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Abstract

In this paper, we study the learning problem in
two-player general-sum Markov Games. We con-
sider the online setting where we control a single
player, playing against an arbitrary opponent to
minimize the regret. Previous works only consider
the zero-sum Markov Games setting, in which the
two agents are completely adversarial. However,
in some cases, the two agents may have different
reward functions without having conflicting ob-
jectives. This involves a stronger notion of regret
than the one used in previous works. This class of
games, called general-sum Markov Games is far to
be well understood and studied.
We show that the new regret minimization problem
is significantly harder than in standard Markov De-
cision Processes and zero-sum Markov Games. To
do this, we derive a lower bound on the expected
regret of any “good” learning strategy which shows
the constant dependencies with the number of de-
terministic policies, which is not present in zero-
sum Markov Games and Markov Decision Pro-
cesses. Then we propose a novel optimistic al-
gorithm that nearly matches the proposed lower
bound. Proving these results requires overcom-
ing several new challenges that are not present in
Markov Decision Processes or zero-sum Markov
Games.

1 INTRODUCTION

Reinforcement Learning (RL) [Sutton and Barto, 2018] is an
area of Machine Learning that studies sequential decision-
making problems, where a learning agent interacts with an
unknown environment to maximize its rewards. In recent
years, RL methods have made substantial progress in solv-
ing real-world problems (e.g., beating the world champion

player of Go [Silver et al., 2017], solving real-time strategy
games [Brockman et al., 2016] and Poker [Moravčík et al.,
2017, Brown and Sandholm, 2018], in autonomous driv-
ing [Shalev-Shwartz et al., 2016], learning communications
and emergent behaviours [Foerster et al., 2016, Lowe et al.,
2017, Bansal et al., 2018], providing solutions to robotic
control problems [Lillicrap et al., 2015], and managing the
power consumption of households [Chung et al., 2020]).
All of these challenging real-world problems can be framed
in a Multi-Agent RL (MARL) context. In Multi-Agent Re-
inforcement Learning (MARL), multiple agents act in the
same environment, to optimize their objectives. However,
despite the empirical success of MARL algorithms, theoret-
ical understanding of MARL is relatively rare.

The MARL framework is usually modeled as a Markov
Game (MG) [Shapley, 1953], which is an extension of
Markov Decision Processes (MDPs) [Sutton et al., 1998]. In
general, learning in MGs is harder than learning in MDPs.
The complications arise from the fact that all agents affect
both the transitions and the rewards of the other agents,
while the agents can have completely different, even con-
flicting objectives. Moreover, the agents without knowledge
of the transition model, have to estimate it by interactions,
as in single-agent RL problems, but they need also to infer
and learn the other agent’s policy. In the literature [Xie et al.,
2020, Wei et al., 2017, Tian et al., 2020], the learning prob-
lem in MGs has been divided into two settings: online and
offline. In the online setting, the algorithm has the control
of only one agent, to maximize its rewards in a multi-agent
environment. On the other hand, the offline setting aims at
providing self-play algorithms, i.e., algorithms that have the
control of all the agents, or at least, it is assumed that all the
agents use the same algorithm. While the offline setting has
received considerable attention, it fails at modeling many
use-cases of practical interest. For example, in many robot
control problems, artificial agents interact with humans who
are not-controllable agents; or in card/video games it is un-
realistic for the opponent to use the same learning algorithm
as our agent. While the online setting is more suitable to
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model previous examples, it remains less studied and under-
stood. Moreover, the algorithm that takes into account the
online setting usually assumes that the non-controllable 1

agent has a conflicting objective, i.e. the problem that we
are facing is a zero-sum Markov Game. However, there are
many real-world problems where the other agent can have
only different objectives, but not completely adversarial.

In this paper, we consider the online learning problem in
a two-player general-sum turn-based Markov Game. More
precisely, we consider the problem of learning in Markov
Games, where there is one agent that we can control and
it can observe the interaction between the non-controllable
agent and the environment. We are interested in solving the
following question left open in the literature:

“Can we design a provably efficient algorithm for Markov
Games exploiting a general-sum opponent?”

This problem was also raised out in [Xie et al., 2020] as an
interesting open direction. In that paper, the authors present
the problem of learning in the presence of a weak opponent,
i.e. we are facing an opponent that is not totally adversarial
(as in zero-sum games). As suggested by the authors, in this
case, the guarantee involves a stronger notion of regret with
respect to the minimax ones.

In this paper we answer partially affirmative. In fact, we
show that the regret minimization problem in this context
is more complex than in standard MDPs. Our contributions
can be summarized as follows:

1. First, we define a stronger regret definition for the prob-
lem since the minimax one [Xie et al., 2020, Tian et al.,
2020] does not capture the nature of the interaction.

