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Abstract
Nyström low-rank approximation has shown great
potential in processing large-scale kernel matrix
and neural networks. However, there lacks a
unified analysis for Nyström approximation, and
the asymptotical minimax optimality for Nyström
methods usually require a strict condition, assum-
ing that the target regression lies exactly in the hy-
pothesis space. In this paper, to tackle these prob-
lems, we provide a refined generalization analysis
for Nyström approximation in the agnostic set-
ting, where the target regression may be out of the
hypothesis space. Specifically, we show Nyström
approximation can still achieve the capacity-
dependent optimal rates in the agnostic setting. To
this end, we first prove the capacity-dependent op-
timal guarantees of Nyström approximation with
the standard uniform sampling, which covers both
loss functions and applies to some agnostic set-
tings. Then, using data-dependent sampling, for
example, leverage scores sampling, we derive the
capacity-dependent optimal rates that apply to the
whole range of the agnostic setting. To our best
knowledge, the capacity-dependent optimality for
the whole range of the agnostic setting is first
achieved and novel in Nyström approximation.

1. Introduction
In statistical learning theory, only a limited number of input-
output pairs can be observed from a fixed but unknown
distribution. As one of the most popular nonparametric
statistical approaches, the kernel method offers an elegant
paradigm and solid theoretical guarantees (Vapnik, 1999;
Shawe-Taylor & Cristianini, 2004; Li et al., 2022). De-
spite its excellent theoretical properties, the kernel method
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is unfeasible in large-scale settings because of high com-
putational and storage requirements. To overcome these
scalability issues, researchers improved kernel method with
accelerated techniques: distributed learning (Zhang et al.,
2015; Lin et al., 2017), Nyström approximation (Williams
& Seeger, 2001; Rudi et al., 2015) and random features
(Rahimi & Recht, 2007; Rudi & Rosasco, 2017) to alleviate
memory bottlenecks via low-rank approximation, as well
as stochastic and preconditioned extensions (Raskutti et al.,
2014; Lin & Rosasco, 2016) to improve computational effi-
ciency via iterative solutions.

Recent theoretical works have extensively studied the statis-
tical properties of kernel methods together with distributed
learning (Zhang et al., 2013; Guo et al., 2017a; Lin &
Cevher, 2020), Nyström approximation (Bach, 2013; Alaoui
& Mahoney, 2015; Rudi et al., 2015; 2017), random features
(Rudi & Rosasco, 2017; Sun et al., 2018; Li & Liu, 2023;
Liu et al., 2021; Li & Liu, 2023) and stochastic optimization
(Carratino et al., 2018; Lin & Cevher, 2018). Specifically,
the optimal theoretical guarantees for kernel ridge regres-
sion (KRR) (Caponnetto & De Vito, 2007; Smale & Zhou,
2007) and its variants has attracted increasing attentions in
statistical learning, including Nyström approximation (Rudi
et al., 2015), Nyström approximation with stochastic opti-
mization (Rudi et al., 2017), Nyström approximation with
data-dependent sampling (Rudi et al., 2018) and distributed
Nyström approximation (Li et al., 2023), respectively. These
optimal guarantees for KRR rely on a strict assumption that
the concept (the true regression) fρ lies in the hypothesis
space fρ ∈ H associated with the selected kernel. As shown
in Figure 1, since the joint distribution is unknown, it’s hard
to select a perfect kernel to guarantee the realistic setting
fρ ∈ H via prior knowledge or kernel selection. In practice,
as stated in PAC theories (Maass, 1994; Auer et al., 1995),
the selected kernel is usually imperfect but good enough to
approximate the true regression and thus leads to the agnos-
tic learning fρ /∈ H. Therefore, the statistical guarantees in
the agnostic setting are of practical and theoretical interest
in the context of kernel methods.

Nyström methods sample landmarks to generate low-rank
approximation of large matrix. Remarkably, Nyström
method is not only used in kernel matrix approximation
but also has shown significant potentials in accelerating
complex neural network models, such as Nyströmformer
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(a) Realistic setting (b) Agnostic setting

Figure 1. In in the realistic setting, the concept class is a subset of hypothesis space C ⊆ H and thus the concept belongs to the hypothesis
space fρ ∈ H. In the agnostic setting, the concept class is larger than the hypothesis space and there exists the situation fρ /∈ H.

(Xiong et al., 2021) and Nyström attention (Samarakoon &
Leung, 2022). Therefore, in this work, we focus on the opti-
mal statistical guarantees for Nyström approximation in the
agnostic learning. From the perspective of generalization
analysis, the sharp generalization error bounds in expecta-
tion for a fixed design regression setting were derived in
(Bach, 2013; Alaoui & Mahoney, 2015), and then (Rudi
et al., 2015) extended the former literature to the random de-
sign kernel ridge regression with high probability estimates.
However, these optimal statistical guarantees assumed that
the target function belongs to the reproducing kernel Hilbert
space (RKHS) generated by the selected kernel, which only
applied to the realistic setting. Recent works (Kriukova et al.,
2017; Lu et al., 2019) derived the generalization guarantees
for Nyström approximation in the agnostic setting, but they
are either capacity-independent (Kriukova et al., 2017) or
suboptimal (Lu et al., 2019). However, the existing capacity-
independent optimality works in agnostic learning faced a
fatal drawback: Since it doesn’t measure the capacity of
the RKHS, the capacity-independent learning rates obtained
in the above literature are suboptimal when the size of the
RKHS is small. Therefore, the capacity-dependent optimal-
ity for Nyström approximation with general loss functions
in agnostic settings is rather important but still an open
problem. In this paper, we aim to derive general optimal
statistical guarantees for Nyström approximation, includ-
ing the following improvements: 1) The optimal statistical
guarantees apply to both realistic settings and agnostic set-
tings; 2) The optimal rates are capacity-dependent, where
the capacity-independent results are the special cases.

1.1. Related Work

The related work includes: Nyström approximation and
leverage scores sampling.

1) Nyström approximation. Nyström approximation is a
common tool to approximate kernel matrix with low-rank de-
composition (Williams & Seeger, 2001; Drineas et al., 2012).
The approximation ability of Nyström approaches has been
theoretically analyzed by many literature (Drineas & Ma-
honey, 2005; Drineas et al., 2012; Gittens & Mahoney, 2013;
Cohen et al., 2015). From the perspective of generalization

ability, the optimal generalization properties in expectation
were achieved for Nyström approximation for fixed design
regression with uniform sampling in (Bach, 2013) and with
data-dependent sampling (Alaoui & Mahoney, 2015), while
(Rudi et al., 2015) extended these results to the random
design and the high probability estimates. Nyström approx-
imation was incorporated with preconditioned conjugate
gradient (PCG) method to achieve better computational effi-
ciency (Rudi et al., 2017). The analysis was also extended
into coefficient based regularization (Ma et al., 2019) and
manifold regularization (Sivananthan et al., 2020).

2) Leverage scores sampling. Statistical leverage scores
that measure the matrix coherence have also proved crucial
recently in the development of improved worst-case random-
ized matrix algorithms (Boutsidis et al., 2009; Drineas et al.,
2012). To accelerate the computation of leverage scores,
researchers proposed several approximate leverage scores al-
gorithms, including RLS-Nyström (Musco & Musco, 2017),
SQUEAK (Calandriello et al., 2017), BLESS (Rudi et al.,
2018) and spectral analysis via the Fourier transform (Chen
& Yang, 2021).

3) Agnostic Kernel Learning. The capacity-independent
optimal results for the agnostic kernel learning have been es-
tablished for KRR (Smale & Zhou, 2007), random features
(Sun et al., 2018), Nyström approximation (Kriukova et al.,
2017) and distributed kernel ridge regression (DKRR) (Sun
& Wu, 2021). In particular, recent works (Kriukova et al.,
2017; Lu et al., 2019) studied the generalization properties
of Nyström approximation for the agnostic setting, namely
low smoothness of target function fρ, but the convergence
rates of these results are capacity-independent (Kriukova
et al., 2017) or suboptimal (Lu et al., 2019). The capacity-
dependent optimal results of Nyström approximation for
agnostic learning have been scarcely studied.

1.2. Contributions

In this paper, we aim to provide optimal theoretical guar-
antees to the agnostic setting for KRR-Nyström. For the
sake of comparison, we first restate the existing general-
ization bound for KRR-Nyström (Rudi et al., 2015). With
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tighter estimates for the similarity between empirical and
expected covariance operators and the sample variance, we
refine the theoretical guarantees for KRR-Nyström, which
improves applicability to the agnostic setting. Specifically,
we derive the theoretical guarantees for uniform sampling
(the worst case) and data-dependent sampling (the benign
case), respectively.

1) On the statistical front: capacity-dependent optimal-
ity for the agnostic setting. The existing work on capacity-
dependent optimal rates for KRR methods (Caponnetto &
De Vito, 2007; Rudi et al., 2015; Guo et al., 2017b) focused
on the easy problems in the realistic setting, assuming the
target regression lies in the induced kernel space. However,
the target regression is usually out of the induced kernel
space for complicated tasks. The existing works studied the
statistical properties for KRR methods, but the rates are ei-
ther capacity-independent (Smale & Zhou, 2007; Kriukova
et al., 2017) or suboptimal (Lu et al., 2019). In this paper,
by relaxing the restriction on the regularity assumption, we
prove the capacity-dependent optimality for KRR-Nyström
that applies to both realistic and agnostic settings.

2) On the computational front: tradeoffs of accelerated
techniques. The classical Nyström approximation methods
(Rudi et al., 2015; 2017; 2018) focused on the number of
Nyström centers. In this paper, we throughout study the
computational efficiency with Nyström approximation, data-
dependent sampling, and PCG.

3) Novel proof techniques. Using explicit intermediate
estimators, we introduce a novel error decomposition for
the excess risk to achieve tighter generalization analysis for
KRR-Nyström. The similarity of covariance operators and
sample variance are two bottleneck factors to relax the re-
striction on the applicability to the agnostic setting. Instead
of second order decomposition of the operator similarity in
(Guo et al., 2017b; Lin et al., 2017), we directly estimate it
via concentration inequalities for self-adjoint operators. We
also consider a tighter estimate for the maximal effective
dimension via data-dependent sampling, which guarantees
tighter estimate by data-dependent sampling.

2. Backgrounds
We consider the supervised learning problem of estimating
a predictive function from a fixed but unknown distribution
ρ over a probability space X × Y , where X is the input
space and Y is the output space. The training set D =
{(xi, yi)}ni=1 is drawn i.i.d from X × Y w.r.t. ρ. For the
regression tasks, the output space is Y = R. We denoteH
a reproducing kernel Hilbert space (RKHS) (Steinwart &
Christmann, 2008) induced by a Mercer kernel K : X ×
X → R thatH = span{Kx|x ∈ X} completed with

〈Kx,Kx′〉K = K(x,x′) ∀x,x′ ∈ X .

Here, the inner product in H is denoted as 〈·, ·〉K and the
corresponding norm ‖ · ‖K .

2.1. Kernel Ridge Regression (KRR)

KRR is a standard nonparametric regression in supervised
learning (Vapnik, 1999; Shawe-Taylor & Cristianini, 2000),
which can be stated as

arg min
f∈H

{
1

n

n∑
i=1

(f(xi)− yi)2 + λ‖f‖2K

}
, (1)

where the square loss is used and λ is the regularization
parameter. The representer theorem for kernel methods
(Schölkopf et al., 2001) illustrate that KRR admits a unique
closed form solution

f̂λ(x) =

n∑
i=1

αiK(xi,x) with

α = (Knn + λnI)−1yn,

(2)

where Knn = [K(xi,xj)]
n
i,j=1 is the n× n kernel matrix

and yn = [y1, · · · , yn]>.

