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Abstract

Recent works show that discourse analysis ben-
efits from modeling intra- and inter-sentential
levels separately, where proper representations
for text units of different granularities are de-
sired to capture both the meaning of text units
and their relations to the context. In this paper,
we propose to take advantage of transformers to
encode contextualized representations of units
of different levels to dynamically capture the
information required for discourse dependency
analysis on intra- and inter-sentential levels.
Motivated by the observation of writing pat-
terns commonly shared across articles, we pro-
pose a novel method that treats discourse rela-
tion identification as a sequence labelling task,
which takes advantage of structural information
from the context of extracted discourse trees,
and substantially outperforms traditional direct-
classification methods. Experiments show that
our model achieves state-of-the-art results on
both English and Chinese datasets. Our code is
publicly available1.

1 Introduction

Discourse dependency parsing (DDP) is the task of
identifying the structure and relationship between
Elementary Discourse Units (EDUs) in a document.
It is a fundamental task of natural language under-
standing and can benefit many downstream applica-
tions, such as dialogue understanding (Perret et al.,
2016; Takanobu et al., 2018) and question answer-
ing (Ferrucci et al., 2010; Verberne et al., 2007).

Although existing works have achieved much
progress using transition-based systems (Jia et al.,
2018b,a; Hung et al., 2020) or graph-based mod-
els (Li et al., 2014a; Shi and Huang, 2018; Afan-
tenos et al., 2015), this task still remains a chal-
lenge. Different from syntactic parsing, the basic
components in a discourse are EDUs, sequences
of words, which are not trivial to represent in a

1https://github.com/YifeiZhou02/Improve-Discourse-
Dependency-Parsing-with-Contextualized-Representations

straightforward way like word embeddings. Pre-
dicting the dependency and relationship between
EDUs sometimes necessitates the help of a global
understanding of the context so that contextualized
EDU representations in the discourse are needed.
Furthermore, previous studies have shown the ben-
efit of breaking discourse analysis into intra- and
inter-sentential levels (Wang et al., 2017), building
sub-trees for each sentence first and then assem-
bling sub-trees to form a complete discourse tree.
In this Sentence-First (Sent-First) framework, it is
even more crucial to produce appropriate contextu-
alized representations for text units when analyzing
in intra- or inter-sentential levels.

Automatic metrics are widely used in machine translation 
as a substitute for human assessment.

This is often measured by correlation with human 
judgement.

In this paper, we propose a significant test
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Figure 1: An excerpt discourse dependency tree in
SciDTB. Each indexed block is an EDU, and the origin
of the arrow pointing to a particular EDU is its head.

Figure 1 shows an excerpt discourse dependency
structure for a scientific abstract from SciDTB
(Yang and Li, 2018). The lengths of EDUs vary
a lot, from more than 10 words to 2 words only
(EDU 12: tests show), making it especially hard
to encode by themselves alone. Sometimes it is
sufficient to consider the contextual information
in a small range as in the case of EDU 13 and 14,
other times we need to see a larger context as in the



case of EDU 1 and 4, crossing several sentences.
This again motivates us to consider encoding con-
textual representations of EDUs separately on intra-
and inter-sentential levels to dynamically capture
specific features needed for discourse analysis on
different levels.

Another motivation from this example is the dis-
covery that the distribution of discourse relations
between EDUs seems to follow certain patterns
shared across different articles. Writing patterns
are document structures people commonly use to
organize their arguments. For example, in scientific
abstracts like the instance in Figure 1, people usu-
ally first talk about background information, then
introduce the topic sentence, and conclude with
elaborations or evaluations. Here, the example first
states the background of widely used automatic
metrics, introduces the topic sentence about their
contribution of a significance test followed by eval-
uation and conclusion. Taking advantage of those
writing patterns should enable us to better capture
the interplay between individual EDUs with the
context.

In this paper, we explore different contextual-
ized representations for DDP in a Sent-First parsing
framework, where a complete discourse tree is built
up sentence by sentence. We seek to dynamically
capture what is crucial for DDP at different text
granularity levels. We further propose a novel dis-
course relation identification method that addresses
the task in a sequence labeling paradigm to exploit
common conventions people usually adopt to de-
velop their arguments. We evaluate our models
on both English and Chinese datasets, and experi-
ments show our models achieve the state-of-the-art
results by explicitly exploiting structural informa-
tion in the context and capturing writing patterns
that people use to organize discourses.