2. Second, we provide a novel lower bound for the regret
minimization problem, that shows how the exploration
problem in general-sum MGs is harder than in MDPs
and in zero-sum MGs.

3. Finally, we provide an algorithm, called Turn-based
Markov Game OPtimistic Value Iteration (TMG-OPVI)
which nearly matches the proposed lower bound.

Paper outline The paper is structured as follows. We start
by over-viewing some related works (Section 2). Then we
introduce the notation (Section 3) and we provide in Section
4 a formal introduction to the problem. In Section 5, we
derive a lower bound on the expected regret of any “good”
learning strategy that captures the exploration challenges in
this context. In particular, the lower bound clearly shows that
the regret minimization in Stochastic Games is significantly
more complex than in standard MDPs. Then, in Section 6,
we propose an algorithm that nearly matches the proposed
lower bound.

1With non-controllable we mean the policy of the second agent
can not be decided by our algorithm.

Remark 1.1. The considered setting is easier than the si-
multaneous MG setting and the one in which the agent can
change its type over time. We decided to consider this frame-
work for two reasons: 1) it is similar to the online learning
zero-sum MG considered in the literature, Xie et al. [2020],
and, most important, 2) we proved that even in this setting,
which is a special case of the simultaneous one and of the
one considered in Sessa et al. [2020], the learning problem
is hard.

2 RELATED WORKS

After the introduction of the concept of Markov
Games [Shapley, 1953], many RL algorithms were pro-
posed to learn in this setting. However, the theoretical study
of this context is quite poor, compared to the empirical one
(see the survey [Zhang et al., 2019, Da Silva and Costa,
2019, Hernandez-Leal et al., 2019, Papoudakis et al., 2019]).
Only recently, there has been a growing interest in provid-
ing algorithms with strong sample-complexity and regret
guarantees for the two theoretical MARL settings: offline
and online. In the online setting, the algorithm controls only
one agent, which has to maximize its own reward function.
Instead, in the offline setting, the algorithms control all the
agents in the MG.

Offline setting Most recent works provide results in the
zero-sum offline setting, where both model-free [Bai et al.,
2020, Zhang et al., 2020b] and model-based [Bai and Jin,
2020, Sidford et al., 2020, Li et al., 2020, Liu et al., 2020,
Zhang et al., 2020a] algorithms were proposed with near-
optimal sample complexity and regret guarantees. For the
model-based setting, the prevalent approach is to assume to
have access to a generative model, such as in [Sidford et al.,
2020, Zhang et al., 2020a], where the authors provide non-
asymptotic results on the number of queries to the generator.
However, in [Liu et al., 2020] the authors proposed a model-
based algorithm for the zero-sum setting without access
to a generative model and which matches the information-
theoretic lower bound. Furthermore, in this recent work,
the authors also proposed the first line of provably sample-
efficient algorithms for multi-player general-sum games. In
[Li et al., 2020] the authors introduced, instead, an algorithm
to learn a Nash Equilibrium in the multi-player general-sum
setting. Very recently, the first algorithm to deal with sample
complexity in the general-sum games (not Markov) that
achieves an ε-Stackelberg Equilibrium was introduced [Bai
et al., 2021]. In this paper, the authors consider the bandit
feedback setting i.e., they can see only the random samples
of the rewards received by the two players. The authors
identify a fundamental gap between the exact value of the
Stackelberg equilibrium and its estimated version using
finite samples. This result gives insights into the hardness
of learning in General-sum games even when the setting is
stateless and the algorithm has the control of both the leader
and the follower.



Online setting The online setting is only studied, as far as
we know, in the zero-sum setting. The first work that ana-
lyzes the problem of online learning in Stochastic Games
is [Brafman and Tennenholtz, 2002]. In this paper, the au-
thors propose the famous R-MAX algorithm that deals with
the zero-sum average-reward setting and provides the first
regret bound for the setting. In Wei et al. [2017] the authors
provide an algorithm for zero-sum Stochastic games that
extends UCRL2, but which works under strong reachabil-
ity assumptions. This algorithm significantly improves the
regret bound of R-MAX. Xie et al. [2020] propose an al-
gorithm with a “weak” regret notion (the minimax defined
before), which is compatible with a zero-sum game. This is
the first work that considers linear function approximation
in Markov Games. The authors analyze both the offline and
online settings and their algorithms achieve near-optimal re-
gret bounds. Instead, Tian et al. [2020] introduce the online
setting with bandit-feedback, called also agnostic setting. In
this case, the agent cannot observe any interaction between
the other agent and the environment. The authors extend
the method of Bai et al. [2020] to deal with this setting. In
[Xie et al., 2020] the authors leave as open question how to
construct an algorithm to achieve optimal regret exploiting
a “weak opponent”, i.e., an opponent who is not totally ad-
versarial (as in zero-sum games). In our work, we give the
first solution to this problem.

