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Abstract
Word embeddings are growing to be a crucial001
resource in the field of NLP for any language.002
This work focuses on static subword embed-003
dings transfer for Indian languages from a rel-004
atively higher resource language to a genealog-005
ically related low resource language. We work006
with Hindi-Marathi as our language pair, simu-007
lating a low-resource scenario for Marathi. We008
demonstrate the consistent benefits of unsuper-009
vised morphemic segmentation on both source010
and target sides over the treatment performed011
by FastText. We show that a trivial “copy-012
and-paste” embeddings transfer based on even013
perfect bilingual lexicons is inadequate in cap-014
turing language-specific relationships. Our015
best-performing approach uses an EM-style016
approach to learning bilingual subword em-017
beddings; the resulting embeddings are evalu-018
ated using the publicly available Marathi Word019
Similarity task as well as WordNet-Based Syn-020
onymy Tests. We find that our approach signif-021
icantly outperforms the FastText baseline on022
both tasks; on the former task, its performance023
is close to that of pretrained FastText Marathi024
embeddings that use two orders of magnitude025
more Marathi data.026

1 Introduction027

Subword-level embeddings are useful for many028

tasks, but require large amounts of monolingual029

data to train. While about 14 Indian languages030

such as Hindi, Bengali, Tamil, and Marathi have031

the required magnitudes of data, most Indian lan-032

guages are highly under-resourced; they have very033

little monolingual data and almost no parallel data,034

and not much digitization. For example, to the best035

of our knowledge, Marwadi, spoken by 14M peo-036

ple, has no available monolingual corpus; Konkani,037

spoken by about 3M people, has a monolingual cor-038

pus containing 3M tokens, and no parallel data.1039

1The Opus Corpus (Tiedemann, 2012), one of the most
popular collection of parallel texts, contains no parallel data
for languages such as Konkani or Mundari.

However, many of these languages have very close 040

syntactic, morphological, and lexical connections 041

to surrounding languages including the mentioned 042

high-resource languages. Our approach aims to 043

leverage these connections in order to build em- 044

beddings for these low-resource languages, in the 045

hope that this will aid further development of other 046

NLP tools such as MT or speech tools for these 047

languages.2 048

While there is a growing interest in shifting to- 049

wards contextual embeddings with BERT, as well 050

as extending them to low-resource languages, static 051

embeddings retain value in being lightweight and 052

less computationally expensive, especially as stud- 053

ies show that they can perform comparably to con- 054

textual embeddings in certain settings (Arora et al., 055

2020) and encode similar linguistic information 056

(Miaschi and Dell’Orletta, 2020). Thus, an efficient 057

method to develop static embeddings for languages 058

with minimal or no NLP research remains a rele- 059

vant step to building a basic range of resources in 060

these languages. In this study, we work with Hindi- 061

Marathi as our genealogically and culturally related 062

language pair, and use asymmetric resources (large 063

data for Hindi, artificially small monolingual data 064

for Marathi). We are constrained by the necessity 065

of evaluation datasets for the resulting embeddings. 066

Most Indian languages are morphologically rich, 067

including Hindi and Marathi. This means that 068

while related language pairs may have a high num- 069

ber of cognates, these may be “disguised” by sur- 070

rounding inflectional or derivational morphemes. 071

Therefore, even with an identical underlying syn- 072

tactic structure, lexical correspondences between 073

languages may be obscured or rendered incongru- 074

ent. Further, when working with small data, the 075

corpus frequencies of fully inflected surface forms 076

would be much less reliable than those of stem 077

2While some languages may have a little parallel data,
we assume none, so as to cater to languages that are just
undergoing digitization.
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and affix morphemes, intuitively resulting in a less078