In summary, our contributions are mainly
twofold: (1) We incorporate the Pre-training and
Fine-tuning framework into our design of a Sent-
First model and develop better contextualized EDU
representations to dynamically capture different
information needed for DDP at different text gran-
ularity levels. Experiments show that our model
outperforms all existing models by a large margin.
(2) We formulate discourse relation identification
in a novel sequence labeling paradigm to take ad-
vantage of the inherent structural information in
the discourse. Building upon a stacked BiLSTM
architecture, our model brings a new state-of-the-

art performance on two benchmarks, showing the
advantage of sequence labeling over the common
practice of direct classification for discourse rela-
tion identification.

2 Related Works

A key finding in previous studies in discourse anal-
ysis is that most sentences have an independent
well-formed sub-tree in the full document-level dis-
course tree (Joty et al., 2012). Researchers have
taken advantage of this finding to build parsers that
utilize different granularity levels of the document
to achieve the state-of-the-art results (Kobayashi
et al., 2020). This design has been empirically ver-
ified to be a generally advantageous framework,
improving not only works using traditional feature
engineering (Joty et al., 2013; Wang et al., 2017),
but also deep learning models (Jia et al., 2018b;
Kobayashi et al., 2020). We, therefore, introduce
this design to our dependency parsing framework.
Specifically, sub-trees for each sentence in a dis-
course are first built separately, then assembled to
form a complete discourse tree.

However, our model differs from prior works
in that we make a clear distinction to derive bet-
ter contextualized representations of EDUs from
fine-tuning BERT separately for intra- and inter-
sentential levels to dynamically capture different
information needed for discourse analysis at differ-
ent levels. We are also the first to design stacked
sequence labeling models for discourse relation
identification so that its hierarchical structure can
explicitly capture both intra-sentential and inter-
sentential writing patterns.

In the case of implicit relations between EDUs
without clear connectives, it is crucial to introduce
sequential information from the context to resolve
ambiguity. Feng and Hirst (2014) rely on linear-
chain CRF with traditional feature engineering to
make use of the sequential characteristics of the
context for discourse constituent parsing. However,
they greedily build up the discourse structure and
relations from bottom up. At each timestep, they
apply the CRF to obtain the locally optimized struc-
ture and relation. In this way, the model assigns
relation gradually along with the construction of
the parsing tree from bottom up, but only limited
contextual information from the top level of the
partially constructed tree can be used to predict
relations. Besides, at each timestep, they sequen-
tially assign relations to top nodes of the partial



tree, without being aware that those nodes might
represent different levels of discourse units (e.g.
EDUs, sentences, or even paragraphs). In contrast,
we explicitly train our sequence labeling models on
both intra- and inter-sentential levels after a com-
plete discourse tree is constructed so that we can
infer from the whole context with a clear intention
of capturing different writing patterns occurring at
intra- and inter-sentential levels.

3 Task Definition

We define the task of discourse dependency pars-
ing as following: given a sequence of EDUs of
length l, (e1, e2, ..., el) and a set of possible rela-
tions between EDUs Re, the goal is to predict an-
other sequence of EDUs (h1, h2, ..., hl) such that
∀hi, hi ∈ (e1, e2, ..., el) is the head of ei and a se-
quence of relations (r1, r2, ..., rl) such that ∀ri, ri
is the relation between tuple (ei, hi).

4 Our Model

We follow previous works (Wang et al., 2017) to
cast the task of discourse dependency parsing as a
composition of two separate yet related subtasks:
dependency tree construction and relation identi-
fication. We design our model primarily in a two-
step pipeline. We incorporate Sent-First design as
our backbone (i.e. building sub-trees for each sen-
tence and then assembling them into a complete
discourse tree), and formulate discourse relation
identification as a sequence labeling task on both
intra- and inter-sentential levels to take advantage
of the structure information in the discourse. Fig-
ure 1 shows the overview of our model.

4.1 Discourse Dependency Tree Constructor
To take advantage of the property of well-formed
sentence sub-trees inside a full discourse tree, we
break the task of dependency parsing into two dif-
ferent levels, discovering intra-sentential sub-tree
structures first and then aseembling them into a full
discourse tree by identifying the inter-sentential
structure of the discourse.

Arc-Eager Transition System Since discourse
dependency trees are primarily annotated as projec-
tive trees (Yang and Li, 2018), we design our tree
constructor as a transition system, which converts
the structure prediction process into a sequence of
predicted actions. At each timestep, we derive a
state feature to represent the state, which is fed into
an output layer to get the predicted action. Our

model follows the standard Arc-Eager system, with
the action set: O= {Shift, Left−Arc,Right−
Arc,Reduce}.

