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Abstract. Sequential Monte Carlo (SMC) samplers are Bayesian in-
ference methods to draw N random samples from challenging posterior
distributions. Their simplicity and competitive accuracy make them pop-
ular in various applications of Machine Learning (ML), Bayesian Opti-
mization (BO), and Statistics. In many applications, run-time is critical
under strict accuracy requirements, making parallel computing essen-
tial. However, an efficient parallelization of SMC depends on how effec-
tively its bottleneck, the redistribution step, is parallelized. This is hard
due to workload imbalance across the cores, especially when the sam-
ples are of variable-size. A parallel redistribution for variable-size sam-
ples was recently proposed for Shared Memory (SM) architectures. This
method resizes all samples to the size of the biggest sample, M , and con-
strains the samples to be indivisible, i.e., forces the cores to redistribute
whole samples. This leads to inefficient run-time, and a sub-optimal time
complexity, O(M log2 N). This study addresses the challenge of Optimal
Parallel Redistribution (OPR) for variable-size samples. We first prove
that OPR for indivisible variable-size samples is NP-complete. Then, we
present an OPR algorithm for SM that does not resize the samples and
allows cores to redistribute either whole samples or fractions of them.
We prove theoretically that this approach achieves optimal O(M̂ log2 N)
time complexity, where M̂ is the average size of the redistributed sam-
ples. We also show experimentally that the proposed approach is up to
10× faster than the reference method on a 32-core SM machine.

Keywords: Parallel Algorithms · Sequential Monte Carlo · Parallel Re-
distribution · Shared Memory · Parallel Methods for ML and BO

1 Introduction

1.1 Motivation

Sequential Monte Carlo (SMC) samplers are commonly used Bayesian inference
methods to make estimations of the state of a statistical model, X, given some
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data, Y. The key idea is to generate randomly N weighted, and statistically inde-
pendent samples from the posterior distribution of the model, π(X,Y), and use
the samples to make estimates. The simplicity and the state-of-art performance
of SMC samplers make them a popular choice in many application domains, e.g.
Machine Learning (ML) [1], Bayesian Optimization (BO) [2,3], and Medicine [4].

Several ideas have been explored to make the estimations of SMC samplers
more accurate. Examples include using better proposal distributions [5–7], tem-
pering [8], or simply increasing N [9,10]. However, while these ideas are all valid
and generally applicable, they share a common side effect: the SMC sampler
becomes more computationally intensive. This side effect is more problematic in
time-crucial applications, such as Epidemiology [11] (e.g., when computing the
R-number of viruses, such as for COVID-19) or Crime Prediction [12]. Hence,
parallel computing becomes crucial to trade-off accuracy and run-time.

1.2 Problem Definition and Related Work

Since the samples are statistically independent, they can be generated randomly
in embarrassingly parallel fashion, which makes SMC an appealing alternative
to other Bayesian inference methods, such as Markov Chain Monte Carlo [13].
However, at some point, the samples may experience a numerical error, called
degeneracy, which makes the samples (and the state estimates) diverge from the
true state of interest. This error is corrected by using a resampling algorithm,
which replaces the samples that have diverged by redistributing copies of the
samples that have not. Resampling is widely known to be the parallelization
bottleneck of SMC samplers. This is due to the issues encountered when paral-
lelizing the redistribution sub-task of resampling, in such a way that the workload
is optimally distributed across P processing elements (or cores, the terms are
used interchangeably here). For clarity, we provide the following definition:

Definition 1 (Optimal Parallel Redistribution (OPR)). The problem of
redistributing N samples with P parallel cores is solved optimally if and only if
the maximum workload on any core is minimized, where the workload of a core
is defined as the sum of the copying costs for the samples assigned to that core.

In the special case where all samples have the same size, M , parallel re-
distribution has been extensively studied and solved optimally, achieving lower
bound time complexity, O(log2 N). Examples can be found for both Distributed
Memory (DM) [14,15] and Shared Memory (SM) architectures [9, 16,17].

