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Abstract

Pretraining large language models effectively001
requires strategic data selection, blending and002
ordering. However, key details about data mix-003
tures especially their scalability to longer token004
horizons and larger model sizes remain under-005
explored due to limited disclosure by model006
developers. To address this, we formalize the007
concept of two-phase pretraining and conduct008
an extensive systematic study on how to select009
and mix data to maximize model accuracies010
for the two phases. Our findings illustrate that011
a two-phase approach for pretraining outper-012
forms random data ordering and natural distri-013
bution of tokens by 3.4% and 17% on average014
accuracies. We provide in-depth guidance on015
crafting optimal blends based on quality of the016
data source and the number of epochs to be017
seen. We propose to design blends using down-018
sampled data at a smaller scale of 1T tokens019
and then demonstrate effective scaling of our020
approach to larger token horizon of 15T tokens021
and larger model size of 25B model size. These022
insights provide a series of steps practitioners023
can follow to design and scale their data blends.024

1 Introduction025

Large language models (LLM) are typically pre-026

trained on large amounts of data in the order of027

billions (B) or trillions (T) of tokens derived from028

multiple data sources such as web crawl, books,029

papers, patents, mathematical and legal documents,030

and so forth (Brown et al., 2020; Parmar et al.,031

2024b; Team et al., 2024b; Dubey et al., 2024a;032

Nvidia et al., 2024). To develop a state-of-the-art033

model, it is critical to understand the nature of034

these data sources and to make informed decisions035

about optimal data blending (how different data036

sources are weighed during pretraining) and train-037

ing strategies. These decisions typically involve038

running multiple large-scale experiments to empiri-039

cally investigate the optimal training data blend(s)040

and ordering of data.041

Figure 1: Diagram of our two phase training pipeline.
Phase-1 blend encourages data diversity and phase-2
blend is focused on high quality datasets.

Most advanced models (OpenAI et al., 2024; 042

Dubey et al., 2024b) do not divulge information on 043

the data blends that are used, nor the ablation stud- 044

ies informing the data mixing and ordering deci- 045

sions. Recent works (Blakeney et al., 2024; Groen- 046

eveld et al., 2024; Dubey et al., 2024b; Snowflake, 047

2024) provide high-level data blend information 048

about a small portion of pretraining by encourag- 049

ing the upsampling of certain domains towards the 050

end. In general, there exists a knowledge gap re- 051

garding how to craft and choose an optimal data 052

blend(s) for the entire training process, and the gen- 053

eralizability of data blends and ordering strategies 054

to larger token horizons and model sizes. 055

In this work, we address the above knowledge 056

gap by understanding optimal data blends and or- 057

dering strategies for training LLM. We formalize 058

and extensively explore a two-phase training ap- 059

proach (Figure 1) that balances diversity and qual- 060

ity: phase-1 emphasizes diverse, high-quality web 061

crawl data, while phase-2 focuses on high-quality 062

data sources such as math, code, and wiki data. 063

Specifically, in this work we propose to use down- 064

sampled data to prototype and explore multiple 065

blends at a smaller scale of 1T tokens. We craft 066

our blends based on quality of the data source and 067

the number of epochs to be seen during pretrain- 068

ing. We then demonstrate the effectiveness of our 069
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approach at a 15T token scale using the full data.070

We evaluated on a comprehensive set of down-071

stream tasking covering knowledge, reasoning, cod-072

ing and math benchmarks. Our experiments illus-073

trate that a quality and epoch based blend is better074

than a blend based on natural distribution by 13.2%075

and the two-phase approach is better than random076

ordering of data (blend is based on quality and077

epochs) by an average of 3.4% across downstream078

tasks. Furthermore, our results on downsampled079

data generalize across longer 15T token horizons080

on full data and larger model sizes, demonstrat-081

ing the scalability and robustness of the two-phase082

approach. We also provide a fine-grained qual-083

ity analysis of web crawl data, revealing optimal084

blending strategies to balance diversity and quality.085

We share and highlight a series of findings made086

to create blends and order in our two-phase ap-087

proach. Our main contributions are:088

• Formalization and large-scale evaluation of089

the two-phase training approach for LLMs,090

with actionable strategies that enable effective091

LLM pretraining.092

• Improving the understanding of data selection093

and blending with quality-based and epoch-094

based analyses of data, including web crawl.095

• Demonstration of the scalability of blends us-096

ing downsampled data at 1T to using full data097

at 15T tokens and larger model size of 25B.098

2 A Two-Phase Approach to Pretraining099

In this work, we explore a two-phased approach to100

pretraining: phase-1 (P1) then phase-2 (P2). Fig-101

ure 1 demonstrates our two-phased approach. In102

each phase, we explore different data blends based103

on the quality and number of epochs to be seen104

of a data source. In phase-1 (P1), we explore a105

general data distribution which consists of a mix106

of web crawl data, medium-quality data, and low107

amounts of high-quality data. In phase-2 (P2), we108

explore a blend which includes task data and em-109

phasizes high-quality datasets such as math, code,110

and high-quality web crawl (§5.1). As seen in Fig-111

ure 1, our model sees the first general data blend112

during P1 for the majority of training, then a differ-113

ent data blend focused on high quality data during114

the shorter P2 of training.115

The steps to create blends for P1 and P2 are:116

1) Downsample a data source by a factor of f , 2)117

Estimate the quality of a data source (§5.1), 3)118

Estimate the epochs to be seen in the whole pre-119

training (§5.2) and finally 4) distribute the epochs120

Data Domain Tokens (B)
Web Crawl 6244.3
Math 161.5
Wiki 16.7
Code 760.3
Books 776.3
Papers 212.6
CCdv 348.3
Multilingual 1457.2
Task Data 6.6

Table 1: Tokens (billions) in each data domain.

appropriately in P1 and P2 (§3.2). The downsam- 121

pling factor f is based on the final total token bud- 122

get which we assume to be 15T similar to Dubey 123

et al. (2024b). Hence, for us f = 1/15 i.e for 124

each data source, the number of tokens available 125

for pretraining is 1/15th of the total token in that 126

dataset. Downsampling helps to observe the impact 127

of epochs of datasets at a smaller scale of 1T tokens 128

and then can be used to scale the blend to a longer 129

token horizon of 15T tokens using the full data. 130

Baselines: Since our blends are based on quality 131

and epoch based analyses of the data as well as the 132

ordering of the data in the two phases, we consider 133

the following two baselines: 1) Natural Distribu- 134

tion Blend (BASE-ND): This blend is based on 135

ratio of the number of tokens available in each data 136

source. The weight for each dataset is equal to 137

the total number of tokens in that dataset divided 138

by the sum of tokens available in all the datasets. 139

This weighting is neither based on quality nor the 140

epochs to be seen for the dataset. 2) Random Order 141

Pretraining (BASE-RO): This blend is based on 142

quality and epochs of each dataset but does not use 143

two phases to train the model. The weight for each 144

dataset here is the same as our two-phase approach 145

but the order in which the the dataset is seen during 146

pretraining is random. 147

3 Experimental Setup 148

3.1 Data Sources 149

Our pretraining corpus spans a vast range of text 150

data sources that cover several domains, types 151

of data, and languages. We broadly divide our 152

datasets into the following categories and their to- 153

ken counts in billions is shown in Table 1. 154

• Web Crawl: Data derived from Common 155

Crawl (CC). We discuss the quality of this 156

data and how to blend it in detail in §5.1. 157
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Category Domain Blend1 Blend2 Blend3 Blend4 Blend5
Web Crawl - 65.0 65.0 58.0 59.0 70.0