robust embeddings transfer. These factors add079

weight to the intuition that many Indian languages080

share morpheme-level correspondences with each081

other. This motivated us to apply unsupervised082

morphemic segmentation on both the source and083

target language data; we demonstrate the benefits084

of doing so in our evaluations. Note that this also085

makes it natural to work with subword-level em-086

beddings rather than word embeddings; studies087

show that the former have an advantage over word088

embeddings especially for morphologically rich089

languages. (Chaudhary et al., 2018) (Zhu et al.,090

2019b) (Li et al., 2018).091

The idea of the transfer is to project the low-092

resource language (LRL) subwords into a shared093

bilingual space with the high-resource language094

(HRL). We first attempt a trivial transfer that simply095

finds the “closest” HRL subword for each LRL sub-096

word, and copies its embedding. We demonstrate097

that this approach, while tempting, is not enough098

to capture the relationships between even identical099

words in both languages; embeddings spaces ap-100

pear to encode more complex information that this101

approach would suggest. For our best performing102

approach, we use the EM-style algorithm described103

in Artetxe et al. (2017), which alternately optimizes104

the distance between pairs belonging to a bilingual105

mapping, and generates a bilingual mapping be-106

tween words from the resulting bilingual embed-107

dings. As far as we know, our work is the first to108

apply this algorithm in the context of embeddings109

transfer. We compare the resulting Marathi bilin-110

gual embeddings to a FastText model trained on111

the available data as well as pretrained models, on112

the Word Similarity tasks and the WordNet-Based113

Synonymy Tests.114

2 Previous Work115

2.1 Subwords in Embedding Spaces116

In a seminal work, Bojanowski et al. (2017) present117

FastText embeddings, that treat morphology by rep-118

resenting words as bags of chargrams. Kudo and119

Richardson (2018) present a subword tokenizer for120

neural text processing, and Kudo (2018) shows the121

benefits of using multiple subword segmentations122

in neural machine translation, especially in low-123

resource settings. Zhu et al. (2019b) look at the124

segmentation of a word, such as using chargrams,125

Byte Pair Encoding (BPE) (Gage, 1994; Sennrich126

et al., 2016), Morfessor, as well as the composi-127

tion of the subword embeddings (addition, averag- 128

ing, etc.) to construct the final word vector, and 129

conclude that the best performing configuration is 130

highly language and task dependent. A subsequent 131

work (Zhu et al., 2019a) focuses on LRLs and finds 132

the combination of BPE and addition largely robust, 133

although they once again note language-dependent 134

variability. They also find that encoding “affix” in- 135

formation with positional embeddings is beneficial, 136

hinting that the embedding space may distinguish 137

the importance of different kinds of subwords. 138

2.2 Cross-lingual embeddings 139

The problem of learning bilingual embeddings has 140

usually been studied in a symmetric resources sce- 141

nario. Xu et al. (2018) propose an unsupervised 142

method of mapping two sets of monolingual static 143

embeddings into a shared space; they present re- 144

sults for English paired with Spanish, Chinese, and 145

French, evaluated on the bilingual lexicon induc- 146

tion and Word Similarity tasks. Chaudhary et al. 147

(2018) experiment with joint and transfer learn- 148

ing for training bilingual subword embeddings for 149

pairs of Indian LRLs from scratch, by projecting 150

different scripts into the International Phonetic Al- 151

phabet (IPA). Kayi et al. (2020) present an exten- 152

sion of the BiSkip cross-lingual learning objec- 153

tive that leverages subword information to train 154

English-paired bilingual embeddings for LRLs, us- 155

ing around 30K parallel sentences. We describe 156

Artetxe et al. (2017) in some detail below, since we 157

use this algorithm in our approach. There is also 158

growing interest in multilingual contextual embed- 159

dings (Devlin et al., 2018) (Kakwani et al., 2020) 160

(Ruder et al., 2019) such as multilingual BERT; 161

Wang et al. (2020) propose an approach to extend 162

multilingual BERT to low-resource languages with- 163

out retraining it, Pfeiffer et al. (2020) suggest an 164

approach towards incorporating previously unseen 165

scripts into a multilingual BERT model. 166

2.3 Bilingual Lexicon Induction 167

This task is closely related to that of embeddings 168

transfer; we see that these two tasks leverage each 169

other in the literature. Older works such as Koehn 170

and Knight (2002) and Haghighi et al. (2008) use 171

monolingual features such as frequency heuristics, 172

orthographic features, tags, and context vectors in 173

order to find bilingual mappings for mainly Eu- 174

ropean language pairs. Hauer et al. (2017) use 175

word2vec embeddings (Mikolov et al., 2013) in 176

order to iteratively train a translation matrix. 177
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2.4 Summarizing Artetxe et al. (2017)178