Specifically, our discourse tree constructor main-
tains a stack S, a queue I, and a set of assigned
arcs A during parsing. The stack S and the set of
assigned arcs A are initialized to be empty, while
the queue I contains all the EDUs in the input se-
quence. At each timestep, an action in the action
set O is performed with the following definition:
Shift pushes the first EDU in queue I to the top of
stack S; Left-Arc adds an arc from the first EDU in
queue I to the top EDU in stack S (i.e. assigns the
first EDU in I to be the head of the top EDU in S)
and removes the top EDU in S; Right-Arc adds an
arc from the top EDU in stack S to the first EDU
in queue I (i.e. assigns the top EDU in S to be the
head) and pushes the first EDU in I to stack S; Re-
duce removes the top EDU in S. Parsing terminates
when I becomes empty and the only EDU left in
S is selected to be the head of the input sequence.
More details of Arc-Eager transition system can be
referred from Nivre (2003).

We first construct a dependency sub-tree for each
sentence, and then treat each sub-tree as a leaf node
to form a complete discourse tree across sentences.
In this way, we can break a long discourse into
smaller sub-structures to reduce the search space.
A mathematical bound for the reduction of search
space of our Sent-First framework for DDP and
discourse constituent parsing is also provided in
Appendix.

Contextualized State Representation Ideally,
we would like the feature representation to con-
tain both the information of the EDUs directly in-
volved in the action to be executed and rich clues
from the context from both the tree-structure and
the text, e.g. the parsing history and the interac-
tions between individual EDUs in the context with
an appropriate scope of text. In order to capture
the structural clues from the context, we incorpo-
rate the parsing history in the form of identified
dependencies in addition to traditional state repre-
sentations to represent the current state. At each
timestep, we select 6 EDUs from the current state
as our feature template, including the first and the
second EDU at the top of stack S, the first and the
second EDU in queue I, and the head EDUs for
the first and the second EDU at the top of stack S,
respectively. A feature vector of all zeros is used if
there is no EDU at a certain position.
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Figure 2: An overview of our model. Intra-sentential dependencies are discovered first and inter-sentential
dependencies are constructed after that to form a complete dependency tree.

EDU Representations To better capture an EDU
in our Sent-First framework, we use pre-trained
BERT (Devlin et al., 2018) to obtain representa-
tions for each EDU according to different context.
We argue that an EDU should have different repre-
sentations when it is considered in different parsing
levels, and thus requires level-specific contextual
representations. For intra-sentential tree construc-
tor, we feed the entire sentence to BERT and repre-
sent each EDU by averaging the last hidden states
of all tokens in that EDU. The reason behind is
that sentences are often self-contained sub-units
of the discourse, and it is sufficient to consider
interactions among EDUs within a sentence for
intra-sentential analysis. On the other hand, for
inter-sentential tree constructor, we concatenate all
the root EDUs of different sentences in the dis-
course to form a pseudo sentence, feed it to BERT,
and similarly, represent each root EDU by aver-
aging the last hidden states of all tokens in each
root EDU. In this way, we aim to encourage EDUs
across different sentences to directly interact with
each other, in order to reflect the global properties
of a discourse. Figure 2 shows the architecture for
our two-stage discourse dependency tree construc-
tor.

4.2 Discourse Relation Identification

After the tree constructor is trained, we train sepa-
rate sequence labeling models for relation identifi-
cation. Although discourse relation identification
in discourse dependency parsing is traditionally
treated as a classification task, where the common
practice is to use feature engineering or neural lan-

guage models to directly compare two EDUs in-
volved isolated from the rest of the context (Li
et al., 2014a; Shi and Huang, 2018; Yi et al., 2021),
sometimes relations between EDU pairs can be
hard to be classified in isolation, as global informa-
tion from the context like how EDUs are organized
to support the claim in the discourse is sometimes
required to infer the implicit discourse relations
without explicit connectives. Therefore, we pro-
pose to identify discourse relation identification as
a sequence labeling task.

Structure-aware Representations For sequence
labeling, we need proper representations for EDU
pairs to reflect the structure of the dependency
tree. Therefore, we first tile each EDU in
the input sequence (e1, e2, ..., el) with their pre-
dicted heads to form a sequence of EDU pairs
((e1, h1), (e2, h2), ..., (el, hl)). Each EDU pair is
reordered so that two arguments appear in the same
order as they appear in the discourse. We derive
a relation representation for each EDU pair with
a BERT fine-tuned on the task of direct relation
classification of EDU pairs with the [CLS] repre-
sentation of the concatenation of two sentences.