High
Quality

Math 1.9 1.9 1.9 2.9 1.9
Wiki 0.1 0.1 0.1 0.1 0.1
Code 15.0 8.0 15.0 20.0 13.0

Medium
Quality

Books 5.5 9.0 9.0 5.5 4.5
Papers 3.5 5.0 5.0 3.5 1.9
CCdv 4.0 6.0 6.0 4.0 3.6

Multilingual - 5.0 5.0 5.0 5.0 5.0

Table 2: Phase-1 Blends (in %)

• High-Quality: This includes datasets from158

more specialized and professional domains159

such as mathematics (Paster et al., 2024; Stack160

Exchange, Accessed 2024), code (Li et al.,161

2023), and Wikipedia (wiki) data.162

• Medium-Quality: Data derived from books163

& patents, papers (Gao et al., 2020), and164

Common Crawl derivatives (CCdv) such as165

OpenWebText (Gokaslan and Cohen, 2019),166

BigScience (Laurençon et al., 2022), Reddit167

(Baumgartner et al., 2020), and CC-News.168

This category was determined by comparing169

this data to medium-quality crawl (see §5.1).170

• Multilingual: Multilingual data (9 languages)171

derived from Wikipedia and Common Crawl.172

• Task Data: This includes data used for su-173

pervised finetuning (SFT) during the align-174

ment phase (Toshniwal et al., 2024; Nvidia175

et al., 2024). We also include the FLAN col-176

lection (Longpre et al., 2023).177

3.2 Data Blends for Each Phase178

The final blends in P1 and P2 are based on quality179

and epoch based ablations shown in §5.1 and §5.2.180

The insights from these studies are incorporated in181

Table 2 and 3.182

In P1, we encourage diversity in data by includ-183

ing a high percentage of web crawl data which con-184

sists of high, medium, and low-quality crawl. We185

want to introduce a limited amount of high-quality186

data such as math, code, and wiki in P1. In P2, the187

emphasis is primarily on high-quality datasets and188

only includes a limited amount of medium-quality189

data. For example, in P2, we only use high-quality190

crawl instead of medium or low-quality (see §5.1).191

Table 2 details the five blends explored in P1.192

These blends are designed to compare the propor-193

tion of high-level categories with each other. The194

difference between Blend1 and Blend2 is that195

Blend2 has less code and more medium-quality196

datasets compared to Blend1. Blend3 has less197

Category Domain Blend1 Blend2 Blend3 Blend4 Blend5
Web Crawl - 31.0 35.0 31.0 40.0 35.0

High
Quality

Math 24.0 24.0 24.0 24.0 29.0
Wiki 1.0 1.0 1.0 1.0 1.0
Code 20.0 25.0 29.0 20.0 20.0

Medium
Quality

Books 8.0 4.0 4.0 4.0 4.0
Papers 4.0 2.0 2.0 2.0 2.0
CCdv 7.0 4.0 4.0 4.0 4.0

Multilingual - 3.7 3.7 3.7 3.7 3.7

Task Data - 1.3 1.3 1.3 1.3 1.3

Table 3: Phase-2 Blends (in %)

web crawl and more medium-quality datasets com- 198

pared to Blend1. Blend4 has less web crawl and 199

more high-quality datasets compared to Blend1. 200

Blend5 is designed to have majority web crawl at 201

the cost of code and medium-quality data. 202

Table 3 outlines the five blends explored in P2. 203

In P2, we use more epochs and higher propor- 204

tions of high-quality data such as high-quality web 205

crawl, math, wiki, and code data. Blend3 has more 206

code and less medium-quality datasets compared 207

to Blend1, and Blend4 has more high-quality web 208

crawl and less medium-quality datasets compared 209

to Blend1. Blend2 has a more balanced distri- 210

bution among the data categories, while Blend5 211

upsamples math data more heavily. 212

3.3 Model Specifications 213

We experiment using the Megatron (Shoeybi et al., 214

2020) model, an autoregressive causal left-to-right 215

LLM, with the Tiktokenizer (OpenAI, 2023). We 216

downsample all our data by factor f = 1/15. 217

Hence, only 1/15 of the tokens shown in Table 1 218

will be available for pretraining. We perform all our 219

investigations using an 8 billion parameter model 220

trained on 1 trillion total tokens. Furthermore, we 221

test our two-phase approach by scaling along two 222

dimensions: (1) we scale the token horizon to 1.7T 223

tokens on a 8B model, and (2) we scale the param- 224

eters of the model to 25B and train on 1T tokens. 225

Additionally, we train a 8B model on 15T tokens on 226

full data (not downsampled) to observe if decisions 227

made with downsampled data scales. Specifics on 228

model architecture and hyperparameters are shared 229

in Appendix A. 230

3.4 Evaluation Suite 231

To comprehensively assess our models, we use var- 232

ious benchmarks that evaluate different capabilities. 233

These can be broadly divided into the following 4 234

categories, of which we report the final averages. 235

We assess 5-shot accuracy for MMLU (Hendrycks 236
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Exp. MMLU Reason. GSM8K Code Avg.
BASE-ND 49.78 56.48 19.64 24.96 45.17
BASE-RO 56.49 59.69 30.86 35.55 51.12
Two-Phase 56.28 60.34 40.33 38.33 52.86

Table 4: Comparison of our two-phase training approach
with BASE-ND and BASE-RO.

et al., 2021), 0-shot accuracy1 for reasoning tasks:237

CommonsenseQA (Talmor et al., 2019), ARC-Easy238

& Challenge (Clark et al., 2018), PIQA (Bisk et al.,239

2019), WinoGrande (Sakaguchi et al., 2019), Hel-240

laSwag (Zellers et al., 2019), OpenBookQA (Mi-241

haylov et al., 2018), RACE (Lai et al., 2017), 0-242

shot accuracy for code benchmarks: HumanEval243

(+) (Chen et al., 2021) and MBPP (+) (Austin et al.,244

2021), and 8-shot chain-of-thought (CoT) accuracy245

for GSM8K (Cobbe et al., 2021). We also report246

a final overall Avg. for most results, which is an247

average over all individual evaluation tasks.248

4 Results for Two-Phase Pretraining249

Findings

• A two-phase approach for pretraining
is effective.

