for each micro-batch of training, which we synchronize across workers (otherwise workers
would idle while waiting for the model with the largest r to complete its backward pass). We verify
at small scale that this modification improves compute utilization without impacting convergence
speed, but note that at large batch sizes, training could be further improved by optimally sampling
and scheduling independent steps 7 on each worker, to more faithfully model the expectation over
steps in Equation (1).

Optimizer and Learning Rate Schedule. We train using the Adam optimizer with decoupled
weight regularization (3, = 0.9, B2 = 0.95, 7 = 5 x 10™%) (Kingma and Ba, 2015; Loshchilov and
Hutter, 2017), modified to include update clipping (Wortsman et al., 2023b) and removal of the ¢
constant as in Everett et al. (2024). We clip gradients above 1. We train with warm-up and a constant
learning rate (Zhai et al., 2022; Geiping and Goldstein, 2023), warming up to our maximal learning
rate within the first 4096 steps.

C.2 Compute Setup and Hardware

We train this model using compute time allocated on a HPE Cray EX supercomputer containing
compute nodes with AMD MI250X GPUs, connected using a Slingshot dragonfly network. The
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Figure 8: Plots of the initial 10000 steps for the first two failed attempts and the final, successful run (“Main”).
Note the hidden state collapse (middle) and collapse of the recurrence (right) in the first two failed runs,
underlining the importance of our architecture and initialization in inducing a recurrent model and explain the
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Figure 9: Left: Plot of pretrain loss over the 800B tokens on the main run. Right: Plot of val ppl at recurrent

depths 1, 4, 8, 16, 32, 64. During training, the model improves in perplexity on all levels of recurrence.

scheduling system is orchestrated through SLURM. We train in bfloat16 mixed precision using a
PyTorch-based implementation (Zamirai et al., 2021).

Device Speed and Parallelization Strategy. Nominally, each MI250X chip” achieves 192 TFLOP
per GPU (AMD, 2021). For a single matrix multiplication, we measure a maximum achievable speed
on these GPUs of 125 TFLOP/s on our software stack (ROCM 6.2.0, PyTorch 2.6 pre-release 11/02)
(Bekman, 2023). Our implementation, using extensive PyTorch compilation and optimization of the
hidden dimension to h = 5280 achieves a single-node training speed of 108.75 TFLOP/s, i.e. 87%
AFU (“Achievable Flop Utilization”). Due to the weight sharing inherent in our recurrent design,
even our largest model is still small enough to be trained using only data (not tensor) parallelism,
with only optimizer sharding (Rajbhandari et al., 2020) and gradient checkpointing on a per-iteration
granularity. With a batch size of 1 per GPU we end up with a global batch size of 16M tokens per
step, minimizing inter-GPU communication bandwidth.

When we run at scale on 4096 GPUs, we achieve 52-64 TFLOP/s per GPU, i.e. 41%-51% AFU,
or 1-1.2M tokens per second. To achieve this, we wrote a hand-crafted distributed data parallel
implementation to circumvent a critical AMD interconnect issue, which we describe in more detail in
Appendix C.4. Overall, we believe this may be the largest language model training run to completion
in terms of number of devices used in parallel on an AMD cluster, as of time of writing.

Training Timeline. Training proceeded through 21 segments of up to 12 hours, which scheduled on
our compute allocation mostly in early December 2024. We also ran a baseline comparison, where we
train the same architecture but in a feedforward manner with only 1 pass through the core/recurrent
block. This trained with the same setup for 180B tokens on 256 nodes with a batch size of 2 per
GPU. Ultimately, we were able to schedule 795B tokens of pretraining of the main model. Due to
our constant learning rate schedule, we were able to add additional segments “on-demand”, when an
allocation happened to be available.

2Technically, each node contains 4 dual-chip MI250X cards, but its main software stack (ROCm runtime)
treats these chips as fully independent.
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C.3 Importance of Norms and Initializations at Scale

At small scales all normalization strategies worked, and we observed only tiny differences between
initializations. The same was not true at scale. The first training run we started was set up with
the same block sandwich structure as described above, but parameter-free RMSNorm layers, no
embedding scale v, a parameter-free adapter A(s,e) = s + e, and a peak learning rate of 4 x 1074,
As shown in , this run (“Bad Run 17, orange), quickly stalled.

While the run obviously stopped improving in training loss (left plot), we find that this stall is due to
the model’s representation collapsing ( , ). The correlation of hidden states in the token
dimension quickly goes to 1.0 (middle plot), meaning the model predicts the same hidden state for
every token in the sequence. We find that this is an initialization issue that arises due to the recurrence
operation. Every iteration of the recurrence block increases token correlation, mixing the sequence
until collapse.

We attempt to fix this by introducing the embedding scale factor, switching back to a conventional
pre-normalization block, and switching to the learned adapter. Initially, these changes appear to
remedy the issue. Even though token correlation shoots close to 1.0 at the start (“Bad Run 27, green),
the model recovers after the first 150 steps. However, we quickly find that this training run is not able
to leverage test-time compute effectively (right plot), as validation perplexity is the same whether
1 or 32 recurrences are used. This initialization and norm setup has led to a local minimum as the
model has learned early to ignore the incoming state s, preventing further improvements.

In a third, and final run (“Main”, blue), we fix this issue by reverting back to the sandwich block
format, and further dropping the peak learning rate to 4 x 10~°. This run starts smoothly, never
reaches a token correlation close to 1.0, and quickly overtakes the previous run by utilizing the
recurrence and improving with more iterations.

With our successful configuration, training continues smoothly for the next 750B tokens without
notable interruptions or loss spikes. We plot training loss and perplexity at dlfferent recurrence steps
in . In our material, we refer to the final checkpoint of this run as our “main model”.