Artetxe et al. (2017) present an EM-style approach179

to training bilingual embeddings from monolingual180

embeddings without parallel data; however, it as-181

sumes high quality monolingual embeddings for182

both languages trained on at least 1 billion word183

corpora each. Given the two sets of word embed-184

dings, they find a bilingual dictionary D by choos-185

ing the closest target word for each source word186

with respect to the cosine distance between source187

and target word embeddings. In the next step, they188

use the dictionary D to calculate a linear transfor-189

mation matrix that minimizes the sum of cosine190

distances of the embeddings of all word pairs in191

D. They apply an orthogonality constraint on the192

transformation matrix in order to preserve mono-193

lingual invariance i.e. to prevent the degradation194

of the monolingual relationships in the resulting195

embedding space. These steps are repeated until196

convergence.197

3 Note on languages198

Hindi,spoken by about 340M people, is related199

to other large Indian languages such as Marathi,200

Punjabi, and Bangla, and has 48 recognized “di-201

alects” over India, which makes it a good choice202

for the HRL in this project. Hindi is written203

in the Devanagari script, which is also used for204

over 120 other (often related) languages, includ-205

ing Marathi. Both Hindi and Marathi are largely206

free word order; nouns inflect for case and num-207

ber, verbs inflects for tense, number, gender, and208

adjectives inflect for gender, case, and number.209

Some differences are that Marathi exhibits more210

agglutinative tendencies than Hindi; Marathi is con-211

ventionally written in a manner that allows suf-212

fix stacking with certain boundary changes. For213

example, a Marathi token may be a sequence214

of verb+nominalizing-morpheme+case-marker or215

noun+postposition+genitive, whereas Hindi sepa-216

rates these morphemes into tokens in many cases217

(while still exhibiting inflectional and some deriva-218

tional morphology). See Figure 1.219

4 Data and Resources220

4.1 Training Data221

For Hindi, we used 1M sentences containing222

roughly 18M tokens from the HindMonoCorp 0.5223

(Bojar et al., 2014). For Marathi, we used 50K224

sentences containing 0.8M tokens from the Indic-225

Figure 1: Tokens (with transliterations) in Marathi and
Hindi. The stem for “do” is the same (i.e. “kar”) in
both languages; Marathi uses one token whereas Hindi
uses three.

Corp Marathi monolingual dataset (Kakwani et al., 226

2020).3 The latter number was chosen because it 227

seems to be the ballpark of the amount of mono- 228

lingual data collected for newly digitized Indian 229

languages.4 230

4.2 Pretrained Embeddings 231

We use pretrained FastText embeddings for Hindi, 232

presented by Grave et al. (2018), in line with the 233

assumption that we have good quality resources for 234

the HRL. These embeddings (HIN-PRETR-2G5) are 235

trained on the Wikipedia corpus as well as Com- 236

mon Crawl, containing a total of about 2G tokens. 237

We also use the pretrained Marathi FastText em- 238

beddings (MAR-PRETR-60M) presented in the same 239

work, solely for the purpose of evaluation; these 240

embeddings are trained on 50M tokens and 85K 241

Wikipedia articles. 242

4.3 Evaluation datasets 243

4.3.1 Word Similarity Dataset 244

A Word Similarity dataset is a set of word pairs, 245

each annotated by humans according to the de- 246

gree of similarity (integers ranging from 1 to 10) 247

between the two words. Evaluation is usually per- 248

formed by finding the cosine similarity between the 249

two words vectors, and calculating the Spearman’s 250

Rank Correlation between the human and model 251

“similarity” judgments for all word pairs. We report 252

this correlation multiplied by 100. 253

We present results on the Marathi Word Similar- 254

ity dataset presented by Akhtar et al. (2017), con- 255

3Note that we do not lemmatize our data; good-quality
lemmatizers are a scarce resource that we cannot assume for
the LRL.

4See https://www.ldcil.org/
resourcesTextCorp.aspx for efforts on collect-
ing data on under-resourced languages such as Bodo, Dogri,
Santhali, etc.