Adversarial MDPs The adversarial MDP problem is strictly
related to the Markov Game setting. Most of the works in
this setting consider adversarial rewards [Even-Dar et al.,
2009, Gergely Neu et al., 2010, Zimin and Neu, 2013,
Rosenberg and Mansour, 2019, Jin et al., 2020, Dick et al.,
2014], i.e., the presence of an opponent who can change
the received rewards. This setting is substantially different
from Markov Games as the opponent can affect only the
rewards and not the transitions model. Other works, instead,
consider also adversarial transitions [Yu and Mannor, 2009,
Neu et al., 2012, Lykouris et al., 2019]. This setting is quite
challenging and the algorithms to solve this problem do not
provide a O

(√
T
)

regret bound. These approaches can be
applied in the bandit setting where we cannot see any feed-
back from the other agent, with the scope of constructing an
algorithm robust to these perturbations.

3 PRELIMINARIES

In this section, we formally describe the background that
will be employed throughout the remainder of the paper.

3.1 TURN-BASED MARKOV GAMES:
BACKGROUND AND NOTATION

We consider two-player finite-horizon Markov Game setting
[Shapley, 1953, Xie et al., 2020, Bai et al., 2020] MG =

(S,A1,A2,P,R1,R2, µ,H), where S is the finite state
space, A1, A2 are the finite action spaces respectively for
the first and the second player, P ∈ ∆SS×A1×A2

is the
transition kernel,Ri : S ×A1 ×A2 → [0, 1] is the reward
function of the i-th player, µ is the initial state distribution
and H is the horizon. In a turn-based MG at each state only
one player takes an action. The state space S is partitioned
into S = S1 ∪ S2, S1 ∩ S2 = ∅, where Si is the set of
states where it is i’s turn to play. For each state s ∈ S, let
I(s) ∈ {1, 2} be a function that indicates the current player
to play. A stochastic policy for the i-th (i ∈ {1, 2}) player is
a sequence of H functions π := (πh : S → ∆A1

)h∈H . We
define as π1 = (π1,1, . . . , π1,K) and π2 = (π2,1, . . . , π2,K)
the two sequences of policies that, respectively, are played
by our agent (agent 1) and the other agent (agent 2).

Value Functions The value function and action-value
function, given policies π1 and π2, are defined for agent
i ∈ {1, 2}, for each time step h ∈ [1, H], state s ∈ S,
action a ∈ A, as follows:

V π1,π2

i,h (s) = E

[
H∑
t=h

Ri(st, at)|sh = s

]
,

Qπ1,π2

i,h (s, a) = E

[
H∑
t=h

Ri(st, at)|sh = s, ah = a

]
,

where the at ∼ πi(st) and st ∼ P(·|st, at). Furthermore,
we denote with V π1,π2

1 = Es∼µ[V π1,π2

1,1 (s)] and V π1,π2

2 =
Es∼µ[V π1,π2

2,1 (s)] the expected returns for the two agents.

The interaction between the two agents proceeds in episodes,
where at the beginning of each episode the agents decide
which policy to play. We indicate with K the number of
episodes played by the two agents. The agent observes the
states, the actions played by the two agents, and noisy feed-
back of the agents’ reward functions, i.e. r̃i,h sampled from
a distribution with meanRi(sh, ah).

4 PROBLEM STATEMENT

In this section, we introduce the online learning problem
in Turn-based General-sum Markov Games. We remark
that in these games, at each step h the agent I(sh) has to
decide the action ah to be taken and the two players receive
respectively rewardsR1(sh, ah) andR2(sh, ah); then, the
system transitions to the next state sh+1 ∼ P(·|sh, ah).

The algorithm controls only agent 1. We do not know the
policy π2 that agent 2 will play at iteration k as well as the
reward functionR2 that agent 2 is optimizing. The goal is
to learn a sequence of policies π1 = {π1,1, . . . , π1,k} that
minimizes the total (expected) regret, defined by:

E[Regret(K)] =

K∑
k=1

V ?1 − V
π1,k,π2,k

1 , (1)



where V ?1 corresponds to the benchmarks couple of policies
π?1 , π

?
2 used to compare our algorithm. In literature, the

common way of defining V ?1 [Xie et al., 2020, Wei et al.,
2017] is the minimax policy defined as:

V minimax = min
π2∈Π2

max
π1∈Π1

V π1,π2

1 . (2)

The two policies π1, π2 correspond to the Nash Equilib-
rium of the MG = (S,A1,A2,P,R1,−R1, µ,H), i.e. a
zero-sum Markov Game where the agent 2 is minimizing
agent 1’s reward function. The minimax benchmark policy
is suitable to account for adversarial settings, where the
other agent can adversarially change its policy to maximize
the regret, or when we are in a zero-sum game. Further-
more, it was shown that in some cases, it is necessary to
adopt the minimax benchmark since, otherwise, the regret
minimization problem would be too difficult. An example
is the agnostic setting when agent 1 cannot observe any
information regarding the interaction between agent 2 and
the environment [Tian et al., 2020].