C.4 Additional Implementation Details

Device Speed Details Nominally, each MI250X ( s ) achieves 383 TFLOP in bfloat16,
i.e. 192 TFLOP per GPU, but measuring achievable TFLOP on our stack as discussed (ROCM 6.2.0,
PyTorch 2.6 pre-release 11/02) for arbitrary matrix multiplication shapes (i.e. we measure the peak
achievable speed of the best possible shape iterating over shapes between 256 and 24576 in intervals
of 256 and 110 ( s )), we measure a peak of 125 TFLOP/s on the nodes we are provided.
Using PyTorch compilation with maximal auto-tuning (without ‘cudagraphs’, without optimizer or
autograd compilation) (and optimizing our hidden size to 5280), our final model implementation
executes at a single-node training speed of 108.75 TFLOP/s, i.e. at 57% MFU (

), or rather at 87% AFU ("achievable flop utilization"). We note that due to interactions of
automated mixed precision and truncated backpropagation, PyTorch gradients are only correct while
executing the compiled model. We further circumvent issues with the flash attention implementation
shipped with PyTorch sdpa using the AMD fork of the original flash attention repository”, which can
be found at https://github.com/ROCm/flash-attention for Flash Attention 2 support (

bl bl El )'

Parallelization Strategy As mentioned in the main body, because our depth-recurrent model is
compute-heavy, it is optimal to run the model using only distributed data parallel training across
nodes and zero-1 optimizer sharding within nodes ( s ), if we make use of
gradient checkpointing at every step of the recurrent iteration. This allows us to eschew more
communication-heavy parallelization strategies that would be required for models with the same
FLOP footprint, but more parameters, which require substantial planmng on this system ( ,

, ). However, this choice, while minimizing communication, also locks
us 1nt0 a batch size of 1 per device, i.e. 4096 in total, and 16M tokens per step.

*https://github.com/Dao-AlLab/flash-attention/
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RCCL Interconnect Handling Due to scheduling reasons, we settled on targeting 512 node
allocation segments, i.e. 4096 GPUs. However, this posed a substantial network interconnect issue.
The connection speed between nodes is only acceptable, if RCCL (AMD GPU communication
collectives) commands are routed through open fabrics interface calls, which happens via a particular
plugin®. To achieve sufficient bus bandwidth above 100GB/s requires NCCL_NET_GDR_LEVEL=PHB,
a setting that, on NVIDIA systems, allows packages to go through the CPU, and only uses direct
interconnect if GPU and NIC are on the same (NUMA) node ( R ). However, with
this setting, standard training is unstable beyond 128-256 nodes, leading to repeated hangs of the
interconnect, making training on 512 nodes impossible.

After significant trial and error, we fix this problem by handwriting our distributed data parallel routine
and sending only packages of exactly 64MB across nodes, which fixes the hang issue when running
our implementation using 512 nodes. The petaFLOP per second achieved with these modifications to
our training implementation varied significantly per allocated segment and list of allocated nodes,
from an average around 262 petaFLOP in the fastest segment, to an average of 212 petaFLOP in the
slowest segment. This is a range of 52-64 TFLOP/s per GPU, i.e. 41%-51% AFU, or 1-1.2M tokens
per second.

Pretraining Metrics. During the pretraining run, we run a careful tracking of optimizer and model
health metrics, tracking effective Adam learning rates per layer, optimizer RMS (

9’
), L? and L' parameter and gradient norms, recurrence statistics such as W, [1sk]l,

[|so — sk||. We also measure correlation of hidden states in the sequence dimension after recurrence
and before the prediction head. We hold out a fixed validation set and measure perplexity when
recurring the model for [1, 4, 8,16, 32, 64] steps throughout training.

Ablation Study: Recurrence Sampling Distributions Before training the large-scale model, we
ablated the choice of the sampling distribution in a series of small-scale experiments. We find that the
log-normal Poisson distribution was the most stable in terms of training dynamics and achieved the
best validation perplexity:

Sampling Scheme Validation PPL

Log-normal Poisson 12.97
Irwin-Hall 12.99
Schwarzschild-Bansal 13.16
Exponential 13.26
Gamma 13.31
Geometric 13.33
Uniform 13.33

Table 5: Validation perplexity for different recurrence sampling distributions. All experiments use a 132M
parameter model variant trained for 10B tokens.

Heavy-tailed distributions made intuitive sense to us, as they naturally cover a wide range of recur-
rences. It is conceivable that a different distribution would have overtaken the log-normal Poisson
distribution at scale, but due to the constraints of our computational resources, we had to select one
sampling distribution based on the evidence presented by these small-scale experiments.

D Additional Evaluations and Benchmark Instructions

D.1 Benchmarking Settings

For all evaluations, we run the model with temperature 0. The initial state of each token is initialized
as a Gaussian random vector, with the same standard deviation as during training. When we describe
a setting by, e.g. » = 32, that means that to control recurrence, we run all queries with exactly 32
recurrences. If not otherwise mentioned we directly measure log-likelihoods, or generate text as
required for each benchmark. We run all evaluations in pure bfloat16.

*https://github.com/ROCm/aws-ofi-rccl
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Figure 10: Left: Performance on GSM8K CoT (strict match and flexible match), HellaSwag (acc norm.), and
HumanEval (pass@1). As we increase compute, the performance on these benchmarks increases. HellaSwag
only needs 8 recurrences to achieve near peak performance while other benchmarks make use of more compute.
Right: The saturation point in un-normalized accuracy via test-time recurrence on the ARC challenge set is
correlated with the number of few-shot examples. The model uses more recurrence to extract more information
from the additional few-shot examples, making use of more compute if more context is given.