Although KRR has been proven with optimal learning
bounds (Smale & Zhou, 2007; Caponnetto & De Vito, 2007),
it is unfeasible in large-scale settings due to high computa-
tional complexity. Precisely, KRR requires O(n3) time to
solve the inverse of Knn +λnI andO(n2) space to storage
Knn. To reduce the computational costs, we introduce KRR
with Nyström approximation (KRR-Nyström).

2.2. KRR with Nyström Method (KRR-Nyström)

To relieve the computational bottlenecks, several approxi-
mate approaches were incorporated with KRR that reduce
the computational complexity while keeping the optimal
generalization properties, including distributed learning
(Zhang et al., 2015; Lin et al., 2017), Nyström subsampling
(Rudi et al., 2015) and random features (Rudi & Rosasco,
2017). However, the computational efficiency of those work
can be further improved by their combinations.

Nyström methods use {x̃1, · · · , x̃M} the subset of the input
points from n the training samples and M ≤ n (Williams &
Seeger, 2001). The solution of KRR-Nyström is

f̂M,λ(x) =

M∑
i=1

αiK(x̃i,x) with

α = (K>nMKnM + λnKMM )†K>nMyn,

(3)

where † denotes the Moore-Penrose pseudoinverse of a ma-
trix, and (KnM )ij = K(xi, x̃j), (KMM )kj = K(xk,xj)
with i ∈ {1, · · · , n} and j, k ∈ {1, · · · ,M}. Nyström
methods are different from the sampling strategies to se-
lect the input subset, mainly including uniform sampling
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and sampling with approximate leverage scores (Rudi
et al., 2015; 2017). The sharp generalization properties
of Nyström approximation with different sampling strate-
gies have been proven, including both uniform sampling
(Bach, 2013) and data-dependent sampling (Alaoui & Ma-
honey, 2015). The closed-form solution of KRR-Nyström
requires O(nM2 +M3) time and O(nM) space.

2.3. Sampling Strategies for Nyström Landmarks

The sampling strategy for Nyström landmarks
{x̃1, · · · , x̃M} is crucial to the approximation abil-
ity of Nyström methods. Alaoui et al. proposed the leverage
sampling for Nyström approximation (Alaoui & Mahoney,
2015). Let n ∈ R, λ > 0. Let x1, · · · ,xn be the training
points and the exact leverage scores are defined by

lλ(i) =
(
Knn(Knn + λnI)−1

)
ii
, ∀ i ∈ [n]. (4)

In practice, the compute of leverage scores is overly time
consuming. Recent work considered approximate leverage
scores l̂λ(i), for example Recursive-RLS (Musco & Musco,
2017), SQUEAK (Calandriello et al., 2017), BLESS (Rudi
et al., 2018), and SA (Chen & Yang, 2021). We recall
the Recursive-RLS which defined the approximate leverage
scores as l̂λ(i) = 2

3 (B(B>ŜŜ>B + λI)−1B>)ii, where
Ŝ is the sample matrix given by Recursive-RLS approach
and BB> = K. Nyström centers are selected according to
the probability pi = l̂λ(i)∑n

i=1 l̂λ(i)
. To measure the sampling

complexity for approximate leverage score approaches, we
introduce the empirical effective dimension.

Definition 2.1 (Empirical effective dimension (Alaoui &
Mahoney, 2015)). The exact leverage scores lλ(i),∀i ∈ [n]
are defined in (4), and then we define empirical effective
dimension as

Ñ (λ) =

n∑
i=1

lλ(i) = Tr
(
Knn(Knn + λnI)−1

)
,

Ñ∞(λ) = n max
1≤i≤n

lλ(i)

= n
∥∥diag

(
Knn(Knn + λnI)−1

)∥∥
∞ .

As illustrated in BLESS (Rudi et al., 2018), the time
complexity for approximate leverage scores sampling is
O(Ñ (λ)2/λ), which often plays an dominant role for data-
dependent sampling Nyström methods. The above empirical
averaged effective dimension Ñ (λ) was proposed to analyze
the generalization performance of Nyström approximation
with uniform sampling (Bach, 2013), while the empirical
maximal effective dimension Ñ∞(λ) was used to derive the
generalization performance of Nyström approximation with
data-dependent sampling (Alaoui & Mahoney, 2015).

3. Main Results
In this section, we first recover the existing bounds for
KRR-Nyström in (Rudi et al., 2015). We then present our
theoretical results for KRR-Nyström, which applies to the
agnostic settings that the true regression may not lie in the
hypothesis space. We then consider the worst case (with
uniform sampling) of the main result, which applies to one
half agnostic settings. We finally derive the benign case
(with data-dependent sampling) that characterizes signifi-
cant computational gains and pertains to the whole range of
source condition (all agnostic settings).

The learning target of KRR is to find a predictor that mini-
mizes the expected risk

E(f) =

∫
X×Y

(f(x)− y)2dρ(x, y). (5)

The regression function that minimizes the expected risk
over all measurable functions f : X → R is given by

fρ(x) =

∫
Y
ydρ(y|x), ∀x ∈ X . (6)

Here, fρ is the true regression without noise labels and
belongs to the Hilbert space of square integral functions
L2
ρX = {f : X → R | ‖f‖2ρ =

∫
|f(x)|2dρX < ∞}

with respect to ρX , where the L2
ρX -norm is defined as

‖f‖2ρ = 〈f, f〉ρ =
∫
X
|f(x)|2dρX(x), ∀f ∈ L2

ρX . The
generalization ability of a KRR estimator f ∈ L2

ρX is mea-
sured by the excess risk, i.e. E(f)−E(fρ). Throughout this
paper, we assume the outputs are bounded almost surely
for some constant B > 0 and X is compact, which implies
‖fρ‖∞ ≤ B. We assume K(x,x) ≤ κ2 <∞,∀ x ∈ X .

Definition 3.1 (Integral operator and covariance operator).
We define the integral operator L : L2

ρX → L2
ρX and the

covariance operator C : H → H as

(Lf)(·) =

∫
X

K(x, ·)f(x)dρX(x), ∀ f ∈ L2
ρX (X, ρX),

〈h,Cg〉 =

∫
X

h(x)g(x)dρX(x), ∀ g, h ∈ H.

The covariance matrix Ĉn : H → H, Ĉn = 1
n

∑n
i=1Kxi⊗

Kxi is the empirical version of covariance operator.

Definition 3.2 (Expected effective dimension). For λ >
0, we define the random variable Nx(λ) = 〈Kx, (C +
λI)−1Kx〉 with x ∈ X drawn from ρX . Finally define
the following quantities

N (λ) = E Nx(λ), N∞(λ) = sup
x∈X
Nx(λ)

The quantity N (λ) = Tr(C(C + λI)−1) = Tr(L(L +
λI)−1) is also called degree of freedom, which has been
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widely used to measure the capacity of the RKHSH in ex-
pectation (Zhang, 2002; Caponnetto & De Vito, 2007; Bach,
2013; Della Vecchia et al., 2021). The maximal effective
dimension N∞(λ) is used to provide a uniform bound on
the leverage scores and it holds N (λ) ≤ N∞(λ) ≤ κ2λ−1
(Rudi et al., 2015).

Assumption 3.3 (Regularity assumption). Assume there
exists R > 0, r > 0, and g ∈ L2

ρX , such that

fρ = Lrg,

where ‖g‖ρ ≤ R and the operator Lr denotes the r-th power
of the integral operator L : L2

ρX → L2
ρX , thus it is also a

positive trace class operator.

The regularity assumption is also called source condition,
where the value of r measures the smoothness of fρ (Lu
et al., 2019). If the target function is with high smoothness
r ∈ [1/2, 1], corresponding to the realistic setting fρ ∈ H
where the problems are easier. The low smoothness case
r ∈ (0, 1/2) corresponds to the agnostic setting fρ /∈ H
that are more general in real tasks. Only with the source
condition, KRR-type methods achieve the optimal capacity-
independent rateO(n

−2r
2r+1 ) (Smale & Zhou, 2007; Kriukova

et al., 2017; Sun & Wu, 2021).
Remark 3.4. From Assumption 3.3, the concept class can
be stated as C = Lr(L2

ρX ) and the hypothesis space
H = L1/2(L2

ρX ) (Steinwart & Christmann, 2008). We
denote the concept class as C = Lr(L2

ρX ) where the con-
cept class contains the target regression fρ ∈ C. We also
define Hρ = {f : X → R|f(x) = 〈w,Kx〉, ∀w ∈ H}
as the projection of the RKHS H on L2

ρX . Specifically,
because La(L2

ρX ) ⊆ Lb(L2
ρX ) when a ≥ b (Lin & Rosasco,

2016; 2017), the bigger r is, the stricter the assumption is.
We discuss Assumption 3.3 in four cases:

• If r = 0, we make no assumption due to ‖fρ‖ρ ≤ R.

• If r = 1/2, sinceHρ = L1/2(L2
ρX ) (Rosasco & Villa,

2015), we obtain fρ ∈ Hρ.

• If r ∈ (1/2, 1], using the fact La(L2
ρX ) ⊆ Lb(L2

ρX )

when a ≥ b, we have C = Lr(L2
ρX ) ⊆ L1/2(L2

ρX ) =
Hρ and thus fρ ∈ Hρ, as shown in Figure 1 (a).

• If r ∈ (0, 1/2), using La(L2
ρX ) ⊆ Lb(L2

ρX ) when
a ≥ b, we have Hρ = L1/2(L2

ρX ) ⊆ Lr(L2
ρX ) = C

which exists fρ /∈ Hρ, as shown in Figure 1 (b).

Note that, many integral operator theory work makes the
assumption on the existence of the minimizer E(fH) =
minh∈H E(f) and the excess risk is stated as E(f)−E(fH)
rather than E(f) − E(fρ). Under the assumption r ∈
[1/2, 1], fρ belongs to H, such that fH = fρ (Steinwart

& Christmann, 2008). The optimal learning guarantees for
Nyström (Rudi et al., 2015) only pertain to fρ ∈ H in the re-
alistic setting r ∈ [1/2, 1], assuming the problem cannot be
too difficult. In this paper, we employ the target regression
fρ instead of fH and study the optimal statistical guarantees
on both the realistic and agnostic setting r ∈ (0, 1].

Assumption 3.5 (Capacity assumption). Assume Q > 0
and γ ∈ [0, 1], such that

N (λ) ≤ Q2λ−γ .

The above capacity assumption is satisfied when the eigen-
values σi of covariance operator C decays polynominally
σi ≤ i−1/γ . More examples for the capacity assumption
are referred to (Alaoui & Mahoney, 2015; Rudi et al., 2015).
Note that, Assumption 3.5 always holds for the capacity-
independent case γ = 1 as the covariance operator C is
trace class. Under Assumptions 3.3 and 3.5, KRR and its
accelerated variants reach the minimax optimal capacity-
dependent rate O(n

−2r
2r+γ ) (Caponnetto & De Vito, 2007;

Rudi et al., 2015; Rudi & Rosasco, 2017; Guo et al., 2017b).
However, the conventional optimal generalization analysis
for kernel methods focused on the realistic setting (Capon-
netto & De Vito, 2007; Rudi et al., 2015; Guo et al., 2017b).