However, in general, minimax policies do not capture the
nature of the general-sum setting where the agent 2 just
wants to maximize its own reward function. In fact, in the
latter setting, agent 1 could hope to perform better than when
facing a non-Competitive (its reward is not the opposite of
our reward function) opponent. A benchmark that better fits
the general-sum setting is the Stackelberg Equilibrium of
the game:

V SE
1 = max

π1∈Π1

V
π1,br(π1)
1 , (3)

where br : Π1 → Π2 corresponds to a function that selects
a best response policy for the agent 2 to each policy of
the agent 1. Although this setting can not be applied in the
agnostic case, in many real-world scenarios, it is plausible
that the agent 1 can observe the interactions between agent
2 and the environment. Moreover, in some cases, the agent
1 can observe also agent 2 rewards or it can at least recover
them (for example, using IRL approaches). In these cases,
it is more reasonable to use the more challenging regret
notion.

Since the uncontrollable agent is rationale, we can easily
suppose that it plays the best response, as it is already done
in literature [Balcan et al., 2015, Peng et al., 2019, Sessa
et al., 2020]. More formally, the agent 2, given the policy
πi1 ∈ Π1, follows the policy π∗,i2 such that:

π∗,i2 ∈ arg max
π2∈Π2

V
πi
1,π2

2 ,

i.e., it plays its best response. This creates an inherently
asymmetrical interaction: the first agent can be seen as a
leader, who decides the policy to be played in an episode,
and the second agent can be seen as a follower, who can see
the leader’s policy and adapts its response to it. So, as in the
game-theory literature [Balcan et al., 2015, Peng et al., 2019,
Sessa et al., 2020], we make the following assumption:

Assumption 4.1. For every policy π1 ∈ Π1 the second un-
controllable agent will always play the same best response
policy br(π1), where br : Π1 → Π2. Furthermore, br(π1)
is deterministic.

Under this assumption the goal of our agent is well-defined
and consists in finding the policy π1 ∈ Π1 that is optimal
under the second agent’s best response policy:

π?1 ∈ arg max
π1∈Π1

V
π1,br(π1)
1 .

This corresponds to finding the Stackelberg Equilibrium of
the game.

We remark that agent 1 does not know the policies that
the second agent will play, i.e., the br function is unknown
2. From an online learning perspective, the regret that the
algorithm has to minimize is defined as:

E[Regret(K)] = KV SE
1 −

K∑
k=1

V
π1,k,br(π1,k)
1 . (4)

Bandit vs Turn-based MG Obviously, this problem can
be seen as solving a stochastic multiarmed bandit prob-
lem [Lattimore and Szepesvári, 2020]. In this case, the arms
are the policies, and the agent at each episode receives a
random realization of its expected return. So, this problem
can be solved with standard bandit algorithms such as UCB1
[Auer et al., 2002]. However, as we will explain in the next
section, this is not the best we can do. In fact, the regret
would not scale sublinearly with the number of possible poli-
cies, as it happens with standard bandit algorithms (where
the regret is O

(√
|Π1|K

)
). However, we show in Section

5 that the regret has a constant dependence on the number
of policies (i.e., not multiplicative of K). In fact, we prove
a lower bound on the regret and an upper bound such that
the quantity O

(√
T
)

does not scale with the number of
possible policies, but with a constant dependence on the
number of possible policies.

5 HARDNESS OF LEARNING IN
TURN-BASED TWO-PLAYER MARKOV
GAMES

In this section, we provide a lower bound on the expected
regret defined in Equation 4. We remark that agent 1, i.e.,
the one who is controlled by the algorithm, sees the actions
taken by the second agent as well as its rewards.