Position Embeddings We further introduce posi-
tion embeddings for each EDU pair (ei, hi), where
we consider the position of ei in its correspond-
ing sentence, and the position of its sentence in
the discourse. Specifically, we use cosine and sine
functions of different frequencies (Vaswani et al.,
2017) to include position information as:

PEj = sin(No/10000j/d) + cos(ID/10000j/d)



where PE is the position embeddings, No is the
position of the sentence containing ei in the dis-
course, ID is the position of ei in the sentence, j
is the dimension of the position embeddings, d is
the dimension of the relation representation. The
position embeddings have the same dimension as
relation representations, so that they can be added
directly to get the integrated representation for each
EDU pair.

Stacked BiLSTM We propose a stacked BiL-
STM neural network architecture to capture both
intra-sentential and inter-sentential interplay of
EDUs. After labeling the entire sequence of EDU
pairs ((e1, h1), (e2, h2), ..., (el, hl)) with the first
layer of BiLSTM, we select the root EDU for each
sentence (namely the root EDU selected from our
intra-sentential tree constructor for each setence)
to form another inter-sentential sequence. Another
separately trained BiLSTM is then applied to label
those relations that span across sentences. Note that
we will overwrite predictions of inter-sentential re-
lations of the previous layer if there is a conflict of
predictions.

4.3 Training
Our models are trained with offline learning. We
train the tree constructor and the relation labeling
models separately. We attain the static oracle to
train tree constructors and use the gold dependency
structure to train our discourse relation labelling
models. Intra- and inter-sentential tree constructors
are trained separately. To label discourse relations,
we fine-tune the BERT used to encode the EDU
pair with an additional output layer for direct rela-
tion classification. Sequence labeling models for
relation identification are trained on top of the fine-
tuned BERT. We use cross entropy loss for training.

5 Experiments

Our experiments are designed to investigate how
we can better explore contextual representations to
improve discourse dependency parsing.

We evaluate our models on two manually la-
beled discourse treebanks of different language,
i.e., Discourse Dependency Treebank for Scien-
tific Abstracts (SciDTB) (Yang and Li, 2018) in
English and Chinese Discourse Treebank (CDTB)
(Li et al., 2014b). SciDTB contains 1,355 English
scientific abstracts collected from ACL Anthology.
Averagely, an abstract includes 5.3 sentences, 14.1
EDUs, where an EDU has 10.3 tokens in average.

On the other hand, CDTB was originally annotated
as connective-driven constituent trees, and manu-
ally converted into a dependency style by Yi et al.
(2021). CDTB contains 2,332 news documents.
The average length of a paragraph is 2.1 sentences,
4.5 EDUs. And an EDU contains 23.3 tokens in
average.

We evaluate model performance using Unlabeled
Attachment Score (UAS) and Labeled Attachment
Score (LAS) for dependency prediction and dis-
course relation identification. UAS is defined as
the percentage of nodes with correctly predicted
heads, while LAS is defined as the percentage
of nodes with both correctly predicted heads and
correctly predicted relations to their heads. We
report LAS against both gold dependencies and
model predicted dependencies. We adopt the fine-
granularity discourse relation annotations in the
original datasets, 26 relations for SciDTB and 17
relations for CDTB.

For both datasets, we trained our dependency
tree constructors with an Adam optimizer with
learning rate 2e-5 for 3 epochs. Our relation label-
ing models are all trained with an Adam optimizer
until convergence. Learning rate is set to one of
{1e-5, 2e-5, 4e-5}.

5.1 Baselines

Structure Prediction We compare with the fol-
lowing competitive methods for structure predic-
tion. (1) Graph adopts the Eisner’s algorithm to
predict the most probable dependency tree struc-
ture (Li et al., 2014a; Yang and Li, 2018; Yi et al.,
2021). (2) Two-stage, which is the state-of-the-art
model on CDTB and SciDTB, uses an SVM to
construct a dependency tree (Yang and Li, 2018;
Yi et al., 2021). (3) Sent-First LSTM is our im-
plmentation of the state-of-the-art transition-based
discourse constituent parser on RST (Kobayashi
et al., 2020), where we use a vanilla transition sys-
tem with pretrained BiLSTM as the EDU encoder
within the Sent-First framework to construct de-
pendency trees. (4) Complete Parser is modified
from a state-of-the-art constituent discourse parser
on CDTB (Hung et al., 2020), using a transition
system with BERT as the EDU encoder to construct
a dependency tree. Because of the inherent differ-
ence between constituency parsing and dependency
parsing, we only adopt the encoding strategy of (4)
and (5) into our arc-eager transition system.