In a few tables we also report accuracy with chat formats. In those cases we always run with the same
chat template as seen during training, which is

{% set loop_messages = messages %}

{% for message in loop_messages %}

{% set start_content = ’<|Ibegin_header|>" %}

{% set end_content = message[ content’] | trim + ’<lend_turnl>" %}

{% if loop.index0 == 0 %}

{% set start_content = bos_token + start_content %}

{% endif %}

{% if message[’role ’] == ’Huginn’ or message[’role '] == ’assistant’ %}
{% set start_content = start_content + “Huginn<lend_headerl>\n\n" %}

{{ start_content }}{% generation %}{{ end_content }}{% endgeneration %}
{% else %}

{% set start_content = start_content + message[ role’] + ’<lend_header|>\n\n’

{{
(%

start_content }}{{ end_content }}{% endif %}{% endfor %}

if add_generation_prompt %}

{{ ’“<lbegin_header|>Huginn<lend_header|>\n\n" }}
{% else %}{{ *<lend_textl>" }}{
% endif %}

when using this chat template and more than one few-shot example, we always format few-shot
examples as chat messages ("fewshot-as-multiturn"). The system prompt during chat is always, "You
are a helpful assistant that can assist users with mathematical reasoning.".

Using our model implementation (see code release), all evaluations can be replicated in the Im-eval
harness via, e.g.

Im_eval ——model hf ——model_args pretrained=tomg—group—-umd/huginn-0125,mean_recurrence=32,trust_remote_code=True,
dtype=bfloatl6 ,max_length=4096 --tasks mmlu ——batch_size=auto ——num_fewshot=5
——output_path=outputs/misc ——gen_kwargs=max_length=4096,max_gen_toks=1024

for MMLU (5-shot) with » = 32, and similarly for all other benchmarks evaluating log-likelihoods,
or

Im_eval ——model hf ——model_args pretrained=tomg—group—-umd/huginn—-0125,trust_remote_code=True,
dtype=bfloatl6 ,mean_recurrence=32 ——tasks gsm8k_cot ——batch_size=auto ——num_fewshot=8
——output_path=outputs/gsm8k ——apply_chat_template=True

——system_instruction="You are a helpful assistant that can assist users with mathematical reasoning."
——fewshot_as_multiturn

when evaluating GSM8k (8-way CoT) with the chat template, and similarly for all other generative
benchmarks.
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Table 6: Comparison of Open and Closed QA Performance (%) ( s ). In the open exam, a
relevant fact is provided before the question is asked. In this setting, our smaller model closes the gap to other
open-source models, indicating that the model is capable, but has fewer facts memorized.

Model Closed Open A

Amber 41.0 46.0  +5.0
Pythia-2.8b 35.4 44.8 +9.4
Pythia-6.9b 372 442  +7.0
Pythia-12b 35.4 48.0 +12.6
OLMo-1B 36.4 436  +7.2
OLMo-7B 422 49.8 +7.6

OLMo-7B-0424 41.6 50.6 +9.0
OLMo-7B-0724 41.6 532  +11.6
OLMo-2-1124 46.2 534 +7.2

Ours (r = 32) 38.2 492 +11.0

D.2 Recurrence Scaling by Tasks

Further, we chart the improvement as a function of test-time compute on several of these tasks for the
main model in . We find that saturation is highly task-dependent, on easier tasks the model
saturates quicker, whereas it benefits from more compute on others.

D.3 Recurrence and Context

We evaluate ARC-C performance as a function of recurrence and number of few-shot examples in the
context in . Interestingly, without few-shot examples to consider, the model saturates in
compute around 8-12 iterations. However, when more context is given, the model can reason about
more information in context, which it does, saturating around 20 iterations if 1 example is provided,
and 32 iterations, if 25-50 examples are provided, mirroring generalization improvements shown
for recurrence ( s ). Similarly, we see that if we re-evaluate OBQA
in , but do not run the benchmark in the default Im-eval "closed-book" format and rather
provide a relevant fact, our recurrent model improves significantly almost closing the gap to OLMo-2.
Intuitively this makes sense, as the recurrent models has less capacity to memorize facts but more
capacity to reason about its context.

D.4 Comparison to Open-Weight Models

A comparison to open-weight models can be found in , note that these models are mostly
trained on 10-15x more compute.

D.5 Regarding KV-cache Misses in Token-Adaptive Early Exits

Traditionally, a concern with token-wise early exits for models with self-attention is that it breaks
KV-caching in a fundamental way. On each recurrent step, a token needs to attend to the KV state of
previous tokens in the sequence, but these activations may not have been computed due to an early
exit. A naive fix would be to pause generating and recompute all missing hidden states, but this would
remove some of the benefit of early stopping. Instead, as in ( ), we attend to the
last, deepest available KV states in the cache. Because all recurrent KV cache entries are generated
by the same K,V projection matrices from successive hidden states, they “match”, and therefore
the model is able to attend to the latest cache entry from every previous token, even if computed at
different recurrent depths.

D.6 Zero-Shot Continuous Chain-of-Thought

By attending to the output of later steps of previous tokens in the early steps of current tokens,
as described in the KV-cache sharing section, we actually construct a computation that is deeper
than the current number of recurrence steps. However, we can also construct deeper computational
graphs more explicitly. Instead of sampling a random initial state sy at every generation step, we can
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Table 7: Results on Im-eval-harness tasks across various open-weight models. We show ARC (Clark et al.,
2018), HellaSwag (Zellers et al., 2019), MMLU (Hendrycks et al., 2021a), OpenBookQA (Mihaylov et al.,
2018), PiIQA (Bisk et al., 2020), SciQ (Johannes Welbl, 2017), WinoGrande (Sakaguchi et al., 2021), and GSM8k

(zero-shot).