We consider the Turn-based MG (TMG) shown in Figure 1.
That is, there areN+3 states,A actions withN,A ∈ N, and

2We can also suppose that the uncontrollable agent will play an
arbitrary mapping between its policies and the controllable agent
ones. However, if we suppose it plays the best response, we need
only to know the reward function, to know the br function.
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Figure 1: The composite Turn-based Markov Game was constructed for the lower bound. The states belonging to S2 are in
orange, the ones belonging to S1 in blue. The dashed lines corresponds to the transition probabilities taking action a?, the
others taking any other action a ∈ A with a 6= a?. The dots indicate the chain composed of N states. We omit the self-loop
in sf , which corresponds to the fact that sf is a sink state.

H = N+1. The state space is defined as S = S1∪S2, S1∩
S2 = ∅. Agent 2 controls the starting state s0, S2 = {s0},
identified in the figure with the orange color. The state space
of agent 1, instead, is equal to S1 = {sf , sp, s1, . . . , sN},
i.e. it controls the blue states in Figure 1. In state s0, agent
2 can choose between a good action a∗ and a failure action
af . The reward functions of the two agents are:

R1(s, a) =

{
1 if s = sN
0 otherwise

R2(s, a) =

 R if s = sN
Rf if s = sf
0 otherwise

where R,Rf ∈ R. The transition model of the TMG is
defined as follows:

• In state s0, P(s1|s0, a
?) = 1, P(sf |s0, af ) = δ and

P(s0|s0, af ) = 1 − δ. Then, if the agent 2 takes the
good action, the TMG transits to state s1, otherwise
the next state is sf with probability δ and s0 with
probability 1− δ.

• From state sf with any action we continue to stay in
state sf , i.e., P(sf |sf , a) = 1 ∀a ∈ A.

• From state sp with any action we continue to stay in
state sp, i.e., P(sp|sp, a) = 1 ∀a ∈ A.

• From all the other states si with i ∈ [N ]:
P(si+1|si, a?) = δ + ε and P(sp|si, a?) = 1− δ − ε;
instead, for any other action a ∈ A, P(si+1|si, a) = δ
and P(sp|si, a) = 1− δ.

The second agent has only two response functions:
π2,i(s0) = a0 or π2,i(s0) = af with i ∈ [1, H]3. Obvi-

3It is easy to see that all other policies are not optimal, as

ously, it depends on the policy that agent 1 decides to take
at the beginning of the episode. In the next proposition we
prove that always exist two values for R and Rf such that
the only policies of agent 1 that induce the second agent to
take action a∗ are the ones such that π1,i(a

∗|si) = 1 for all
i ∈ [2, H]. We call this set of policies Π∗1.

Proposition 5.1. For every δ, ε ∈ (0, 1), H > 3, there exist
two values R and Rf such that agent 2 will play action a∗

only if agent 1 plays a policy π ∈ Π∗1.

Intuition on lower bound From this construction, we
show that agent 2 has the power to hide part of the MG. In
fact, in all cases where agent 1 plays a policy different from
the optimal one, we cannot acquire any further information
about the transition model since we only visit state sf and s0

until the end of the episode. Intuitively, we can notice that, in
the worst case, we have to play all the policies in Π1 before
finding the policy that leads us to acquire information about
the states in the chain. In fact, only with a policy π ∈ Π∗1
the agent 2 allows us to visit states other than sf . In the
following theorem, we will formally prove this intuition.

Theorem 5.1 (Lower bound for online Turn-based Stochas-
tic Game). Let A be a“good” learning algorithm, where
with “good” we indicate an algorithm such that its expected
regret is upper bounded by O (CKα) with α < 1 in all
Turn-based Markov Games 4. Then we can create a Turn-
based Markov Game such that the expected regret is lower

either it prefers to gain Rf or R. More details on it are provided in
Appendix ??.

4We note that algorithms that satisfy this assumption exist. For
instance, applying UCB over the set of policies Π1 yields regret
O
(√

|Π1|K
)



bounded by:

E[RegretA(K)] ≥ Ω
(
H
√
SAK

)
. (5)

Furthermore, we can create a Turn-based Markov Game
with S states, A actions and horizon H = S − 1, and a
specific initial distribution µ such that the expected regret
of A after K steps:

E[RegretA(K)] ≥ Ω
(
AHS

)
. (6)

5.1 PROOF SKETCH OF THEOREM 5.1

In this part, we provide a sketch of the proof of the lower
bound for the online Turn-based Markov Game problem.
The complete proof can be found in Supplementary ??. We
start by proving Equation 5. We can easily notice that a
Markov Decision Process is a special case of a Turn-based
Markov Game, in which the state space of the second agent
S2 = ∅. Then from this consideration, we can state that the
worst-case lower bound for MDPs can also be applied for
TMGs [Jaksch et al., 2010, Domingues et al., 2020]:

E[RegretA(K)] ≥ Ω
(
H
√
SAK

)
.

