
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GUI KNOWLEDGE BENCH: REVEALING THE KNOWL-
EDGE GAP BEHIND VLM FAILURES IN GUI TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large vision–language models (VLMs) have advanced graphical user interface
(GUI) task automation but still lag behind humans. We hypothesize this gap stems
from missing core GUI knowledge, which existing training schemes (such as su-
pervised fine-tuning and reinforcement learning) alone cannot fully address. By
analyzing common failure patterns in GUI task execution, we distill GUI knowl-
edge into three dimensions: (1) interface perception, knowledge about recognizing
widgets and system states; (2) interaction prediction, knowledge about GUI inter-
action conventions; and (3) instruction understanding, knowledge about procedu-
ral knowledge of GUI operations. We further introduce GUI Knowledge Bench, a
benchmark with multiple choice and yes/no questions across six platforms (Web,
Android, MacOS, Windows, Linux, IOS) and 292 applications. Our evaluation
shows that current VLMs identify widget functions but struggle with perceiving
system states, predicting actions, and interpreting task goals. Experiments on real
world GUI tasks further validate the close link between GUI knowledge and task
success. By providing a structured framework for assessing GUI knowledge, our
work supports the selection of VLMs with greater potential prior to downstream
training and provides insights for building more capable GUI agents.

1 INTRODUCTION

Figure 1: GUI Knowledge Bench: A benchmark evaluating VLMs on GUI knowledge across six
platforms (Web, Android, MacOS, Windows, Linux, IOS). It measures three types of knowledge:
Interface Perception, which evaluates understanding of GUI components, layout, and system state;
Interaction Prediction, which assesses the knowledge of GUI interaction conventions; and Instruc-
tion Understanding, which tests whether a model knows the procedural knowledge of completing a
GUI task.

Graphical User Interface (GUI) task automation, such as booking a flight, editing a presentation, or
configuring system settings, poses unique challenges for AI agents (Wu et al., 2024a; Hong et al.,
2024; Xu et al., 2024a; He et al., 2024). Recent approaches have leveraged large vision–language

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

models (VLMs) with techniques such as prompt engineering (Agashe et al., 2025; Xie et al., 2025a),
supervised fine-tuning (SFT) (Wu et al., 2024b; Hong et al., 2024; Lin et al., 2025; Liu et al., 2025;
Xu et al., 2024b), and reinforcement learning (RL) (Lian et al., 2025; Luo et al., 2025), achieving
strong task performance in many applications. However, GUI agents still fail in many real-world
scenarios (Xie et al., 2025c). For example, agents may misinterpret widget functions in unfamiliar
applications, fail to predict correct action parameters, or struggle with multi-step planning and error
recovery in long-horizon GUI tasks. Our analysis suggests that a primary reason for these failures
is that the used VLMs lack the necessary GUI knowledge. While prompt engineering, SFT, and RL
can improve reasoning, grounding, and planning abilities, they contribute little to injecting new GUI
knowledge (Ovadia et al., 2024), which also plays important roles in solving GUI tasks.

Different from most existing benchmarks that primarily evaluate task success, which mainly focus on
the grounding (Li et al., 2025; Cheng et al., 2024; Jurmu et al., 2008), reasoning, and planning (Lin
et al., 2024) capabilities of GUI agents, our work targets the missing dimension of knowledge eval-
uation. To systematically examine these knowledge gaps, we introduce GUI-Knowledge Bench, a
benchmark designed to assess the extent of GUI knowledge encoded in VLMs prior to downstream
tasks, while also serving as a diagnostic tool to guide the design of VLM-based agent systems. The
benchmark is constructed from over 40,000 screenshots and 400 execution trajectories spanning 292
applications across six platforms (Web, Android, MacOS, Windows, Linux, IOS)). Through a com-
bination of automated generation and manual annotation, we derive a set of 3483 knowledge-centric
questions that systematically test VLMs’ knowledge in GUI.

We categorize the GUI knowledge into three complementary aspects derived from common agent
failure modes: (1) interface perception, which involves recognizing widget functions, layout se-
mantics, and perceiving state information (e.g., enabled/disabled, selected/focused); (2) interaction
prediction, which involves assessing knowledge of GUI interaction conventions (e.g., what changes
after toggling a switch or submitting a form, and which parameters are required); and (3) instruction
understanding, which focuses on grounding natural-language instructions into executable, multi-
step operation sequences with coherent plans. This categorization enables a systematic examination
of which components of GUI knowledge are already present in current models and which remain
underdeveloped.

Our evaluation reveals that current VLMs are still short of enough knowledge in these three cat-
egories for completing real world GUI tasks. First, although VLMs perform well at discerning
different widget functions and layout semantics but struggle to accurately perceive system states.
Second, VLMs underperform in interaction prediction, showing difficulties in anticipating correct
action outcomes and required parameters. They frequently confuse click actions with other types
of actions, a behavior commonly observed in many models. Third, VLMs struggle with judging
task completion states and understanding human instructions. Some tasks are easy to complete, yet
they still fail because the models do not understand the goals of the tasks. These findings highlight
critical gaps in the internal GUI knowledge of current VLMs, revealing that while they can per-
ceive interface elements, their understanding about system states and interaction outcomes remains
limited. Our contributions are as followed:

• We introduce GUI-Knowledge bench, designed to evaluate GUI knowledge in both both
general and GUI-tuned VLMs. Experiments on real world GUI environment further vali-
dates the close link between GUI knowledge and task success.

• Our evaluation identifies key gaps in perceiving system states, understanding the effect of
common GUI interactions, and judging task completion, providing guidance for selecting
or training VLMs prior to downstream GUI tasks.

2 RELATED WORK

2.1 GUI AGENT

Progress in GUI task automation has largely relied on pretrained vision–language models (VLMs),
with improvements driven by supervised fine-tuning (SFT), reinforcement learning (RL), and syn-
thetic data generation. SFT-based methods train VLMs on large-scale GUI datasets to enhance
element grounding and action prediction, as seen in OS-Atlas (Wu et al., 2024b), CogAgent (Hong
et al., 2024), and ShowUI (Lin et al., 2025), while multi-stage pipelines such as InfiGUIAgent (Liu

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Comparison of existing GUI benchmarks and our proposed benchmark across evaluation
scope, operating system coverage, application diversity, and data scale. Our benchmark systemati-
cally spans multiple OS and applications with a comprehensive scope of GUI knowledge evaluation.

Benchmark Scope OS Apps Task Num.
ScreenSpot-Pro (Li et al., 2025) Action 3 23 1581
SeeClick (Cheng et al., 2024) Action 5 20+ 1272
VideoGUI (Lin et al., 2024) Task 1 11 463
OSWorld (Xie et al., 2025c) Task 1 9 369
MacOSworld (Yang et al., 2025) Task 1 30 202
AndroidWorld (Rawles et al., 2024) Task 1 20 116
MMBench-GUI (Wang et al., 2025) Knowledge 6 - 8000+
Web-CogBench (Guo et al., 2025) Knowledge 1 14 876
GUI-Knowledge-Bench Knowledge 6 292 3483

et al., 2025) and Aguvis (Xu et al., 2024b) further inject reasoning and planning abilities with syn-
thetic data. RL approaches, including UI-AGILE (Lian et al., 2025) and GUI-R1 (Luo et al., 2025),
refine action selection through long-horizon rewards or policy optimization, sometimes achieving
superior performance with less training data. To address data scarcity, OS-Genesis () and UI-
Genie (Sun et al., 2024) generate high-quality synthetic trajectories, while multi-agent systems such
as GUI-OWL and Mobile-Agent-v3 (Wanyan et al., 2025) decompose perception, reasoning, and
planning across modules to improve robustness in long-horizon tasks.

Despite these advances, most approaches primarily optimize execution strategies—whether through
imitation of expert trajectories, reward shaping, or modular design—without fundamentally enrich-
ing the model’s internal GUI knowledge. The trained models still fall short in interacting with
unfamiliar applications or understanding complex system states. To address this gap, our work sys-
tematically evaluates these foundational knowledge deficiencies and introduces a benchmark that
identifies missing GUI knowledge in VLMs prior to downstream training, providing insights into
how future approaches may extend beyond standard fine-tuning paradigms.