We also implement several model variants for
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Figure 3: The architecture of our relation labeling stacked BiLSTM model. Hierarchical sequence labeling is used
for labeling relations on intra-sentential and inter-sentential levels.

comparison and ablation study. (5) Complete
Parser (contextualized) is our modified version of
Complete Parser where, instead of encoding each
EDU separately, we obtain the EDU representa-
tions by encoding the whole sentence with BERT
and average the corresponding token representa-
tions for the EDU. (6) BERT + Sent-First (shared)
incorporate different contextualized embeddings
from BERT into the Sent-First framework for pars-
ing at intra- and inter-sentential levels, with the
same BERT layer shared across intra-sentential and
inter-sentential parsing. (7) BERT + Sent-First
fine-tunes separate BERT layers for intra-sentential
and inter-sentential parsing independently.

Relation Identification (1) Graph uses an av-
eraged perceptron to classify relations by direct
classification (Yi et al., 2021; Yang and Li, 2018).
(2) Two-stage exploits careful feature engineering
and trains an SVM to classify the relations for pairs
of EDUs (Yi et al., 2021; Yang and Li, 2018). (3)
Sent-First LSTM uses biLSTM to encode each
EDU separately and a feed forward neural network
for direct relation classification. (4) BERT is our
implementation of the state-of-the-art model from
Yi et al. (2021) and Hung et al. (2020), which fine-

SciDTB CDTB

Model UAS

Graph (Cheng21) 57.6 58.5
Two-stage (Cheng21) 70.2 80.3
Sent-First LSTM (Kobayashi20) 63.9 /
Complete Parser (Hung20) 75.4 77.7
Complete Parser (contextualized) 76.1 79.1
BERT + Sent-First (shared) 77.3 81.5
BERT + Sent-First 79.3 82.2
Human 80.2 89.7

Table 1: Model performance of structure prediction on
SciDTB and CDTB.

tunes a BERT model with an additional output layer
to directly classify both intra-sentential and inter-
sentential relations. (5) BERT + BiL formulates
dependency discourse relation identification as a
sequence labeling task, training an additional layer
of BiLSTM on top of the BERT layer finetuned on
direct classification. (6) BERT SBiL trains another
BiLSTM to label inter-sentential relations on top
of the original model BERT + BiL.



SciDTB CDTB

Model Gold Pred. Gold Pred.

Graph (Cheng21) / 42.5 / 41.5

Two-stage (Cheng21) / 54.5 / 58.7

Sent-First LSTM (Kobayashi20) 52.5 44.6 / /

BERT (Cheng21) 75.5 63.6 74.9 64.1

BERT + BiL 76.6 64.8 76.5 64.8
BERT + SBiL 77.4 65.0 76.5 64.4

Human / 62.2 / 77.4

Table 2: Model performance of relation identification
on SciDTB and CDTB.

5.2 Main Results
Dependency Prediction Table 1 summarizes the
performances of different models on both datasets
in terms of UAS. For traditional feature engineer-
ing models, Two-stage has already achieved sat-
isfactory performance, even beating several neu-
ral models like Sent-First LSTM and Complete
Parser. This is probably because traditional fea-
ture engineering methods design delicate structural
features in addition to representations of EDUs
so that they can include contextual clues to facili-
tate parsing. Complete Parser leverages the bene-
fit of better representations from pre-trained trans-
formers to encode the information of individual
EDUs, achieving a significant improvement over
Sent-First LSTM model with LSTM as primary
encoders. However, we show that our model BERT
+ Sent-First that exploits the potential of Sent-First
framework with proper contextualized representa-
tions to capture the interactions between individual
EDUs and the context surpasses all the existing
baselines. The performance of our model can be
further improved if we encode contextualized em-
beddings separately for intra-sentential and inter-
sentential parsing to dynamically capture different
information required to parsing at different text
granularity levels.