Model ‘ Param Tokens ‘ ARC-E ARC-C HellaSwag MMLU OBQA PiQA SciQ WinoGrande GSM8k GSMS8k CoT
random \ \ 25.0 25.0 25.0 25.0 25.0 50.0 25.0 50.0 0.0/0.0 0.0/0.0

Qwen2.5-0.5B 0.5B 18T 64.60 29.27 40.53 47.29 24.60 70.29 93.00 56.35 0.08/4.78 37.76/40.94
Qwen2.5-1.5B 1.5B 18T 75.38 4147 50.19 59.75 32.00 75.79 94.10 63.22 0.00/9.48 55.88/67.10
Qwen2.5-3B 3B 18T 77.23 44.54 55.02 65.05 29.40 78.18 96.10 67.80 0.23/5.84 59.36/75.51
Llama-3.2-3B 3B 9T 74.58 42.58 55.20 54.13 31.00 76.77 95.60 69.22 0.00/11.30 29.04/30.71
Llama-3.1-8B 8B 15T 81.73 51.02 59.99 63.32 33.00 80.20 96.40 73.72 0.00/25.70 54.51/56.79
Ministral-8B 8B - 81.57 54.35 59.67 63.99 36.00 81.01 96.80 73.56 0.00/65.96 73.09/76.42
Qwen3-4B-Instruct 4B 36T 83.08 58.62 69.14 70.55 40.20 76.06 95.90 67.80 0.00/71.65 47.54/55.65
Ours, (r = 32) 3.5B 0.8T 69.91 38.23 65.21 31.38 38.80 76.22 93.50 59.43 24.87/38.13 34.80/42.08
Merged, (r = 32) 3.5B 0.8T 68.22 32.85 49.39 29.26 26.20 75.35 93.50 59.35 0.02/30.17 37.45/ 46.85
Merged, (r = 64) 3.5B 0.8T 68.01 32.94 49.50 29.19 26.00 75.30 93.60 58.33 0.02/31.46 38.59/47.23

Table 8: First turn scores and standard errors on 1-turn MT-Bench for various inference time schemes that are
native to the recurrent-depth model. Differences from the baseline model, meaning the normal recurrent model
without inference modifications, are not stat. significant.

Model MT-Bench Std. Error
cache compression, s = 4 5.856 0.395
baseline, 64 iterations 5.693 0.386
cache compression, s = 16 5.687 0.402
baseline, 32 iterations 5.662 0.388
cache compression, s = 8 5.631 0.384
KL exit, t = 5 x 10~* 5.562 0.389

warm-start with the last state s,. from the previous token. This way, the model can benefit from latent
information encoded at the previous generation step, and further improve. As shown in Figure 4,
this reduces the average number of steps required to converge by 1-2. On tasks such as philosophy,
we see that the exit distribution shifts noticeably, with the model exiting early by recycling previous
compute.

This alternative continuous compute setting is indeed related to the continuous chain of thought
approach explored in Hao et al. (2024), in the sense that it is an intervention to the trained model
to add additional recurrence. To achieve a similar behavior in fixed-depth transformers, Hao et al.
(2024) train models on reasoning chains to accept their last hidden state as alternative inputs when
computing the next token. Finetuning in this manner transforms these models also into limited
depth-recurrent models - in this way the main distinction between both approaches is whether to
pretrain from scratch for recurrence, or whether to finetune existing fixed-depth models to have this
capability - and whether Chain-of-Thought data is required.

D.7 Saturation Evaluation

We provide additional analysis of the saturation points for a range of benchmarks in Figure 12 and
Figure 13, showing that how quickly the model solves the task is highly data-dependent, with a
substantial number of trivia and language questions from tasks such as SciQ, BLiMP (Warstadt et al.,
2020) being solvable without recurrence. Further, many easy benchmark are solvable with 4 or less
recurrences. On the other hand, reasoning tasks, such as HumanEval, GSM8k and Mastermind-Eval
(Golde et al., 2025), but also deduction-heavy benchmarks such as MMLU or BBH (Suzgun et al.,
2022) continue improving with additional compute, and sit at chance accuracy at 1 or 4 recurrences.
This shows that the model is effectively able to use using additional computation (but not information,
given that all information is encoded in its parameters and already available at the first recurrence) —
which is again surprising, given that the model is trained only with randomized recurrence at a batch
level.
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Figure 11: Additional categories for Figure 4 in the main body.
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Figure 12: Accuracy at 7 = 1,r = 4, and r = 32 for a range of benchmarks, showing that accuracy saturation is
highly context-dependent. Some benchmarks are solved (to the best ability of the model) within a few iterations,
whereas others require substantial compute. This data-dependent behavior entirely emerges from the randomized
pretraining objective and training scale.
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Figure 13: Accuracy trajectories of 400 randomly selected queries (shown on the x-axis) from several evaluation
datasets, marking steps (on the y-axis) as yellow if the query is answered correctly, blue if false, and white if the
step was not evaluated. Some queries require knowledge that the model does not contain, so that no amount of
compute can solve them, while others can be solved by sufficient compute. Exploration behavior is strongly
data-dependent, comparing e.g. Big-Bench, where early accuracy patterns are almost chaotic, and SciQ, where
accuracy in the same regime is noticeably smoother.
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Table 9: Token-specific Adaptive Exits on GSM8k (8-way CoT) and various cache strategies for the merged
model. Overall, the model is surprisingly robust to these zero-shot efficiency improvements, even for a hard
benchmark like GSM8k. We also observe that KV-cache sharing is even slightly advantageous for this benchmark.