2.2 GUI BENCHMARK

Evaluating GUI agents is essential for advancing their capabilities, and existing benchmarks gen-
erally fall into three categories. Action-level benchmarks focus on the precision of low-level op-
erations such as mouse and keyboard inputs and accurate element grounding. Examples include
ScreenSpot-Pro (Li et al., 2025) highlights grounding challenges in professional high-resolution in-
terfaces, SeeClick (Cheng et al., 2024) and ScreenSpot (Jurmu et al., 2008) for cross-environment
grounding. In contrast, we intentionally decouple grounding from the evaluation (by providing
visual marks on screenshots), so that we can isolate and measure the knowledge deficits of cur-
rent VLMs in GUI interactions, which other grounding-based benchmarks cannot reveal. Plan-
level evaluations extend beyond single actions to hierarchical execution. VideoGUI (Lin et al.,
2024), for instance, evaluates GUI agents with high-level and mid-level planning. Task-level bench-
marks emphasize end-to-end task success in simulated environments, such as OSWorld (Xie et al.,
2025c), OSWorld-Verified (Xie et al., 2025b), MacOSworld (Yang et al., 2025), and AndroidWorld
(Rawles et al., 2024). Beyond execution, a few recent efforts assess GUI knowledge, such as
MMBench-GUI (Wang et al., 2025), which tests content understanding and widget semantics, and
Web-CogBench (Guo et al., 2025), which probes cognitive reasoning in web navigation. However,
these benchmarks remain narrow in application scopes and domain knowledge coverage.

Our benchmark carefully categorizes the GUI knowledge into three complementary aspects derived
from common agent failure modes, interface perception, interaction prediction and goal interpreta-
tion. Our benchmark offers a systematic and comprehensive evaluation of GUI knowledge, spanning
multiple platforms and applications, thereby providing a more complete evaluation of base model’s
GUI knowledge.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 GUI KNOWLEDGE BENCH

3.1 BENCHMARK OVERVIEW

We introduce GUI Knowledge Bench, a benchmark for systematically evaluating the knowledge
VLMs need to complete GUI tasks. Based on common failure patterns in GUI task execution,
we identify three complementary dimensions: interface perception, which covers recognizing GUI
elements, their states, and layout semantics; interaction prediction, which tests whether models
understand the effect and conventions of common GUI interactions; and instruction understanding,
which examines whether models can interpret task goals and know the procedural knowledge of
completing a GUI task. Together, these dimensions capture the core knowledge required for reliable
GUI task completion and form the foundation of our benchmark.

3.2 DATA SOURCES AND COLLECTION PIPELINE

To build GUI Knowledge Bench, we aggregate data from multiple sources to ensure both trajectory-
level interaction coverage and diverse standalone screenshots.

We leverage existing benchmarks such as GUI-Odyssey (Lu et al., 2024) and VideoGUI (Lin et al.,
2024), which provide screenshots paired with tasks and action annotations. In addition, we collect
new trajectories by running UI-Tars-7B agents in environments including OSWorld and MacOS-
World, capturing realistic interaction sequences across both mobile and desktop platforms.

To further increase visual diversity and cover a wider range of application interfaces and operating
systems, we further gather standalone GUI screenshots. Specifically, we sample from ScreenSpot v2
and extract representative key frames from YouTube tutorials, ensuring coverage of real-world ap-
plications, operating systems, and interface layouts. For less common actions, we manually perform
operations on MacOS, Linux, and Windows, recording screenshots and corresponding actions.

Together, these sources yield a heterogeneous pool of GUI images and trajectories. From this pool,
we construct task-specific question–answer pairs for each evaluation dimension, ensuring sufficient
diversity and coverage while minimizing redundancy. Please refer the appendix for detailed statistics
of our benchmark.

3.3 INTERFACE PERCEPTION

A fundamental requirement for completing GUI tasks is the ability to accurately perceive and inter-
pret interactive elements in GUI. We aim to evaluate whether VLMs possess sufficient knowledge
about graphical interfaces.

Specifically, this dimension encloses three aspects: (i) widget function understanding, i.e., recog-
nizing the roles of common interface elements (e.g., three vertical dots for settings, speech bubbles
for messaging apps); (ii) state information understanding, such as detecting whether a button is en-
abled/disabled, selected/focused, or toggled on/off; and (iii) layout semantics understanding, where
spatial arrangement encodes critical information (e.g., distinguishing departure and arrival cities by
their relative positions, identifying senders and receivers in an email, or inferring file hierarchy from
indentation). Correctly perceiving these cues is essential for grounding subsequent reasoning and
action.

Task Definition. We formalize the evaluation as a unified multiple-choice question-answering task.
Given a question q, a set of candidate options O, and a screenshot S, the model is required to select
the correct answer o∗ and provide its reasoning in thought t: VLM : (S, q,O) 7→ (t, o∗).

Our questions include two types: (1) multiple-choice with four candidates, and (2) judgment with
Yes/No/Unknown. To reduce the burden of visual grounding, the relevant regions in the screenshot
S are highlighted using red dots or bounding boxes. This design ensures the evaluation focuses on
whether the model possesses the required GUI knowledge rather than its grounding ability.

Task Collection and Curation. To construct the evaluation set, we first have human annotators de-
sign an initial set of seed questions based on the collected GUI screenshots. We then leverage GPT-5
to expand this pool with additional candidate questions, increasing diversity while maintaining rele-
vance. Questions that can be answered based solely on the text, without viewing the screenshot, are

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: Example questions for Interface Perception. red bounding box

removed using Qwen-2.5-VL-7B to ensure visual understanding is necessary. Finally, the remaining
questions are manually verified for correctness, and relevant regions in the screenshots are annotated
to support precise visual grounding. This pipeline ensures that the evaluation focuses on interface
perception knowledge rather than being confounded by grounding or annotation errors.

3.4 INTERACTION PREDICTION

Figure 3: Example questions for Interaction Prediction.

A core requirement for solving GUI tasks is to know the interaction conventions and the effect of
GUI operations. Unlike physical environments, GUI interactions follow symbolic and platform-
specific rules (e.g., toggling a switch, typing text, dragging windows), which are often subtle and
context-dependent. Without a proper understanding of these interaction conventions, models cannot
reliably predict the consequences of actions or predict right action types/parameters to complete a
GUI task. This motivates our evaluation of whether VLMs know GUI interaction conventions.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Interaction prediction is evaluated through two complementary tasks: (i) Action effect prediction,
where the model is provided with a current screenshot S and an action a, and must select the resulting
screenshot S′ from a set of candidate options; (ii) Action prediction, where the model is given
two consecutive screenshots (s, s′) and must infer the action a that caused the transition. Action
prediction is further divided into action type prediction, which identifies the correct action category,
and action parameter prediction, which selects the appropriate arguments such as click coordinates,
typed content, or drag vectors. We do not require the model to generate precise parameters of
these coordinates. Exact coordinates in options are annotated in the image as shown in Figure 3.
Therefore, the grounding demand is minimal.

Task Definition. We formalize GUI interaction dynamics as a state–action transition S + a → S′,
where S represents the current screenshot, S′ the consequent screenshots and a the action a =
(atype, aparam). (i) Action Effect Prediction. The model is given S and a, and is required to select
the resulting screenshots from a set of candidate screenshot options O: VLM : (S, a,O) 7→ S′. (ii)
Action Prediction. The model is given two consecutive screenshots (S, S′) and a set of candidate
action types Otype, and must select the correct action type atype: VLM : (S, S′, Otype) 7→ atype.
Given the correct action type atype and the same state pair (S, S′), the model selects the correct
action parameters from a candidate set Oparam: VLM : (S, S′, atype, Oparam) 7→ aparam.

Task Collection and Curation. To construct challenging distractor options, we design task-specific
strategies for different prediction settings. For action effect prediction, candidate screenshots in-
clude the preceding screenshots, the true next screenshot, and visually similar but different screen-
shots sampled from current trajectories. For action type prediction, the model must choose from
the full set of possible actions defined for the platform, with a unified action space across different
platforms. (seven actions for desktop platforms and four actions for mobile platforms) For action
parameter prediction, For clicks, bounding boxes of candidate elements are identified using Om-
niParser, and nearby but incorrect coordinates are sampled; for drags, distractors include reversed
directions, shortened distances, or swapped start and end points; for scrolls, distractors vary in direc-
tion (up, down, left, right); for typing, inputs are perturbed with case changes, partial deletions, or
common typos; and for hotkeys, distractors are drawn from a predefined set of common shortcuts.
This design ensures that solving the tasks requires precise reasoning about GUI action dynamics
rather than relying on superficial visual or layout cues.