5We use the following shorthand to refer to our mod-
els unless otherwise specified: <language>-<method_label>-
<tokens_of_training_data>. There may be two data slots in the
case of bilinugal embeddings, containing amount of Marathi
and Hindi data respectively.
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taining 104 word pairs, as our primary evaluation.256

This dataset is created by translating a subset of257

the WordSimilarity-353 English evaluation dataset258

into Marathi by native Marathi speakers fluent in259

English, and re-evaluating the similarity scores by260

8 native speaker annotators.261

4.3.2 WordNet-Based Synonymy Tests262

Since the WordSim dataset is rather small, we also263

perform WordNet-Based Synonymy Tests (WBST)264

(Piasecki et al., 2018). A WBST consists of a set265

of “questions” consisting of one “query word”, and266

N options. One of the options is a synonym or267

closely related to the query word, while the rest are268

“detractors”, or randomly selected words. The task269

is to identify the synonym; we do this by calculat-270

ing the cosine distances between the query word271

vector and each of the options and selecting the272

closest. The reported score is the percentage of273

correctly answered questions. We use the Marathi274

WordNet,6 containing 32K words, built by Sinha275

et al. (2006); Debasri et al. (2002), for generating276

the WBST, and the Python application interface277

given by Panjwani et al. (2018). Note that we use278

the WordNet solely for evaluation purposes.279

5 Segmentation280

Due to the fusional/agglutinative nature of the lan-281

guages, as well as the morphological and tokeniza-282

tion differences as discussed in Section 3, we ap-283

ply unsupervised morphemic segmentation to both284

source and target side data. This is motivated by285

the need to handle data scarcity on the LRL side,286

since fully inflected tokens are much rarer than287

their constituent subwords; we see that the unseg-288

mented Marathi data has 100K distinct tokens, but289

only 20K distinct “morphemes” post-segmentation.290

The morphemic segmentation is also an attempt291

to isolate the morphs in the language data since,292

according to our hypothesis, it is easier to find cor-293

respondences between the two languages at this294

level rather than at the token level. This is clear in295

the fact that 50% of the “morphs” in the Marathi296

segmented data also occur in the Hindi corpus,297

whereas for the unsegmented data, this is only 20%298

of tokens. We experimented with BPE and Morfes-299

sor and decided to use the latter, since BPE seemed300

unable to preserve longer morphs regardless of pa-301

rameter settings. However, this decision may vary302

according to language type.303

6See http://www.cfilt.iitb.ac.in/
WordNet/webmwn/

6 Approach 304

Our experiments test different intuitions about the 305

cross-lingual interactions between the languages in 306

question. As a baseline, we train a FastText model 307

on the tokenized Marathi data with 0.8M tokens 308

(MAR-BASE-0.8M). We work with 300-dimensional 309

embeddings for all experiments.7 310

6.1 Normalized Edit Distance (NED) 311

Approach 312

The NED approach is based on finding a bilingual 313

subword-level mapping; it takes advantage of the 314

high number of cognates between related languages 315

as well as the common script. Its primary intuition 316

is that since the languages share not only cognates 317

but also syntactic and morphological properties, 318

embedding vectors can essentially be “copied” over 319

to the LRL from the HRL. 320

For each Marathi morph, we choose the Hindi 321

morph with the minimum normalized edit distance 322

from it. NED is calculated in the following way: 323

NED(l, h) =
edit_distance(l, h)

max(length(l), length(h)

To obtain the embedding of any Marathi word, 324

we first segment it. For each subword, we 325

• Look for the closest Hindi morph by NED 326

• Retrieve the corresponding Hindi subword em- 327

bedding 328

Finally, we compose the subword embeddings, us- 329

ing addition, to give the word embedding. See 330

Algorithm 1 for a depiction.8

Algorithm 1: NED Approach
l_word← LRL word;
H_EMB← HRL embeddings;
l_morphs← segment_lrl(l_word);

l_subwords_emb← empty list;
for l_morph in l_morphs do

h_closest← closest_HRL_morph(l_word);
append(l_subwords_emb, H_EMB(h_closest));

end
l_emb← compose_subwords(l_subwords_emb);
return l_emb ;

331

7Repeating some experiments for 100 dimensional em-
beddings spaces, we observe similar trends, with a generally
lower performance.