• Phase-1 should focus on data diversity
and phase-2 on high-quality data.

250

We compare our best blends P1-Blend4-P2-251

Blend12 using two-phase training with two base-252

lines: 1) BASE-ND: the weights are determined253

by the tokens available in each dataset and are not254

based on quality, and 2) BASE-RO: the weights255

for all the datasets are the same in this and P1-256

Blend4-P2-Blend1. The only difference is the257

order in which the data is presented during training258

(random or two-phased). Table 4 illustrates that us-259

ing a quality and epoch based blend is on average260

13.2% better than natural distribution blend (com-261

pare BASE-RO vs BASE-ND) across downstream262

tasks. It also presents that using our two-phase263

training approach noticeably improves average ac-264

curacy by 3.4% compared to BASE-RO and 17%265

compared to BASE-ND. This empirically demon-266

strates that the strategy of two-phase training is267

useful and tasks such as code and math are sen-268

1We use normalized accuracy for ARC-Easy, ARC-
Challenge, PIQA, HellaSwag, and OpenBookQA.

2see §4.1 Tab. 7 on how we select this blend and §5.3
Tab. 14 for the duration of P2 for best results.

Tok. MMLU Reason. GSM8K Code Avg.
1T 56.28 60.34 40.33 38.33 52.86
15T 70.30 64.11 64.82 46.38 59.84

Table 5: Results of our two-phase training approach
with P1-Blend4-P2-Blend1 for downsampled data at
1T and then complete data at 15T.
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Figure 2: Phase-1 validation loss for different P1 blends.

sitive to the ordering of high-quality data in the 269

second phase. 270

We scale our best blend P1-Blend4-P2-Blend1 271

to 15T tokens and use the full dataset to train a 8B 272

model. All the previous experiments are performed 273

on downsampled data and 1T scale. This means 274

that the number of epochs is constant in both the 275

runs. Table 5 shows that blends crafted at smaller 276

scale can generalize to longer token budgets if the 277

quality and epochs of the datasets are maintained 278

at scale. This shows the generalizability of our two- 279

phase approach to pretraining as well as quality- 280

and epoch-based approach to designing blends. 281

4.1 Determining Blends 282

As discussed in §3.2, we explore five different 283

blends for phase-1.3 We train an 8B model on 284

downsampled data for 1T tokens for all five blends 285

and eliminate blends based on a separately held-out 286

validation split. Fig. 2 illustrates the validation loss 287

for all five blends. As we can see, Blend5 and 288

Blend2 had 2.8% and 2.1% higher validation loss, 289

respectively, relative to Blend4 at approx. 250B 290

tokens. Hence, we discontinue these two blends at 291

that point. Since, the validation loss of the remain- 292

ing three blends was within a margin of 1%, we 293

periodically evaluate their accuracy on downstream 294

3More detailed evaluation results of the major experiments
in this section broken down by individual reasoning, MMLU,
and code benchmarks and categories can be found in §B.
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Exp. Tokens MMLU Reason. GSM8K Code Avg.
P1-Blend1 200 34.72 52.83 6.14 16.43 38.81
P1-Blend3 200 36.78 51.97 6.22 15.18 38.10
P1-Blend4 200 38.70 53.81 11.30 18.21 40.48

P1-Blend1 250 42.51 54.52 7.51 16.14 40.35
P1-Blend3 250 40.41 53.87 8.11 15.62 39.72
P1-Blend4 250 42.76 54.99 10.16 19.29 41.66

P1-Blend1 629 51.93 57.83 14.94 22.97 45.28
P1-Blend3 629 52.44 57.74 15.39 22.43 45.15
P1-Blend4 629 52.78 58.11 18.27 24.24 46.07

Table 6: P1 results after various token counts (billions).

Exp. MMLU Reason. GSM8K Code Avg.
P1-Blend1 55.00 59.12 20.09 23.56 46.76
P1-Blend4 56.25 59.54 23.43 27.61 48.40

P1-Blend1-P2-Blend1 56.04 60.04 37.00 36.19 51.88
P1-Blend1-P2-Blend2 55.88 60.15 36.85 35.89 51.84
P1-Blend1-P2-Blend3 55.80 60.08 39.80 35.75 51.96
P1-Blend1-P2-Blend4 56.15 60.26 36.85 36.30 51.88
P1-Blend1-P2-Blend5 56.49 60.41 36.92 34.40 51.65
P1-Blend4-P2-Blend1 56.58 60.18 37.98 37.01 52.28
P1-Blend4-P2-Blend2 56.89 60.00 36.62 36.97 52.10
P1-Blend4-P2-Blend3 56.10 60.08 39.27 35.15 51.78
P1-Blend4-P2-Blend4 57.03 59.98 36.85 36.30 51.93
P1-Blend4-P2-Blend5 56.92 60.35 38.29 34.56 51.77

Table 7: Evaluation results after P2 of training.

tasks. Table 6 shows the results of the remain-295

ing three phase-1 blends at various token counts.296

At each token evaluation point – 200B, 250B and297

629B, we see that Blend3 is consistently worse298

than the other two blends. Hence, we eliminate299

this blend after 629B tokens of training. For this300

experiment, we switch from P1 to P2 after ≈70%301

of training, i.e the last 30% of training is P2. In302

§5.3, we explore varying the percentage of P2.303

Results in Table 6 follow intuition since Blend4304

has the highest amount of high-quality data and305

is hence better than Blend1 and Blend3. Blend3306

has more medium-quality data at the cost of web307

crawl compared to Blend1. This result confirms308

that books, papers, and CCdv are of medium-quality309

compared to our high-quality datasets and our web310

crawl blend.311

Finally, we explore five different blends of P2 de-312

scribed in Table 3 in combination with P1-Blend1313

and P1-Blend4. Hence, we have ten different com-314

binations of P1 and P2 blends. Table 7 shows the315

results on all ten combinations of blends. We find316

that P1-Blend4-P2-Blend1 performs the best on317

average. Table 7 also presents the final results of318

P1-Blend1 and P1-Blend4 if only the P1 blend319

was continued for 1T tokens without ever switching320

Exp. Tok. MMLU Reason. GSM8K Code Avg.
P1-Blend4-P2-Blend1 1T 56.58 60.18 37.98 37.01 52.28
P1-Blend4-P2-Blend1 1.7T 56.61 60.88 42.15 37.62 53.28
P1-Blend4-P2-Blend6 1.7T 59.85 61.63 43.90 39.61 54.45

Table 8: Scaling results for 1.7T tokens vs. 1T tokens,
with and without high-quality data epoch adjustment.

to P2 blends. It shows that switching to any of the 321

P2 blends for training is better than continuing the 322

P1 blends for all metrics. We observe the largest 323

absolute gains in GSM8K and code of 14.6% and 324

9.4%, respectively, for P1-Blend4-P2-Blend1. 325

4.2 Scaling 326

Findings

• Two-phase approach is scalable and ro-
bust to token horizon and model scale.