Relation Identification Although previous meth-
ods like Graph, Two-stage, and Sent-First LSTM
achieve decent results on both datasets, their perfor-
mances are not comparable to transformer methods
developed in recent years. BERT (Cheng21) is our
implementation of the state-of-the-art method for
relation classification in discourse dependency pars-
ing, which improves the baseline by a large margin.
Although BERT is still a very strong baseline in
many NLP tasks, direct classification with BERT
neglects the contextual clues in the discourse that

SciDTB CDTB

Model intra- inter- intra- inter-

Complete Parser (contextualized) 85.6 60.7 79.9 78.0

BERT+Sent-First (shared) 87.6 61.1 81.5 81.6

BERT+Sent-First 88.5 64.7 82.5 82.0

Table 3: Model performance (UAS) on intra- and inter-
sentential dependencies.

can be exploited to aid discourse relation identifica-
tion, as have been discussed in section 1. We show
that the results can be further improved by making
use of the sequential structure of the discourse. We
design multiple novel sequence labeling models on
top of the fine-tuned BERT and all of them achieve
a considerable improvement (more than 1%) over
BERT in terms of accuracy both on the gold de-
pendencies and the predicted dependencies from
our Sent-First (separate), showing the benefit of en-
hancing the interactions between individual EDUs
with the context. It yields another large gain when
we introduce another layer of inter-sentential level
BiLSTM, showing again that it is crucial to capture
the interactions between EDUs and their context in
both intra- and inter-sentential levels.

5.3 Detailed Analysis

Contextualized Representations for Tree Con-
struction Intuitively, a model should take dif-
ferent views of context when analyzing intra- and
inter-sentential structures. As we can see in Table 1,
BERT + Sent-First (shared) improves Complete
Parser (contextualized) by 1.2% and 2.4% on Sc-
iTDB and CDTB, respectively. The only difference
is BERT + Sent-First makes explicit predictions on
two different levels, while Complete Parser (con-
textualized) treats them equally. When we force
BERT + Sent-First to use different BERTs for intra-
and inter-sententential analysis, we observe further
improvement, around 3% on both datasets.

If we take a closer look at their performance in
intra- and inter-sentential views in Table 3, we can
see that BERT + Sent-First (shared) performs better
than single BERT model, Complete Parser (contex-
tualized), on both intra- and inter- levels of SciDTB
and CDTB, though in some cases we only observe
marginal improvement like inter-sentential level
of SciDTB. However, when we enhance BERT +
Sent-First with different encoders for intra- and
inter-sentential analysis, we can observe significant
improvement in all cases. That again shows the



BERT BERT+BiL BERT+SBiL

intra- 81.8 82.4 82.4
inter- 58.1 60.2 62.6

Table 4: Model performance (classification accuracy)
on intra- and inter-sentential relations on SciDTB with
gold dependencies. ’ROOT’ relation is not counted.

BERT BERT+BiL BERT+SBiL

original 72.0 71.8 73.6
modified 50.9 52.3 53.4

Table 5: Model performance (classification accuracy)
on automatically generated implicit relation extraction
on SciDTB before and after modification.

importance of anaylzing with different but more
focused contextual representations for the two pars-
ing levels.

Classification or Sequence Labeling? Most pre-
vious works treat discourse relation identification
as a straightforward classification task, where given
two EDUs, a system should identify which rela-
tionship the EDU pair hold. As can be seen from
Table 2, all sequence labeling models (our main
model as well as the variants) achieve a consid-
erable gain over direct classification models on
both datasets, especially in terms of accuracy on
gold dependencies. This result verifies our hypoth-
esis about the structural patterns of discourse rela-
tions shared across different articles. It is noticed
that BERT + SBiL performs the best because its
hierarchical structure can better capture different
structured representations occuring at intra- and
inter-sentential levels.

In Table 4, we include the performances of differ-
ent models on intra- and inter-sentential relations
on SciDTB with gold dependency structure. We
observe that although our BERT+BiL model im-
proves accuracies on both levels compared to the
traditional classification model, the more signifi-
cant improvement is on the inter-sentential level (by
2.1%). We show that it can even be promoted by an-
other 2.4% if we stack an additional BiLSTM layer
on top to explicitly capture the interplay between
EDUs on the inter-sentential level. That’s probably
because writing patterns are more likely to appear
in a global view so that discourse relations on the
inter-sentential level tend to be more structurally
organized than that on the intra-sentential level.