To prove Equation 6, instead, we rely on standard
information-theoretic arguments used to prove lower bounds
in episodic MDPs and bandit problems. More precisely, we
use the following lemma due to Simchowitz and Jamieson
[2019] (lemma H.1).

Lemma 5.1 (Lower bound for online Turn-based Stochastic
Game). Let TMG = (S,A, H,R, µ,P) and TMG′ =
(S,A, H,R, µ,P ′) be two TMGs with the same state space
S, action space A, initial state distribution µ and horizon
H . Fix a number of episodes K ≥ 1 and let FK be the
filtration generated by all rollouts up to episode K. Then
for any FK-measurable random variable Z ∈ [0, 1],∑

s,a

EA
TMG [NK(s, a)]KL(P(·|s, a),P ′(·|s, a)) ≥

kl(EA
TMG [Z],EA

TMG′ [Z])

where kl(x, y) = x log
(
x
y

)
+ (1 − x) log

(
1−x
1−y

)
is

the binary KL-divergence and KL(·, ·) denotes the KL-
divergence between two probability laws and Nk(s, a) is
the number of times the state-action pair (s, a) is visited till
iteration k.

Then we construct an alternative MG′ such that MG′ co-
incides with the MG except in the transition from s0 to
sf :

P(sf |s0, af ) = δ + ε P(s0|s0, af ) = 1− δ − ε.

Changing this transition the agent 2 will always play the
action af . Knowing that the two games differ only in this

transition, by construction, the sum of Lemma 5.1 reduces
to consider in the left-hand side only the pair state s0 and
action af . From this consideration, we create two events
such that, the KL divergence is greater than O

(
ASH

)
.

5.2 DISCUSSION ON THEOREM 5.1

Theorem 5.1 shows that learning in general-sum MGs is
exponentially harder than learning in MDPs. This result
proves that when we are not in control of the environment it
is hard to explore it in a smart way. Furthermore, we would
like to remark that the setting we are analyzing also sup-
poses a strong assumption about the not-controllable agent
behavior: it can answer only with the same deterministic
optimal policy. However, by removing this assumption, i.e.,
assuming agent 2 can choose any optimal policy, our result
continues to apply.

The proof of the lower bound implicitly says that we can cre-
ate very small sub-optimality gaps for the second agent and
that the regret must scale with the inverse of them regardless
of the suboptimality gaps of the first agent. Although we
do not explicitly show this, it is intuitive to see why it can
happen. In fact, agent 1 does not pay for the small subopti-
mality gap of the not-controllable agent but for its gap that
can be potentially very high. We leave as future work to
prove a problem-dependent lower bound for TMGs.

This lower bound is the first one that states the difficulties
in learning in general-sum Markov Games with the possi-
bility to see the other agent’s reward function and actions.
Other lower bounds were derived for the general-sum set-
ting. In [Bai et al., 2020] the authors proposed a lower bound
to underline the difficulties to learn against an adversarial
opponent. In [Tian et al., 2020], instead, the authors show
the statistical hardness of learning with only bandit feed-
back, i.e., in an agnostic setting. However, these two settings
are harder than the one proposed in this section, and, for this
reason, the results cannot be applied.

6 TMG OPTIMISTIC POLICIES VALUE
ITERATION

In this section, we propose an algorithm, called Turn-based
Markov Game Optimistic Policies Value Iteration (TMG-
OPVI), that nearly matches the lower bound proposed in the
previous section. We assume that Π1 is any set of policies
(similarly to Abbasi-Yadkori et al. [2013]), not necessarily
corresponding to the full set of all deterministic Markov
policies, and let M be the cardinality of the policy set Π1.

TMG-OPVI algorithm TMG-OPVI is a variant of Opti-
mistic Value Iteration Azar et al. [2013], an optimistic regret
minimization algorithm for finite-horizon MDPs. The algo-
rithm proceeds as follows. Given the set of policies Π1 for



the first agent, it stores a table recording the policy played
by the second player. For every i ∈ [M ], k ∈ [K], h ∈ [H]
we denote with Aik,h(s) ⊆ A the set of plausible actions,
i.e., the set of actions that can be played by the second agent,
in state s at step h for policy πi ∈ Π1 at the beginning of
episode k. Since, given agent 1 policy, the response policy
of the other agent is deterministic and unique for assumption
(see Section 3), when we play the policy πi and we observe
in state s ∈ S2, at time step h, the policy π2,h(s), we can
set Aik,h(s) = {π2,h(s)}.