• Data blends need adjusting at longer to-
ken horizons based on epoch count to
avoid high-quality data overexposure.

327

We further explore scaling our best blend along 328

two dimensions: (1) a longer token horizon of 1.7 329

trillion tokens and (2) larger model size of 25B 330

parameters. For a longer token horizon, we aim to 331

assess whether the blend can be used as is or if ad- 332

justments are necessary to prevent overfitting (ob- 333

served in §5.2). Note that this is different from scal- 334

ing to 15T token where we use the full data. Here 335

we still use the downsampled data and scale to 1.7T 336

tokens and hence the epochs seen of each dataset 337

would be higher. Since high number of epochs of 338

high-quality datasets are primarily seen in P2 of 339

pretraining, we create a new blend, P2-Blend64, 340

which is an epoch-adjusted version of P2-Blend1 341

to ensure that we do not see more than 8 epochs 342

of certain high-quality data sources like math and 343

task data. Table 8 shows the comparison of scal- 344

ing from 1T to 1.7T total tokens. We see that P1- 345

Blend4-P2-Blend6 is on average 2.2% better than 346

P1-Blend4-P2-Blend1, illustrating that we need 347

to adjust our blends according to the epoch counts 348

of high-quality data for optimal results. Both the 349

1.7T models are better than 1T, demonstrating that 350

we can still obtain higher downstream accuracies 351

by training on more tokens, even if it means train- 352

ing on more than 8 epochs of high-quality data. 353

We also investigate if our best blend can scale 354

to a larger model size. Given the high number 355

4We show comparison of Blend1 and Blend6 in Table 15.
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Model Size MMLU Reason. GSM8K Code Avg.
8B 57.31 61.16 45.11 38.97 53.92

25B 65.97 63.29 59.14 45.57 58.47

Table 9: Evaluation results for 8B vs. 25B parameter
models, using the same blend: P1-Blend4-P2-Blend1.
Note that we use a maximum sequence length of 8192
(instead of 4096) for both models here.
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Figure 3: Validation loss for the 25B model using two-
phase training with P1-Blend4-P2-Blend1.

of epochs of high-quality data in P1-Blend4-P2-356

Blend1, we also want to determine if a model with357

a larger capacity might memorize the data and over-358

fit on it. Figure 3 shows that the validation loss359

is always decreasing for the 25B model, indicat-360

ing that there is no overfitting with P1-Blend4-P2-361

Blend1. Table 9 shows results for the 25B model362

compared to the 8B model on this data blend combi-363

nation. Understandably, the 25B model is substan-364

tially better across the board, demonstrating that365

the two-phase training approach and data blend366

combination can also scale to larger model sizes.367

5 Ablations368

This section details quality-based data blending,369

epoch study and percentage of phase-2 to be con-370

ducted in the pretraining. Additional fine-grained371

analyses of data blends and study on learning rate372

schedule to be used in phase-2 is shown in Ap-373

pendix §D and §E.374

5.1 Quality-Based Data Blending375

Insights

• Upsampling high quality and not using
low quality CC data is most effective.

376

Quality Label Token CC-Blend1 CC-Blend2 CC-Blend3 CC-Blend4

High 35.96% 57.0 57.0 51.5 45.0
Medium-High 8.56% 25.0 25.0 23.5 20.0

Medium 34.25% 18.0 13.0
23.0 32.0

Medium-Low 15.41% 0.0 2.0
Low 5.82% 0.0 3.0 2.0 3.0

Table 10: CC blends (in %) by quality. For CC-Blend3
and CC-Blend4, we merged the Medium and Medium-
Low categories. Token column refers to the the natural
distribution of tokens, i.e. percentage of total CC data
that belongs to each category.

Exp. MMLU Reason. GSM8K Code Avg.

CC-Blend1 57.09 61.16 13.42 19.78 46.01
CC-Blend2 56.69 61.77 14.18 19.56 45.11
CC-Blend3 56.29 60.74 14.25 18.44 44.17
CC-Blend4 55.73 60.57 14.31 18.50 44.06

Table 11: P1 results using our various CC blends.

• CCdv, papers and books are similar in
quality to CC-Medium-High.

377

The data blends of our two-phase approach 378

are mainly based on the assessment of each data 379

source’s quality. Hence, we carry out extensive 380

experiments to find an optimal data blend for web 381

crawl documents. While previous work (Dubey 382

et al., 2024a; Yang et al., 2024; Team et al., 2024a) 383

mentions that web crawl documents like Common 384

Crawl (CC) form a large majority of their pretrain- 385

ing data, none of them share a recipe on how to mix 386

different slices of CC. Some recent work on con- 387

structing crawl-based pretraining datasets (Penedo 388

et al., 2024b; Li et al., 2024a) directly use the high 389

quality crawl documents in pretraining but provide 390

no specific data mixing strategy. In this section, we 391

provide comprehensive details on how to create a 392

data blend for CC documents and use it effectively 393

in our phase-1 and phase-2 of pretraining. Addi- 394

tionally, we provide a quality assessment of other 395

datasets like CCdv, papers, books and our high qual- 396

ity datasets. We compare them with medium, and 397

high quality web crawl to position them optimally 398

in our P1 and P2 blends. 399

Quality-Based Blending for Web Crawl: Each 400

document in our web crawl data is classified into 401

one of five quality categories: High, Medium-High, 402

Medium, Medium-Low, and Low using the classi- 403

fier from Su et al. (2024). 404

We investigate various blends using quality- 405

based weighted sampling approach5 for all of web 406

5We show comparison of quality-based blending with nat-
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Dataset MMLU Reason. GSM8K Avg.
CC-Medium 52.86 56.00 18.04 42.30
CC-Medium-High 53.75 58.09 18.50 43.45
CC-High 55.82 59.65 20.85 45.44

High Quality 54.53 58.51 24.11 45.72
CCdv 54.47 58.20 20.14 44.27
Books 55.36 58.93 18.50 44.26
Papers 54.55 58.65 19.41 44.20

Table 12: Results of different quality crawl and their
comparison with other datasets. Since code data is not
included in most of these experiments, we exclude code
evaluation.