To test the effectiveness of our model for implicit
discourse relation identification, We delete some

freely omissible connectives identified by Ma et al.
(2019) to automatically generate implicit discourse
relations. This results in 564 implicit instances in
the test discourses. We run our model on the mod-
ified test data without retraining and compare the
accuracies on those generated implicit relations. Ta-
ble 5 shows the accuracies for those 564 instances
before and after the modification. After the mod-
ification, although accuracies of all three models
drop significantly, our sequence labeling model
BERT+BiL and BERT+SBiL outperform the tra-
ditional direct classification model BERT by 1.4%
and 2.5% respectively, showing that our sequence
labeling models can make use of clues from the
context to help identify relations in the case of im-
plicit relations.

In addition, we experiment with other empirical
implementations of contextualized representations
instead of averaging tokens like using [CLS] for
aggregate representations of sentences for inter-
sentential dependency parsing, but we did not ob-
serve a significant difference. Averaging token rep-
resentations turns out to have better generalizability
and more straightforward for implementation.

5.4 Case Study

For the example shown in Figure 1, the relation
between EDU 9 and EDU 13 is hard to classify
using traditional direct classification because both
of them contain only partial information of the
sentences but their relation spans across sentences.
Therefore, traditional direct classification model
gets confused on this EDU pair and predicts the
relation to be "elab-addition", which is plausible if
we only look at those two EDUs isolated from the
context. However, given the gold dependency struc-
ture, our sequence labeling model fits the EDU pair
into the context and infers from common writing
patterns to successfully yield the right prediction
"evaluation". This shows that our model can refer
to the structural information in the context to help
make better predictions of relation labels.

6 Conclusion

In this paper, we incorporate contextualized repre-
sentations to our Sent-First general design of the
model to dynamically capture different information
required for discourse analysis on intra- and inter-
sentential levels. We raise the awareness of taking
advantage of writing patterns in discourse parsing
and contrive a paradigm shift from direct classifi-



cation to sequence labeling for discourse relation
identification. We come up with a stacked biL-
STM architecture to exploit its hierarchical design
to capture structural information occurring at both
intra- and inter-sentential levels. Future work will
involve making better use of the structural informa-
tion instead of applying simple sequence labeling.
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A Proof of Theorems

Theorem 1: For a document D with m sen-
tences (s1, s2, ..., sm) and n of the sentences have
length(in terms of the number of EDUs) greater or
equal to 2 satisfying |si| ≥ 2. Let T be the set of
all projective dependency trees obtainable from D,
and let T ′ be the set of all projective dependency
trees obtainable from D in a Sent-First fashion.
Then the following inequality holds:

|T ′| ≤ 2

n+ 1
|T |

Proof of Theorem 1: By the definition of our
Sent-First method, trees in T ′ satisfy the property
that there is exactly one EDU in each sentence

whose head or children lies outside the sentence.
It is clear that T ′ ⊂ T . We consider a document
D with m sentences (s1, s2, ..., sm) and n of the
sentences have length(in terms of the number of
EDUs) greater or equal to 2 satisfying |si| ≥ 2.

∀σ′ ∈ T ′, σ′ is a valid projective dependency
tree obtainable from D in a Sent-First fashion. We
define a t-transformation to a sentence si, |si| > 1
with its local root of the sentence eia not being the
root of the document in σ′ with the following rules:

1. If eia has no child outside si, eib is its furthest
(in terms of distance to eia) child or one of
its furthest children inside si, then delete the
edge between eia) and eib and set the head of
eib to be the head of eia.

2. Else if eia has at least one child before eia
inside si, and eib is its furthest child before
eia inside si. Delete the edge between eia and
eib. If i > 1, set the head of eib to be the local
root of sentence si−1, else i = 1, set the head
of eib to be the local root of sentence si+1.

3. Else, eia has at least one child after eia inside
si, and eib is its furthest child after eia inside
si. Delete the edge between eia) and eib. If
i < m, set the head of eib to be the local root
of sentence si+1, else i = m, set the head of
eib to be the local root of sentence sm−1.

Suppose σi is obtained by applying t-
transformation to the sentence si, it is obvious to
show that σi ∈ T/T ′. n−1 valid t-transformations
can be applied to σ′. A reverse transformation t−1

can be applied to σi with the following rule: if a
sentence has two local roots, change the head of
one of the roots to the other root. In this way, at
most two possibly valid trees ∈ T ′ can be obtained
because we are not sure which one is the original
local root of the sentence. Therefore, at most 2
different σ′ ∈ T ′ can be found to share the same
tree structure after a t-transformation. See Figure
5 for illustration. Therefore,

T’ T/T’

t

t -1

Figure 4: An illustration of transformation t for Theo-
rem 1.
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|T/T ′| ≥ n− 1

2
|T ′|

|T ′| ≤ 2

n+ 1
|T |

Theorem 1 shows that the search space shrinks
with the number of sentences. Therefore, Sent-First
approach is especially effective at the reduction of
search space so that the parser has a better chance to
find the correct result, no matter what kind of parser
is used specifically. Since the effectiveness has
been proved, this approach can even be confidently
generalized to other cases where similar sentence-
like boundaries can be identified.