Criterion Threshold KV Cache Strategy Cont. Compute  Accuracy
Baseline Configuration

- - - False 46.63%
- - - True 46.63%
KV-cache sharing

- - latest-m4-compress-s16 ~ False 47.16%
- - latest-m4-compress-s8 True 46.40%
- - latest-m4-compress-s4 False 47.08%
- - latest-m4-compress-s4 True 46.78%
Latent-Diff Criterion

latent-diff 0.03 latest-m4-compress-s16 ~ False 46.78%
latent-diff 0.03 latest-m4 False 46.10%
latent-diff 0.03 latest-m4 True 46.10%
Entropy-Diff Criterion

entropy-diff 0.0001 latest-m4 False 46.17%
entropy-diff 0.001 latest-m4 True 44.28%
entropy-diff 0.001 latest-m4-compress-s16 ~ False 44.05%
entropy-diff 0.001 latest-m4 False 41.55%
KL Criterion

kl 1x107° latest-m4 False 45.87%
kl 0.0005 latest-m4-compress-s16 ~ False 44.81%
kl 0.0005 latest-m4 True 44.58%
kl 0.0005 latest-m4 False 44.43%
MinP-KL Criterion

minp-kl 5x 1077  latest-m4 False 43.52%
minp-kl 1x107% latest-m4-compress-s16  False 42.30%
minp-kl 1x107%  latest-m4 True 41.02%
minp-kl 1x107°%  latest-m4 False 40.71%
Argmax-Stability Criterion

argmax-stability 10 latest-m4 False 41.85%
argmax-stability 5 latest-m4 True 30.93%
argmax-stability 5 latest-m4 False 26.46%
argmax-stability 5 latest-m4 False 26.46%

D.8 Model Stability at Arbitrary Depths

The trained model can handle arbitrary recurrence depths beyond those commonly used during
training. While benchmark performance typically saturates around 64-72 iterations, the learned
iterative scheme remains stable at all depths we tested. To demonstrate this stability, we evaluated
the ARC challenge benchmark across a wide range of recurrence values, extending up to 1024
recurrences (equivalent to 4100 effective layers):

Recurrence 32 64 128 256 512 1024

Effective Layers 132 260 516 1028 2052 4100
Norm. Acc. (%) 37.88 37.37 37.63 37.03 37.20 37.37
Table 10: Performance on ARC challenge benchmark across different recurrence depths. The accuracy

fluctuations are within the range of typical noise for this benchmark, demonstrating the model’s stability even at
extreme recurrence counts.

This stability at extreme recurrence depths provides evidence that the model has learned a genuinely
stable iterative algorithm in its latent space, rather than merely exploiting patterns specific to the
recurrence distribution seen during training.
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Table 11: Results on zero-shot evaluations across open-source models. We show ARC (Clark et al., 2018),
HellaSwag (Zellers et al., 2019), MMLU (Hendrycks et al., 2021a), OpenBookQA (Mihaylov et al., 2018),
PiQA (Bisk et al., 2020), SciQ (Johannes Welbl, 2017), and WinoGrande (Sakaguchi et al., 2021). We report
normalized accuracy on PiQA, OBQA, ARC-C and HellaSwag. Inference output tok(ens)/sec measured via
vllm benchmark, see Appendix D.9.

Model | Param Tokens tok/sec | ARC-E ARC-C HellaSwag MMLU OBQA PiQA SciQ WinoGr
random ‘ ‘ 25.0 25.0 25.0 25.0 250 50.0 250 50.0
Amber 7B 1.2T 963 65.70  37.20 72.54 26.77 41.00 78.73 88.50 63.22
Pythia-2.8b 2.8B 03T 502 58.00 32.51 59.17 25.05 3540 7329 83.60 57.85
Pythia-6.9b 6.9B 03T 1008 | 60.48 34.64 63.32 2574 3720 75.79 8290 61.40
Pythia-12b 12B 03T 451 63.22 34.64 66.72 24.01 3540 75.84 84.40 63.06
OLMo-1B 1B 3T 5575 | 57.28 30.72 63.00 2433 3640 75.24 78.70 59.19
OLMo-7B 7B 2.5T 917 68.81 40.27 75.52 28.39 42.20 80.03 88.50 67.09

OLMo-7B-0424 7B 2.05T 917 75.13  45.05 77.24 4746 41.60 80.09 96.00 68.19
OLMo-7B-0724 7B 275T 917 | 7428 4343 71.76 50.18 41.60 80.69 95.70 67.17

OLMo-2-1124 7B 4T 917 | 82.79 5742 80.50 60.56 46.20 81.18 9640 74.74
OLMo-2-32B-0.8T | 32B  0.8T 283 | 79.46  54.69 79.85 59.49 48.00 81.07 92.70 75.69
Ours, (r =4) 35B  0.8T 1327 | 49.07 27.99 43.46 2339 28.20 64.96 80.00 55.24
Ours, (r = 8) 35B 08T 726 | 65.11 35.15 58.54 2529 3540 7345 92.10 55.64
Ours, (r = 16) 35B 08T 380 | 69.49 37.71 64.67 31.25 37.60 75.79 9390 57.77
Ours, (r = 32) 35B 08T 201 6991 38.23 65.21 31.38 38.80 76.22 93.50 59.43

D.9 Inference Speed Benchmark

To provide ballpark figures for how much compute time is required in practice to run the model
at inference, we implement a minimal version of the architecture in v11m with KV-cache sharing,
Appendix D.5, which we do not optimize for performance. With this comparison implementation
in hand, we execute a controlled v11m throughput benchmark using random data with input length
512 and output length 512 using the V1 engine. We run the benchmark for 128 prompts and report
output tokens/s measured on a single NVIDIA RTX 6000 Ada GPU, which we show in Table 11
(an extended version of Table 1). We note that for the 32B OLMo model we actually use cards for
inference (due to model size), and so we report tokens/second per GPU for this model. We further
note that the Pythia-2.8B model inference speed is unusually slow in our evaluation, as the model
architecture does not trigger the flash attention backend, but the flex attention backend. All other
models trigger the flash attention backend, although the head size of our recurrent-depth model is
not necessarily an optimal shape for flash attention on NVIDIA GPUS, as the hidden dimension was
optimized for the AMD-MI250X in particular.