55.756.155.4

51.2

48.3

Epochs of high quality data

M
M

LU

45.0

50.0

55.0

60.0

0 1 2 3 4 5 6 7 8 9

Figure 4: MMLU accuracy (%) vs. number of epochs
of high-quality crawl in the data mix.

crawl data from 99 CC snapshots for our phase-1407

of pretraining. The idea is to upsample high and408

medium-quality crawl documents while avoiding409

a high quantity of low-quality data. The overall410

idea for the four web crawl blends in Table 10 is to411

iteratively decrease the percentage of tokens from412

High and Medium-High and increase the tokens413

in the lower categories. The results in Table 116414

demonstrate that eliminating the tail-end of the web415

crawl data belonging to Medium-Low and Low416

quality categories is beneficial as opposed to to417

keeping them for diversity. Based on these results,418

we choose CC-Blend1 as the final data blend for419

web crawl documents to be used in all our final P1420

blends (§4 and Table 2). For P2, we only use web421

crawl data that belongs to High-quality category.422

Quality Estimation of Other Datasets: We as-423

sess how our CCdv, papers, books and high quality424

datasets such as math, code and Wiki compare to425

CC-Medium,CC-Medium-High and CC-High quality426

crawl data. We continue training the last check-427

point of P1-Blend4, for an additional 50B tokens428

ural token distribution-based blend in §C.
6The average in this table is primarily based on reasoning

tasks and MMLU because these blends do not have math or
code data.

Domain Epochs MMLU Reason. GSM8K Code Avg.
Math 1 57.06 60.51 36.47 33.55 51.49
Math 4 57.01 60.32 38.21 35.20 51.92
Math 8 56.58 60.18 37.98 37.01 52.28
Math 12 56.09 59.69 38.29 35.70 51.63

Task Data 1 56.37 59.39 34.50 30.57 49.84
Task Data 4 56.57 59.46 40.18 35.27 51.53
Task Data 8 56.58 60.18 37.98 37.01 52.28
Task Data 12 56.77 59.96 38.44 36.04 51.93

Table 13: Results of varying the number of epochs of
math and task data during P2 of training.

using a data mix that consisted 66% of the data 429

being tested, mixed with 34% of CC-High. 430

The results in Table 12 show that CCdv, papers 431

and books datasets have similar accuracies to CC- 432

Medium-High on the majority of benchmarks, and 433

lag behind CC-High. As such, we group them under 434

the "medium-quality" data category for our exper- 435

iments (see §3.1). The high quality datasets have 436

an average accuracy better than CC-High. 437

5.2 Epoch-Based Analysis 438

Insights

• We recommend 6 epochs of high-
quality crawl and 8 epochs of math
and task data for data mixing.

439

We take the number of epochs of high quality 440

datasets into account while creating our P1 and P2 441

blends. We experiment with different numbers of 442

epochs for high-quality crawl, math, and task data. 443

Since, majority of web crawl is used in P1, we 444

pretrained an 8B model with 1T tokens, using dif- 445

ferent epochs of high-quality crawl tokens in the 446

data mix, and evaluate each model’s MMLU score. 447

Note that we keep the overall percentage of web 448

crawl the same in all the experiments. As we can 449

see in Figure 4, increasing the number of high- 450

quality tokens increases the MMLU score until 451

6 epochs. We primarily present MMLU score 452

because these experiments do not include high 453

amount of math or code data. 454

Since, majority of math and task-data is seen in 455

P2, Table 13 presents results for different numbers 456

of epochs for them in P2. It shows that ≈ 8 epochs 457

of math is a good balance while not sacrificing 458

accuracy on MMLU and reasoning. For task data, 459

all metrics generally improve with more epochs, 460

although there appears to be diminishing returns 461

on several past epoch 8. Note that 8 epochs of 462
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P2 % MMLU Reason. GSM8K Code Avg.
0 56.10 61.81 16.60 16.22 37.68
10 56.52 59.70 33.13 32.55 50.48
20 56.54 59.93 40.16 34.29 51.58
30 56.58 60.18 37.98 37.01 52.28
40 56.28 60.34 40.33 38.33 52.86
50 55.94 59.82 37.68 36.86 51.96

Table 14: Results of different durations of P2 using
P1-Blend4-P2-Blend1.

both math and task data corresponds to our best463

P1-Blend4-P2-Blend1 blend combo from §4.464

5.3 Optimal Duration of Phase-2465

Insights

• Pretraining with the P2 blend for the
final 40% gives the best results.

466

We investigate the percentage of phase-2 to use467

in the whole pretraining regime. We experiment468

with 0 to 50% of P2 in the whole of pretraining.469

The longer the duration of P2, the shorter the du-470

ration of P1. We use the P1-Blend4-P2-Blend1471

blend combination that we found best in §4.472

Table 14 illustrates that a higher percentage of473

P2 until 40% is better overall, especially in math474

and code. Going above this, e.g. to P2 as 50% of475

training, downstream accuracies start to degrade476

across the board, potentially due to overfitting.477

6 Related Work478

Selecting and structuring pretraining datasets is479

important to improve model generalization and ef-480

ficiency. Dubey et al. (2024b) emphasize openness481

and accessibility of models, Computer (2023); Sol-482

daini et al. (2024) assemble an open corpus of tril-483

lions of tokens for large-scale training, and Groen-484

eveld et al. (2024) release a truly Open Language485

Model, including its framework, training data, and486

code. Studies such as Li et al. (2024b); Penedo et al.487

(2024a) demonstrating that refined data selection488

impacts model accuracies more significantly than489

simply the quantity of data. But these studies are490

primarily aimed at CC data and they do not suggest491

any data mixing strategies for pretraining. Parmar492

et al. (2024a) provide a systematic approach to493

building effective LLM pretraining datasets with494

ablations on data attributes, and existing curation,495

selection, and sampling methods. In our work, we496

provide a systematic approach to craft data blends497

and to order the data in pretraining. 498

Strategic weighting and timing of data usage can 499

also noticeably impact model accuracies. Tech- 500

niques like domain upsampling (Blakeney et al., 501

2024; Dubey et al., 2024b) towards the end of train- 502

ing have been shown to be effective. Snowflake 503

(2024); Groeneveld et al. (2024) provide details 504

about high level blends for their pretraining pro- 505

cess. In contrast, our work provides fine grained 506

details about the data blend creation process along 507

with actionable steps that model developers can 508

use to develop data blends and order. Prior work 509

(Shen et al., 2023; Longpre et al., 2024; Minder- 510

mann et al., 2022; Xie et al., 2023a,b; Shao et al., 511

2024) investigates optimizing data mixtures based 512

on clustering methods, manually designed domain 513

composition weights, proxy models or reference 514

models to determine data composition weights and 515

sample-level data selection. Our work primarily 516

focuses on data ordering and scaling of data blends 517

in pretraining and can be used in conjunction with 518

other data sampling techniques. 519

Curriculum learning approaches inspired by hu- 520

man learning offer an ordered way to introduce data 521

gradually to enhance model learning. Martinez 522

et al. (2023); Wang et al. (2022); Feng et al. (2024) 523

investigate cognitively-motivated curriculum-based 524

training including vocabulary, and objective curric- 525

ula, and outline and the challenges and potential 526

solutions for designing effective curricula. Our 527

work shows that ordering of data based on quality 528

in pretraining LLMs has a significant impact of 529

downstream accuracies. 530

7 Conclusion 531

In conclusion, through extensive experiments, we 532

demonstrate the effectiveness of a two-phase pre- 533

training approach for LLM. For the initial train- 534

ing phase, a more general data distribution consist- 535

ing of mainly of web crawl proves most effective, 536

while phase two benefits from a comprehensive 537

data blend, with additional focus on math, code, 538

and task data. Phase-two for the last ≈40% of 539

training yields the best results, and over-extending 540

it leads to diminishing returns. Increasing model 541

size and token horizon further enhances accuracy, 542

demonstrating the scalability of our approach. Im- 543

portantly, we also show that considering both the 544

quality of the data (including web crawl) and the 545

number of epochs of each data source is crucial to 546

attain optimal results and prevent overfitting. 547
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Limitations548