In the most general case, the samples may have variable sizes. This occurs
in several areas of ML and BO, where the model is designed to sample and
estimate abstract data types, such as Decision Trees (DTs) [18–20], Additive
Structures [21], and Time Series Structures [22]. In this scenario, OPR is sig-
nificantly more complicated to achieve than in the fixed-size scenario, as the
workload is even more unbalanced. Indeed, variable-size samples introduce an
additional layer of complexity: balancing workloads now depends not only on
the number of samples assigned to each core but also on the cost of copying each
individual sample, which can vary significantly. The work in [23] describes a par-
allel SMC sampler for DTs on SM, in which the redistribution step is centralized
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to a single core, achieving little to no speed-up. In [24], a parallel redistribution
for variable-size samples is proposed for SM and then ported to DM [25]. This
approach first resizes all samples until they match the size of the biggest sample,
M , and then performs parallel redistribution using conventional parallel tech-
niques for redistributing N fixed-size samples, where the cores redistribute an
equal (integer) number of samples. The approach in [24] achieves O(M log2 N)
time complexity, and is, therefore, sub-optimal since the cost of computation per
sample is bound to the worst case, O(M). This consequently poses the following
question: is OPR achievable when redistributing N variable-size samples?

1.3 Paper Contribution and Outline

In this paper, we first prove that if all cores are constrained to redistribute an
integer number of variable-size samples, OPR is NP-complete. In other words,
under this constraint, OPR for variable-size samples is achievable in polynomial
time only if P=NP. This is the case for DM systems and SM approaches like [24].
Then we propose a novel SM parallel redistribution algorithm for variable-size
samples in which the samples are divisible (i.e., the cores may either redistribute
whole samples or fractions of them) and do not need to be resized. Our theoretical
analysis proves that our approach achieves optimal O(M̂ log2 N) parallel time
complexity, where M̂ is the average size of the samples to be redistributed.

We also present experimental results comparing two versions of the same
SMC sampler, differing only in their parallel redistribution approach. The results
demonstrate that our approach achieves a significantly faster run-time than the
approach described in [24], by roughly a 10× factor.

The rest of the paper is organized as follows: in Section 2, we first describe
SMC samplers in general, and then we briefly explain how SMC is parallelized
in [24]. Section 3 proves that OPR is NP-complete if the cores are constrained to
redistribute an integer number of variable-size samples. In Section 4, we present
and analyze our approach in detail. Section 5 shows the numerical results. Section
6 concludes the paper and proposes possible future research directions.

2 Background and Previous Work

In this section, we first introduce the SMC sampler. For details, the reader is
referred to [26]. Then we provide brief details on how SMC is parallelized in [24].

2.1 Sequential Monte Carlo Samplers

The SMC sampler generates N random samples of π(X,Y) = p(Y|X)p(X), i.e.,
the posterior distribution of the model, and p(X) and p(Y|X) are the prior and
the likelihood, respectively. SMC performs K iterations, for k = 0, 1, . . . ,K−1, to
generate and update N random samples of the posterior, xi

k, for i = 0, 1, . . . , N−
1. However, since π(·, ·) is often impossible to be sampled from directly, the
SMC sampler uses a convenient and arbitrary proposal distribution (or simply
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proposal) to generate the samples, and then gives each sample a weight, wi
k,

which quantifies how well xi
k approximates the true state, X.

At the first iteration, k = 0, each sample, xi
0, is sampled from the prior, and

its weight is initialized to wi
0 = π(xi

0,Y)/p(xi
0). After that, for all k > 0, the

SMC sampler draws new samples and updates their weights as follows:

xi
k ∼ q(·|xi

k−1), (1a)

wi
k = wi

k−1

π
(
xi
k,Y

)
π
(
xi
k−1,Y

) q (xi
k−1|xi

k

)
q
(
xi
k|xi

k−1

) , (1b)

where q(·|·) is the proposal. We note that Equation (1) is often referred to as
Importance Sampling (IS) in the literature.