As common in optimistic value iteration algorithms [Azar
et al., 2013], we shall build upper confidence bounds to
the value function of each policy by adding bonus terms
based on confidence intervals on the rewards and transition
probabilities. Formally, for every k ∈ [K], state s ∈ S and
action a ∈ A we derive the bonus term, based on Hoeffd-
ing’s concentration inequality, for the reward function and
the expected value function:

brk(s, a) =

√
2 log

(
4SAHk

δ

)
Nk(s, a)

,

bPk (s, a) = H

√
2S log

(
4SAHk

δ

)
Nk(s, a)

.

Furthermore, we indicate with R̂1,k(s, a) and P̂1,k(s′|s, a)
the sample means of respectively the observed rewards and
transitions up to (and not including) episode k.

Based on this, at the beginning of each episode k ∈ [K]
the algorithm computes for each policy πi1 with i ∈ [M ]

an optimistic approximation Ṽ i1,k of the expected return
V i1 . Recursive for each h ∈ [H], s ∈ S the optimistic
approximation Ṽ i1,k,h(s) of the value function V i1,h(s) is
equal to:

Ṽ i1,k,h(s) =R̂(s, πi1,h(s)) +
∑
s′∈S
P̂(s′|s, πi1,h(s))

× Ṽ i1,k,h+1(s′) + bk(s, πi1,h(s)),

if I(s) = 1 and, otherwise, is equal to:

Ṽ i1,k,h(s) = max
a∈Ai

k,h(s)
R̂(s, a) +

∑
s′∈S
P̂(s′|s, a)

× Ṽ i1,k,h+1(s′) + bk(s, a),

where bk(s, πi1,h(s)) = brk(s, πi1,h(s)) + bPk (s, πi1,h(s)).

Two levels of optimism Note that we use two levels of
optimism: one for the unknown transition probabilities and
rewards, and one for the unknown actions of the second
agent. More precisely, if we have already seen the action
that the second agent will play in a state s with a policy
πi1 we use this information to estimate the value function,
otherwise we act optimistically by taking the maximum
overall plausible actions. The pseudocode of TMG-OPVI is
reported in Algorithm 1.

Algorithm 1 TMG-OPVI

1: Input: S, A, H , Π1 = {π1
1 , . . . , π

M
1 }

2: Initialize Ai
1,h(s) = A for all s ∈ S, h ∈ [H], and i ∈ [M ]

3: for episodes 1, 2, . . . ,K do
4: Compute Ṽ i

1,k for all i ∈ [M ]

5: Play πIk
1 with Ik ∈ arg maxi∈[M ] Ṽ

i
1,k

6: Observe (sk,1, ak,1, . . . , sk,H−1, ak,H−1, sk,H)
7: Compute the plausible actions for all s ∈ S, h ∈ [H] and

i ∈ [M ]:

Ai
k+1,h(s) =

{
{ak,h} if i = Ik and s = sk,h

Ai
k,h(s) otherwise

8: end for

6.1 REGRET GUARANTEES

In this section, we give a regret bound for the proposed
algorithm. The result exploits the determinism of the other
agent’s policies in order to match the lower bound derived
in the previous section.

Estimation of the transition model The main idea behind
the proof is that after having played a certain number of
times every policy, we know in every state that is reachable
what action the agent 2 will play. At this point, we have
reduced our problem to an MDP. In fact, when we know
the best response function of agent 2, for every policy we
can create a policy that is the union of the policy of agent 1
and agent 2. At this point, the uncertainty comes only from
the transition model and the reward function. It is important
to note that we do not need to know explicitly the set of
reachable states, but the algorithm implicitly will estimate
correctly the agent 2 policy after having visited all of them.

Before stating the result we need to introduce some quan-
tities. We define di(s) as the probability of visiting state s
playing policies πi1 and br(πi1). Then, we define the set

S+,i
2,h = {s ∈ S2 such that dih(s) > 0}.

We define as d = mini∈[M ] minh∈[H] min s ∈ S+,idih(s),
i.e., the minimum probability of visiting a “reachable” state.
In the following theorem we provide an upper bound of the
regret of TMG-OPVI algorithm.

Theorem 6.1 (Regret of TMG-OPVI). Let TMG =
(S,A,P, µ,R1,R2, H) with S = S1∪S2 and S1∩S2 = ∅
be the finite-horizon TMG of our problem. Then the expected
regret of TMG-OPVI at every episode K > 0 is bounded
by:

E[Regret(K)] ≤ O
(
MSHK + SH

√
AHK log (SAK2H)

)
,

where K̄ is the first integer such that K >
log(MSK

2)
− log(1−d)



6.2 PROOF SKETCH OF THEOREM 6.1

In this section, we provide a proof sketch of Theorem 6.1.
The complete proof can be found in Appendix ??. We con-
sider the fact that, at some point, if we play a certain policy
π1 we will observe every state that can be reached playing
πi1 and br(πi1). In fact, there exists an iteration K such that
each state s ∈ S+,i

2,h with i ∈ [M ] has been visited at least
one time. After K, agent 1 has complete knowledge of the
best response function br5. From this iteration, the algorithm
is facing a single-agent problem, where the joint policy is
derived by the union of the policies of the two agents:

πi(s) =

{
πi1(s) if I(s) = 1
Aik,h(s) if I(s) = 2

,

where in this case Aik,h(s) is a singleton for every state
s ∈ S2 and policy πi1 with i ∈ [M ]. Then we can proceed
with our proof considering this new single-agent problem.