8Of course, an NED-based approach is highly limited to
related words in the language. However, testing it out gives us
an interesting insight about cognates and identical words (see
Section 9.1)
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6.2 Iterative approach332

The iterative approach is based on an algorithm333

proposed by Artetxe et al. (2017), intended to gen-334

erate bilingual word embeddings for equally well-335

resourced languages (See Section 2.4 for details).336

We hypothesize that the algorithm will maintain337

its quality at the subword level for morphologi-338

cally rich languages; further, we hypothesize that339

in our data-asymmetry situation, this approach will340

serve to “transfer” some of the higher quality of the341

HRL embedding space to the LRL embeddings, by342

leveraging a bilingual mapping to induce the rela-343

tionships already encoded in the HRL embeddings.344

As the initial set of LRL embeddings, we use345

FastText vectors trained on available Marathi seg-346

mented data (MAR-SEGM-0.8M). For the HRL, we347

can use any available resource. We try using pre-348

trained FastText vectors (HIN-PRETR-2G); we also349

retrain FastText on the segmented Hindi data (HIN-350

SEGM-18M). For all runs, we set the initial seed351

dictionary as identical words9 in the source and tar-352

get corpora.10 We use the MAR-SEGM-0.8M FastText353

model as a backoff for unseen morphs, as shown in354

Algorithm 2. For composing the subword embed-

Algorithm 2: Using bilingual embeddings
with backoff

l_word← LRL word;
L_EMB← Bilinual LRL embeddings;
L_EMB_backup← MAR-SEGM-0.8M;
l_morphs← segment_lrl(l_word);
l_subwords_emb← empty list;
for l_morph in l_morphs do

l_morph_emb← empty list ;
if l_morph in L_EMB then

l_morph_emb← L_EMB(l_word);
end
else

l_morph_emb←L_EMB_backup(l_morph);
end
append(l_subwords_emb, l_morph_emb);

end
l_emb← compose_subwords(l_subwords_emb);
return l_emb ;

355
dings of a word, we tried addition, averaging, and356

also simply picking the first subword embeddings357

and discarding the rest. The idea behind the last358

one is that this approximates the stem of the word,359

9Of course, this is only possible when the languages share
a script.

10Note that this approach does not use any parallel data
or bilingual lexicons; this aligns with our assumptions about
parallel data. However, in the case that parallel data does exist,
it can be used to find a good quality bilingual seed lexicon in
lieu of using identical words.; this has been shown to improve
the quality of the resulting bilingual embeddings.

Approach Score
MAR-BASE-0.8M 24.64
MAR-SEGM-0.8M 43.23
BI-JOINT-0.8M-18M 35.48

Table 1: Marathi monolingual and Marathi-Hindi Joint
results on Marathi WordSim task. Notation of models
explained in Section 4.2.

Embeddings Score
MAR-PRETR-60M 54.89
MAR-SKIPGR-27M 41.12
HIN-PRETR-2G 39.94

Table 2: Scores of high-resource Marathi and Hindi
models on Marathi WordSim task for comparison.

and also reduces the noise created by summing 360

different subword embeddings. 361

7 Results: Word Similarity Task 362

All results are evaluated on the Marathi Word Sim- 363

ilarity dataset as explained in Section 4.3.1. 364

7.1 Baseline and Comparison Models 365

We show the performance of MAR-BASE-0.8M and 366

MAR-SEGM-0.8M; taking motivation from Chaud- 367

hary et al. (2018), we also try a joint approach 368

i.e. we train bilingual embeddings jointly on the 369

segmented Hindi and Marathi data (BI-JOINT-0.8M- 370

18M). See Table 1 for these scores. We observe that 371

simple segmentation of the data causes an improve- 372

ment of over 20 points, outdoing not only MAR- 373

BASE-0.8M but MAR-SKIPGR-27M (See Table 2). Sur- 374

prisingly, the joint model BI-JOINT-0.8M-18M dips 375

in performance in comparison to the MAR-SEGM- 376

0.8M. We discuss this effect of the Hindi data on 377

the bilingual embeddings in Section 9.1. 378

In Table 2, we show the performance of pre- 379

trained FastText Marathi embeddings mentioned in 380

Section 4.2 (MAR-PRETR-60M), as well as the best 381

performing model score from Akhtar et al. (2017) 382

on this evaluation dataset. Akhtar et al. (2017) test 383

different sets of embeddings including Skip-gram, 384

CBOW (Mikolov et al., 2013) and FastText (Bo- 385

janowski et al., 2017) algorithms, all trained on a 386

corpus with 27M tokens, of which the Skip-Gram 387

(MAR-SKIPGR-27M) performed best. 388

Finally, Table 3 shows the performance of the 389

MAR-PRETR-60M and HIN-PRETR-2G on certain word 390

pairs in the Marathi WordSim dataset such that 391
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Embeddings Identical
Word Score

HIN-PRETR-2G 41.17
MAR-PRETR-60M 50.38

Table 3: Scores of pretrained embeddings on word
pairs from the Marathi WordSim dataset that are identi-
cal in both languages