3.5 INSTRUCTION UNDERSTANDING

Figure 4: Example questions for Instruction Understanding.

Instruction understanding evaluates whether a model can interpret natural-language tasks and map
them to a sequence of GUI operations. This ability is critical because many failures in GUI automa-
tion stem from misunderstanding task goals or misinterpreting user intent. Accurately understanding
instructions and ordering a feasible sequence of steps is essential for performing high-level tasks in
GUI environments. The questions do not ask the model to construct a plan or generate sub-steps.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Instead, the complete operation sequence is already provided in these questions to minimize the
reasoning load.

We assess two complementary abilities: (i) goal interpretation, which evaluates whether a model
can determine if a task has been successfully completed based on history screenshots; and (ii) task
planning, which evaluates whether a model can reorder a set of candidate option steps into the
correct sequence required to achieve the task goal. Together, these tasks test the model’s ability to
both verify and choose high-level plans. Once the underlying procedural knowledge is known, the
answer becomes immediately obvious and requires minimal reasoning.

Task Definition. For goal interpretation, the model receives a natural-language task description t
and history screenshots, and must select the correct option o∗ ∈ {Yes,No,Unknown} indicating
whether the task is completed: VLM : (S1:T , t, O) 7→ o∗. For task planning, the model is given
a natural-language task description t, current screenshot S and a set of candidate orderings O =
{π1, π2, . . . , πm}, where each πi is a possible permutation of the operation steps. The model must
select the correct ordering π∗ from O: VLM : (t, S,O) 7→ π∗.

Task Collection and Curation. For goal interpretation, human annotators label each trajectory as
successful or unsuccessful based on last one to five screenshots of the trajectory, and some success-
ful trajectories are augmented by removing the final screenshot to create unsuccessful ones. For task
planning, operation plans are first generated by Chat-GPT-5 and then verified by annotators. The
annotated steps are automatically shuffled to form multiple-choice ordering questions, with longer
sequences retaining initial steps and only permuting later steps. For shorter sequences, additional
question formats are created by converting the shuffled sequence into Yes/No/Unknown questions,
or into operation-level fill-in-the-blank questions with distractor steps. Tasks solvable without ob-
serving screenshots are filtered out using Qwen-VL-2.5-7B ensuring the difficulty of the questions.

4 BENCHMARKING VLMS

4.1 SETTINGS

We evaluate a diverse set of both open- and closed-source models on the GUI Knowledge Bench.
The closed-source set includes Claude-Sonnet-4-5 (Anthropic, 2025a), Claude-Sonnet-4 (Anthropic,
2025b), Doubao-V-Pro (Doubao-1.5-Thinking-Vision-Pro-250428) (Team, 2025b), Gemini-2.5-
Pro (Gemini Team, 2025), GPT-5-chat (OpenAI, 2025a), O3(OpenAI, 2025b), and GLM-4.5 (Team,
2025c). The open-source set covers Qwen2.5-72B (Qwen2.5-VL-72B-Instruct), Qwen2.5-7B
(Qwen2.5-VL-7B-Instruct) (Team, 2025d), Qwen3-vl-8b-thinking Team (2025e). Besides we also
include GUI finetune models such as UITARS-1.5-7B (Team, 2025a) and GUI-OWL-7b (Ye et al.,
2025). Apart from necessary model-specific settings, all other parameters (e.g., temperature, top-p)
were kept consistent across evaluations. Please refer the appendix for the detailed message template
for each knowledge categories.

4.2 BENCHMARKING RESULTS

Table 2 summarizes the performance of all evaluated models on three knowledge categories. Exper-
imental results highlight the following key observations.

First, o3 achieves strong performance across multiple metrics, consistent with its high success rate
in real GUI tasks; notably, in the OSWorld benchmark under the Agent framework category, four of
the top five agents leverage o3 (e.g., Agent-S2.5 w/ O3 50-step version and 100-step version, Jedi-
7B w/ O3 w/ 50-step version and 100-step version). (Agashe et al., 2025; Xie et al., 2025a) This is
likely because o3 effectively replaces the auxiliary modules that were removed or made optional.

Second, UITARS-1.5-7B, trained on Qwen2.5VL-7B, shows improvements in instruction under-
standing and goal reasoning but a decline in interface perception. Upon examining model outputs,
we note the following recurring error types of UITARS-1.5-7B, thought–action mismatch where the
internal reasoning conflicts with the executed code or selection; weakened instruction following that
overlooks visual prompts and answers from prior knowledge; and degraded general perception, with
frequent mistakes on basic attributes such as quantity, color, and length.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Third, smaller models retain only limited knowledge, suggesting that retrieval-augmented genera-
tion or knowledge-base integration may be a viable approach to enhance GUI agent performance.

Table 2: Performance on GUI Knowledge Bench across three dimensions. Bold numbers indicate
the best results in each sub-task.

Model Interface Perception Interaction Prediction Instruction Understanding Overall
state widget layout effect type parameter goal plan

O3 (OpenAI, 2025b) 83.03% 84.12% 88.39% 74.83% 75.98% 45.75% 69.45% 95.47% 73.30%
Gemini-2.5-Pro (Gemini Team, 2025) 81.19% 84.36% 87.10% 71.03% 73.25% 46.97% 67.72% 92.56% 71.69%

GPT-5-Chat (OpenAI, 2025a) 78.90% 84.12% 88.39% 71.55% 71.55% 43.85% 68.98% 91.26% 70.97%
Qwen3-vl-8b-thinking (Team, 2025e) 68.81% 76.30% 83.23% 67.07% 70.36% 40.73% 64.09% 91.26% 66.81%
Claude-Sonnet-4-5 (Anthropic, 2025a) 74.77% 81.52% 82.58% 49.83% 70.19% 43.33% 70.30% 91.56% 66.53%

Qwen2.5VL-72B (Team, 2025d) 69.27% 77.49% 80.00% 61.72% 64.91% 38.99% 62.20% 85.44% 63.88%
Doubao-V-Pro (Team, 2025b) 72.48% 83.65% 81.29% 67.24% 75.64% 41.07% 33.07% 94.17% 63.42%

Claude-Sonnet-4 (Anthropic, 2025b) 70.18% 78.44% 78.06% 41.90% 62.52% 42.11% 65.20% 94.82% 62.16%
Qwen2.5VL-7B (Team, 2025d) 53.21% 67.77% 60.00% 51.72% 50.60% 39.34% 16.22% 48.87% 45.16%
UITARS-1.5-7B (Team, 2025a) 49.54% 59.48% 59.35% 22.24% 59.11% 34.32% 38.74% 55.34% 44.27%
GUI-OWL-7b (Ye et al., 2025) 60.09% 64.93% 63.23% 21.55% 55.37% 36.05% 21.26% 39.81% 40.74%

GLM-4.5 (Team, 2025c) 49.54% 48.10% 53.55% 27.07% 17.55% 35.53% 28.98% 91.91% 38.10%

4.3 ERROR ANALYSIS AND DISCUSSION

4.3.1 INTERFACE PERCEPTION.

Most models handle widget functions and layout semantics well but struggle with system state per-
ception. As shown in Figure 5, in Safari, an update notification is often mistaken for a blocking
pop-up, leading to incorrect predictions, while in PowerPoint, models can understand the effect of
delete action but not which element is selected. Our benchmark reveals that current models under-
perform in system state perception, despite its crucial role in GUI tasks.

Figure 5: Example failure cases of interface perception questions.

4.3.2 INTERACTION PREDICTION.

On desktop, models often confuse click, double-click, and right-click. This is partly because differ-
ent operating systems and applications treat these interactions differently: in some contexts, single,
double, or right clicks can substitute for each other, while in others the distinction is strict. Humans
often try multiple actions to achieve a goal, but models predict a single action based on learned
patterns. As a result, less frequent actions like double-click or right-click are more prone to mispre-
diction, especially for smaller models. Please refer to appendix to see the confusion matrix of action
type prediction.

4.3.3 INSTRUCTION UNDERSTANDING.

Our benchmark highlights a failure in goal understanding. In Figure 6, three models (o3, gpt-5-
chat-latest, and gemini-2.5-pro) all respond “Yes,” claiming that the Freeform icon is gone from the
Dock, even though a different app was removed. This shows that the models cannot reliably judge
whether the requested task is actually completed.