Besides, an even stronger bound regarding the
use of Sent-First method can also be proved for
constituent parsing.

Theorem 2: For a document D with m > 1 sen-
tences (s1, s2, ..., sm) and n of the sentences have
length(in terms of the number of EDUs) greater
or equal to 2 satisfying |si| ≥ 2. Let T be the set
of all binary constituency trees obtainable from D,
and let T ′ be the set of all binary constituency trees
obtainable from D in a Sent-First fashion. Then
the following inequality holds:

|T ′| ≤ (
1

2
)n|T |

Proof of Theorem 2: By the definition of our
Sent-First method, trees in T ′ satisfy the property
that EDUs in a sentence forms a complete sub-
tree. It is clear that T ′ ⊂ T . We define a tree
transformation t, for a tree u1 with child u2 and
u3, u3 being a complete discourse tree of a sen-
tence with more than 2 EDUs. u3 must also have 2
children named u4 and u5 where u4 is adjacent to
u2 in the sentence. After transformation t, a new
tree u′1 is derived whose children are u5 and a sub-
tree u6 with children u2 and u4. u1 ∈ T ′, while
u′1 ∈ T/T ′. Illustration see Figure 6. Note that t is
one-to-one so that different u1 will be transformed
to different u′1 after t-transformation and u1 can
be applied t-transformation twice if both children
of u1 are complete DTs for a sentence (more pos-
sible trees u′1 can be transformed into if the order
of transformation is also considered). Transforma-
tion t is a local transformation and does not affect
sub-trees u2, u4, and u5.

∀σ′ ∈ T ′, σ′ is a valid projective dependency
tree obtainable from D in a Sent-First fashion.
Since all sub-trees representing a sentence must
merge into one complete discourse tree represent-
ing the whole document, there must be n inde-

T’ T/T’Sentence
Boundary

u1’

u5u6

u2 u4

u1

u2 u3

u4 u5

Sentence
Boundary

t

t -1

Figure 5: An illustration of transformation t for Theo-
rem 2.

pendent t transformations applicable to some sub-
trees in σ′, so that at least 2n − 1 trees can be
obtained after i ≥ 1 t transformations ∈ T/T ′.
Since t-transformation is one-to-one, ∀σ1, σ2 ∈
T ′, σ1 ̸= σ2, σ′

1 is a tree obtained after some t-
transformations on σ1, σ′

2 is a tree obtained after
some t-transformations on σ2, σ′

1 ̸= σ′
2.

Therefore,

|T/T ′| ≥ (2n − 1)|T ′|

|T ′| ≤ (
1

2
)n|T |

B Additional Detailed Results

Relation BERT BERT+BiL BERT+SBiL

elab-addition 77.5 78.9 80.2
evaluation 76.3 77.8 81.6
joint 81.7 80.4 82.5
attribution 92.7 95.5 95.5
enablement 82.1 84.1 83.4
manner-means 86.2 85.0 86.2
contrast 73.9 75.0 77.1
bg-goal 59.3 63.5 67.7
same-unit 89.7 93.2 93.2
progression 19.0 6.1 15.4
bg-compare 43.8 44.1 60.9
elab-aspect 29.2 28.1 36.2
bg-general 70.2 94.3 91.7
condition 57.1 54.2 52.0

Table 6: Model performance (F1 score) for the 14 most
frequent relation types on gold dependencies of SciDTB.
The first 14 relations are listed in descending order in
terms of their frequencies in the test dataset (652, 178,
156, 131, 127, 121, 71, 56, 54, 48, 46, 45, 37, 33).



Span BERT BERT+BiL BERT+SBiL

1 82.7 83.1 82.9
2 63.6 67.5 67.1
3 51.6 55.6 59.5
4 61.0 58.4 59.7
5 52.2 53.7 62.7
6 63.0 63.0 60.9
7 70.6 73.5 58.9
8 52.9 50.0 73.5
9 64.0 64.0 64.0

Table 7: Model performance (accuracy) of relations
with gold dependencies on SciDTB against their spans.