After (1), the weights need to be normalized as follows:

w̃i
k =

wi
k∑N−1

j=0 wj
k

, (2)

so that
∑

i w̃
i
k = 1 and w̃i

k can approximate expectations of the posterior.
In theory, this approach correctly represents the posterior as N → ∞. In

practice, IS suffers from degeneracy, a numerical error caused by having the
samples generated from the proposal, instead of directly from the posterior.
This leads to all weights but one to drop to 0 within a few iterations, making
the samples diverge from the posterior. To correct this error, the typical approach
is to perform the resampling algorithm if the effective sample size,

Neff =
1∑N−1

i=0

(
w̃i

k

)2 , (3)

drops below an arbitrary threshold, normally set to 0.5N . Resampling replaces
the samples with low weights with copies of the samples with high weights.

Many resampling schemes exist in the literature. Here, we use systematic
resampling [27], arguably the most common scheme. This resampling variant
regenerates the sample population by performing the following three steps.

Step 1 - Choice. This step determines how many times each sample, xi
k, will

be copied. In systematic resampling, this choice involves computing cdf ∈ RN ,
the cumulative sum (or prefix sum, the terms are used interchangeably) of the
normalized weights as follows:

cdf i = N
∑i−1

j=0
w̃j

k, ∀i = 0, 1, 2, . . . , N − 1. (4)

Each sample, xi
k, for i = 0, 1, . . . , N − 1, will then be copied as many times as

ncopiesi = ⌈cdf i +Nw̃i
k − u⌉ − ⌈cdf i − u⌉, (5)

where u ∼Uniform[0, 1), and ⌈·⌉ is the ceiling operator. From (4) and (5), it can
be inferred that ncopies ∈ NN

0 , where N0 = N ∪ {0}, and complies with∑N−1

i=0
ncopiesi = N. (6a)

0 ≤ ncopiesi ≤ N, (6b)
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Step 2 - Redistribution. This step is in charge of actually replicating each sam-
ple as many times as in (5), such that the samples for which ncopiesi = 0 will
be removed. Algorithm 1 describes a textbook implementation of a Sequential
Redistribution (S-R). We note that every resampling variant requires redistribu-

Algorithm 1 Sequential Redistribution (S-R)
Input: x, ncopies, N
Output: xnew

i← 0
for j ← 0; j < N ; j ← j + 1 do

for copy ← 0; copy < ncopiesj ; copy ← copy + 1 do
xi
new ← xj

i← i+ 1
end for

end for

tion. Therefore, since this paper presents an OPR for variable-size samples, the
novelty we propose is generally applicable to any resampling variant.

Step 3 - Reset. After redistribution, the weights are simply reset to 1/N , and
a new iteration starts over from (1).

After K iterations, the samples are assumed to have converged to the true
posterior, and the true state can be estimated as a weighted mean of the samples.

2.2 Previous Work on Parallel SMC for Variable Size Samples

Equations (1), (5), and the Reset step in resampling are embarrassingly parallel,
as these operations are all element-wise tasks. On SM, these tasks can be par-
allelized by equally dividing the iteration space across P SM threads (i.e., the
processing elements), such that each thread performs O(NP ) iterations.

Equations (2), (3) both require the computation of a vector sum. This op-
eration is notoriously parallelizable by using reduction, which is well-known to
achieve O(NP + log2 P ) time complexity.

The prefix sum in Equation (4) can also be performed in O(NP + log2 P ) by
using prefix reduction [28–30].

Algorithm 1 takes O(N) sequentially, as Equation (6a) holds. However, this
algorithm is impossible to be parallelized if using embarrassingly parallel tech-
niques. The main reason is that the workload associated with replicating each
sample, xi, a total of ncopiesi times is inherently unbalanced as Equation (6b)
holds. Furthermore, the workload may be even more unbalanced in the general
case in which the samples have variable sizes, which is the scenario we focus on
in this paper. A SM parallel redistribution for variable-size samples has been
proposed in [24] and is illustrated in Algorithm 2. Brief details follow.