Approach Score
BI-SELF-SEGM-0.8M-18M 43.62
BI-SELF-PRETR-0.8M-2G 42.72
BI-NED-PRETR-0.8M-2G 41.85
BI-NED-SEGM-0.8M-18M 39.37

Table 4: Scores on Marathi WordSim for self-mapping
and NED strategies, using different Hindi embed-
dings. Notation: Bi-<mapping_method>-<hin_embs>-
<mar_tokens>-<hin_tokens>.

both words are also used identically in Hindi.11392

These word pairs were manually identified from393

the Marathi evaluation dataset; we found that there394

were 64 such word pairs.12 Surprisingly, we see a395

significant dip in the performance of HIN-PRETR-2G396

on these word pairs as compared to MAR-PRETR-397

60M, indicating that while the word pairs appear398

identical in both languages to a native speaker, their399

usage in the corpora or interaction with other words400

from the language is different.13401

7.2 Normalized Edit Distance (NED)402

Our NED models use only Hindi embeddings,403

and project Marathi morphs onto Hindi morphs as404

shown in Algorithm 1. For further simplicity, we405

also tried a self-mapping; i.e. we simply calculate406

the (Hindi) embeddings of the Marathi morphs ob-407

tained by segmentation, as they are. Note that this408

is only possible because Marathi and Hindi share a409

common script. The resulting embeddings are com-410

posed by addition unless otherwise mentioned. See411

Table 4 for the results on different combinations of412

embeddings and mappings.413

11That is, both of the words in the word pair must be both
Hindi and Marathi words with the same spelling, and near-
identical senses.

12Many of these are transliterations of English words. 24 of
the total 135 unique words in the dataset are transliterations,
and they occur 40 times i.e. 19.6% times in the 104 word
pairs.

13Note that HIN-PRETR-2G performs very well on the
Hindi WordSim dataset; its monolingual quality is not the
problem.

Approach Comp. Score
(MAR-BASE-0.8M - 24.64)
BI-ITER-PRETR-0.8M-2G Sum 44.28
BI-ITER-SEGM-0.8M-9M Sum 49.49
BI-ITER-SEGM-0.8M-18M Sum 49.21
BI-ITER-SEGM-0.8M-18M First morph 50.06
BI-ITER-SEGM-0.8M-36M First morph 50.10

Table 5: Iterative approach results on Marathi
WordSim task using different sets of Hindi embed-
dings for the crosslingual transfer. Format of the
approach name: Bi-Iter-<hin_embs>-<mar_tokens>-
<hin_tokens>. Comp.: Composition function.

Firstly, we observe that the self-mapping per- 414

forms better than NED in general.14 This is largely 415

unsurprising; NED would only perform better for 416

Marathi words that are cognates with Hindi words 417

and show a slight difference in spelling; it will per- 418

form competitively with self-mapping for identical 419

words in Hindi and Marathi. As we discuss in Sec- 420

tion 7.1, such words form a large part of the evalu- 421

ation dataset. As for the remaining words, it seems 422

that the Hindi embeddings are able to capture the 423

meaning of the unknown Marathi morphs, perhaps 424

due to similarities at a subword level. Applying 425

the NED mapping, however, can result in Marathi 426

words being mapped to arbitrary Hindi words that 427

may share no semantics with the original Marathi 428

word. 429

Another interesting observation is that the BI- 430

SELF-SEGM-0.8M-18M performs a little better than 431

BI-SELF-PRETR-0.8M-2G. This affirms our intuition 432

in Section 5 that segmentation on the Hindi side 433

may indeed facilitate the correspondence between 434

subwords common to Hindi and Marathi, leading 435

to better performance on a Marathi evaluation set 436

despite orders of magnitude less (Hindi) data. 437

7.3 Iterative Approach 438

This approach trains Marathi bilingual embeddings 439

from Hindi and Marathi monolingual embeddings. 440

The initial Marathi embeddings used are always the 441

monolingual FastText MAR-SEGM-0.8M, whereas we 442

try with some different Hindi embeddings. See 443

results in Table 5. 444

There are three points of interest in the results: 445

14Note that there is a difference between the self-mapping
model and directly applying HIN-PRETR-2G as in Table 2 In
the former, we segment the Marathi word ourselves and apply
Hindi embeddings to the resulting subwords; in the latter, we
leave it up to FastText. We note that the former does better.
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1. We see that the BI-ITER-SEGM-0.8M-18M out-446