3.1. Existing Theoretical Results for KRR-Nyström

Proposition 3.6 (Nyström approximation with the squared
loss, Theorem 1 in (Rudi et al., 2015)). Assume there exists
E(fH) = min

f∈H
E(f), K(x,x) ≤ κ2 with κ ∈ [1,+∞) and

the outputs are bounded. Under Assumptions 3.3 and 3.5, if

r ∈ [1/2, 1], γ ∈ [0, 1],

and λ = n−
1

2r+γ , then with a high probability the follow-
ing conditions M & N∞(λ) for uniform sampling and
M & N (λ) for data-dependent sampling are sufficient to
guarantee the optimal learning rate, respectively

E(f̂M,λ)− E(fH) = O
(
n−

2r
2r+γ

)
.

Although the existing generalization bound for KRR-
Nyström above achieved the optimal learning rates
O
(
n−

2r
2r+γ

)
(Caponnetto & De Vito, 2007; Wainwright,

2019), it only pertained to the realistic setting r ∈ [1/2, 1].

To qualify the computational efficiency of Nyström approxi-
mation, we compute computational complexities for KRR
as an example. Since the fact M ≤ n, the computation
of KRR-Nyström (3) requires O(nM2) time to solve the
linear system and O(nM) space to store KnM . Therefore,
with M & N∞(λ) and the fact N∞(λ) ≤ κ2/λ, the com-
putational complexities for KRR-Nyström with uniform
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(a) Uniform sampling
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(b) Leverage scores sampling

Figure 2. Computational complexities and applicable area of KRR-Nyström in Proposition 3.6 with the uniform sampling (left) and with
the leverage scores sampling (right).

sampling (Bach, 2013) are:

Time: O
(
n

2r+γ+2
2r+γ

)
, Space: O

(
n

2r+γ+1
2r+γ

)
. (7)

Data-dependent sampling introduces additional computa-
tions, for example, BLESS requires to compute leverage
scores of time O(Ñ (λ)2/λ) (Rudi et al., 2018).

Since Proposition 3.6 assumes that r ≥ 1/2 and γ ∈ [0, 1],
it holds the fact 2r+ 3γ ≥ 1 + 2γ and thus the computation
of the closed-form KRR-Nyström O(n

2r+3γ
2r+γ ) dominates

the computational complexity. We depict the computational
complexities of Proposition 3.6 in Figure 2.
Remark 3.7. The existing bounds for KRR-Nyström (Rudi
et al., 2015) has one fatal drawback: the above theoretical
result is only applicable to the realistic setting r ∈ [1/2, 1]
assuming fρ ∈ H, and fails to apply to the agnostic setting
r ∈ (0, 1/2) where the concept fρ may not belongs to the
hypothesis spaceH.

3.2. Refined Results for KRR-Nyström

To relax the restriction r ≥ 1/2, we introduce the compati-
bility assumption for tighter estimate of maximal effective
dimension N∞(λ). We introduce high probability excess
risk bounds in following theorems for KRR-Nyström.

Assumption 3.8 (Compatibility assumption). Assume there
exists α ∈ [γ, 1] and F > 0, such that

N∞(λ) ≤ Fλ−α.

Note that, the effective dimension N (λ) provides an mea-
sure of the average capacity ofH while the quantityN∞(λ)
considers the worst case. Since the covariance operator
C is a trace class, Assumption 3.8 are always satisfied
with γ = α = 1. Specifically, if the kernel is bounded
supx∈X K(x,x) ≤ κ2, the effective dimensions are up-
per bounded by N (λ) ≤ N∞(λ) = supx∈X 〈Kx, (C +
λI)−1Kx〉 ≤ κ2/λ. To obtain a fine-grained estimate for

N∞(λ), Rudi and Rosasco introduced compatibility as-
sumption N∞(λ) = O(λ−α) for random features (Rudi
& Rosasco, 2017), where γ ≤ α ≤ 1. Note that,
N∞(λ) . λ−α is slightly stronger than the basic condi-
tion N∞(λ) . λ−1 but reasonable.

The worst case is α = 1 with the uniform sampling and the
benign case is α = γ when N∞(λ) is close to N (λ) with
the data-dependent sampling. Following Example 2 of (Rudi
& Rosasco, 2017), one can obtain the favorable situation
α = γ when the Nyström centers are sampled according
to the probability q(x) = Nx(λ)/N (λ). Intuitively, the
leverage score lλi (KNN ) is the empirical version of the
probability q(x) given the training sample {xi}ni=1.

Theorem 3.9. Assume κ > 1 such that K(x,x) ≤ κ2 and
the outputs are bounded. Under Assumption 3.3, 3.5 and
3.8, if γ ∈ [0, 1], r ∈ (0, 1], 2r + γ ≥ α and λ = n−

1
2r+γ ,

then the following condition

M & n
α

2r+γ ,

are sufficient to guarantee, with a high probability, that

E(f̂M,λ)− E(fρ) = O
(
n−

2r
2r+γ

)
.

Here f̂M,λ is the estimator of KRR-Nyström (3) and fρ is
the target regression.

Compared to Theorem 1 in (Rudi et al., 2015), the optimal
learning guarantees for KRR-Nyström in Theorem 3.9 per-
tain to the agnostic setting r ∈ (0, 1] with the condition
2r + γ ≥ α, beyond the realistic setting r ∈ [1/2, 1] for the
first time. Due to the fact γ ≤ α ≤ 1, both the worst case
(uniform sampling) and the benign case (data-dependent
sampling) are special cases of Theorem 3.9.
Remark 3.10. Compared with the existing work in KRR
(Guo et al., 2017a; Müecke, 2019), KRR-Nyström (Rudi
et al., 2015) and KRR-Nyström (Rudi et al., 2015), we relax
the strict restriction from r ≥ 1/2 to 2r + γ ≥ α, applying
to the agnostic setting that the target regression fρ may be
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(a) Uniform sampling
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(b) Leverage scores sampling

Figure 3. Computational complexities and applicable area of KRR-Nyström with the uniform sampling (Corollary 3.12, left) and with the
leverage scores sampling (Corollary 3.15, right).

out of the kernel space H. The improvements come from
novel proof techniques: 1) We introduce tighter estimate
of the key quantity ‖(C + λI)−1/2(Ĉn + λI)1/2‖ via the
concentration inequality for self-adjoint operators, leading
to the restriction 2r + γ ≥ α; 2) Using Assumption 3.8 and
Bennett’s inequality, we estimate sample variance tightly
and relax the constraint from 2r + 2γ ≥ 1 to 2r + 2γ ≥ α.
Combining the restrictions 2r + γ ≥ α and 2r + 2γ ≥ α,
we obtain that 2r + γ ≥ α.

Using Ω(n
α

2r+γ ) Nyström centers, the computational com-
plexities of Theorem 3.9 are:

Time : O
(
n

2r+γ+2α
2r+γ

)
, Space : O

(
n

2r+γ+α
2r+γ

)
. (8)

Remark 3.11 (Discussion about the integration with PCG).
Nyström approximation was often integrated with precondi-
tioned conjugate gradient (PCG) methods to reduce the time
complexity, for example FALKON (Rudi et al., 2017), and
FALKON-BLESS (Rudi et al., 2018). The use of FALKON
still remains the optimal guarantees. The time complexity of
KRR-Nyström with PCG isO(nMt+M3) = O(n

2r+γ+α
2r+γ +

n
3α

2r+γ ), where we omit the log term t = log(n). There-
fore, PCG can improve the computational efficiency for
the closed-form solution of KRR-Nyström. However, to
achieve smaller effective dimension N∞(λ) with α = γ,
we make use of leverage scores sampling and it consumes
O(Ñ (λ)2/λ) = O(n

1+2γ
2r+γ ) time to sample Nyström centers.

From Theorem 3.9, the sampling complexity dominates the
computational costs for the data-dependent sampling for the
agnostic setting r ∈ (0, 1).

Corollary 3.12 (Nyström approximation with uniform sam-
pling). Assume K(x,x) ≤ κ2, ∀κ > 1 and the outputs are
bounded. Under Assumptions 3.3 and 3.5, if

r ∈ (0, 1], γ ∈ [0, 1], 2r + γ ≥ 1

and λ = n−
1

2r+γ , then the condition M & n
1

2r+γ , is suffi-
cient to guarantee, with a high probability, that

E(f̂M,λ)− E(fρ) = O
(
n−

2r
2r+γ

)
.

Here f̂M,λ is the estimator of KRR-Nyström (3) with uniform
sampling and fρ is the target regression.

Instead of r ∈ [1/2, 1], the optimal guarantees apply to
the agnostic setting with the constraint 2r + γ ≥ 1. We
report the computational complexities and the applicability
for Corollary 3.12 in the left of Figure 3.
Remark 3.13 (Nyström approximation in the agnostic set-
ting). Recent work also studied the low smoothness of
Nyström subsample (Kriukova et al., 2017; Lu et al.,
2019) for misspecified models (the agnostic setting in this
work). However, the learning rates in their works are either
capacity-independent (Kriukova et al., 2017) or suboptimal
(Lu et al., 2019). Those two low smoothness studies on
Nyström approximation are special cases of Corollary 3.12.
Remark 3.14 (Beyond square loss). The statistical-
computational tradeoffs of low-rank approximation for ker-
nel methods have ben recently explored for the Lipschitz
loss, including Nyström approximation (Della Vecchia et al.,
2021) and random features (Li et al., 2019; 2021; Yashima
et al., 2021; Li, 2022). However, these works focused on
the realistic setting where the target funciton belongs to the
RKHS and requires more assumptions, i.e. Bernstein con-
dition and fast eigendecay. Specifically, Nyström approxi-
mation with convex Lipschitz loss functions (Della Vecchia
et al., 2021) where it only considered a special source condi-
tion r = 1/2. The proof techniques presented here can also
be used to prove the fast rates for Lipschitz loss functions.
For example, motivated by (Sun et al., 2018; Li et al., 2021;
Li, 2022), one can bridge the excess risk for Lipschitz losses
with the squared error by introducing an intermedia esti-
mator. We leave the fast rates for agnostic Nyström kernel
learning with the Lipschitz loss functions in future work.

Corollary 3.15 (Nyström approximation with data-depen-
dent sampling). Assume K(x,x) ≤ κ2, ∀κ > 1 and the
outputs are bounded. Under Assumptions 3.3 and 3.5, if

r ∈ (0, 1], γ ∈ [0, 1]

and λ = n−
1

2r+γ , then the following condition M & n
γ

2r+γ

7
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Table 1. Summary of statistical and computational properties for related work.