4.4 RESULTS ON REAL-WORLD GUI TASKS

This section examines the role of three types of knowledge in enabling successful real-world GUI
task execution.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 6: Example failure cases of instruction understanding questions.

Figure 7: Example failure cases due to lack of interaction prediction knowledge.

4.4.1 QUALITATIVE ANALYSIS: INTERFACE PERCEPTION AND INTERACTION PREDICTION

Interface Perception Knowledge. In our evaluation, we identified several tasks that the model
consistently failed to solve even under the pass@32 setting. We attribute some of them to lack of
knowledge of the interface. Two example failure cases are shown in Figure 8. When asked to add
a note, the model repeatedly attempted to insert comments or text boxes, incorrectly treating these
actions as equivalent to adding a note. In reality, adding a note requires first enabling the Notes
pane through the View menu and then placing the note at the bottom of the slide. Similarly, in
converting comma-separated text into a table, the model repeatedly failed because it did not specify
the delimiter, a necessary step for correct execution. These cases suggest that the failures stem from
missing application-specific knowledge rather than inherent reasoning limitations. Importantly, once
the required knowledge was provided, the model was able to complete these tasks successfully.

Table 3: Effect of appending operation plans on UITARS-1.5-7B.

Metric UITARS-1.5-7B (base) + GPT-4o plan + OSWorld-human plan + o3 plan
Pass@1 (%) 24.81 27.59 28.20 30.79
Interaction Prediction Knowledge. As shown in Figure 7, many errors of models occur because
it lacks knowledge for localizing interface elements correctly. Prior work has improved localiza-
tion using masks, accessibility trees, or APIs. Another promising approach is to leverage actions
themselves for self-verification, using visual prompts to check if the executed action was correct.

4.4.2 QUANTITATIVE ANALYSIS: THE IMPACT OF PLAN INJECTION

Instruction Understanding Knowledge. We generated knowledge about operation plans from
GPT-4o and o3 conditioned on task instructions, and used human-authored operation plans from
OSWorld-human. Each plan was appended to the original task description as an additional knowl-
edge for UITARS-1.5-7B. Results are summarized in Table 3. These results show that providing
knowledge about operation plans improves task performance, highlighting the importance of in-
struction understanding for task completion. Notably, o3-generated plans achieve the largest gain,
surpassing human-authored plans and aligning with o3’s top performance across our benchmark
evaluations.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Figure 8: Example failure cases due to lack of interface perception knowledge.

4.4.3 VALIDATION STUDY: KNOWLEDGE AS A NECESSARY CONDITION

While the previous experiment demonstrates the benefit of injecting Instruction knowledge, Inter-
face and Interaction knowledge are intrinsic and difficult to inject externally. To address this, we
conduct a validation study that mirrors the the ’Instruction Understanding’ analysis for ’Interface
Perception’ and ’Interaction Prediction’. Concretely, we transform 39 questions in our benchmark
into practical GUI tasks, where the knowledge tested in questions is key to completing the GUI
tasks. Two examples are as follows. From Knowledge Question A: "Are the search results limited
to a specific region? (Yes/No/Unknown)" to Transformed Task A: "Set the search results restricted
to a specific region: Japan." (Ground Truth: Click the toggle switch). From Knowledge Question
B: "Is the list currently arranged from older to newer items?" to Transformed Task B: "Sort the
items from oldest to newest according to the time added." (Ground Truth: Click the column header).

We define S1 as answering the knowledge question correctly, and S2 as successfully completing
the corresponding GUI tasks. Results are shown in Table 4. Prompts for completing GUI tasks are
provided in the Appendix.

Table 4: Correlation between GUI Knowledge (S1) and Task Completion (S2).

Model P (S2✓|S1✓) P (S2 × |S1✓) P (S2 × |S1×) P (S2✓|S1×)
claude-sonnet-4 (Anthropic, 2025b) 20.00% 80.00% 100.00% 0.00%
claude-sonnet-4-5 (Anthropic, 2025a) 8.33% 91.67% 100.00% 0.00%
Doubao-V-Pro (Team, 2025b) 0.00% 100.00% 100.00% 0.00%
Gemini-2.5-Pro (Gemini Team, 2025) 0.00% 100.00% 100.00% 0.00%
GPT-5-Chat (OpenAI, 2025a) 5.56% 94.44% 100.00% 0.00%

The results establish GUI knowledge as a necessary but not sufficient condition for task comple-
tion: Lacking knowledge guarantees execution failure (e.g., 100% for Gemini-1.5), validating that
knowledge is the strict lower bound for control. Even with correct understanding, execution often
fails due to grounding precision. This confirms that our benchmark measures a foundational capa-
bility. While having knowledge doesn’t guarantee success (due to downstream grounding issues),
lacking knowledge guarantees failure.

5 CONCLUSION

We introduces GUI Knowledge Bench, a novel benchmark designed to evaluate the GUI knowledge
encoded in vision-language models (VLMs) before downstream training. By analyzing common
failure patterns in GUI task execution, the benchmark categorizes GUI knowledge into three dimen-
sions: interface perception, interaction prediction, and instruction understanding. The evaluation
reveals significant gaps in current VLMs’ understanding of system states, action outcomes, and task
completion verification. These findings highlight the necessity of enriching VLMs with domain-
specific GUI knowledge to enhance their performance in real-world GUI tasks and provide insights
to guide the development of more capable GUI agents.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Saaket Agashe, Kyle Wong, Vincent Tu, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent
s2: A compositional generalist-specialist framework for computer use agents. arXiv preprint
arXiv:2504.00906, 2025.

Anthropic. Claude sonnet 4.5. https://docs.claude.com/docs/about-claude/
models/whats-new-claude-4-5, 2025a. Accessed: 2025-11-22.

Anthropic. System card: Claude opus 4 & claude sonnet 4. Technical report, Anthropic PBC, May
2025b. URL https://www.anthropic.com/claude-4-system-card. Accessed:
2025-09-25.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Li YanTao, Jianbing Zhang, and Zhiyong
Wu. Seeclick: Harnessing gui grounding for advanced visual gui agents. In Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 9313–9332, 2024.

Google Gemini Team. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality,
long context, and next generation agentic capabilities, 2025. URL https://arxiv.org/
abs/2507.06261.

Yuhan Guo, Cong Guo, Aiwen Sun, Hongliang He, Xinyu Yang, Yue Lu, Yingji Zhang, Xuntao Guo,
Dong Zhang, Jianzhuang Liu, et al. Web-cogreasoner: Towards knowledge-induced cognitive
reasoning for web agents. arXiv preprint arXiv:2508.01858, 2025.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models.
arXiv preprint arXiv:2401.13919, 2024.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
14281–14290, 2024.

Marko Jurmu, Sebastian Boring, and Jukka Riekki. Screenspot: Multidimensional resource discov-
ery for distributed applications in smart spaces. In Proceedings of the 5th Annual International
Conference on Mobile and Ubiquitous Systems: Computing, Networking, and Services, pp. 1–9,
2008.

Kaixin Li, Ziyang Meng, Hongzhan Lin, Ziyang Luo, Yuchen Tian, Jing Ma, Zhiyong Huang, and
Tat-Seng Chua. Screenspot-pro: Gui grounding for professional high-resolution computer use.
arXiv preprint arXiv:2504.07981, 2025.

Shuquan Lian, Yuhang Wu, Jia Ma, Zihan Song, Bingqi Chen, Xiawu Zheng, and Hui Li. Ui-agile:
Advancing gui agents with effective reinforcement learning and precise inference-time grounding.
arXiv preprint arXiv:2507.22025, 2025.

Kevin Qinghong Lin, Linjie Li, Difei Gao, Qinchen Wu, Mingyi Yan, Zhengyuan Yang, Lijuan
Wang, and Mike Zheng Shou. Videogui: A benchmark for gui automation from instructional
videos. arXiv preprint arXiv:2406.10227, 4, 2024.

Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan Yang, Shiwei Wu, Zechen Bai, Stan Weixian
Lei, Lijuan Wang, and Mike Zheng Shou. Showui: One vision-language-action model for gui
visual agent. In Proceedings of the Computer Vision and Pattern Recognition Conference, pp.
19498–19508, 2025.

Yuhang Liu, Pengxiang Li, Zishu Wei, Congkai Xie, Xueyu Hu, Xinchen Xu, Shengyu Zhang,
Xiaotian Han, Hongxia Yang, and Fei Wu. Infiguiagent: A multimodal generalist gui agent with
native reasoning and reflection. arXiv preprint arXiv:2501.04575, 2025.