Some limitations of our work include our present549

suite of models and evaluation benchmarks. We550

can extend our work and show the effectiveness551

of two-phase pretraining approach on more LLM552

architectures such as Mamba (Gu and Dao, 2023),553

other hybrid SSM based architectures (Glorioso554

et al., 2024; Lieber et al., 2024) and mixture of555

experts (Shazeer et al., 2017). While our eval-556

uation benchmarks are quite comprehensive, we557

could potentially expand to an even broader range558

of evaluations, including nuanced domain-specific559

or interactive tasks, or more theory of mind and560

developmental psychology-inspired benchmarks.561

This includes assessing capabilities such as ana-562

logical reasoning (Webb et al., 2023). Further, our563

scaling experiments could be expanded. Scaling564

up to hundreds of billions of parameters or signifi-565

cantly longer training may yield additional insights.566

Lastly, while our work focuses on two-phase train-567

ing and shows its efficacy, we can potentially in-568

vestigate multi-phase training, and the impact of569

the order of the phases. However, we believe this570

is more suited for future work. Overall, these are571

directions to potentially improve and expand upon572

our work. Despite these potential limitations, we573

feel that our current work is an insightful and useful574

contribution to the research community.575

Ethical Considerations576

Our research uses publicly available and commonly577

used datasets in LLM development. These sources,578

including Common Crawl, Wikipedia, and code579

repositories, are widely adopted in the research580

community. We examined the quality and ori-581

gins of our data, prioritizing high-quality, domain-582

relevant data sources to improve LLM capabilities583

in a responsible manner. However, web crawl data584

may inherently contain biases or inappropriate con-585

tent despite filtering efforts. We used established586

data cleaning and quality assurance procedures but587

acknowledge that potential biases may persist and588

impact model behavior in certain circumstances.589

We recognize that scaling models and exploring590

data blending strategies require significant compu-591

tational resources, which may raise environmental592

concerns. To mitigate this, we focused on efficient593

training strategies, such as two-phase training, to594

improve accuracy without excessively increasing595

resource usage. Future studies could benefit from596

exploring energy-efficient training methods to fur-597

ther minimize the environmental impact. 598

Our models, data blends, and accompanying pub- 599

lication are intended solely for research purposes, 600

with no intended real-world application without 601

additional safety evaluations. We caution against 602

deploying models based on our methods without 603

thorough testing, as they may carry unknown risks, 604

particularly when applied to tasks involving sensi- 605

tive or personal information. Our work aims to ad- 606

vance the understanding of LLM training strategies, 607

and we feel that it is an important contribution to 608

the research community. We encourage researchers 609

to expand upon our work while further investigat- 610

ing the ethical and societal implications of LLM. 611
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Category Domain Blend1 Blend6
Web Crawl - 31.0 49.0

High Quality
Math 24.0 14.4
Wiki 1.0 0.6
Code 20.0 12.0

Medium Quality
Books 8.0 8.0
Papers 4.0 4.0
CCdv 7.0 7.0

Multilingual - 3.7 4.2

Task Data - 1.3 0.8

Table 15: Comparison of Blend1 and Blend6 (in %)
used for scaling the token budget in §4.2 and Table 8.

A Model Specifications 913

We use RoPE position embeddings (Su et al., 914

2021), RMSNorm layer normalization (Zhang and 915

Sennrich, 2019), with Grouped Query Attention 916

(Ainslie et al., 2023). The maximum sequence 917

length is 4096. We use a global batch size of 1536, 918

and the Adam optimizer (Kingma and Ba, 2017) 919

with β = (0.9, 0.95) and ϵ = 1e-08. 920

P1 training uses cosine LR decay with an initial 921

LR of 3e-4 and targeted to reach a min-LR of 3e- 922

6 at the end of the full training run (both phases). 923

We start P2 with the intermediate LR reached at 924

the end of P1, and anneal using cosine LR decay 925

to 3e-6 (§E). Our experiments are run using up to 926

1024 NVIDIA H100 GPUs. 927

B Detailed Two-Phase Pretraining 928

Results (Reasoning, MMLU, Code) 929

Tables 18 to 25 contain detailed evaluation results 930

of the major experiments reported in §4 for reason- 931

ing, MMLU, and code, broken down by individual 932

categories and benchmarks. They correspond to 933

the results found in Tables 7 to 9 in §4. 934

Table 15 shows the comparison of Blend1 and 935

Blend6 used in scaling experiments in Table 8. If 936

we use the same Blend1 as is and train for more 937

number of tokens (1.7T) then the number of epochs 938

seen of each dataset would be higher compared to 939

1T training. 940

C Details of Quality-Based Data Blend 941

We first compare a baseline blend (ND) which uses 942

the natural distribution of tokens with a smartly 943

constructed weighted sampling blend (WS). ND 944

is based on the number of tokens that belong in 945

each category as opposed to utilizing the quality 946

label i.e. if 59% of the tokens belong to Low then 947

59% of tokens seen during pretraining would be- 948
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Quality Label ND WS

High 0.01 0.04
Medium-High 1.08 6.42
Medium 7.01 41.83
Medium-Low 26.46 25.09
Low 64.44 0.00

Table 16: Data blends for CC Quality estimation exper-
iment. The overall percentage of the Common Crawl
Snapshots in our experiments is fixed at 73.3%.