Approaches Regularity condition Capacity
condition

# Random
centers M Learning rate

KRR (Caponnetto & De Vito, 2007) r ∈ [1/2, 1] γ ∈ [0, 1] × n
−2r
2r+γ

KRR (Smale & Zhou, 2007) r ∈ (0, 1] γ = 1 × n
−2r

(2r∨1)+1

RF-Uniform (Rudi & Rosasco, 2017) r ∈ [1/2, 1] γ ∈ [0, 1] n
(2r−1)γ+1

2r+γ n
−2r
2r+γ

RF-Leverage (Rudi & Rosasco, 2017) r ∈ [1/2, 1] γ ∈ [0, 1] n
2r+γ−1
2r+γ n

−2r
2r+γ

Nyström-Uniform (Rudi et al., 2015) r ∈ [1/2, 1] γ ∈ [0, 1] n
1

2r+γ n
−2r
2r+γ

Nyström-Leverage (Rudi et al., 2015) r ∈ [1/2, 1] γ ∈ [0, 1] n
γ

2r+γ n
−2r
2r+γ

FALKON-Uniform (Rudi et al., 2017) r ∈ [1/2, 1] γ ∈ [0, 1] n
1

2r+γ n
−2r
2r+γ

FALKON-Leverage (Rudi et al., 2018) r ∈ [1/2, 1] γ ∈ [0, 1] n
γ

2r+γ n
−2r
2r+γ

Nyström (Kriukova et al., 2017) r ∈ (0, 1] γ = 1
√
n n

−2r
2r+1

Nyström (Lu et al., 2019) r ∈ (0, 1] γ ∈ [0, 1] n n
β−1
2

DKRR-CM (Lin et al., 2020) r ∈ (0, 1], 2r + γ ≥ 1 γ ∈ [0, 1] × n
−2r
2r+γ

Nyström (Theorem 3.9) r ∈ (0, 1], 2r + γ ≥ α γ ∈ [0, 1] n
α

2r+γ n
−2r
2r+γ

Nyström-Uniform (Corollary 3.12) r ∈ (0, 1], 2r + γ ≥ 1 γ ∈ [0, 1] n
1

2r+γ n
−2r
2r+γ

Nyström-Leverage (Corollary 3.15) r ∈ (0, 1] γ ∈ [0, 1] n
γ

2r+γ n
−2r
2r+γ

Here, α ∈ [γ, 1], “RF” represents the random features methods, “Uniform” denotes the uniform sampling, “Leverage” represents the
data-dependent sampling and “DKRR-CM” represents distributed kernel ridge regression (DKRR) with multiple communications.

is sufficient to guarantee, with a high probability, that

E(f̂M,λ)− E(fρ) = O
(
n−

2r
2r+γ

)
.

Here f̂M,λ is the estimator of KRR-Nyström (3) with lever-
age scores sampling (4) and fρ is the target regression.

As shown in Corollary 3.15, we remove the restriction
on the range of source condition and extend the opti-
mal theoretical guarantees to the entire agnostic setting
r ∈ (0, 1/2]. The time complexity for data-dependent sam-
pling is O

(
n

2r+3γ
2r+γ + n

1+2γ
2r+γ

)
. As shown in the right of

Figure 3, Corollary 3.15 provides significant computational
gains and apply to all agnostic settings via data-dependent
sampling.

4. Comparison and Discussion
In this section, we compare this work with the existing theo-
retical work for KRR and discuss the technical contributions.
Compared with related work in Table 1, the theoretical find-
ings remove the strict condition r ≥ 1/2 and enlarge the
applicability area of Nyström approaches:

• Capacity-dependent optimality. Compared to recent
Nyström approximation in the agnostic setting, this
work achieves the capacity-dependent optimality in all
agnostic setting, while the learning rate of (Kriukova

et al., 2017) is capacity-independent and that of (Lu
et al., 2019) is suboptimal.

• Uniform sampling. The existing low-rank approx-
imation literature (Rudi et al., 2015; 2017; Rudi &
Rosasco, 2017) with uniform sampling only applies to
the realistic setting r ∈ [1/2, 1]. We extend the optimal
rates for the uniform sampling from the realistic setting
r ∈ [1/2, 1] to a part of agnostic setting 2r + γ ≥ 1,
where the sample complexity is related to the maximal
effective dimension N∞(λ) (Bach, 2013).

• Data-dependent sampling. Using data-dependent
sampling for Nyström centers, one can prove
N∞(λ) = N (λ) ≤ O(λ−γ) (Alaoui & Mahoney,
2015; Rudi & Rosasco, 2017; Rudi et al., 2017; 2018).
We enlarge the applicable area of the optimal rates
from only the realistic setting r ∈ [1/2, 1] to the whole
range of the source condition r ∈ (0, 1].

• Compared to DKRR-CM (Lin et al., 2020). Our
paper studied the optimality of the Nyström method,
while (Lin et al., 2020) focused on the optimality of
DKRR that cannot be directly applied to the Nyström
method. Our study has a broader applicable area and
relaxed constraints from 2r+γ ≤ 1 (Lin et al., 2020) to
2r+γ ≤ α, where 2r+γ ≤ 1 is the worst case of Theo-
rem 3.9. We employ data-dependent sampling to cover
all agnostic cases r ∈ (0, 1] in Corollary 3.15. The
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error analysis differs due to the inclusion of Nyström
error in our paper.

The theoretical gains of this work comes from two aspects:

• Explicit intermediate estimators and tight error de-
composition. In the existing KRR work (Caponnetto
& De Vito, 2007; Rudi et al., 2015; Guo et al., 2017b),
various intermediate estimators were also introduced in
Definition A.11, thus we illustrate the source of errors
and the approximation relationships between several
estimators (more details can be found in Proposition
A.12). Then, in Lemma A.13, we tightly decompose
the excess risk into: sample variance, Nyström error,
empirical error and approximation error.

• Tight estimate for sample variance ‖f̂M,λ − f̃M,λ‖.
The existing KRR relevant work (Caponnetto &
De Vito, 2007; Rudi et al., 2018; 2017; Guo et al.,
2017b) applied a relatively loose estimate for the sam-
ple variance

‖f̂M,λ − f̃M,λ‖ .
1

n
√
λ

+

√
N (λ)

n
. (9)

In this paper, using Bennett’s inequality, we provide a
novel estimate for sample variance for the first time

‖f̂M,λ − f̃M,λ‖ .
√
N∞(λ)

n
+

√
N (λ)

n
. (10)

5. Conclusion
Based on the integral operator techniques, the minimax
convergence rates for KRR and KRR variants have been
proven in the realistic setting. The existing studies required
a strict restriction on the target regression, assuming the
concept lies exactly in the hypothesis space. However, ac-
cording to the PAC theories, this assumption is relatively
unreasonable since the joint distribution is unknown and the
hypothesis space is usually biased. Therefore, this work ex-
plores the optimal statistical guarantees for Nyström-KRR
in the agnostic setting, where the concept may be out of the
hypothesis space. Overall, the techniques presented in this
paper pave the way for studying other types of KRR relevant
for the theoretical understanding of agnostic learning.
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Lu, S., Mathé, P., and Pereverzyev Jr, S. Analysis of regular-
ized nyström subsampling for regression functions of low
smoothness. Analysis and Applications, 17(06):931–946,
2019.

Ma, L., Shi, L., and Wu, Z. Nyström subsampling method
for coefficient-based regularized regression. Inverse Prob-
lems, 35(7):075002, 2019.

Maass, W. Efficient agnostic pac-learning with simple hy-
pothesis. In Proceedings of the seventh annual conference
on Computational learning theory, pp. 67–75, 1994.
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A. Proofs
We define operators in expectation, operators in probability with n training samples and M Nyström landmarks. We then
estimate key operators similarities.

Definition A.1 (Operators in expectation). For any g ∈ L2
ρX and β ∈ H, we have

• S : H → L2
ρX , (Sβ)(x) = 〈β,Kx〉.

• S∗ : L2
ρX → H, S

∗g =
∫
X
Kxg(x) dρX(x).

• L : L2
ρX → L2

ρX , (Lg)(x) =
∫
X
K(x, z)g(z) dρX(z).

• C : H → H, C =
∫
X
Kx ⊗Kx dρX(x).

It holds that for the integral operator L = SS∗ and for the covariance operator C = S∗S.

Definition A.2 (Operators in probability). For any g ∈ L2
ρX , β ∈ H, α ∈ Rn and α′ ∈ RM , we have

• Ŝn : H → Rn, Ŝnβ = 1√
n

(〈β,Kxi〉)
n
i=1.

• Ŝ∗n : Rn → H, Ŝ∗nα = 1√
n

∑n
i=1Kxiαi.

• S̄∗n : L2
ρX → H, S̄

∗
ng = 1

n

∑
i=1Kxig(xi).

• Ĉn : H → H, Ĉn = 1
n

∑n
i=1Kxi ⊗Kxi .

• L̂n : L2
ρX → L2

ρX , L̂ng(·) = 1
n

∑n
i=1K(xi, ·)g(xi).

• ŜM : H → RM , ŜMβ = 1√
M

(〈β,Kxi〉)
M
i=1.

• Ŝ∗M : RM → H, Ŝ∗Mα′ = 1√
M

∑M
i=1Kxiα

′
i.

• ĈM : H → H, ĈM = 1
M

∑M
i=1Kxi ⊗Kxi .

It holds that for the kernel matrices Knn = nŜnŜ
∗
n, KMM = MŜM Ŝ

∗
M , KnM =

√
nMŜnŜ

∗
M and for the covariance

operators Ĉn = Ŝ∗nŜn, ĈM = Ŝ∗M ŜM .

We denote with ‖·‖ the operatorial norm, and specifically the norm ‖ · ‖ to represent the L2
ρX norm ‖ · ‖ρ in the estimate

of error terms. Let L be a Hilbert space, we denote with 〈·, ·〉L the associated inner product, with ‖·‖L the norm and with
Tr(·) the trace. Moreover, we denote with Qλ the operator Q+ λI , where Q is a linear operator, λ ∈ R and I the identity
operator, so for example Cλ := C + λI , Ĉnλ := Ĉn + λI , Lλ := L+ λI , and L̂nλ := L̂n + λI .

The operators similarity quantity ‖(C + λI)−1/2(Ĉn + λI)1/2‖2 is the key to analyze the excess risk bound, and this
quantity should be bounded as a constant. Traditional KRR related work (Guo et al., 2017b; Yin et al., 2020) estimated the
key quantities after decomposition, and obtain ‖(C + λI)−1/2(Ĉn + λI)1/2‖2 ≤ ‖(C + λI)−1/2‖‖(C + λI)−1/2(C −
Ĉn)‖ + 1 = O

(
1
λn +

√
N (λ)
λn

)
. To bound the quantity as a constant O

(
1
λn +

√
N (λ)
λn

)
= O(1), it leads to a restriction

n ≥ N (λ)
λ . By Assumption 3.5 and setting λ = n

−1
2r+1 , we obtain the constraint n ≥ n

1+γ
2r+γ and thus r ≥ 1/2.

A.1. Operators Inequalities

We introduce useful operator inequalities and concentration inequalities to derive tight estimate for operator similarities.

Proposition A.3 (Cordes Inequality (Fujii et al., 1993)). Let A,B two positive semi-definite bounded linear operators on a
separable Hilbert space. Then

‖AsBs‖ ≤ ‖AB‖s, when 0 ≤ s ≤ 1.
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Proposition A.4 (Bennett’s inequality for random variables). Let H be a separable Hilbert space and {ξ1, · · · , ξn}
be a sequence of i.i.d random variables in H. Assume the bound be ‖ξ − E(ξ)‖ ≤ M̃ ≤ ∞ and the variance be
σ̃2 = E(‖ξ − E(ξ)‖2) for any i ∈ [n]. For any δ ∈ (0, 1), with confidence 1− δ,∥∥∥∥∥ 1

n

n∑
i=1

ξi − E(ξi)

∥∥∥∥∥ ≤ 2M̃ log(2/δ)

3n
+

√
2σ̃2 log(2/δ)

n
. (11)

The Bennett’s inequality is the key to analysis the relationship between the empirical random vector and its expected
counterpart, which is used to prove Lemma A.7 and Lemma A.16. The above Bennett’s inequality for random vectors was
provided in (Smale & Zhou, 2007; Rudi & Rosasco, 2017) and later was extended to the random operator cases in Theorem
7.3.1 in (Tropp, 2012) and Lemma 24 in (Lin & Cevher, 2020).