Quanfeng Lu, Wenqi Shao, Zitao Liu, Fanqing Meng, Boxuan Li, Botong Chen, Siyuan Huang,
Kaipeng Zhang, Yu Qiao, and Ping Luo. Gui odyssey: A comprehensive dataset for cross-app gui
navigation on mobile devices. arXiv preprint arXiv:2406.08451, 2024.

11

https://docs.claude.com/docs/about-claude/models/whats-new-claude-4-5
https://docs.claude.com/docs/about-claude/models/whats-new-claude-4-5
https://www.anthropic.com/claude-4-system-card
https://arxiv.org/abs/2507.06261
https://arxiv.org/abs/2507.06261

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Run Luo, Lu Wang, Wanwei He, and Xiaobo Xia. Gui-r1: A generalist r1-style vision-language
action model for gui agents. arXiv preprint arXiv:2504.10458, 2025.

OpenAI. Gpt-5 system card, Aug 2025a. URL https://cdn.openai.com/
gpt-5-system-card.pdf. Accessed: 2025-09-25.

OpenAI. Openai o3 and o4-mini system card. Technical report, OpenAI, April 2025b. URL
https://openai.com/index/o3-o4-mini-system-card/. Accessed: 2025-09-25.

Oded Ovadia, Menachem Brief, Moshik Mishaeli, and Oren Elisha. Fine-tuning or retrieval? com-
paring knowledge injection in llms, 2024. URL https://arxiv.org/abs/2312.05934.

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Mary-
beth Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, et al. Androidworld: A
dynamic benchmarking environment for autonomous agents. arXiv preprint arXiv:2405.14573,
2024.

Qiushi Sun, Kanzhi Cheng, Zichen Ding, Chuanyang Jin, Yian Wang, Fangzhi Xu, Zhenyu Wu,
Chengyou Jia, Liheng Chen, Zhoumianze Liu, et al. Os-genesis: Automating gui agent trajectory
construction via reverse task synthesis. arXiv preprint arXiv:2412.19723, 2024.

Bytedance Team. Ui-tars: Pioneering automated gui interaction with native agents, 2025a. URL
https://arxiv.org/abs/2501.12326.

ByteDance Seed Team. Seed1.5-vl technical report, 2025b. URL https://arxiv.org/abs/
2505.07062.

GLM Team. Glm-4.5: Agentic, reasoning, and coding (arc) foundation models, 2025c. URL
https://arxiv.org/abs/2508.06471.

Qwen Team. Qwen2.5-vl technical report, 2025d. URL https://arxiv.org/abs/2502.
13923.

Qwen Team. Qwen3 technical report, 2025e. URL https://arxiv.org/abs/2505.09388.

Xuehui Wang, Zhenyu Wu, JingJing Xie, Zichen Ding, Bowen Yang, Zehao Li, Zhaoyang Liu,
Qingyun Li, Xuan Dong, Zhe Chen, et al. Mmbench-gui: Hierarchical multi-platform evaluation
framework for gui agents. arXiv preprint arXiv:2507.19478, 2025.

Yuyang Wanyan, Xi Zhang, Haiyang Xu, Haowei Liu, Junyang Wang, Jiabo Ye, Yutong Kou, Ming
Yan, Fei Huang, Xiaoshan Yang, et al. Look before you leap: A gui-critic-r1 model for pre-
operative error diagnosis in gui automation. arXiv preprint arXiv:2506.04614, 2025.

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu, Shunyu Yao, Tao
Yu, and Lingpeng Kong. Os-copilot: Towards generalist computer agents with self-improvement,
2024a. URL https://arxiv.org/abs/2402.07456.

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng,
Zichen Ding, Liheng Chen, Paul Pu Liang, et al. Os-atlas: A foundation action model for gener-
alist gui agents. arXiv preprint arXiv:2410.23218, 2024b.

Tianbao Xie, Jiaqi Deng, Xiaochuan Li, Junlin Yang, Haoyuan Wu, Jixuan Chen, Wenjing Hu,
Xinyuan Wang, Yuhui Xu, Zekun Wang, et al. Scaling computer-use grounding via user interface
decomposition and synthesis. arXiv preprint arXiv:2505.13227, 2025a.

Tianbao Xie, Mengqi Yuan, Danyang Zhang, Xinzhuang Xiong, Zhennan Shen, Zilong Zhou,
Xinyuan Wang, Yanxu Chen, Jiaqi Deng, Junda Chen, Bowen Wang, Haoyuan Wu, Jixuan Chen,
Junli Wang, Dunjie Lu, Hao Hu, and Tao Yu. Introducing osworld-verified. xlang.ai, July 2025b.
URL https://xlang.ai/blog/osworld-verified.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Jing Hua
Toh, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal
agents for open-ended tasks in real computer environments. Advances in Neural Information
Processing Systems, 37:52040–52094, 2025c.

12

https://cdn.openai.com/gpt-5-system-card.pdf
https://cdn.openai.com/gpt-5-system-card.pdf
https://openai.com/index/o3-o4-mini-system-card/
https://arxiv.org/abs/2312.05934
https://arxiv.org/abs/2501.12326
https://arxiv.org/abs/2505.07062
https://arxiv.org/abs/2505.07062
https://arxiv.org/abs/2508.06471
https://arxiv.org/abs/2502.13923
https://arxiv.org/abs/2502.13923
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2402.07456
https://xlang.ai/blog/osworld-verified

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yifan Xu, Xiao Liu, Xueqiao Sun, Siyi Cheng, Hao Yu, Hanyu Lai, Shudan Zhang, Dan Zhang,
Jie Tang, and Yuxiao Dong. Androidlab: Training and systematic benchmarking of android au-
tonomous agents, 2024a. URL https://arxiv.org/abs/2410.24024.

Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu,
and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction. arXiv
preprint arXiv:2412.04454, 2024b.

Pei Yang, Hai Ci, and Mike Zheng Shou. macosworld: A multilingual interactive benchmark for
gui agents. arXiv preprint arXiv:2506.04135, 2025.

Jiabo Ye, Xi Zhang, Haiyang Xu, Haowei Liu, Junyang Wang, Zhaoqing Zhu, Ziwei Zheng, Feiyu
Gao, Junjie Cao, Zhengxi Lu, Jitong Liao, Qi Zheng, Fei Huang, Jingren Zhou, and Ming Yan.
Mobile-agent-v3: Fundamental agents for gui automation, 2025. URL https://arxiv.org/
abs/2508.15144.

A APPENDIX

A.1 QUESTION GENERATION PROMPT TEMPLATE FOR INTERFACE PERCEPTION

Prompt for widget function understanding.

Widget Function Prompt

System Prompt:

[Role]
You will be provided with a single screenshot of a system interface (desktop app, web UI, or
mobile app). Generate exactly one challenging GUI reasoning question about that screenshot that
requires inspecting the image to answer.
[Knowledge Scope of the question]
Ask about the intended function of a specific UI widget (button, toggle, slider, icon, etc.) inferred
from the widget’s iconography and surrounding context. Avoid universally trivial icons unless
combined with contextual clues.
[Generation Guidelines]

1. Question length: one concise sentence only. No hints, no steps, no extra context.
2. Position-only references: Do NOT use any visible text, icon names, or labels from the

screenshot. Refer ONLY by position or coordinates (examples: “top-right corner”, “third
from left in the top toolbar”, “second row, third column”, “left sidebar, bottom icon”, or
“<x,y>” with origin top-left). The question must be unsolvable without the screenshot.

3. Question types and options:
• If multiple_choice: produce exactly 4 options. The first option MUST be the

correct answer.
• If yes_or_no: produce exactly 3 options: {“yes”, “no”, “unknown”} and the

correct one must be first.
• If the correct answer is genuinely not deducible from the screenshot or you cannot

answer the correct answer, then use:
– multiple_choice: first option = “none of the other options are correct.”
– yes_or_no: first option = “unknown”

4. Option style: Options must describe actions or effects (not icon shapes). Keep options
parallel in length and style (≈ 6–16 words).

5. Distractors: The 3 incorrect options must be plausible and similar to the correct one.
6. Contextual reasoning: Prefer questions requiring reasoning across UI elements (e.g.,

highlighted rows, active tab, enabled/disabled states, adjacent panels).
7. Based on the provided screenshot, identify which application is currently being used and

include this information in your output JSON under the field app_type.