Algorithm 2 makes all cores redistribute the same (integer) number of sam-
ples, N

P . Therefore, this means that the samples must be assumed to be indivis-
ible, whose definition is formally given as follows.
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Assumption 1 (Indivisibility) Each variable-size sample, xi, must be assigned
entirely to a single core, i.e., cannot be split or divided across the memory spaces
of multiple cores. In other words, if sample xi of size Mi is assigned to core id,
then the entirety of the Mi sample values contributes to the workload of core id.

Under these conditions, the workload is likely unbalanced due to the uneven
sample sizes. Algorithm 2 then bypasses this problem by resizing all the sam-
ples to size, M , i.e., the size of the biggest sample. This step is parallelized in
O(M log2 N). After that, the samples can be redistributed in O(M log2 N) by
using known parallel redistribution algorithms for fixed-size samples [17]. More
precisely, the P threads first compute csum ∈ NN

0 , the prefix sum of ncopies.
Then, each thread can use csum to identify a subset of N

P samples to redistribute
in O(NP ) with a constant time per sample of O(M) by using Algorithm 1. Ulti-
mately, the original size of the redistributed samples is restored in O(M N

P ) par-
allel time. Overall, [24] proves Algorithm 2 achieves a sub-optimal O(M log2 N)
time complexity because the computational cost per sample is bounded to the
worst case, O(M). This conclusion leads to the following question: is it possible
to achieve OPR on N variable-size, indivisible samples in polynomial time? The
next section provides an answer to this question.

Algorithm 2 Reference Parallel Redistribution for Variable Size Samples
Input: x, ncopies, N , P , n− N

P

Output: x

M ←Max(dims(x), P ) //dims returns the dimension of xi ∀i
x←Pad(x, M , P ) //Appends up to M − 1 Not a Numbers to each sample
csum←Prefix Sum(ncopies, P ), Begin redistribution
Spawn P threads with id = 0, 1, . . . , P − 1{

p←Binary Search(csum, ncopies, n, P )
cp← min (csump − id× n, n)
xn:n×cp−1 ← xp

x← S-R(xp+1:N−1, ncopiesp+1:N−1, n− cp)
} //End redistribution
x← Restore(x,M , P )

3 OPR for Variable Size Indivisible Samples is
NP-complete

Theorem 1. Under Assumption 1, the problem of Optimal Parallel Redistribu-
tion (OPR), defined as distributing N variable-size samples across P ≤ N cores
such that the maximum workload among all cores is minimized, is NP-complete.

Proof. To prove Theorem 1, we show OPR under Assumption 1 is both in NP
and NP-hard.
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OPR is in NP: By Assumption 1, each sample is assigned entirely to a single
core. Given a proposed solution (redistribution of samples across P cores, for
id = 0, 1, . . . P − 1), we can compute the workload for each core:

Wid =
∑

i-th samples assigned to id

ncopiesiMi,

where Mi is the size of the i-th sample. The maximum workload is:

W = max
0≤id≤P−1

Wid.

Verifying whether W is less than or equal to a given threshold can be done in
polynomial time. Thus, OPR is in NP.

OPR is NP-hard: We reduce the Partition Problem, a known NP-complete
problem [31], to OPR. The Partition Problem is defined as follows: given a set
of positive integers S = {a0, a1, . . . , aN−1}, determine if there exists a partition
of S into two subsets, S1 and S2, such that:∑

x∈S1

x =
∑
y∈S2

y =
1

2

∑
z∈S

.

Given an instance of the Partition Problem, we construct an OPR instance with
P = 2 cores, sample sizes Mi = ai, for i = 0, 1, . . . , N − 1, and ncopiesi = 1
(i.e., each sample is replicated exactly once). The goal in OPR is to minimize:

W = max

 ∑
xi∈S1

Mi,
∑

xj∈S2

Mj

 .

If the Partition Problem has a solution, there exists a distribution of samples
across two cores such that W = 1

2

∑
z∈S. Conversely, if OPR achieves W =

1
2

∑
z∈S, the Partition Problem has a solution. Thus, OPR is NP-hard for P = 2.

For P > 2, OPR generalizes the Partition Problem to the Multiprocessor
Scheduling Problem, where the objective is to minimize W across P cores, subject
to Assumption 1. The Multiprocessor Scheduling Problem is known to be NP-
hard, and the indivisibility constraint preserves the hardness of OPR.