Proposition A.5 (Proposition 9 in (Rudi & Rosasco, 2017)). Let H,K be two separable Hilbert spaces and X,A be
bounded linear operators, with X : H → K and A : H → H be positive semi-definite. The following holds

‖XAς‖ = ‖X‖1−ς‖XA‖ς , ∀ς ∈ [0, 1].

Proposition A.6 (Lemma E.2 of (Blanchard & Krämer, 2010)). For any self-adjoint and positive semi-definite operators A
and B, if there exists 0 < η < 1 such that the following inequality holds

‖(A+ λI)−1/2(B −A)(A+ λI)−1/2‖ ≤ 1− η,

then

‖(A+ λI)1/2(B + λI)−1/2‖ ≤ 1
√
η
.

The above inequality (Blanchard & Krämer, 2010) was used to establish the connection between ‖(A+λI)−1/2(B−A)(A+
λI)−1/2‖ and ‖(A + λI)1/2(B + λI)−1/2‖. In this paper, those two terms ‖(A + λI)−1/2(B − A)(A + λI)−1/2‖ and
‖(A+ λI)1/2(B + λI)−1/2‖ often exist on the left parts of the estimates of error terms, where we make use of Proposition
A.6 to guarantee both of two terms of lhs as constants.

Lemma A.7. Let Kx1
, · · · ,Kxn with n ≥ 1, be i.i.d random vectors on a separable Hilbert space H such that C =

EρX [Kx ⊗Kx] and Ĉn = 1
n

∑n
i=1Kxi ⊗Kxi are trace class. Then for any δ ∈ (0, 1/2) with the probability at least

1− 2δ, the following holds∥∥∥(C + λI)−1/2(C − Ĉn)(C + λI)−1/2
∥∥∥ ≤ 2(N∞(λ) + 1) log(2/δ)

n
+

√
2(N∞(λ) + 1) log(2/δ)

n
.

Proof. Let C−1/2λ = (C + λI)−1/2 and
ξi = C

−1/2
λ Kxi ⊗ C

−1/2
λ Kxi ,

thus we have

E(ξi) = C
−1/2
λ E[Kxi ⊗Kxi ]C

−1/2
λ = C

−1/2
λ CC

−1/2
λ ,

1

n

n∑
i=1

ξi =
1

n

n∑
i=1

C
−1/2
λ [Kxi ⊗Kxi ]C

−1/2
λ = C

−1/2
λ ĈnC

−1/2
λ .

The left of the desired inequality becomes∥∥∥C−1/2λ (C − Ĉn)C
−1/2
λ

∥∥∥ =

∥∥∥∥∥E(ξi)−
1

n

n∑
i=1

ξi

∥∥∥∥∥ .
Note that

‖ξi‖ = ‖C−1/2λ Kxi ⊗ C
−1/2
λ Kxi‖ ≤ ‖C

−1/2
λ Kx‖2 ≤ sup

x∈X
‖C−1/2λ Kx‖2 = N∞(λ).
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To make use of Bennett’s inequality (Proposition A.4), we bound ‖ξi − E(ξi)‖ and E‖ξi − E(ξi)‖2 as follows

‖ξi − E(ξi)‖ = ‖C−1/2λ Kxi ⊗ C
−1/2
λ Kxi − C

−1/2
λ CC

−1/2
λ ‖

= ‖C−1/2λ Kxi‖2 + ‖C−1/2λ C1/2‖2 ≤ N∞(λ) + 1.

E‖ξi − E(ξi)‖2 =
∥∥∥E〈C−1/2λ Kxi ⊗ C

−1/2
λ Kxi , C

−1/2
λ Kxi ⊗ C

−1/2
λ Kxi

〉
− C−2λ C2

∥∥∥
≤ N∞(λ)

∥∥∥E [C−1/2λ Kxi ⊗ C
−1/2
λ Kxi

]∥∥∥+
∥∥C−2λ C2

∥∥
≤ N∞(λ)‖C−1λ C‖+ 1 ≤ N∞(λ) + 1.

Substituting the above two identities to Bennett’s inequality (11), we prove the result.

Lemma A.8. Let Kx1
, · · · ,Kxn with n ≥ 1, be i.i.d random vectors on a separable Hilbert spaceH such that the integral

operator is defined as (Lg)(·) = EρX [K(x, ·)g(x)] and (L̂ng)(·) = 1
n

∑n
i=1K(xi, ·)g(xi) are trace class. Then for any

δ ∈ (0, 1) with the probability at least 1− 2δ, the following holds∥∥∥(L+ λI)−1/2(L− L̂n)(L+ λI)−1/2
∥∥∥ ≤ 2(N∞(λ) + 1) log(2/δ)

n
+

√
2(N∞(λ) + 1) log(2/δ)

n
.

Proof. Let L−1/2λ = (L+ λI)−1/2 and
ξi = L

−1/2
λ K(xi, ·)L−1/2λ ,

thus we have

E(ξi) = L
−1/2
λ E[K(xi, ·)]L−1/2λ = L

−1/2
λ LL

−1/2
λ ,

1

n

n∑
i=1

ξi =
1

n

n∑
i=1

L
−1/2
λ [K(xi, ·)]L−1/2λ = L

−1/2
λ L̂nL

−1/2
λ .

The left of the desired inequality becomes∥∥∥L−1/2λ (L− L̂n)L
−1/2
λ

∥∥∥ =

∥∥∥∥∥E(ξi)−
1

n

n∑
i=1

ξi

∥∥∥∥∥ .
Note that

sup
x∈X
‖C−1/2λ Kx‖2 = N∞(λ).

‖C−1/2λ K(·)‖2 ≤ sup
x∈X
‖C−1/2λ Kx‖2 = N∞(λ).

To use Bennett’s inequality (Proposition A.4), we need to bound ‖ξi − E(ξi)‖ and E‖ξi − E(ξi)‖2 as follows

‖ξi − E(ξi)‖ = ‖C−1/2λ 〈Kxi ,K(·)〉C
−1/2
λ − L−1/2λ LL

−1/2
λ ‖

≤ ‖C−1/2λ Kxi‖‖C
−1/2
λ K(·)‖+ ‖L−1λ Lλ‖ ≤ N∞(λ) + 1.

E‖ξi − E(ξi)‖2 =
∥∥∥E [〈C−1/2λ Kxi , C

−1/2
λ K(·)

〉
L
−1/2
λ K(xi, ·)L−1/2λ

]
− L−2λ L2

∥∥∥
≤ N∞(λ)

∥∥∥E [L−1/2λ K(xi, ·)L−1/2λ

]∥∥∥+
∥∥L−2λ L2

∥∥
≤ N∞(λ)‖L−1λ L‖+ 1 ≤ N∞(λ) + 1.

Substituting the above two identities to Bennett’s inequality (11), we prove the result.

Lemma A.9. When the number of the training samples n ≥ 16(N∞(λ) + 1) log(2/δ), then ∀ δ ∈ (0, 1), there exists with
the confidence 1− δ

‖C−1/2λ (C − Ĉn)C
−1/2
λ ‖ ≤ 1

2
and ‖C1/2

λ Ĉ
−1/2
nλ ‖ ≤

√
2, ‖C−1/2λ Ĉ

1/2
nλ ‖ ≤

√
2.
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Proof. From Lemma A.7, we set n ≥ 16(N∞(λ) + 1) log(2/δ) and obtain that

‖C−1/2λ (Ĉn − C)C
−1/2
λ ‖ ≤ 2(N∞(λ) + 1) log(2/δ)

n
+

√
2(N∞(λ) + 1) log(2/δ)

n
≤ 1

2
.

From Proposition A.6 and the above inequality, there exists

‖C1/2
λ Ĉ

−1/2
nλ ‖ ≤

(
1− 1

2

)− 1
2

=
√

2.

‖C−1/2λ Ĉ
1/2
nλ ‖ ≤

(
1− 1

2

)− 1
2

=
√

2.

Lemma A.10. When the number of the training samples n ≥ 16(N∞(λ) + 1) log(2/δ), then ∀ δ ∈ (0, 1), there exists with
the confidence 1− δ

‖L−1/2λ (L− L̂n)L
−1/2
λ ‖ ≤ 1

2
and ‖L1/2

λ L̂
−1/2
nλ ‖ ≤

√
2, ‖L−1/2λ L̂

1/2
nλ ‖ ≤

√
2.

Proof. From Lemma A.8, we set n ≥ 16(N∞(λ) + 1) log(2/δ) and obtain that

‖L−1/2λ (L̂n − L)L
−1/2
λ ‖ ≤ 2(N∞(λ) + 1) log(2/δ)

n
+

√
2(N∞(λ) + 1) log(2/δ)

n
≤ 1

2
.

From Proposition A.6 and the above inequality, there exists

‖L1/2
λ L̂

−1/2
nλ ‖ ≤

(
1− 1

2

)− 1
2

=
√

2.

‖L−1/2λ L̂
1/2
nλ ‖ ≤

(
1− 1

2

)− 1
2

=
√

2.

A.2. Tight Error Decomposition

In this section, using linear operators, we first prove the closed-form solutions of estimators. We then establish the
relationship between intermediate estimators. Finally, we provide the tight error decomposition for KRR-Nyström.

A.2.1. INTERMEDIATE ESTIMATORS

We introduce intermediate estimators to bridge the solution of KRR-Nyström f̂M,λ and the concept fρ. We measure the
the generalization ability of f ∈ L2

ρX in terms of excess risk E(f)− E(fρ) rather than E(f)− E(fH). It was proven that
(Smale & Zhou, 2007)

E(f)− E(fρ) = ‖f − fρ‖2ρ, ∀ f ∈ L2
ρX . (12)

Definition A.11 (Intermedia estimators). Using the representer theorem, there are two reduced RKHS without and with
Nyström approximation :

Hn =

{
f ∈ H | f(x) =

n∑
i=1

αiK(xi,x), α ∈ Rn
}
,

HM =

{
f ∈ H | f(x) =

M∑
i=1

α′iK(x̃i,x), α′ ∈ RM
}
,
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where {x̃i}Mi=1 is the subset of inputs in training set. There exists the following estimators

f̂M,λ(x) = 〈w,Kx〉, with w = arg min
w∈HM

{
1

n

n∑
i=1

(〈w,Kxi〉 − yi)2 + λ‖f‖2K

}
.

f̃M,λ(x) = 〈u,Kx〉, with u = arg min
u∈HM

{
1

n

n∑
i=1

(〈u,Kxi〉 − fρ(xi))2 + λ‖f‖2K

}
.

f̃λ(x) = 〈v,Kx〉, with v = arg min
v∈Hn

{
1

n

n∑
i=1

(〈v,Kxi〉 − fρ(xi))2 + λ‖f‖2K

}
.

fλ(x) = 〈n,Kx〉, with n = arg min
n∈H

{∫
X

(〈n,Kx〉 − fρ(x))
2
dρX(x) + λ‖f‖2K

}
.