13

https://arxiv.org/abs/2410.24024
https://arxiv.org/abs/2508.15144
https://arxiv.org/abs/2508.15144

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

[Output JSON schema — return exactly this JSON object (no extra text)]
{

"question_type": "multiple_choice" or "yes_or_no",
"question_text": "<one concise sentence using only positions>",
"option_text": ["<first option correct>", "<distractor 1>",

"<distractor 2>", "<distractor 3>"],↪→
"app_type": "<application type of the current screenshot>",
"os_type": "Linux" | "Windows" | "Android" | "MacOS" | "IOS" | "Web"

}

[Example Output]
{

"question_type": "yes_or_no",
"question_text": "While cell B5 in the 'First Name' column shows

'Walter' in the formula bar and the checkmark and 'X' icons are
visible beside it, will clicking the 'X' icon clear formatting in
the selected cell",

↪→
↪→
↪→
"option_text": ["yes","no","unknown"],
"app_type": "Excel",
"os_type": "Linux"

}
{

"question_type": "multiple_choice",
"question_text": "Which of the following statement is correct

according to the screenshots?",↪→
"option_text": [
"The camera is not currently connected to WiFi",
"The camera can not be controlled remotely from the phone",
"Pressing the 'phone' mode icon in the top bar can lead to turning

on the phone's airplane mode",↪→
"Pressing the 'clone' mode icon in the top bar can lead to signing

out of the cloud gallery"↪→
],
"app_type": "Excel",
"os_type": "Linux"

}

Prompt for layout semantics understanding.

Layout Semantics Prompt

System Prompt:

[Role]
You will be provided with a single screenshot of a system interface (desktop app, web UI, or
mobile app). Generate exactly one challenging GUI reasoning question about that screenshot that
requires inspecting the image to answer.
[Knowledge Scope of the question]
The questions should assess whether the model understands positional and grouping relationships
between UI elements, inferring their roles from placement and hierarchy.
[Generation Guidelines]

1. Question length: one concise sentence only. No hints, no steps, no extra context.
2. Position-only references: Do NOT use any visible text, icon names, or labels from the

screenshot. Refer ONLY by position or coordinates (examples: “top-right corner”, “third
from left in the top toolbar”, “second row, third column”, “left sidebar, bottom icon”, or
“<x,y>” with origin top-left). The question must be unsolvable without the screenshot.

3. Question types and options:
• If multiple_choice: produce exactly 4 options. The first option MUST be the

correct answer.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

• If yes_or_no: produce exactly 3 options: {“yes”, “no”, “unknown”} and the
correct one must be first.

• If the correct answer is genuinely not deducible from the screenshot or you cannot
answer the correct answer, then use:
– multiple_choice: first option = “none of the other options are correct.”
– yes_or_no: first option = “unknown”

4. Option style: Options must describe actions or effects (not icon shapes). Keep options
parallel in length and style (≈ 6–16 words).

5. Distractors: The 3 incorrect options must be plausible and similar to the correct one.
6. Contextual reasoning: Prefer questions requiring reasoning across UI elements (e.g.,

highlighted rows, active tab, enabled/disabled states, adjacent panels).
7. Based on the provided screenshot, identify which application is currently being used and

include this information in your output JSON under the field app_type.
[Output JSON schema — return exactly this JSON object (no extra text)]
{

"question_type": "multiple_choice" or "yes_or_no",
"question_text": "<one concise sentence using only positions>",
"option_text": ["<first option correct>", "<distractor 1>",

"<distractor 2>", "<distractor 3>"],↪→
"app_type": "<application type of the current screenshot>",
"os_type": "Linux" | "Windows" | "Android" | "MacOS" | "IOS" | "Web"

}

[Example Output]
{

"question_type": "multiple_choice",
"question_text": "What is likely to be the departure city?",
"option_text": ["Beijing", "Shanghai", "Guangzhou", "None of the

other options."],↪→
"app_type": "website",
"os_type": "Windows"

}

{
"question_type": "yes_or_no",
"question_text": "Is the folder in the second row under the

'Documents' folder?",↪→
"option_text": ["yes", "no", "unknown"],
"app_type": "Thunderbird",
"os_type": "Windows"

}

{
"question_type": "multiple_choice",
"question_text": "Who sends this email. Please answer the email

address.",↪→
"option_text": ["li@gmail.com", "zhang@gmail.com", "wang@gmail.com",

"None of the other options."],↪→
"app_type": "Email",
"os_type": "Windows"

}

Prompt for state information understanding.

State Information Prompt

System Prompt:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

[Role]
You will be provided with a single screenshot of a system interface (desktop app, web UI, or
mobile app). Generate exactly one challenging GUI reasoning question about that screenshot that
requires inspecting the image to answer.
[Knowledge Scope of the question]
Ask about the current state information of the system, such as whether a control is enabled/dis-
abled, a process is in-progress/completed, a request is pending, or the system is online/offline.
Prefer reasoning that requires subtle visual cues or multi-element context.
[Generation Guidelines]

1. Question length: one concise sentence only. No hints, no steps, no extra context.
2. Position-only references: Do NOT use any visible text, icon names, or labels from the

screenshot. Refer ONLY by position or coordinates (examples: “top-right corner”, “third
from left in the top toolbar”, “second row, third column”, “left sidebar, bottom icon”, or
“<x,y>” with origin top-left). The question must be unsolvable without the screenshot.

3. Question types and options:
• If multiple_choice: produce exactly 4 options. The first option MUST be the

correct answer.
• If yes_or_no: produce exactly 3 options: {“yes”, “no”, “unknown”} and the

correct one must be first.
• If the correct answer is genuinely not deducible from the screenshot or you cannot

answer the correct answer, then use:
– multiple_choice: first option = “none of the other options are correct.”
– yes_or_no: first option = “unknown”

4. Option style: Options must describe actions or effects (not icon shapes). Keep options
parallel in length and style (≈ 6–16 words).

5. Distractors: The 3 incorrect options must be plausible and similar to the correct one.
6. Contextual reasoning: Prefer questions requiring reasoning across UI elements (e.g.,

highlighted rows, active tab, enabled/disabled states, adjacent panels).
7. Based on the provided screenshot, identify which application is currently being used and

include this information in your output JSON under the field app_type.
[Output JSON schema — return exactly this JSON object (no extra text)]
{

"question_type": "multiple_choice" or "yes_or_no",
"question_text": "<one concise sentence using only positions>",
"option_text": ["<first option correct>", "<distractor 1>",

"<distractor 2>", "<distractor 3>"],↪→
"app_type": "<application type of the current screenshot>",
"os_type": "Linux" | "Windows" | "Android" | "MacOS" | "IOS" | "Web"

}

[Example Output]
{

"question_type": "multiple_choice",
"question_text": "The button in the lower toolbar is active, but the

button next to it is greyed out. Which condition is most likely
not met yet?",

↪→
↪→
"option_text": [
"All required fields are filled",
"Network connection is active",
"File format is supported",
"None of the other options"

],
"app_type": "Form Editor",
"os_type": "Web"

}

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

{
"question_type": "multiple_choice",
"question_text": "How can the user enable more controls over the

alignment of objects?",↪→
"option_text": [
"Select more than one object",
"Double click the alignment button",
"None of the other options",
"User is logged in"

],
"app_type": "Graphics Editor",
"os_type": "Windows"

}

{
"question_type": "yes_or_no",
"question_text": "Will the option in the toolbar become available

immediately after selecting a file?",↪→
"option_text": ["yes","no","unknown"],
"app_type": "Document Editor",
"os_type": "MacOS"

}

{
"question_type": "yes_or_no",
"question_text": "Is the movie export function currently available?",
"option_text": ["no","yes","unknown"],
"app_type": "Video Editor",
"os_type": "Linux"

}

A.2 PLAN GENERATION PROMPT TEMPLATE FOR OSWORLD TASKS.

User Instruction Prompt

User Prompt:

Analyze the given GUI task and break it down into essential, actionable steps. You will receive:
- a task instruction: {task_instruction} - the app where the task occurs: {app_name} -
the initial screenshot image
Your goal is to output a Python list of clear, concise steps in logical order to complete the task
within the app. Each step should represent a key state, action, or milestone. Use simple, direct
language. Avoid ambiguity or unnecessary complexity.
Output format:

• A valid Python list of strings, e.g.:
["First step.", "Second step.", "Third step."]