Since OPR is in NP and NP-hard, we conclude that OPR is NP-complete. □

4 A SM OPR Algorithm for Variable Size Samples

Theorem 1 proves that OPR for N variable-size, indivisible samples cannot be
solved in polynomial time, unless P=NP. However, while Assumption 1 is in-
deed mandatory on DM (as the samples are by definition allocated in different
memories), it is optional on SM (as the samples are all stored in the same phys-
ical memory). In this section, we prove that on SM it is possible to optimally
redistribute N variable-size samples in parallel, if Assumption 1 is relaxed.
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P = 4 threads color-coded as follows:
id = 0 , id = 1 , id = 2 , id = 3 .

The circles represent the addresses of the pivots.
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x

Input of Algorithm 3 After Phase 1 and Phase 2 After Phase 3, Phase 4, and Phase 5

Note: the sample values are colored
based on the threads that replicated them
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Fig. 1: Algorithm 3 - example for N = 8 and P = 4. Each sample value is encoded
with a letter and a number for brevity.

To achieve this goal, the key idea is to allow the SM threads to redistribute
whole samples and/or (potentially) fractions of certain samples. More precisely,
if a M -dimensional sample, xi, needs to be copied by a certain thread with
identification number, id, depending on how the workload is distributed across
the P threads, thread id might have to either copy the whole sample, xi, or copy
only Ms < M sample values of xi, such that thread id+1 will have to copy the
remaining M −Ms sample values of xi.

The first thing we need to do is to restructure x as a one-dimensional (1-D)
array of total size

∑N−1
i=0 Mi, instead of being an array of N samples, each sample

being a list of Mi values, as in Algorithm 2. This means that, once redistribution
is complete, x will have a new total size equal to

Wtot =
∑N−1

i=0
ncopiesiMi, (7)

which can also be viewed as the total workload (or total number of memory
copies) to redistribute x. Since we work with a 1-D array, we need to be able to
address each (variable-size) sample in O(1). We do this by storing in memory
csumM ∈ NN

0 , i.e., the cumulative sum of M, such that

csumMi =
∑i

j=0
Mj , ∀i = 0, 1, 2, . . . , N − 1, (8)

can be considered the base address of i-th sample in a 1-D array of variable-size
samples. Broadly speaking, if x is an array of variable-size lists, xi,m is the m-th
value of the i-th sample, while the same value will be found in index csumMi+m
if x is restructured as a 1-D array. With these given inputs, it is possible to prove
that redistribution can be parallelized in O(NP + log2 N) with a much lower cost
of computation per sample compared to Algorithm 2. Further details follow.

Phase 1 - Prefix Dot Product. Equation (7) expresses the total workload to
redistribute x as the dot product of ncopies and M. This suggests that we could
compute cdot ∈ NN

0 , the cumulative dot product of ncopies and M, such that
each cdoti, for all i = 0, 1, . . . , N − 1, will contain the required workload, as a
function of the size of each sample, to redistribute the samples up to the i-th
index. More precisely, we compute:

cdoti =
∑i−1

j=0
ncopiesjMj , ∀i = 0, 1, 2, . . . , N − 1. (9)
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From (7) and (9), it is relatively straightforward to infer that Wtot = cdotN−1.
Phase 2 - Workload Split. We now want to divide the workload as evenly as

possible across the P parallel threads, id = 0, 1, . . . , P−1. Since the threads need
to redistribute Wtot sample values in total, in theory, every thread could search
for a pivot index, p, which is the first index such that cdotp ≥ idWtot

P , and then
redistribute Wtot

P sample values starting from its pivot. However, in practice,
Wtot might not be an integer factor of P , since the samples have variable size.
Therefore, we decide to split the workload in such a way each thread will either
redistribute ⌊Wtot

P ⌋ or ⌊Wtot
P ⌋+ 1 sample values, where ⌊·⌋ is the floor operator,

such that ⌊Wtot
P ⌋ is the quotient of Wtot ÷ P . More precisely, the workload,

Wid ∈ N0, to be done by the thread id is computed as follows:

Wid =

{
⌊Wtot

P ⌋+ 1, if id+ 1 ≤ Wtot mod P ,

⌊Wtot
P ⌋, if id+ 1 > Wtot mod P ,

(10)

where mod is the remainder of Wtot÷P . In order to find the pivots, each thread,
id, must compute, cwid, the cumulative sum of all sample values being redis-
tributed by all threads having a lower identification number than id. One could
use the exclusive prefix sum of W to compute cwid. However, the same could
be computed in O(1) by using the information in Equation (10) as follows:

cwid =

{
id×Wid, if id+ 1 ≤ Wtot mod P ,

⌊Wtot
P ⌋(Wid + 1) + (id− ⌊Wtot

P ⌋)Wid, if id+ 1 > Wtot mod P .
(11)

Each thread, id, can then independently search for the first index, p, such that

cdotp ≥ cwid. (12)

Binary Search (BS) can be used to search for the pivots since cdot is inherently
sorted as the output of every prefix reduction is always monotonically increasing.

Phase 3 - Copying samples. Each thread id can now independently copy the
Wid sample values starting from the pivot index found in the previous step.
At any given iteration, a sample value will actually be copied if and only if it
happens to be a quantity of any i-th sample such that ncopiesi > 0.

Phase 4 - Redistribution of sample sizes. After the previous step, the samples
have been redistributed. However, we also need to guarantee that the IS step,
at the next iteration, is able to address each sample in O(1) as in (8). This
requires redistributing the values in M according to ncopies, which can be done
by repeating three analogous phases to Phase 1, Phase 2, and Phase 3. More
precisely, we first compute the prefix sum of ncopies to obtain csum ∈ NN

0 .
Then each thread, id, searches for a pivot index, p, i.e., the first index such
that csump ≥ idN

P . After that, each thread can independently redistribute N
P

elements in M by using Algorithm 1 starting from index p.
Phase 5 - Update csumM. The previous step is computed with a view to

updating the values of csumM. After Phase 4, this can be done by computing
(8). For completeness, we note that, having restructured x to be a flattened 1-D
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Algorithm 3 Novel Parallel Redistribution for Variable Size Samples
Input: x, ncopies, csumM, N , P , n = N

P

Output: x, csumM

cdot←Prefix Dot Product(ncopies, M, P ) //Phase 1
Spawn P threads with id = 0, 1, . . . , P − 1{ //Beginning of Phase 2

Wtot ← cdotN−1

if id+ 1 ≤Wtot mod P then
Wid ← ⌊Wtot

P
⌋+ 1, cwid ← id×Wid

else
Wid ← ⌊Wtot

P
⌋, cwid ← ⌊Wtot

P
⌋ × (Wid + 1) + (id− ⌊Wtot

P
⌋)×Wid

end if
p←Binary Search (cdot, ncopies, M, cwid, P ) //End of Phase 2
xn:n×cp−1 ← xp //Beginning of Phase 3
x← S-R(xp+1:N−1, ncopiesp+1:N−1, n− cp)

} //End of Phase 3
csum←Prefix Sum(ncopies, P ) //Beginning of Phase 4
Spawn P threads with id = 0, 1, . . . , P − 1{

p←Binary Search(csum, ncopies, n, P )
cp← min (csump − id× n, n)
Mn:n×cp−1 ←Mp

M← S-R(Mp+1:N−1, ncopiesp+1:N−1, n− cp)
} //End of Phase 4
csumM←Prefix Sum(M, P ) //Phase 5

array, also means that the IS step is required to update csumM as in (8), since
the proposal q(·|·) may increase or decrease the size of each and every sample.

Algorithm 3 summarizes the previous steps, and Figure 1 illustrates an ex-
ample for N = 8 and P = 4. The following lemma analyzes the time complexity.