Data Mixing MMLU Reason. GSM8K Code

ND 42.94 59.40 8.11 19.25
WS 56.10 61.60 11.98 17.41

Table 17: Our WS: weighted sampling data mix-
ing method outperforms the ND: natural distribution
method.

long to Low. We then create a data blend (WS)949

based on weighted sampling of high and medium-950

quality tokens. The idea is to upsample high and951

medium-quality crawl documents and not use the952

low-quality data at all. Table 16 shows the token953

percentages that belong to each of the five quality954

labels for both ND and WS blends. Table 17 illus-955

trates the results of the two models trained on the956

ND and WS data blends of web crawl, respectively.957

We see that our data blend (WS) outperforms on958

most of the evaluation tasks by a large margin, and959

the improvement on MMLU is substantial.960

D Finegrained P2 Blend Experiments961

We investigate fine-grained P2 blends to determine962

the optimal blend. For these experiments, we use a963

model trained on a P1 blend for 900B tokens (10%964

P2 duration), with a linear LR decay to 0.965

Crawl, Math, & Code: We investigate different966

percentages of high-quality crawl, math, and code967

data as shown in Table 26. Table 28 demonstrates968

that a higher amount of math data (i.e. 30%) helps969

across the board. However, code data results are970

mixed, as too much code without enough math971

(CMC-B1) seems to hurt all non-code metrics. Com-972

paring (CMC-B2) vs. (CMC-B3), more than 15% code973

does not add as much value, as gains saturate. Trad-974

ing off crawl data for more code data also slightly975

hurts MMLU. As such, we decide that a final blend976

consisting of a higher amount of crawl and math977

with a moderate amount of code seems best over-978

all. This corresponds to CMC-B3 in Table 26, which979

consists of 30% crawl, 33% math, and 15% code.980

Task Data: Second, we investigate the inclu- 981

sion of task data. Specifically, adding FLAN and 982

synthetically-generated GSM8K-train data (simi- 983

lar to data augmentation approaches (Feng et al., 984

2021)) to the CMC-B3 blend. Our FLAN data con- 985

sists of a mixture of normal FLAN and FLAN-CoT 986

(chain-of-thought) data. We compare 10 and 20 987

epochs of FLAN. These blends can be found in 988

Table 27, with the results in Table 28. We can see 989

that including synthetic GSM8K-train and FLAN 990

data noticeably improves GSM8K scores while not 991

detrimenting the other benchmarks. In fact, FLAN 992

data also helps further improve MMLU and rea- 993

soning. 20 epochs of FLAN seems better than 10 994

epochs overall. Hence, including task data for P2 995

of training seems to be a good idea. 996

All Data Mixture: Lastly, we investigate a final 997

P2 data mixture which is a combination of all the 998

data sources we tried, including FLAN, GSM8K, 999

and relatively higher amounts of math and code 1000

data. For this experiment, we use 30% upsampling 1001

with LR cosine decay to 3e − 6. This blend can 1002

be found in Table 27, with the results at the bottom 1003

of Table 28.7 We find that mixing all data sources 1004

helps greatly with GSM8K, noticeably with coding 1005

and reasoning, while retaining accuracy on MMLU. 1006

Hence, the final P2 blends we investigate in §4 1007

(Table 3) are motivated by these ablations – they 1008

are blends of all data sources, including task data, 1009

with higher proportions of math and code. 1010

E Annealing Learning Rate Schedule 1011

We investigate different learning rate (LR) sched- 1012

ules for phase P2. Specifically, using the same 1013

P2 blend for a 10% duration, we try different LR 1014

strategies. We compare cosine vs. linear LR decay 1015

functions, and also compare decaying to a final LR 1016

of 0 vs. 3e-6 (1% of the original P1 starting LR of 1017

3e-4). Not decaying LR entirely to 0 leaves room 1018

for post-training, which is likely preferable. 1019

As seen in Table 29, there is a negligible differ- 1020

ence between linear and cosine LR decay, so we 1021

choose cosine decay for consistency with P1. We 1022

also see that LR decay to 3e-6 is comparable to 1023

decaying all the way to 0, while leaving room for 1024

post-training. Hence, our final chosen annealing 1025

strategy is cosine LR decay to 3e-6, which we use 1026

for our final two-phase experiments in §4. 1027

7The CMC-Blend3-30% result at the bottom of Table 28 is
also using 30% upsampling with LR cosine decay to 3e− 6.
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Exp. ARC-Easy ARC-Challenge RACE PIQA WinoGrande HellaSwag OpenBookQA CommonsenseQA Avg.
P1-Blend1 75.97 51.19 36.36 80.96 67.64 76.23 44.00 53.07 59.12
P1-Blend4 77.23 53.24 36.46 80.47 68.35 76.48 44.40 53.15 59.54

P1-Blend1-P2-Blend1 78.32 51.54 36.75 79.76 66.54 76.44 43.80 61.67 60.04
P1-Blend1-P2-Blend2 78.79 53.07 35.69 80.79 67.09 76.52 43.40 61.18 60.15
P1-Blend1-P2-Blend3 79.29 53.16 36.27 79.76 66.77 76.43 42.80 61.43 60.08
P1-Blend1-P2-Blend4 78.37 52.99 36.65 80.30 66.93 76.67 43.80 61.92 60.26
P1-Blend1-P2-Blend5 79.21 52.56 36.75 80.63 67.25 76.64 44.00 61.83 60.41
P1-Blend4-P2-Blend1 80.30 54.95 35.50 79.98 68.35 76.55 43.80 56.59 60.18
P1-Blend4-P2-Blend2 79.92 54.10 35.50 80.20 67.96 76.75 43.80 56.35 60.00
P1-Blend4-P2-Blend3 79.92 54.27 35.12 80.20 67.56 76.39 44.20 57.08 60.08
P1-Blend4-P2-Blend4 79.92 54.27 35.89 80.47 67.25 76.79 43.80 56.18 59.98
P1-Blend4-P2-Blend5 79.29 54.44 37.03 79.98 67.80 76.92 44.80 57.41 60.35

Table 18: Final reasoning evaluation results after P2 of training, broken down by individual benchmark. Corresponds
to Table 7 in §4.

Exp. MMLU Code

STEM Humanities Social Sciences Others Avg. HumanEval HumanEval+ MBPP MBPP+ Avg.
P1-Blend1 45.61 50.24 65.29 61.54 55.00 18.90 13.41 31.52 30.42 23.56
P1-Blend4 48.30 49.88 67.53 62.79 56.25 18.90 16.46 42.80 32.28 27.61

P1-Blend1-P2-Blend1 47.57 51.12 65.88 62.34 56.04 32.32 27.44 42.41 42.59 36.19
P1-Blend1-P2-Blend2 48.65 50.41 65.78 61.67 55.88 31.71 26.83 42.41 42.59 35.89
P1-Blend1-P2-Blend3 47.61 50.69 65.78 61.96 55.80 31.10 25.61 43.97 42.33 35.75
P1-Blend1-P2-Blend4 48.11 50.84 65.81 62.76 56.15 28.66 25.61 42.80 42.86 35.59
P1-Blend1-P2-Blend5 48.94 51.41 66.14 62.28 56.49 28.66 23.78 42.02 43.12 34.40
P1-Blend4-P2-Blend1 49.29 50.35 67.44 62.66 56.58 31.10 24.39 49.42 43.12 37.01
P1-Blend4-P2-Blend2 49.44 50.92 67.47 62.99 56.89 30.49 25.00 49.81 42.59 36.97
P1-Blend4-P2-Blend3 49.19 49.37 66.88 62.60 56.10 27.44 20.73 48.25 44.18 36.15
P1-Blend4-P2-Blend4 49.16 50.84 68.35 63.18 57.03 31.71 23.17 47.47 42.86 36.30
P1-Blend4-P2-Blend5 49.38 50.86 68.18 62.60 56.92 28.66 20.12 45.53 43.92 34.56

Table 19: Final MMLU and code evaluation results after P2 of training, broken down by individual category/bench-
mark. Corresponds to Table 7 in §4.