• Each string must use double quotes ("), and the output must be directly parsable using
eval() or ast.literal_eval().

• Output only the list. No explanation, no extra text.
Constraints:

• Ensure each step is actionable and unambiguous,
• Ensure each step is necessary for task completion,
• Ensure each step is easy to follow by a user.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.3 EVALUATION MESSAGE PROMPT TEMPLATE

A.3.1 INTERFACE PERCEPTION.

All evaluation questions in this knowledge category use the same prompt template as shown below.

GUI Agent Inference Prompt

System
You are a Graphical User Interface (GUI) agent. You will be given a screenshot, a question, and
corresponding options. You need to choose one option as your answer.
User
{question_images}
{question_texts}
{question_options}

Response Rules

If question_type == ’yes_or_no’:
Think step by step. You must respond strictly in JSON format following this schema:
{

"thought": "<your reasoning>",
"answer": "<yes/no/unknown>"

}

If question_type == ’multiple_choice’:
Think step by step. You must respond strictly in JSON format following this schema:
{

"thought": "<your reasoning>",
"answer": "<A/B/C/D>"

}

Interaction Prediction.

GUI Agent Task-Solving Prompt

System
You are a Graphical User Interface (GUI) agent. You will be given a task instruction, a screenshot,
several GUI operations, and four options. Your goal is to select the best option that could solve
the task.
{question_images}

User
{question_text}
Which of the above options are correct according to the screenshots? Think step by step. You
must respond strictly in JSON format following this schema.

Response Schema

{
"thought": "<your reasoning>",
"answer": "<A/B/C/D>"

}

A.3.2 INTERACTION PREDICTION

ActionEffect

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

GUI Agent Next-State Selection Prompt

System
You are a Graphical User Interface (GUI) agent. You will be given a screenshot, action de-
scriptions, and multiple options, each containing an image. After performing one action on the
screenshot, your goal is to select the option that correctly corresponds to the resulting screenshot
after performing the action. Below is a short description of the action space:
if platform == Desktop:

Action Space
- click(point='x1 y1'): left click a position on the screen.
- left_double(point='x1 y1'): left double click a position on

the screen.↪→
- right_single(point='x1 y1'): right single click a position on

the screen.↪→
- drag(start_point='x1 y1', end_point='x2 y2'): drag the mouse

from one position to another.↪→
- hotkey(key='ctrl c'): keyboard shortcut, split keys with

spaces↪→
- type(content='xxx'): type an answer, use escape characters

(', ", \n) when needed. Add \n at the end if it is the
final submission.

↪→
↪→
- scroll(point='x1 y1', direction='down or up or right or

left'): scroll to see more content↪→

if platform == Mobile:
Action Space
- click(point='x1 y1')
- long_press(point='x1 y1')
- type(content='') #If you want to submit your input, use "\\n"

at the end of `content`.↪→
- scroll(point='x1 y1', direction='down or up or right or

left'): scroll to see more content↪→

The size of the image is {w}x{h}. \n
User
{question_image}
Above is the current screenshot.
After I perform the described action ’action_type(action_parameter)’ (as drawn
in the initial screenshot), which of the following options correctly corresponds to the resulting
screenshot?
A. {option_image_A}
B. {option_image_B}
C. {option_image_C}
D. {option_image_D}

Response Schema
Think step by step. You must respond strictly in JSON format following this schema:
{

"thought": "<your reasoning>",
"answer": "<A/B/C/D>"

}

ActionPrediction - Parameter

GUI Agent Action-Parameter Selection Prompt

System
You are a Graphical User Interface (GUI) agent. You will be given two consecutive screenshots
of the GUI, action descriptions, and multiple options. Your goal is to select which action was
performed to transition from the first screenshot to the second. If the description specifies an
action type, select the correct parameter value for the given action.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

if platform == Desktop:
Action Space
- click(point='x1 y1'): left click a position on the screen.
- left_double(point='x1 y1'): left double click a position on

the screen.↪→
- right_single(point='x1 y1'): right single click a position on

the screen.↪→
- drag(start_point='x1 y1', end_point='x2 y2'): drag the mouse

from one position to another.↪→
- hotkey(key='ctrl c'): keyboard shortcut, split keys with

spaces↪→
- type(content='xxx'): type an answer, use escape characters

(', ", \n) when needed. Add \n at the end if it is the
final submission.

↪→
↪→
- scroll(point='x1 y1', direction='down or up or right or

left'): scroll to see more content↪→

if platform == Mobile:
Action Space
- click(point='x1 y1')
- long_press(point='x1 y1')
- type(content='') #If you want to submit your input, use "\\n"

at the end of `content`.↪→
- scroll(point='x1 y1', direction='down or up or right or

left'): scroll to see more content↪→

The size of the image is {w}x{h}. \n
{question_images}

User
Above are two consecutive screenshots. Your task is to select the option containing the right
parameter value of the given action ’ {action_type} ’ to transition from the first to the
second screenshot.
As is drawn in the first screenshot. Which of the above options are correct according to the
screenshots?
A. {option_text}
B. {option_text}
C. {option_text}
D. {option_text}

Response Schema
Think step by step. You must respond strictly in JSON format following this schema:
{

"thought": "<your reasoning>",
"answer": "<A/B/C/D>"

}

ActionPrediction - Type

GUI Agent Action Identification Prompt

System
You are a Graphical User Interface (GUI) agent. You will be given two consecutive screenshots
of the GUI, action descriptions, and multiple options. Your goal is to select which action was
performed to transition from the first screenshot to the second. If the description specifies an
action type, select the correct parameter value for the given action.
if platform == Desktop:

Action Space
- click(point='x1 y1'): left click a position on the screen.
- left_double(point='x1 y1'): left double click a position on

the screen.↪→

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

- right_single(point='x1 y1'): right single click a position on
the screen.↪→

- drag(start_point='x1 y1', end_point='x2 y2'): drag the mouse
from one position to another.↪→

- hotkey(key='ctrl c'): keyboard shortcut, split keys with
spaces↪→

- type(content='xxx'): type an answer, use escape characters
(', ", \n) when needed. Add \n at the end if it is the
final submission.

↪→
↪→
- scroll(point='x1 y1', direction='down or up or right or

left'): scroll to see more content↪→

if platform == Mobile:
Action Space
- click(point='x1 y1')
- long_press(point='x1 y1')
- type(content='') #If you want to submit your input, use "\\n"

at the end of `content`.↪→
- scroll(point='x1 y1', direction='down or up or right or

left'): scroll to see more content↪→

The size of the image is {w}x{h}. \n
{question_images}

User
Above are two consecutive screenshots. Your task is to select which action is performed in order
to transition from the first screenshot to the second.
if platform == Desktop:

{seven action types}
Which of the above options are correct according to the

screenshots?↪→
Think step by step. You must respond strictly in JSON format

following this schema:↪→
{"thought": "<your reasoning>", "answer": "<A/B/C/D/E/F/G>" }

if platform == Mobile:
{four action types}
Which of the above options are correct according to the

screenshots?↪→
Think step by step. You must respond strictly in JSON format

following this schema:↪→
{"thought": "<your reasoning>", "answer": "<A/B/C/D>" }

Response Schema (Desktop)

{
"thought": "<your reasoning>",
"answer": "<A/B/C/D/E/F/G>"

}

Response Schema (Mobile)

{
"thought": "<your reasoning>",
"answer": "<A/B/C/D>"

}

A.3.3 INSTRUCTIONUNDERSTANDING

GoalInterpretation

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Task Completion Verification Prompt

System
You are a Graphical User Interface (GUI) agent. You will be given a sequence of screenshots, a
task instruction, and three possible answer options: yes, no, unknown. Your goal is to select
the best option that indicates whether the task is completed.

• yes — The task is clearly completed.
• no — The task is not completed.
• unknown — The screenshots do not provide enough evidence to determine completion.

User
According to the screenshots below, has the task "{task}" been completed?
{question_images}

Response Schema
Think step by step. You must respond strictly in JSON format following this schema:
{

"thought": "<your reasoning>",
"answer": "<yes/no/unknown>"

}

TaskPlanning

GUI Agent Conditional QA Prompt

System

If question_type == ’yes_or_no’:
You are a Graphical User Interface (GUI) agent. You will be given a screenshot, a question, and
corresponding options. You need to choose one option as your answer.

If question_type == ’multiple_choice’:
You are a Graphical User Interface (GUI) agent. You will be given a task instruction, a screenshot,
several GUI operations, and four options. Your goal is to select the best option that could solve
the task.