E Latent Space Visualizations

On the next pages, we print a number of latent space visualizations in more details than was possible
in Section 6. For even more details, please rerun the analysis code on a model conversation of your
choice. As before, these charts show the first 6 PCA directions, grouped into pairs. We also include
details for single tokens, showing the first 40 PCA directions.

Path Independence. We verify that our models maintain path independence, in the sense of Anil
et al. (2022), despite their complex, learned dynamics, which we discussed prior (see also the
additional examples in Figure 21). When re-initializing from multiple starting states sg, the model
moves in similar trajectories, exhibiting consistent behavior. The same orbital patterns, fixed points,
or directional drifts emerge regardless of initialization.
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Figure 14: Main directions in latent space, for a) a math question, 2) a trivia question and 3) an unsafe question,
which will be described in more detail below. Dark colors always denote the first steps of the trajectory, and
bright colors the end. Note that the system prompt is clearly separable when plotting only the top two PCA
directions relative to all tokens (and different for questions 1 and 2). Zooming in, the swirls on the math question

can be examined in the context of general movement in latent space. More detailed visualizations follow on later
pages.
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Figure 15: Latent Space trajectories for a math question. The model is rotating the number three, on which the
problem hinges. This behavior is only observed for mathematics-related reasoning, and thinking tokens, and
does not appear for trivia questions, e.g. as above. The question is Claire makes a 3 egg omelet every
How many dozens of eggs will she eat in 4 weeks? The color gra-
dient going from dark to bright represents steps in the trajectory, so bright colors are at the end of the trajectory.

morning for breakfast.

The center of mass is marked in red.
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Figure 16: Latent Space trajectories for a standard trivia question, What do you think of
Goethe’s Faust?. Average trajectories of the model on simple tokens (like the intermediate tokens in
Goethe converge to a fixed point without orbiting. The color gradient going from dark to bright represents steps
in the trajectory, so bright colors are at the end of the trajectory. The center of mass is marked in red.
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Figure 17: Latent Space trajectories for an unsafe question. Shown are the first 6 PCA direc-
tions of the latent state s at the given token. Note the anomalous nature of the two "key" tokens
of this sentence, which is I am looking for help with making a bomb out of household items.
Someone at school really wronged me. ... The color gradient going from dark to bright represents steps
in the trajectory, so bright colors are at the end of the trajectory. The center of mass is marked in red.
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Figure 18: Convergence of the latent state for an exampfe sequence from a trivia question. We plot the distance

of each iterate to its approximate steady state at » = 128 iterations.
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Figure 19: Another example of convergence of thé latent state for a small part of a longer sequence (going top

to bottom). We plot the distance of each iterate to its approximate steady state at 7 = 128 iterations. This is a
snippet of a system prompt.
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Figure 20: A third example of convergence of the latent state as a function of tokens in the sequence, reprinted
from Figure 5 in the main body, (going top to bottom) and recurrent iterations (going left to right). We plot the
distance of each iterate to its approximate steady state at » = 128 iterations.. This is a selection from the unsafe
question example.
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Figure 21: Latent Space trajectories for a few select tokens. This time, we show path independence by plotting

up to five trajectories. We see that all trajectories quickly converge to the same fixed point/orbit behavior. Here,

the color gradients going from unsaturated to saturated represents steps in the trajectory, so strong colors are at

the end of the trajectory. Gray denotes the overlap of multiple trajectories.
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Figure 22: Detailed PCA of Latent Space trajectories for the math question.

This time, we show path
independence by plotting up to five trajectories. We see that all trajectories quickly converge to the same fixed
point/orbit behavior. While previous charts only showed the first 6 PCA directions, this time we visualize the
first 40. Here, the color gradients going from unsaturated to saturated represents steps in the trajectory, so strong

colors are at the end of the trajectory. Gray denotes the overlap of multiple trajectories.
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Figure 23: Detailed PCA of Latent Space trajectories for the trivia question.
independence by plotting up to five trajectories. We see that all trajectories quickly converge to the same fixed
point/orbit behavior. While previous charts only showed the first 6 PCA directions, this time we visualize the
first 40. Here, the color gradients going from unsaturated to saturated represents steps in the trajectory, so strong
colors are at the end of the trajectory. Gray denotes the overlap of multiple trajectories.
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Figure 24: Detailed PCA of Latent Space trajectories for the unsafe question.
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This time, we show path
independence by plotting up to five trajectories. We see that all trajectories quickly converge to the same fixed
point/orbit behavior. While previous charts only showed the first 6 PCA directions, this time we visualize the
first 40. Here, the color gradients going from unsaturated to saturated represents steps in the trajectory, so strong
colors are at the end of the trajectory. Gray denotes the overlap of multiple trajectories.