performs BI-ITER-PRETR-0.8M-2G; i.e. once447

again, we find that it is better to use embed-448

dings trained on segmented Hindi data for449

the transfer, even though HIN-SEGM-18M is450

trained on two orders of magnitude fewer data451

than HIN-PRETR-2G. Since this approach is ex-452

plicitly bilingual and attempts to project the453

Marathi and Hindi embeddings into a shared454

space, this is a much more direct affirma-455

tion that the similarities between Hindi and456

Marathi are best exploited at the subword level457

from both sides.458

2. We see that the “first-morph” manner of com-459

position does slightly better than summing or460

averaging15 the subword embeddings.16461

3. Finally, we see that doubling the amount of462

Hindi data used to train the initial Hindi em-463

beddings does not help. This indicates that464

the Hindi data is only useful up to a point; we465

discuss this further in Section 9.1.466

8 Results: WordNet-Based Synonymy467

Tests468

Due to the small size of the WordSim dataset, we469

also carried out an alternate form of evaluation.470

We generate the WBST questions ourselves from471

the Marathi WordNet17 and calculate scores as472

explained in Section 4.3.2. See Table 6 for the473

scores.18 These results confirm some of the find-474

ings from the WordSim results; here are some ob-475

servations from Table 6.476

1. Segmentation helps: MAR-SEGM-0.8M consis-477

tently outperforms the MAR-BASE-0.8M.478

2. The iterative method is the best among the479

low-resource embeddings.480

3. There is little or no difference between BI-481

ITER-SEGM-0.8M-18M and BI-ITER-SEGM-0.8M-482

36M: doubling the Hindi data for the bilingual483

15We do not report averaging scores since they are almost
identical to the summing scores

16This could be for several reasons; for example, if the first
subword approximates the root of the word, then it may cap-
ture most of the meaning, whereas the remaining information
may be irrelevant or add noise.

17For each query word, we randomly select one of its syn-
onyms, and N − 1 non-synonym words from the WordNet,
under the constraint that all words in the question occur in the
corpus at least MIN times. We generate questions for each
query word permitted by the value of MIN .

18Note that since a synonym as well as the detractors are
selected randomly from the WordNet, the scores show some
variation over different runs.

approach seems not to have much effect on 484

the resulting embeddings. 485

4. The MAR-PRETR-60M still performs the best, 486

with a seemingly larger margin than in the 487

WordSim task. 488

5. As MIN increases, the performance of the 489

low-resource methods generally increases; 490

they naturally perform better on words they 491

have seen more frequently in the corpus. 492

9 Discussion 493

Some of the clearer findings of our experiments 494

are as as regards segmentation and the benefits of a 495

non-trivial bilingual embeddings transfer. 496

We see repeatedly that segmentation on both 497

sides of the transfer helps the quality of the LRL 498

embeddings. Segmenting the Marathi data causes a 499

large boost in monolingual performance (Table 1); 500

furthermore, when transferring from Hindi embed- 501

dings, BI-ITER-SEGM-0.8M-18M outperforms BI-ITER- 502

PRETR-0.8M-2G (Table 5); the Hindi embeddings 503

used in the latter are trained on 2 orders of magni- 504

tude higher (unsegmented) data.19 This suggests 505

that the interaction between the two languages is 506

indeed facilitated at a subword level, validating our 507

bilingual native speaker intuition about the same. 508

We also see that the iterative approach consistently 509

outperforms both monolingual models MAR-BASE- 510

0.8M and MAR-SEGM-0.8M, indicating that bilingual 511

interaction between the related languages is in- 512

deed beneficial. This is a good sign for the project 513

of building NLP tools for truly low-resource lan- 514

guages, although the impact of different typologies 515

on this bilingual effect needs to be explored. 516

Finally, we find that, in agreement with the find- 517

ings of the papers that investigate subword com- 518

position functions (Zhu et al., 2019a,b), the best- 519

performing composition function for subword em- 520

beddings seems to be task and data dependent; 521

counter-intuitively, even discarding everything ex- 522

cept the first subword seems to work better in some 523

cases than aggregating the embeddings of all parts 524

of the token. 525

9.1 Using Hindi data 526

To the best of our knowledge, this is the first work 527

that clearly demonstrates that a trivial “copy-and- 528

paste” transfer approach, such as our NED models, 529

19Note that we are talking about performance in terms of
the resultant Marathi bilingual embeddings rather than the
direct evaluation of the Hindi embeddings.
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(MIN, N) Test size MAR-BASE