We define the weights {w,u,v,n} in the RKHS, while the estimators {f̂M,λ, f̃M,λ, f̃λ, fλ} ∈ L2
ρX . Let Zn =

√
MŜM =

(〈β,K(xi, ·)〉)Mi=1, such that Z∗n =
√
MŜ∗M =

∑M
i=1 α

′
iK(xi, ·) is exactlyHM . Let

Zn = UΣV ∗

be the SVD of Zn where U : Rt → RM , Σ : Rt → Rt, V : Rt → H, t ≤M and Σ = diag(σ1, · · · , σt) in non-increasing
order. It holds U∗U = It, V ∗V = It and V V ∗ = Pn where Pn is the orthogonal projection operator and the range of Pn is
exactlyHM .

Proposition A.12. Using operators in Definitions A.1, A.2, the estimators can be represented as

f̂M,λ = SV (V ∗ĈnV + λI)−1V ∗Ŝ∗nŷn, (13)

f̃M,λ = SV (V ∗ĈnV + λI)−1V ∗S̄∗nfρ, (14)

f̃λ = S(Ĉn + λI)−1S̄∗nfρ, (15)

fλ = S(C + λI)−1S∗fρ. (16)

Proof of Proposition A.12. The RKHS solution of f̂M,λ(x) = 〈w,Kx〉 can be stated as

w =

M∑
i=1

α′iK(x̃i, ·) with α′ = (K>nMKnM + λnKMM )†K>nMyn,

According to the definitions of operators in Definition A.2, we have

α′ = (K>nMKnM + λnKMM ) †K>nMyn
= [M(ŜM Ŝ

∗
n)(ŜnŜ

∗
M ) + λM(ŜM Ŝ

∗
M )]†(

√
MŜM Ŝ

∗
n)ŷn

Then, there exists

f̂M,λ = S
√
MŜ∗Mα

′ = SŜ∗M [(ŜM Ŝ
∗
n)(ŜnŜ

∗
M ) + λ(ŜM Ŝ

∗
M )]†(ŜM Ŝ

∗
n)ŷn

= SŜ∗M [ŜM (Ĉnλ)Ŝ∗M ]†(ŜM Ŝ
∗
n)ŷn.

Following the step of proof in Lemma 3 (Rudi et al., 2015), we have

[MŜM (Ĉnλ)Ŝ∗M ]† = (FGH)† = H†(FG)† = H†G−1F † = UΣ−1(V ∗ĈnV + λI)−1Σ−1U∗,

where
√
MŜM = UΣV ∗, F = UΣ, G = V ∗ĈnV + λI , H = ΣU> and F,GH,G and H are full-rank matrices.

Simplifying U and Σ, we prove (13) with

f̂M,λ = S
√
MŜ∗M [MŜM (Ĉnλ)Ŝ∗M ]†(

√
MŜM Ŝ

∗
n)ŷn

= SV ΣU∗UΣ−1(V ∗ĈnV + λI)−1Σ−1U∗UΣV ∗Ŝ∗nŷn

= SV (V ∗ĈnV + λI)−1V ∗Ŝ∗nŷn.
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The difference between f̂M,λ and f̃M,λ is the labels with noises yi or the labels without noises fρ(xi). Thus, there exists

f̂M,λ = SV (V ∗ĈnV + λI)−1V ∗

(
1

n

n∑
i=1

Kxiyi

)

f̃M,λ = SV (V ∗ĈnV + λI)−1V ∗

(
1

n

n∑
i=1

Kxifρ(xi)

)
= SV (V ∗ĈnV + λI)−1V ∗S̄∗nfρ.

The estimator f̃λ is the solution of KRR with noise-free labels, and it holds

f̃λ = S
√
nŜ∗nα with α = (Knn + λnI)−1[fρ(x1), · · · , fρ(xn)]>

Then, we have

f̃λ = S
√
nŜ∗n(nŜnŜ

∗
n + λnI)−1[fρ(x1), · · · , fρ(xn)]>

= S(ŜnŜ
∗
n + λI)−1S̄∗nfρ

= S(S̄∗nS + λI)−1S̄∗nfρ

= S(Ĉn + λI)−1S̄∗nfρ.

It is well know the estimator fλ is equal to

fλ = L(L+ λI)−1fρ = SS∗(SS∗ + λI)−1fρ = S(S∗S + λI)−1S∗fρ = S(C + λI)−1S∗fρ,

where the third step is due to Z∗f(ZZ∗) = f(Z∗Z)Z∗ for any continuous spectral function and any compact operator
Z.

According the definitions of estimators with operators (Proposition A.12), it is natural to estimate errors w.r.t the difference
among the estimators. There is an approximation chain from the KRR-Nyström f̂M,λ to the expected estimator fλ in terms

of expectation and the number of Nyström centers: f̂M,λ
ρ(y|x)−→ f̃M,λ

M→n−→ f̃λ
ρX−→ fλ.

Integrating the excess risk (12) together the with the intermediate estimators defined in Definition A.11, we then decompose
the excess risk into four parts in terms of the L2

ρX norms: ‖f̂M,λ − f̃M,λ‖2ρ is the sample variance introduced by noised
labels; ‖f̃M,λ − f̃λ‖2ρ is the error brought by Nyström approximation; ‖f̃λ − fλ‖2ρ is the computational error from empirical
samples; and ‖fλ − fρ‖2ρ is the approximation error.

Lemma A.13. Let f̂M,λ, f̃M,λ, f̃λ and fλ be defined in Definition A.11. The following error decomposition holds for
KRR-Nyström

E(f̂M,λ)− E(fρ) ≤ 4‖f̂M,λ − f̃M,λ‖2ρ︸ ︷︷ ︸
Sample Variance

+ 4‖f̃M,λ − f̃λ‖2ρ︸ ︷︷ ︸
Nyström Error

+ 4‖f̃λ − fλ‖2ρ︸ ︷︷ ︸
Empirical Error

+ 4‖fλ − fρ‖2ρ︸ ︷︷ ︸
Approximation Error

. (17)

Proof. The excess risk is related to the difference between estimators in (12), and thus we have

E(f̂M,λ)− E(fρ) = ‖f̂M,λ − fρ‖2ρ, ∀f ∈ L2
ρX . (18)

Introducing the intermediate estimators f̃M,λ, f̃λ, fλ, we have

‖f̂M,λ − fρ‖2ρ = ‖f̂M,λ − f̃M,λ + f̃M,λ − f̃λ + f̃λ − fλ + fλ − fρ‖2ρ. (19)

By the fact (a+ b+ c+ d)2 ≤ 4a2 + 4b2 + 4c2,∀a, b, c, d > 0, we have

‖f̃M,λ − fρ‖2ρ ≤ 4‖f̂M,λ − f̃M,λ‖2ρ + 4‖f̃M,λ − f̃λ‖2ρ + 4‖f̃λ − fλ‖2ρ + 4‖fλ − fρ‖2ρ. (20)

Substituting (19) and (20) into (18), one can obtain the desired result.

Here, the first three error terms can be regarded as variance and the approximation error as bias.
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A.3. Estimates for Error Terms

In this part, we provide the rough estimates for those four error terms in Lemma A.13 : the sample variance ‖f̂M,λ − f̃M,λ‖,
the Nyström error ‖f̃M,λ − f̃λ‖, the empirical error ‖f̃λ − fλ‖ and the approximation error ‖fλ − fρ‖. Most of the
integral-operator theory related work involves the estimation of the quantity ‖(Ĉn + λI)−1/2(C + λI)1/2‖. Besides, this
work also involves the quantity ‖(L̂n + λI)−1/2(L + λI)1/2‖. Using Bennett’s inequality, we upper bound those two
quantities by a constant

√
2 under the condition

n ≥ 16(N∞(λ) + 1) log(2/δ).

It holds the restriction 2r + γ ≥ 1 due to the fact N∞(λ) . λ−1 for the uniform sampling, while the restriction is relaxed
to r ∈ (0, 1] with the data-dependent sampling. To achieve the optimal convergence rates in sample variance, we also obtain
the restriction 2r + 2γ ≥ 1 for the uniform sampling and r ∈ (0, 1] for the data-dependent sampling. This work relaxed the
regularity condition for the capacity-dependent optimality of Nyström approximation from r ∈ [1/2, 1] to 2r + γ ≥ 1 with
the uniform sampling and r ∈ (0, 1] with the data-dependent sampling.

A.3.1. ESTIMATE FOR SAMPLE VARIANCE

Lemma A.14. Let δ ∈ (0, 1], f̂M,λ and f̃M,λ be defined by (13) and (14). Then, the sample variance holds with the
probability at least 1− δ

‖f̂M,λ − f̃M,λ‖ ≤ 4‖C−1/2λ Ĉ
1/2
nλ ‖

2

(
B
√
N∞(λ)

n
+

√
B2N (λ)

n

)
log

2

δ
.

Proof. Recall the representations of f̂M,λ and f̃M,λ that are

f̂M,λ = SV (V ∗ĈnV + λI)−1V ∗Ŝ∗nŷn,

f̃M,λ = SV (V ∗ĈnV + λI)−1V ∗S̄∗nfρ.

To simply the representations, we characterize f̂M,λ = SGnŜ
∗
nŷn and f̃M,λ = SGnS̄

∗
nfρ with Gn = V (V ∗ĈnV +

λI)−1V ∗. Then, the following inequalities hold

‖f̂M,λ − f̃M,λ‖ =‖SGn(Ŝ∗nŷn − S̄∗nfρ)‖

≤‖
(
SGnĈ

1/2
nλ

)(
Ĉ
−1/2
nλ (Ŝ∗nŷn − S̄∗nfρ)

)
‖

≤‖SGnĈ1/2
nλ ‖︸ ︷︷ ︸

A

‖Ĉ−1/2nλ C
1/2
λ ‖ ‖C

−1/2
λ (Ŝ∗nŷn − S̄∗nfρ)‖︸ ︷︷ ︸

C

.
(21)

where the last step is due to Cauchy–Schwarz inequality. Note that

A = ‖SC−1/2λ C
1/2
λ Ĉ

−1/2
nλ Ĉ

1/2
nλ GnĈ

1/2
nλ ‖ ≤ ‖SC

−1/2
λ ‖‖C1/2

λ Ĉ
−1/2
nλ ‖‖Ĉ1/2

nλ GnĈ
1/2
nλ ‖,

where ‖SC−1/2λ ‖ ≤ ‖C−1/2λ S∗SC
−1/2
λ ‖1/2 ≤ 1. Thus, it holds that

A ≤ ‖C1/2
λ Ĉ

−1/2
nλ ‖‖Ĉ1/2

nλ GnĈ
1/2
nλ ‖. (22)

The part C can be bounded as follows

C =‖C1/2
λ (Ŝnŷn − S∗fρ + S∗fρ − S̄∗nfρ)‖

≤‖C1/2
λ (Ŝnŷn − S∗fρ)‖+ ‖C1/2

λ (S∗fρ − S̄∗nfρ)‖.
(23)

Substituting (22), (23) into (21), we have

‖f̂M,λ − f̃M,λ‖ ≤ ‖C−1/2λ Ĉ
1/2
nλ ‖

2‖Ĉ1/2
nλ GnĈ

1/2
nλ ‖

[
‖C1/2

λ (Ŝ∗nŷn − S∗fρ)‖+ ‖C1/2
λ (S∗fρ − S̄∗nfρ)‖

]
.
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Using Lemma A.16 and Lemma A.17, the sample variance holds with the probability at least 1− δ

‖f̂M,λ − f̃M,λ‖ ≤ 4‖C−1/2λ Ĉ
1/2
nλ ‖

2

(
B
√
N∞(λ)

n
+

√
B2N (λ)

n

)
log

2

δ
.