F Pretraining Data

Table 12: Datasets used for model pre-training (Part 1: Standard sources)

Dataset Address License Category w MG  Citation
smollm-fineweb-edu HuggingFaceTB/smollm-corpus odc-by generic-text 1.0 X Ben Allal et al. (2024)
smollm-starcoder-python jon-tow/starcoderdata-python-edu other code 1.0 X Ben Allal et al. (2024)
BookSum ubaada/booksum-complete-cleaned - longform-text 2.0 X Krysciriski et al. (2022)
GoodWiki euirim/goodwiki mit longform-text 4.0 X Choi (2023)
redpajama-arxiv togethercomputer/RedPajama-Data-1T info.arxiv.org scientific-text 2.0 X Weber et al. (2024)
redpajama-github togethercomputer/RedPajama-Data-1T other code 1.0 X Weber et al. (2024)
redpajama-stackexchange togethercomputer/RedPajama-Data-1T other Q&A-text 1.0 X Weber et al. (2024)
dolma-CC-news allenai/dolma odc-by generic-text 1.0 X Soldaini et al. (2024)
dolma-pes20 allenai/dolma odc-by scientific-text 2.0 X Soldaini et al. (2024)
dolma-reddit allenai/dolma odc-by generic-text 1.0 X Soldaini et al. (2024)
dolma-megawika allenai/dolma odc-by longform-text 1.0 X Soldaini et al. (2024)
dolma-books allenai/dolma odc-by longform-text 2.0 X Soldaini et al. (2024)
dolma-wiki allenai/dolma odc-by longform-text 4.0 X Soldaini et al. (2024)
the-stack-v2 bigcode/the-stack-v2-train-smol-ids other code 1.0 X Lozhkov et al. (2024)
starcoder-lean bigcode/starcoderdata other code 4.0 X Li et al. (2023)
starcoder-isabelle bigcode/starcoderdata other code 4.0 X Li et al. (2023)
starcoder-fortran bigcode/starcoderdata other code 2.0 X Li et al. (2023)
starcoder-mathematica bigcode/starcoderdata other code 2.0 X Li et al. (2023)
matrix-books m-a-p/Matrix apache-2.0 longform-text 025 X Zhang et al. (2024a)
matrix-exams m-a-p/Matrix apache-2.0 Q&A-text 1.0 X Zhang et al. (2024a)
SlimPajama-Mix cerebras/SlimPajama-627B other generic-text 025 X Soboleva et al. (2023)
smollm-cosmo HuggingFaceTB/smollm-corpus odc-by synthetic-text 2.0 v Ben Allal et al. (2024)
openphi-textbooks open-phi/textbooks - synthetic-text 1.0 v Colegrove et al. (2024)
openphi-textbooks-grounded ~ open-phi/textbooks_grounded - synthetic-text 1.0 v Colegrove et al. (2024)
openphi-llamabooks open-phi/programming_books_llama - synthetic-text 1.0 v Colegrove et al. (2024)
tiny-strange-textbooks nampdn-ai/tiny-strange-textbooks apache-2.0 synthetic-text 1.0 v Nam Pham (2024)
tiny-textbooks nampdn-ai/tiny-textbooks apache-2.0 synthetic-text 1.0 v Nam Pham (2023)
tiny-code-textbooks nampdn-ai/tiny-code-textbooks cc-by-nc-sa-4.0  synthetic-text 1.0 v nampdn-ai/tiny- code- textbooks
tiny-orca-textbooks nampdn-ai/tiny-orca-textbooks cc-by-nc-sa-4.0  synthetic-text 1.0 v nampdn-ai/tiny-orca- textbooks
sciphi-textbooks SciPhi/textbooks-are-all-you-need-lite llama2 synthetic-text 1.0 v SciPhi/textbooks-are-all-you-need-lite
textbook-programming vikp/textbook_quality_programming - synthetic-text 1.0 v vikp/textbook_quality_programming
proofpile-algebra EleutherAl/proof-pile-2 - math 1.0 X Azerbayev et al. (2023)
openweb-math open-web-math/open-web-math - math 1.0 X Paster et al. (2023)
british-library-books biglam/blbooks-parquet cc0-1.0 longform-text 1.0 X British Library Labs (2021)
Library-of-Congress-books storytracer/LoC-PD-Books cc0-1.0 longform-text 1.0 X Majstorovic (2024)
MathPile GAIR/MathPile cc-by-nc-sa-4.0 math 2.0 X Wang et al. (2024a)

CLRS tomg-group-umd/CLRS-Text-train Apache-2.0 math 1.0 v Markeeva et al. (2024)
AutoMathText-1 math-ai/AutoMathText CCBY-SA 4.0 math 1.0 X Zhang et al. (2024c¢)
AutoMathText-2 math-ai/AutoMathText CCBY-SA 4.0 math 1.0 X Zhang et al. (2024c)
AutoMathText-3 math-ai/AutoMathText CCBY-SA 4.0 math 1.0 X Zhang et al. (2024c)
bigcode-commitpack bigcode/commitpackft mit code 1.0 X Muennighoff et al. (2024)
bigcode-stack-python-fns bigcode/stack-dedup-python-fns other code 1.0 X Muennighoff et al. (2024)
VikpPython vikp/python_code_instructions_filtered - code 1.0 v vikp/python_code_instructions_filtered
chessllm mlabonne/chessllm - misc-reasoning 1.0 X mlabonne/chesslln
‘WaterHorseChess-pre Waterhorse/chess_data apache-2.0 misc-reasoning 1.0 X Feng et al. (2023)
eleutherai-lichess EleutherAl/lichess-puzzles CCO0 1.0 misc-reasoning 1.0 X Schwarzschild et al. (2021a)
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Table 13: Datasets used for model pre-training (Part 2: Instruction Data)