Lemma 1 Let x be a 1-D array that contains N samples, each with size Mi, for
all i = 0, 1, 2, . . . , N − 1, which could be different from any Mj with j ̸= i. Let
ncopies ∈ NN

0 be an array of integers that complies with (6). Algorithm 3 redis-
tributes the samples in x according to ncopies in O(M̂ log2 N) time complexity,
where M̂ = 1

N

∑
i ncopies

iMi, i.e., the average size of new samples.

Proof. To prove Lemma 1, we first analyze the time complexity of each step
of Algorithm 3 individually. Phase 1, and Phase 5 can be parallelized by using
prefix reduction, which is well known to scale as O(NP + log2 P ), with a fast
constant time that does not depend on the size of the samples.

In Phase 2, each thread performs a BS individually, which takes O(log2 N)
computations, which also are independent of the sizes of the samples.

Phase 4 redistributes the elements of M according to ncopies. This can be
parallelized in O(NP + log2 N) because it consists of one prefix reduction, one
BS, and Algorithm 1 being used to redistribute N

P elements of M. The constant
time of this phase will be negligible, since M is a 1-D array of integers, and also
independent of the size of the samples.



Title Suppressed Due to Excessive Length 11

In Phase 3, each thread performs either ⌊Wtot
P ⌋+1 or ⌊Wtot

P ⌋ memory copies,
by Equation (10). Due to Equation (7), Wtot

P in (10) can be rearranged as follows:

Wtot

P
=

∑
i ncopies

iMi

P
= N ×

∑
i ncopies

iMi

N × P
=

N

P
× M̂

Therefore, as P → N , this splitting strategy is analogous to having each thread
work on copying O(1) sample, with size M̂ = 1

N

∑
i ncopies

iMi, i.e., equal to
the average size of the new samples.

Overall, all steps combined amount to a total time complexity equal to
O(M̂ log2 N) as P → N . In other words, Algorithm 3 scales logarithmically
with N and with a computational cost per sample equal to O(M̂). □

Theorem 2. Algorithm 3 divides the workload optimally across the SM threads.

Proof. To prove this theorem, one needs to prove that the time complexity of
Algorithm 3, O(M̂ log2 N) as proven in Lemma 1, is optimal both with respect
to number of samples, N , and the size of the samples.

With respect to N , Algorithm 3 scales logarithmically, i.e., the same time
complexity as the prefix sum in (4), which is proven to be optimal [29].

With respect to the sample sizes, each thread in Algorithm 3 performs as
many memory copies per sample as in (10). Equation (10) guarantees that the
cost of computation per sample performed by each thread is at most within
one memory copy of the ideal average, Wtot

P . It is then straightforward to infer
that Algorithm 3 always achieves the optimal workload balance, as any other
strategy which assigns more than ⌊Wtot

P ⌋+1 memory copies to any thread, would
necessarily underwork/overwork a subset of the threads by at least two memory
copies with respect to the ideal average. □

5 Numerical Results

In this section, we want to compare two versions of the same parallel SMC sam-
pler sampling from a posterior distribution of variable-size samples: one version
utilizing Algorithm 2 to parallelize the redistribution step, and the other version
utilizing our proposed approach, i.e., Algorithm 3. For transparency, we note
that all codes are implemented in C++ and parallelized with OpenMP 4.5. Im-
plementation details are omitted for brevity due to the page limit, but the reader
can access the code from the following link: https://github.com/AVarsi88/
Parallel_SMC_on_Shared_Memory.

From the results in Section 4, we expect both SMC samplers to scale progres-
sively as we increase the number of threads, P . However, given the improved cost
of computation per sample, we expect SMC with Algorithm 3 to be much faster
than SMC with Algorithm 2 when M̂ ≪ M , and we expect the two approaches
to achieve similar performance when M̂ ≈ M . To test this, we generate samples
of variable size by sampling from the following statistical model:

π(·, ·) =

{
0.5eM (1− α)(m1

s −m0
s + 1), if m0

s ≤ M ≤ m1
s

0.5eMα(m1
b −m0

b + 1), if m0
b ≤ M ≤ m1

b .
(13)

https://github.com/AVarsi88/Parallel_SMC_on_Shared_Memory
https://github.com/AVarsi88/Parallel_SMC_on_Shared_Memory
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This model is well-suited for our testing purposes because it gives us precise
control over the sample sizes and their variability. Indeed, the samples generated
by an SMC sampler sampling from (13) will contain a varying number, M , of
coin flip results (i.e., either 0 or 1). Most importantly, each sample will either
have a large size in the range mb with a probability p(M ∈ mb) = α, or a small
size in the range ms with a probability p(M ∈ ms) = 1− α. This is illustrated
in Figure 2. In our test, we arbitrarily choose ms = {1, 3} dimensions for the
small samples, and a (significantly larger) range of mb = {698, 700} dimensions
for the big samples, such that M = 700. Then we control the average size of the
samples, by varying α. More precisely, M̂ ≪ M when α is small, and M̂ ≈ M
when α → 1.0. Indeed, we use α = {0.01, 0.5, 1.0}.

The experimental results are provided in Figures 3, and 4. These results are
taken on a workstation that mounts a 2 Xeon Gold 6138 CPU which provides
up to 40 physical cores, and 384GB of memory. Therefore, we use power-of-two
numbers up to P = 32 SM threads for the experiments as both Algorithms 2,
and 3 use the divide-and-conquer paradigm. We also use power-of-two numbers
for N , to make it easier to balance the workload across the SM threads. More
precisely, we use N = {210, 215, 220}. We also note that all reported run-times
are average results for 10 Monte Carlo (MC) runs, and, for each MC run, both
versions of the SMC samplers are set to perform K = 10 iterations.

Figure 3 shows the run-times of both SMC samplers when α increases. As
theory claims, when the samples’ sizes are roughly constant (i.e., α = 1.0) the
run-times of the two SMC samplers are comparable, independently of N . How-
ever, when α decreases, an SMC sampler with Algorithm 3 becomes up to 10×
faster than the SMC sampler with Algorithm 2. Due to page limitations, we
only report the most informative run-times, i.e., for P = 32, as the same run-
times for any other P would be qualitatively similar. Figure 4 shows how the
run-times of both SMC samplers scale for increasing P . As we anticipated, both
SMC samplers scale progressively with P , but the SMC with Algorithm 3 has
faster run-times due to the improved cost of computation per sample.

6 Conclusion and Future Work

In this paper, we tackle on SM the Optimal Parallel Redistribution (OPR) prob-
lem in the context of SMC samplers drawing N variable-size samples. We first
prove that if the samples are assumed to be indivisible (i.e., every core must hold
an integer number of samples), OPR is NP-complete. We then prove that, if the
indivisibility assumption is relaxed, it is possible to construct a parallel redis-
tribution algorithm that divides the workload optimally between the processing
elements, as it achieves optimal O(M̂ log2 N) time complexity, where M̂ is the av-
erage size of the redistributed samples. The baseline for comparison is presented
in [24], which describes a parallel redistribution algorithm for variable-size, in-
divisible samples which achieves a sub-optimal O(M log2 N) time complexity,
where M is the size of the biggest sample (i.e., the worst-case scenario). The nu-
merical results on a 32-core SM machine show that an SMC sampler equipped
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with our proposed parallel redistribution is up to 10× faster than an equivalent
SMC sampler equipped with the parallel redistribution in [24].

Despite the encouraging results, several future avenues remain to be explored.
First, the run-time of the proposed method could be accelerated by using GPUs
instead of CPUs. Another usual practice in supercomputing is to combine DM
and SM, e.g., with MPI+X programming models. This would require an effective
DM parallel redistribution for variable-size samples. While OPR for variable-
size samples on DM is NP-complete (as discussed in this paper), it may still be
possible to design an effective (albeit sub-optimal) algorithm. Developing such
a redistribution component is, to the best of our knowledge, an open research
question.

m0
s m1

s m0
b m1

b

M
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Model: probability of generating samples of size M
p(M)

Fig. 2: Model: p(M). The shaded region is α, the total probability of drawing
big samples. The red arrows symbolize the possibility of having varying α.
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Fig. 3: Run-times as function of α, N , and for P = 32.
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