Exp. ARC-Easy ARC-Challenge RACE PIQA WinoGrande HellaSwag OpenBookQA CommonsenseQA Avg.
BASE 78.75 53.84 35.69 80.30 68.51 76.30 45.40 51.68 59.69
Two-Phase 80.30 54.95 35.50 79.98 68.35 76.55 43.80 56.59 60.18

Table 20: Reasoning evaluation results of our two-phase training approach with P1-Blend4-P2-Blend1 vs. a
randomized mixture of both blends across the entire 1T token training run, broken down by individual benchmark.
Corresponds to Table 4 in §4.

Exp. MMLU Code

STEM Humanities Social Sciences Others Avg. HumanEval HumanEval+ MBPP MBPP+ Avg.
BASE 50.40 49.67 66.49 63.08 56.49 28.66 25.00 44.36 44.18 35.55
Two-Phase 49.29 50.35 67.44 62.66 56.58 31.10 24.39 49.42 43.12 37.01

Table 21: MMLU and code evaluation results of our two-phase training approach with P1-Blend4-P2-Blend1
vs. a randomized mixture of both blends across the entire 1T token training run, broken down by individual
category/benchmark. Corresponds to Table 4 in §4.
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Exp. Tok. ARC-Easy ARC-Challenge RACE PIQA WinoGrande HellaSwag OpenBookQA CommonsenseQA Avg.
P1-Blend4-P2-Blend1 1T 80.30 54.95 35.50 79.98 68.35 76.55 43.80 56.59 60.18
P1-Blend4-P2-Blend1 1.7T 79.84 52.90 36.27 79.65 70.01 77.79 44.80 61.75 60.88
P1-Blend4-P2-Blend6 1.7T 80.09 55.29 37.03 80.79 70.09 78.53 46.00 60.85 61.63

Table 22: Reasoning evaluation results of scaling for 1.7T tokens vs. 1T tokens, with and without high-quality data
epoch adjustment, broken down by individual benchmark. Corresponds to Table 8 in §4.

Exp. Tok. MMLU Code

STEM Humanities Social Sciences Others Avg. HumanEval HumanEval+ MBPP MBPP+ Avg.
P1-Blend4-P2-Blend1 1T 49.29 50.35 67.44 62.66 56.58 31.10 24.39 49.42 43.12 37.01
P1-Blend4-P2-Blend1 1.7T 51.22 52.41 68.74 65.47 58.61 31.10 25.61 48.25 45.50 37.62
P1-Blend4-P2-Blend6 1.7T 52.39 53.41 70.20 66.91 59.85 37.20 28.66 47.08 45.50 39.61

Table 23: MMLU and code evaluation results of scaling for 1.7T tokens vs. 1T tokens, with and without high-quality
data epoch adjustment, broken down by individual category/benchmark. Corresponds to Table 8 in §4.

Model Size ARC-Easy ARC-Challenge RACE PIQA WinoGrande HellaSwag OpenBookQA CommonsenseQA Avg.
8B 80.60 53.50 37.22 80.20 70.17 76.57 45.40 61.67 61.16
25B 82.74 57.59 37.13 81.07 72.38 78.62 47.20 68.55 63.29

Table 24: Reasoning evaluation results for 8B vs. 25B parameter models, using the same blend: P1-Blend4-P2-
Blend1, broken down by individual benchmark. Note that we use a maximum sequence length of 8192 (instead of
4096) for both models here. Corresponds to Table 9 in §4.

Model Size MMLU Code

STEM Humanities Social Sciences Others Avg. HumanEval HumanEval+ MBPP MBPP+ Avg.
8B 50.05 50.82 67.70 64.21 57.31 32.93 28.66 47.47 46.83 38.97
25B 58.07 59.30 77.71 72.48 65.97 37.20 33.54 58.37 53.17 45.57

Table 25: MMLU and code evaluation results for 8B vs. 25B parameter models, using the same blend: P1-Blend4-
P2-Blend1, broken down by individual category/benchmark. Note that we use a maximum sequence length of
8192 (instead of 4096) for both models here. Corresponds to Table 9 in §4.
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Category Domain CMC-B1 CMC-B2 CMC-B3

Web Crawl - 30 15 30

High-Quality
Math 23 33 33
Wiki 2 2 2
Code 25 30 15

Medium-Quality
Books 9 9 9
Papers 11 11 11
CCdv 0 0 0

Multilingual - 0 0 0

Table 26: Finegrained CMC P2 Blends (in %), part 1.

Category Domain CMC-B3-F10ep CMC-B3-F20ep CMC-B3-GSM8K Combo

Web Crawl - 27.1 24.2 30 28.3

High-Quality
Math 33 33 31 33
Wiki 2 2 2 2
Code 15 15 15 15

Medium-Quality
Books 9 9 9 9
Papers 11 11 11 11
CCdv 0 0 0 0

Multilingual - 0 0 0 0

Task Data FLAN 2.9 5.8 0 1
GSM8K 0 0 2 0.7

Table 27: Finegrained CMC P2 Blends (in %), part 2.

Blend/Exp. MMLU Reason. GSM8K Code Avg.
P1-only 56.10 60.64 16.60 16.22 44.48
CMC-B1 49.49 57.79 16.30 21.13 43.76
CMC-B2 55.92 60.52 22.97 21.80 46.45
CMC-B3 56.33 60.48 22.59 21.53 46.34
CMC-B3-F10ep 56.45 62.80 25.70 21.46 47.89
CMC-B3-F20ep 56.75 62.49 26.84 22.05 47.98
CMC-B3-GSM8K 56.27 60.65 35.56 21.52 47.37

CMC-B3-30% 56.30 59.61 32.15 23.51 47.10
Combo 56.22 62.51 45.19 25.58 50.27

Table 28: Results of finegrained P2 experiments. Code
results here average across only HumanEval and MBPP,
but not the + versions of both. Hence, they are not
directly comparable with the paper results elsewhere.

Decay Strategy Final LR MMLU Reason. GSM8K Code Avg.
Linear 0 56.33 61.78 22.59 21.53 46.34
Linear 3e− 6 56.16 61.63 23.35 20.68 46.08
Cosine 0 56.25 61.74 21.91 21.18 46.19
Cosine 3e− 6 56.44 61.79 23.05 20.75 46.17

Table 29: Results of different learning rate annealing
strategies for P2.
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