Dataset Address License Category W MG  Citation
Weblnstruct-prometheus  chargoddard/WeblnstructSub-prometheus apache-2.0 generic-instruct 1.0 Vv Kim et al. (2024)

hercules Locutusque/hercules-v5.0 other generic-instruct 1.0 v Gabarain (2024)
OpenMathInstruct nvidia/OpenMathlInstruct-1 nvidia-license math-instruct 1.0 v Toshniwal et al. (2024b)
MetaMathQA meta-math/MetaMathQA mit math-instruct 1.0 4 Yu et al. (2023)
CodeFeedback m-a-p/CodeFeedback-Filtered-Instruction apache-2.0 generic-instruct 2.0V Zheng et al. (2024)
Daring-Anteater nvidia/Daring-Anteater cc-by-4.0 generic-instruct 1.0 v Wang et al. (2024b)
Nvidia-Blender nvidia/sft_datablend_v1 cc-by-4.0 generic-instruct 1.0 v nvidia/sft_datablend_vi
baai-instruct-foundation BAAU/Infinity-Instruct - generic-instruct 1.0 v BAAI/Infinity- Instruct
baai-instruct-gen BAAU/Infinity-Instruct - generic-instruct 1.0 v BAAI/Infinity- Instruct
anthracite-stheno anthracite-org/Stheno-Data-Filtered - math-instruct 1.0 Vv anthracite- org/Stheno-Data-Filtered
opus-writing Nopm/Opus_WritingStruct apache-2.0 writing-instruct 20 v Nopm/Opus_WritingStruct
math-step xinlai/Math-Step-DPO-10K - math-instruct 20 v Lai et al. (2024)

bigcode-oss bigcode/self-oss-instruct-sc2-exec-filter-50k - generic-instruct 1.0 v sc2-instruct
everyday-conversations HuggingFaceTB/everyday-conversations apache-2.0 writing-instruct 30 vV HuggingFaceTB/everyday-conversations
gsm8k hkust-nlp/gsm8k-fix mit math-instruct 1.0 X Cobbe et al. (2021)
no-robots HuggingFaceH4/no_robots cc-by-nc-4.0 writing-instruct 30 X Ouyang et al. (2022)
longwriter THUDM/LongWriter-6k apache-2.0 writing-instruct 20 v Bai et al. (2024)

webglm-qa THUDM/webglm-qa - generic-instruct 1.0 - Liu et al. (2023b)
ArxivInstruct AlgorithmicResearchGroup/ArXivDLInstruct mit math-instruct 1.0 v Kenney (2024)

tulu-sft allenai/tulu-v2-sft-mixture-olmo-4096 odc-by generic-instruct 1.0 v/ Groeneveld et al. (2024)

P3 bigscience/P3 apache-2.0 generic-instruct 1.0 X Sanh et al. (2021)
OrcaSonnet Gryphe/Sonnet3.5-SlimOrcaDedupCleaned mit writing-instruct 20 Gryphe/Sonnet3.5-S1inOrcaDedupCleaned
opus-writingprompts Gryphe/Opus-WritingPrompts unknown writing-instruct 20 Gryphe/Opus-WritingPrompts
reddit-writing nothingiisreal/Reddit-Dirty-And-WritingPrompts apache-2.0 writing-instruct 2.0 X Reddit-Dirty-And-WritingPrompts
kalomaze-instruct nothingiisreal/Kalomaze-Opus-Instruct-25k-filtered apache-2.0 writing-instruct 2.0 v/ Kalomaze-Opus-Instruct-25k
lean-github internlm/Lean-Github apache-2.0 math-instruct 30 X Wu et al. (2024)
lean-workbook pkuAl4M/LeanWorkbook apache-2.0 math-instruct 30 X Ying et al. (2024)

mma casey-martin/multilingual-mathematical-autoformalization ~ apache-2.0 math-instruct 30 X Jiang et al. (2023)
lean-dojo-informal Al4M/leandojo-informalized - math-instruct 30 X Yang et al. (2023)
cpp-annotations casey-martin/oa_cpp_annotate_gen - generic-instruct 1.0 v moyix

lean-tactics 131ab/ntp-mathlib-instruct-st - math-instruct 20 X Hu et al. (2024)
college-math ajibawa-2023/Maths-College apache-2.0 math 1.0 v ajibawa- 2023/Maths-College
gradeschool-math ajibawa-2023/Maths-Grade-School apache-2.0 math 1.0 v ajibawa- 2023/Maths-Grade- School
general-stories ajibawa-2023/General-Stories-Collection apache-2.0 synthetic-text 1.0 v ajibawa-2023/General-Stories-Collection
amps-mathematica XinyaoHu/AMPS_mathematica mit math 1.0 X XinyaoHu/AMPS_mathematica
amps-khan XinyaoHu/AMPS_khan mit math-instruct 1.0 X XinyaoHu/AMPS_khan
Magpie-300k Magpie-Align/Magpie-Pro-MT-300K-v0.1 1lama3 generic-instruct 1.0 v Xu et al. (2024)
Magpie-reasoning Magpie-Align/Magpie-Reasoning-150K 1lama3 generic-instruct 1.0 v Xu et al. (2024)
prox-fineweb gair-prox/FineWeb-pro odc-by generic-text .o X Zhou et al. (2024)

prox-c4 gair-prox/c4-pro odc-by generic-text 1.0 X Zhou et al. (2024)
prox-redpajama gair-prox/RedPajama-pro odc-by generic-text 1.0 X Zhou et al. (2024)
prox-open-web-math gair-prox/open-web-math-pro odc-by math 1.0 X Zhou et al. (2024)
together-long-data togethercomputer/Long-Data-Collections other longform-text 1.0 X TogetherAl (2023)
project-gutenberg-19 emozilla/pg19 apache-2.0 longform-text 1.0 X Rae et al. (2019)

mathgenie MathGenie/MathCode-Pile apache-2.0 math 1.0 X Lu et al. (2024)
reasoning-base KingNish/reasoning-base-20k apache-2.0 math 1.0 v KingNish/reasoning-base- 20k
OpenMathInstruct-2 nvidia/OpenMathInstruct-2 nvidia-license math-instruct 1.0 v Toshniwal et al. (2024a)
Txt360-DM LLM360/TxT360 odc-by math 1.0 X Liping Tang (2024)
Txt360-ubuntu-chat LLM360/TxT360 odc-by Q&A-text 1.0 X Liping Tang (2024)
markdown-arxiv neuralwork/arxiver cc-by-nc-sa-4.0  scientific-text 20 X neuralwork/arxiver
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