{question_images}

User
{question_text}
{option_texts}
Which of the above options are correct according to the screenshot?

Response Rules

If question_type == ’yes_or_no’:
Think step by step. You must respond strictly in JSON format following this schema:
{

"thought": "<your reasoning>",
"answer": "<yes/no/unknown>"

}

If question_type == ’multiple_choice’:
Think step by step. You must respond strictly in JSON format following this schema:
{

"thought": "<your reasoning>",
"answer": "<A/B/C/D>"

}

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

A.4 PROMPTS FOR COMPLETING GUI TASKS

GUI Agent Conditional QA Prompt

System

You are a helpful assistant.
User

You are a GUI agent. You are given a task and your action history, with screenshots. You need to
perform the next action to complete the task.

Output Format
“‘ Thought: ... Action: ... “‘

Action Space
click(start_box=’<|box_start|>(x1,y1)<|box_end|>’)
left_double(start_box=’<|box_start|>(x1,y1)<|box_end|>’)
right_single(start_box=’<|box_start|>(x1,y1)<|box_end|>’)
drag(start_box=’<|box_start|>(x1,y1)<|box_end|>’,
end_box=’<|box_start|>(x3,y3)<|box_end|>’)
hotkey(key=”)
type(content=”) If you want to submit your input, use "
n" at the end of ‘content‘.
scroll(start_box=’<|box_start|>(x1,y1)<|box_end|>’, direction=’down or up or right or left’)
done() If you think the instruction is finished, parameters none

User Instruction
Task Instruction

Image Info
Image size (pixels): width=image_size[0], height=image_size[1]. Output absolute pixel coordi-
nates.

A.5 DATASET STATISTICS OVERVIEW

We show more detailed statistics of our benchmark in Figure 9.

A.6 FULL APPLICATION LIST

Here we include the full list of applications involved in our benchmark.

List of Applications

Office (30): Apple Notes, Apple Reminders, Calendar, Docs, Document Viewer, Evince, Gedit,
Google Calendar, Google Docs, Google Keep, Keynote, Lark, Libreoffice, Notability, Note-
taking App, Notepad, Notes, Notion, Numbers, Office, Overleaf, Pages, Powerpoint, Spreadsheet,
Text Editor, VS Code, WPS Office, Microsoft Word, Xcode, Freeform.

Media (18): Amazon Music, Amazon Prime Video, Iheartradio, Likee, Music, Music Player,
Pandora, Pocket FM, Podcast Player, Quicktime, Roku, Sofascore, Spotify, TikTok, Tubi, VLC
media player, YouTube, YouTube Music.

Game (12): Arena_of_valor, CS2, Chess, Defense_of_the_ancients_2, Dream, Genshin_impact,
Minecraft, Nintendo, Pubg, Red_dead_redemption_2, Steam, The Legend Of Zelda Breath Of
The Wild.

Editing (20): 3dviewer, Adobe Acrobat, Adobe After Effects, Adobe Express, Adobe Photo-
shop, Adobe Photoshop Express, Adobe Premiere Pro, CapCut, Davinci Resolve, Draw.io, Gimp,
Paint, PDF Editor, Photo Editing Tool, Photo Editor, Picsart, Procreate, Runway, Snapseed, Video
Editing Software.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 9: Dataset Statistics Overview

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Social & Communication (28): Discord, Facebook, Flickr, Gmail, Google Meet, Google Mes-
sages, Imessage, Instagram, LinkedIn, Mail, Messenger, Outlook, Phone, Pinterest, Quora, Red-
dit, Signal, Slack, Teams Live, Telegram, Threads, Thunderbird, Tumblr, WeChat, Weibo, What-
sApp, X (Twitter), Zoom.

Shopping (25): 12306, Alibaba, Aliexpress, Amazon Shopping, Apartments.com, Applestore,
Autoscout24, Autouncle, Booking.com, Car Marketplace, Cars.co.za, Ebay, Edmunds, Expedia,
Magento, Offerup, Onestopmarket, Product Listing App, Realtor.com, Redfin, Shop, Taobao,
Tripadvisor, Walmart, Wish.

AI & Tools (17): AI Art Generator, Align-anything-dev-omni, Amazon Alexa, Chatbot AI, Chat-
gpt, Chaton AI, DeepL Translate, Google Translate, Grammarly, Microsoft Copilot, Microsoft
Translator, Remix AI Image Creator, Stable Diffusion, Translate, WOMBO Dream, Yandex
Translate, Zhiyun Translate.

Browser & Search (10): Bing, DuckDuckGo, Firefox, Google App, Google Chrome, Google
Search, Opera, Safari, Web Browser, Web.

Tools (60): Accerciser, Activities, Activity Monitor, App Lock, App Locker, Applock Pro, Au-
tomator, Baidu Netdisk, Bluetoothnotificationareaiconwindowclass, Calculator, Camera, Clean,
ClevCalc - Calculator, Color Management Utility, Colorsync_utility, Contacts, Control Center,
Cursor, Desktop, Dictionary, Digital Color Meter, Disk Utility, Drops, Electron, Email Client,
File, File Explorer, File Manager, Files, Filezilla, Finder, Font Book, GPS, Image Viewer, Iphone-
lockscreen, Kid3, Launcher, Mi Mover, Microsoft Store, Preview, Recorder, Rosetta Stone, Sci-
entific Calculator Plus 991, Script_editor, Search, Shortcuts, Spotlight, Stickies, System Infor-
mation, System Search, System Settings, Task Manager, Terminal, Totem, ToDesk, Trash, Vim,
Voicememos, Vottak, Wallpaper Picker.

Productivity (9): Any.do, Drive, Dropbox Paper, Google Drive, Onedrive, Paperflux, Things,
TickTick, Todoist.

News & Reading (22): AP News, BBC News, BBC Sport, Bloomberg, Crimereads, Espn,
Forbes, Goodreads, Google News, Google Play Books, Google Scholar, Kindle, Kobo Books,
Metacritic, Microsoft News, Newsbreak, Wikidata, Wikipedia, Yahoo Sports, Apple News, Travel
Guide App, Travel Review App.

Weather & Navigation (12): Accuweather, Apple Maps, Citymapper, Google Maps, Mapillary,
Miuiweather, Msnweather, Navigation App, Openstreetmap, Waze, Weather, Windy.

Finance (8): Alipay, Budgeting App, Investing.com, Paymore, Stocks, Wallet For Your Business,
Wallet: Budget Money Manager, Yahoo Finance.

Health & Fitness (4): Fitbit, Fiton, Mideaair, Mifitness.

Job Search (3): Indeed, Job Search By Ziprecruiter, Ziprecruiter.

Transportation (3): Didi, Ryanair, Uber.

System & Tools (15): Android, Android Home Screen, Android Launcher, Android Settings,
Android Share Sheet, App Store, Apple, Applibrary, Gnome, Mobile Home Launcher, Mobile
Launcher, Mobile Web Browser, OS, Ubuntu, Ubuntu Desktop.

A.7 ACTION TYPE PREDICTION CONFUSION MATRIX

Figure 10 and Figure 11 show the confusion matrix of tested models on desktop and mobile. All of
these models have a tendency for predicting click instead of the right actions.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 10: Confusion matrix of action type prediction in desktop.

Figure 11: Confusion matrix of action type prediction in mobile.

26

	Introduction
	Related Work
	GUI Agent
	GUI Benchmark

	GUI Knowledge Bench
	Benchmark Overview
	Data Sources and Collection Pipeline
	Interface Perception
	Interaction Prediction
	Instruction Understanding

	Benchmarking VLMs
	Settings
	Benchmarking Results
	Error Analysis and Discussion
	Interface Perception.
	Interaction Prediction.
	Instruction Understanding.

	Results on Real-world GUI Tasks
	Qualitative Analysis: Interface Perception and Interaction Prediction
	Quantitative Analysis: the Impact of Plan Injection
	Validation Study: Knowledge as a Necessary Condition

	Conclusion
	Appendix
	Question Generation Prompt Template for Interface Perception
	Plan Generation Prompt Template for OSWorld Tasks.
	Evaluation Message Prompt Template
	Interface Perception.
	Interaction Prediction
	InstructionUnderstanding

	Prompts for completing GUI tasks
	Dataset Statistics Overview
	Full Application List
	Action Type Prediction Confusion Matrix