The sample variance is resulted from the label noises, thus f̃M,λ use fρ(x) instead of y. To upper bound the rhs in the above
inequality via Bennett’s inequality, we introduce an expected term S∗fρ to bridge two empirical terms.

Lemma A.15 (Lemma 8 of (Rudi et al., 2015)). For any λ > 0, let V be such that V ∗V = I and Ĉn be a positive
self-adjoint operator. Then, the following holds

‖Ĉ1/2
nλ GnĈ

1/2
nλ ‖ ≤ 1.

Proof. Let Ĉnλ = Ĉn + λI and Gn = V (V ∗ĈnV + λ)−1V ∗, then

‖Ĉ1/2
nλ GnĈ

1/2
nλ ‖

2 =‖Ĉ1/2
nλ GnĈnλGnĈ

1/2
nλ ‖

2

=‖Ĉ1/2
nλ V (V ∗ĈnλV )−1(V ∗ĈnλV )(V ∗ĈnλV )−1V ∗Ĉ

1/2
nλ ‖

=‖Ĉ1/2
nλ GnĈ

1/2
nλ ‖,

and thus ‖Ĉ1/2
nλ GnĈ

1/2
nλ ‖ is 0 or 1.

Using Bennett’s inequality (Proposition A.4) and following the proof of Lemma 6 in (Rudi & Rosasco, 2017), we prove the
following lemmas.

Lemma A.16. Assume there exists κ ≥ 1 such that K(x,x) ≤ κ2, ∀x ∈ X and |y| ≤ B. For δ ∈ (0, 1], the following
holds with the probability at least 1− δ

‖C−1/2λ (Ŝ∗nŷn − S∗fρ)‖ ≤ 2

(
B
√
N∞(λ)

n
+

√
B2N (λ)

n

)
log

2

δ
.

Proof. Let ξi = C
−1/2
λ Kxiyi in the Hilbert spaceHM . We see that

1

n

n∑
i=1

ξi =
1

n

n∑
i=1

C
−1/2
λ Kxiyi = C

−1/2
λ Ŝ∗nŷn,

E ξ =

∫
X

C
−1/2
λ Kxfρ(x)dρX(x) = C

−1/2
λ S∗fρ

Thus, the error term to bound can be stated as

‖C−1/2λ (Ŝ∗nŷn − S∗fρ)‖ =

∥∥∥∥∥ 1

n

n∑
i=1

ξi − Eξi

∥∥∥∥∥ . (24)

The rhs of the above identity can be bounded by Bennett’s inequality (Proposition A.4), thus we need to estimate ‖ξi−E(ξi)‖
and E ‖ξi − E(ξi)‖2 first.

We first recall the definitions of N (λ) and N∞(λ).

N (λ) = E 〈Kx, (C + λI)−1Kx〉K =

∫
X

‖(C + λI)−1Kx‖2K dρX(x),

N∞(λ) = sup
x∈X

〈Kx, (C + λI)−1Kx〉K = sup
x∈X

‖(C + λI)−1Kx‖2K .
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By Jensen’s inequality, we thus have

‖ξi − E(ξi)‖ ≤ ‖C−1/2λ Kxi‖|yi|+ E‖C−1/2λ Kxi‖|yi| ≤ 2B
√
N∞(λ). (25)

Note that
E‖ξi − E(ξi)‖2 ≤ 2

∫
X

‖C−1/2λ Kxi‖2|yi|2dρX(x)

≤ 2B2

∫
X

‖C−1/2λ Kxi‖2dρX(x) ≤ 2B2N (λ).

(26)

Substituting (25) and (26) to (24), by Bennett’s inequality (Proposition A.4), we have

‖C−1/2λ (S∗Mfρ − S̄∗Mfρ)‖ ≤
2B
√
N∞(λ) log(2/δ)

n
√
λ

+ 2

√
B2N (λ) log(2/δ)

n

≤ 2

(
B
√
N∞(λ)

n
+

√
B2N (λ)

n

)
log

2

δ
.

Lemma A.17. Assume there exists κ ≥ 1 such that K(x,x) ≤ κ2, ∀x ∈ X and |y| ≤ B. For δ ∈ (0, 1], with the
probability at least 1− δ, we have

‖C−1/2λ (S∗fρ − S̄∗nfρ)‖ ≤ 2

(
B
√
N∞(λ)

n
+

√
B2N (λ)

n

)
log

2

δ
.

Proof. Let ξi = C
−1/2
λ Kxifρ(xi) on X in the Hilbert spaceHM . We see that

1

n

n∑
i=1

ξi =
1

n

n∑
i=1

C
−1/2
λ Kxifρ(xi) = C

−1/2
λ S̄∗nfρ,

Eξi =

∫
X

C
−1/2
λ Kxfρ(x)dρX(x) = C

−1/2
λ S∗fρ

Thus, the error term to bound can be stated as

‖C−1/2λ (S∗fρ − S̄∗nfρ)‖ =

∥∥∥∥∥ 1

n

n∑
i=1

ξi − Eξi

∥∥∥∥∥ . (27)

To apply Bennett’s inequality (Proposition A.4), we also need to estimate ‖ξ − E(ξ)‖ and E(‖ξ − E(ξ)‖2). Note that
|y| ≤ B almost surely for some constant B > 0 and X is compact, that indicates |fρ(x)| ≤ B almost surely.

By Jensen’s inequality, we thus have

‖ξi − E(ξi)‖ ≤ ‖C−1/2λ Kxi‖|fρ(x)|+ E‖C−1/2λ Kxi‖|fρ(x)| ≤ 2B
√
N∞(λ). (28)

Note that
E ‖ξi − E(ξi)‖2 ≤ 2

∫
X

‖C−1/2λ Kxi‖2|fρ(x)|2dρX(x) ≤ 2

∫
X

‖C−1/2λ Kxi‖2dρX(x)

≤ 2B2

∫
X

‖C−1/2λ Kxi‖2dρX(x) ≤ 2B2N (λ).

(29)

Substituting (28) and (29) to (27), by Bennett’s inequality (Proposition A.4), we have

‖C−1/2λ (S∗Mfρ − S̄∗Mfρ)‖ ≤
2B
√
N∞(λ) log(2/δ)

n
√
λ

+ 2

√
B2N (λ) log(2/δ)

n

≤ 2

(
B
√
N∞(λ)

n
+

√
B2N (λ)

n

)
log

2

δ
.
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A.3.2. ESTIMATE FOR NYSTRÖM ERROR

The following two lemmas are used to estimate the key term ‖(I − V V ∗)C1/2
λ ‖ in Nyström error (Lemma A.20) in terms

of different subsampling strategies. The first one measures the error term for Nyström method with uniform subsampling,
given in Lemma 6 of (Rudi et al., 2015). The second one measures the error term for Nyström method with approximate
leverage scores (ALS) subsampling, which was provided in Lemma 7 of (Rudi et al., 2015).
Lemma A.18 (Uniform sampling, Lemma 6 of (Rudi et al., 2015)). Let λ > 0 for any δ > 0 and the Nyström centers
are sampled uniformly from the training examples, such that M ≥ 67 log 4κ2

λδ ∨ 5N∞(λ) log 4κ2

λδ , the following holds with
probability 1− δ

‖(I − V V ∗)C1/2
λ ‖

2 ≤ 3λ.

Lemma A.19 (Data-dependent sampling, Lemma 7 of (Rudi et al., 2015)). Under Assumption 3.5, let λ > 0 for any δ > 0

and the Nyström centers are sampled according to the leverage scores pi = l̂λ(i)∑n
i=1 l̂λ(i)

in (4), then for any δ > 0 the

following holds with probability 1− 2δ

‖(I − V V ∗)C1/2
λ ‖

2 ≤ 3λ,

when the following conditions are satisfied:

• there exists a p ≥ 1 and a λ0 such that (l̂λ(i))ni=1 are p-approximate leverage scores are used to select random Nyström
centers.

• n ≥ 1665κ2 + 223κ2 log 2κ2

δ ,

• λ0 ∨ 19κ2

n log 2N
δ ≤ λ ≤ ‖C‖,

• M ≥ 334 log 8N
δ ∨ 78p2N (λ) log 8N

δ .

Lemma A.20. Let δ ∈ (0, 1], f̃M,λ and f̃λ be defined by (14) and (15). When the number of Nyström centers satisfies
M ≥ 67 log 4κ2

λδ ∨ 5N∞(λ) log 4κ2

λδ for uniform sampling and M ≥ 334 log 8N
δ ∨ 78p2N (λ) log 8N

δ for data-dependent
sampling, the Nyström error holds

‖f̃M,λ − f̃λ‖ ≤ 6(‖C−1/2λ Ĉ
1/2
nλ ‖

2 + 1)Rλr, when r ∈ (0, 1/2).

‖f̃M,λ − f̃λ‖ ≤ 3‖C−1/2λ Ĉ
1/2
nλ ‖‖L̂

−1/2
nλ L

1/2
λ ‖

2Rλr, when r ∈ [1/2, 1].

Proof. Recall the definitions of f̃M,λ and f̃λ with operators, it holds

f̃M,λ = SV (V ∗ĈnV + λI)−1V ∗S̄∗nfρ,

f̃λ = S(Ĉn + λI)−1S̄∗nfρ.

We use Gn = V (V ∗ĈnV + λI)−1V ∗ and then f̃M,λ = SGnS̄
∗
nfρ.

Using Z∗f(ZZ∗) = f(Z∗Z)Z∗, we have

Ĉ−1nλ S̄
∗
nfρ = (S̄∗nS + λI)−1S̄∗n = S̄∗n(SS̄∗n + λI)−1fρ = S̄∗nL̂

−1
nλfρ.

We estimate the Nyström error as follows with

‖f̃M,λ − f̃λ‖ = ‖S(Gn − Ĉ−1nλ )S̄∗nfρ‖

= ‖S(GnĈnλ − I)Ĉ−1nλ S̄
∗
nfρ‖

= ‖S(GnĈnλ − I)S̄∗nL̂
−1
nλfρ‖

= ‖S(GnĈnλ − I)S̄∗nL̂
−1
nλL

rg‖.

Then, we bound ‖f̃M,λ − f̃λ‖ for r ∈ (0, 1/2) and r ∈ [1/2, 1], respectively.
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• When r ∈ (0, 1/2), the true regression fρ is out of the deduced RKHS fρ /∈ H.

Note that, there exists ‖g‖ ≤ R, ‖L−1λ L‖ ≤ 1, ‖L̂−1/2nλ λ1/2‖ ≤ 1, ‖SC−1/2λ ‖ = ‖C−1/2λ CλC
−1/2
λ ‖1/2 ≤ 1,

‖S̄∗nL̂
−1/2
nλ ‖ ≤ ‖L̂−1/2nλ L̂nL̂

−1/2
nλ ‖1/2 ≤ 1 and ‖Ĉ−1/2nλ S̄∗n‖ = ‖Ĉ−1/2nλ ĈnĈ

−1/2
nλ ‖1/2 ≤ 1, and we then have

‖f̃M,λ − f̃λ‖

=‖S(GnĈnλ − I)S̄∗nL̂
r−1
nλ (L̂

−1/2
nλ L

1/2
λ )2r(L−1λ L)rg‖

=‖(SC−1/2λ )C
1/2
λ (GnĈnλ − I)S̄∗nL̂

r−1
nλ (L̂

−1/2
nλ L

1/2
λ )2r(L−1λ L)rg‖

≤R‖C1/2
λ (GnĈnλ − I)Crλ(C

−1/2
λ Ĉ

1/2
nλ )2r(Ĉ

−1/2
nλ S̄∗n)2r

(S̄∗nL̂
−1/2
nλ )1−2r(L̂

−1/2
nλ λ1/2)λ−1/2(L̂

−1/2
nλ L

1/2
λ )2r‖

≤Rλ−1/2‖C1/2
λ (GnĈnλ − I)Crλ‖‖C

−1/2
λ Ĉ

1/2
nλ ‖

2r‖L̂−1/2nλ L
1/2
λ ‖

2r.