-0.8M
MAR-SEGM

-0.8M
BI-ITER-SEGM

-0.8M-18M
BI-ITER-SEGM

-0.8M-36M
MAR-PRETR

-60M

(10,6) 1183 51.23 58.92 61.62 57.06 84.70
(10,5) 1183 51.90 54.78 58.66 61.54 84.87
(20,6) 684 48.98 53.65 59.94 58.19 84.50
(20,5) 684 57.89 59.94 64.47 64.33 87.57
(50,5) 293 58.02 63.14 67.24 68.94 81.23

Table 6: WBST Results. MIN : minimum frequency of the question and options in the corpus, N : the number of
total options, Test size: number of questions in the test. The two best-performing models have been bolded.

is not adequate, even when working with two cul-530

turally related languages that share a very high531

percentage of cognates as well as morphosyntactic532

properties. Our experiments with identical words533

pairs in Table 3 especially show that even identical534

words that are not false friends may behave dif-535

ferently depending on the language;20 using Hindi536

embeddings directly, even for identical words, is537

problematic. We believe that this is an important538

insight into embeddings transfer that rejects relying539

on trivial or simplistic approaches.540

Many of our experiments are intended to indi-541

cate how useful the Hindi data and embeddings are542

to the Marathi tasks; e.g. we evaluate HIN-PRETR-2G543

directly on the Marathi WordSim task (Table 2), we544

experiment with different amounts of Hindi data545

for both tasks (Tables 5 and 6), and we try a self-546

mapping with the NED model (see Table 4). We see547

that doubling or halving the amount of Hindi data548

does not boost the results for either task and some-549

times even harms performance. Similarly, we see550

that BI-JOINT-0.8M-18M performs worse than MAR-551

SEGM-0.8M (see Table 1). In conjunction, these re-552

sults imply that under the current transfer paradigm,553

adding more Hindi data may sometimes hurt rather554

than benefit; too much Hindi data for the purpose of555

training bilingual embeddings may actually “con-556

ceal” Marathi word interactions. We invite further557

investigation of this effect.558

10 Future Work559

This work is intended to be the pilot in a series560

of similar studies. We hypothesize that we can561

obtain similar results for other genealogically re-562

lated LRL-HRL pairs. We intend to repeat these563

experiments for language pairs (simulating LRL564

20This is to say even if words a and b occur identically and
with the same senses in both languages, the word pair (a, b)
may have a different relationship depending on the language.

environments) such as Punjabi-Hindi, Assamese- 565

Bengali, Konkani-Marathi, and others. Some of 566

the issues we will be working against are different 567

scripts, morphemic segmentation of typologically 568

different languages, and the lack of evaluation data. 569

We would also like to experiment with the inte- 570

gration of parallel data into this approach. We 571

mention one way of doing this in Section 6.2. Fi- 572

nally, we also think it would be interesting to extend 573

our solution from a bilingual to a multilingual one, 574

with multiple sources for a target language. This 575

would be highly pertinent in the case of Indian lan- 576

guages, where even major Indian languages may be 577

interconnected, and regional languages may benefit 578

from the resources of more than one HRL. 579

11 Conclusion 580

Embeddings transfer from a high-resource lan- 581

guage to a low-resource related language is an im- 582

portant task in today’s scenario of data inequality 583

across languages. We take an Indian language pair, 584

Hindi-Marathi, simulating a low-resource scenario 585

for Marathi, and present an approach to embed- 586

dings transfer that uses very little monolingual data 587

on the LRL side, and no parallel data. We believe 588

that our work is the first to show that a “copy-and- 589

paste” embeddings transfer fails even with a perfect 590

bilingual dictionary for a closely related language 591

pair. Our final approach improves significantly over 592

a monolingual FastText baseline for both the Word- 593

Sim and WBST tasks; its performance on the for- 594

mer task is close to that of high-resource pretrained 595

FastText embeddings. We also demonstrate the 596

benefits of unsupervised morphemic segmentation 597

on both source and target sides for subword-level 598

embeddings transfer. 599
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