6.3 DISCUSSION ON THEOREM 6.1

The following regret nearly matches the proposed lower
bound. In fact, if we instantiate the set of policies of agent 1
equal to all the possible deterministic policies, then M =
AHS where A is the cardinality of the action space and
S the cardinality of the state space and H is the horizon.
Instead, the second term of the regret is comparable with
the worst-case lower bound for MDPs [Azar et al., 2013].

It is interesting to note that respect to agnostic MG [Tian
et al., 2020] we achieve better regret guarantees in terms of
K in our setting where they achieve a regret upper bound
of O

(
K

2
3

)
. We achieve also stronger regret guarantees

with respect to adversarial MDPs [Abbasi-Yadkori et al.,
2013] where transitions and rewards can change adversar-
ially. The two settings are quite similar, since also in the
setting considered in this paper the transitions change adver-
sarially, since agent 2 influences the transitions of the MG.
However, in this case, differently to ours, the regret that is
achieved is O

(√
K log (M)

)
while our regret does not de-

pend on the number of policies in the K term. On the other
hand, their constant dependence on the number of policies
is O (log(M)), while we obtain a constant dependence on
the number of policies. Clearly, the two settings, are differ-
ent, so it is hard to compare them, but our result shows that
using the information of the not-controllable agent, we can
achieve better performances.

5It is important to notice that we do not have to know the sets
of reachable states, but we use these sets only for a proof purpose.

7 CONCLUSIONS

Contributions In this paper, we propose the first insights
to the online learning problem in general-sum Stochastic
Games. Although there are some recent results in solving
the problem in the zero-sum (aka competitive) setting, there
are no other works that take into account the problem or
consider that we could face a non-Competitive opponent.
We have shown that the problem is much more complicated
than in a zero-sum MG and an MDP The main problems
arise from the limited control on the environment’s explo-
ration. We underline this difficulty by providing a novel
lower bound (Section 5), which proves that the regret scales
constantly with the number of deterministic policies that can
be played by the controllable agent. This creates a big gap
between what we can obtain learning in MDPs with respect
to general-sum MGs. Then we show how to build a provably
efficient algorithm in Section 6. Our algorithm, TMG-OPVI,
achieves optimal performance nearly matching the proposed
lower bound. We would like to underline that this is the
first paper that considers the online learning problem in the
general-sum Markov Game, and we think that our findings
help in the understanding of the MARL problem.

Future directions and discussion on learning in Markov
Games Currently, there is a need for a formal understanding
of the online MARL problem to construct provably efficient
learning algorithms for this context. As our result suggested,
the MARL setting poses novel challenges, especially in
the well-known exploration-exploitation dilemma, i.e., the
trade-off between gathering new information and exploiting
it: in a multi-agent environment, the agent needs to explore
not only to understand the underlying environment but also
to learn the other agents’ behaviors. Moreover, from our
findings, it is clear that the algorithm design and the resulting
performance guarantees heavily depend on any knowledge
about the opponents, either known as a priori or obtainable
during the learning process.

Furthermore, there are open problems also in the agnostic
setting, presented in [Tian et al., 2020], as it is possible to
achieve better theoretical (regret) guarantees and construct
algorithms with optimal sample complexity. This scenario,
having no assumptions on the opponents, is widely appli-
cable to capture real-world problems. On the other hand,
assuming to have the possibility to observe other agents’
interactions with the environment or having some previous
knowledge about the other agents (as having access to a
finite set of opponents [Balcan et al., 2015] or considering
a larger set of opponents’ classes with some regularity as-
sumptions [Sessa et al., 2020]) we could hope to obtain
better theoretical guarantees. An unexplored, but promising
future direction would be considering some structural rela-
tion between the best response of the agent 2 and agent 1. It
could overcome the problem of the constant dependence on
the number of deterministic policies.



Another interesting future direction is to better show the
relationship between the sub-optimality gap of the non-
controllable agent and the one of the controllable agent.
To prove this it is necessary to prove a problem-dependent
lower bound. We leave this analysis as future work.
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