Using Lemma A.9 and Lemma A.10, with the constraint n ≥ 16(N∞(λ) + 1) log(2/δ), we have

‖f̃M,λ − f̃λ‖ ≤ Rλ−1/2‖C1/2
λ (GnĈnλ − I)Crλ‖22r

≤ 2Rλ−1/2‖C1/2
λ (GnĈnλ − I)Crλ‖.

(30)

Noting that GnĈnλV V ∗ = V V ∗, we have

GnĈnλ − I = GnĈnλ(I − V V ∗) +GnĈnλV V
∗ − I

= GnĈnλ(I − V V ∗)− (I − V V ∗).

Multiplying and dividing by Ĉ1/2
nλ and C1/2

λ and using above identity, we have

‖C1/2
λ (GnĈnλ − I)Crλ‖

≤‖C1/2
λ Ĉ

−1/2
nλ Ĉ

1/2
nλ GnĈ

1/2
nλ Ĉ

1/2
nλ C

−1/2
λ C

1/2
λ (I − V V ∗)Crλ‖+ ‖C1/2

λ (I − V V ∗)Crλ‖

≤‖C1/2
λ (I − V V ∗)Crλ‖(‖C

1/2
λ Ĉ

−1/2
nλ ‖‖Ĉ1/2

nλ GnĈ
1/2
nλ ‖‖Ĉ

1/2
nλ C

−1/2
λ ‖+ 1)

≤‖C1/2
λ (I − V V ∗)Crλ‖(‖C

1/2
λ Ĉ

−1/2
nλ ‖‖Ĉ1/2

nλ C
−1/2
λ ‖+ 1)

≤(‖C−1/2λ Ĉ
1/2
nλ ‖

2 + 1)‖C1/2
λ (I − V V ∗)Crλ‖.

(31)

The third step is due to ‖Ĉ1/2
nλ GnĈ

1/2
nλ ‖ ≤ 1 in Lemma A.15.

Next, we estimate ‖C1/2
λ (I − V V ∗)Crλ‖. Since V V ∗ is a projection operator, it holds for any s > 0 that (I − V V ∗) =

(I − V V ∗)s, therefore

‖C1/2
λ (I − V V ∗)Crλ‖ ≤ ‖C

1/2
λ (I − V V ∗)‖‖(I − V V ∗)Crλ‖.

Using Cordes inequality (Proposition A.3) to ‖(I − V V ∗)Crλ‖, we have

‖(I − V V ∗)Crλ‖ = ‖(I − V V ∗)2rC
1
2 2r

λ ‖ ≤ ‖(I − V V ∗)C1/2
λ ‖

2r.

Thus, it holds

‖C1/2
λ (I − V V ∗)Crλ‖ ≤ ‖(I − V V ∗)C

1/2
λ ‖

2r+1. (32)

Substituting (31) and (32) into (30), with the condition n ≥ 16(N∞(λ) + 1) log(2/δ), there exists for r ∈ (0, 1/2) that

‖f̃M,λ − f̃λ‖ ≤ 2(‖C−1/2λ Ĉ
1/2
nλ ‖

2 + 1)Rλ−1/2‖(I − V V ∗)C1/2
λ ‖

2r+1. (33)
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• When r ∈ [1/2, 1], the regression function belongs to the hypothesis space fρ ∈ H.

Note that, there exists ‖g‖ ≤ R, ‖L−1λ L‖ ≤ 1, ‖SC−1/2λ ‖ = ‖C−1/2λ CλC
−1/2
λ ‖1/2 ≤ 1, ‖S̄∗nL̂

−1/2
nλ ‖ ≤

‖L̂−1/2nλ L̂nL̂
−1/2
nλ ‖1/2 ≤ 1 and ‖Ĉ−1/2nλ S̄∗n‖ = ‖Ĉ−1/2nλ ĈnĈ

−1/2
nλ ‖1/2 ≤ 1, and we then have

‖f̃M,λ − f̃λ‖

=‖S(GnĈnλ − I)S̄∗nL̂
r−1
nλ (L̂

−1/2
nλ L

1/2
λ )2r(L−1λ L)rg‖

=‖(SC−1/2λ )C
1/2
λ (GnĈnλ − I)S̄∗nL̂

r−1
nλ (L̂

−1/2
nλ L

1/2
λ )2r(L−1λ L)rg‖

≤R‖C1/2
λ (GnĈnλ − I)Ĉ

r−1/2
nλ (Ĉ

−1/2
nλ S̄∗n)2r−1(S̄∗nL̂

−1/2
nλ )2−2r(L̂

−1/2
nλ L

1/2
λ )2r‖

≤R‖C1/2
λ (GnĈnλ − I)C

r−1/2
λ ‖‖C−1/2λ Ĉ

1/2
nλ ‖

2r−1‖L̂−1/2nλ L
1/2
λ ‖

2r.

(34)

Noting that GnĈnλV V ∗ = V V ∗, we have

GnĈnλ − I = GnĈnλ(I − V V ∗) +GnĈnλV V
∗ − I

= GnĈnλ(I − V V ∗)− (I − V V ∗).

Multiplying and dividing by Ĉ1/2
nλ and C1/2

λ and using above identity, we have

‖C1/2
λ (GnĈnλ − I)C

r−1/2
λ ‖ ≤ ‖C1/2

λ (I − V V ∗)Cr−1/2λ ‖

+ ‖C1/2
λ Ĉ

−1/2
nλ Ĉ

1/2
nλ GnĈ

1/2
nλ Ĉ

1/2
nλ C

−1/2
λ C

1/2
λ (I − V V ∗)Cr−1/2λ ‖

≤ ‖C1/2
λ (I − V V ∗)Cr−1/2λ ‖(1 + ‖C1/2

λ Ĉ
−1/2
nλ ‖‖Ĉ1/2

nλ GnĈ
1/2
nλ ‖‖Ĉ

1/2
nλ C

−1/2
λ ‖).

(35)

Next, we estimate ‖C1/2
λ (I − V V ∗)C

r−1/2
λ ‖. Since V V ∗ is a projection operator, it holds for any s > 0 that

(I − V V ∗) = (I − V V ∗)s, therefore

‖C1/2
λ (I − V V ∗)Cr−1/2λ ‖ ≤ ‖C1/2

λ (I − V V ∗)‖‖(I − V V ∗)Cr−1/2λ ‖.

Using Cordes inequality (Proposition A.3) to ‖(I − V V ∗)Cr−1/2λ ‖, we have

‖(I − V V ∗)Cr−1/2λ ‖ = ‖(I − V V ∗)2r−1C
1
2 2r−1
λ ‖ = ‖(I − V V ∗)C1/2

λ ‖
2r−1.

Thus, it holds

‖C1/2
λ (I − V V ∗)Cr−1/2λ ‖ ≤ ‖(I − V V ∗)C1/2

λ ‖
2r. (36)

Substituting (35) and (36) into (34), there exists for r ∈ [1/2, 1] that

‖f̃M,λ − f̃λ‖ ≤ R‖C−1/2λ Ĉ
1/2
nλ ‖

2r−1‖L̂−1/2nλ L
1/2
λ ‖

2r‖(I − V V ∗)C1/2
λ ‖

2r

= ‖C−1/2λ Ĉ
1/2
nλ ‖‖L̂

−1/2
nλ L

1/2
λ ‖

2R ‖(I − V V ∗)C1/2
λ ‖

2r.

Therefore, the Nyström error holds

‖f̃M,λ − f̃λ‖ ≤ 2(‖C−1/2λ Ĉ
1/2
nλ ‖

2 + 1)Rλ−1/2‖(I − V V ∗)C1/2
λ ‖

2r+1, when r ∈ (0, 1/2).

‖f̃M,λ − f̃λ‖ ≤ ‖C−1/2λ Ĉ
1/2
nλ ‖‖L̂

−1/2
nλ L

1/2
λ ‖

2R ‖(I − V V ∗)C1/2
λ ‖

2r, when r ∈ [1/2, 1].

Together with Lemma A.18 and Lemma A.19, when the number of Nyström centers satisfies M & N∞(λ) for uniform
sampling and M & N (λ) for data-dependent sampling, the Nyström error holds

‖f̃M,λ − f̃λ‖ ≤ 6(‖C−1/2λ Ĉ
1/2
nλ ‖

2 + 1)Rλr, when r ∈ (0, 1/2).

‖f̃M,λ − f̃λ‖ ≤ 3‖C−1/2λ Ĉ
1/2
nλ ‖‖L̂

−1/2
nλ L

1/2
λ ‖

2Rλr, when r ∈ [1/2, 1].
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In the proof of Lemma A.20, Assumption 3.3 is used such that the estimates of Nyström error is related to the quantity r.
We bound the Nyström error for two cases r ∈ (0, 1/2) (fρ /∈ H, induced by an imperfect kernel) and r ∈ [1/2, 1] (fρ ∈ H,
induced by a perfect kernel). The key quantity ‖(I − V V ∗)C1/2

λ ‖ reflects the degree of approximation, and its upper bound
depends on the sampling strategy. To guarantee ‖(I − V V ∗)C1/2

λ ‖2 ≤ 3λ, it needs M = Ω(n
1

2r+γ ) Nyström centers for
uniform sampling, and M = Ω(n

γ
2r+γ ) Nyström centers for approximate leverage scores sampling.

A.3.3. ESTIMATE FOR EMPIRICAL ERROR

Lemma A.21. Let f̃λ and fλ be defined by (15) and (16). The empirical error holds

‖f̃λ − fλ‖ ≤
[
‖C1/2

λ Ĉ
−1/2
nλ ‖+ ‖C1/2

λ Ĉ
−1/2
nλ ‖2

]
‖fλ − fρ‖.

Proof. Recall the definitions of f̃λ and fλ with operators in Proposition A.12, it holds

f̃λ = S(Ĉn + λI)−1S̄∗nfρ = SĈ−1nλ S̄
∗
nfρ,

fλ = S(C + λI)−1S∗fρ = SC−1λ S∗fρ.

Using the identity A−1 −B−1 = A−1(B −A)B−1 for positive operators A,B, we have

‖f̃λ − fλ‖

=‖SĈ−1nλ S̄
∗
nfρ − SC−1λ S∗fρ‖

=‖SĈ−1nλ (S̄∗n − S∗)fρ + S(Ĉ−1nλ − C
−1
λ )S∗fρ‖

=‖SĈ−1nλ (S̄∗n − S∗)fρ + SĈ−1nλ (C − Ĉn)C−1λ S∗fρ‖

=‖SĈ−1nλ (S̄∗n − S∗)fρ + SĈ−1nλ (S∗S − S̄∗nS)C−1λ S∗fρ‖

=‖SĈ−1nλ (S̄∗n − S∗)fρ + SĈ−1nλ (S∗ − S̄∗n)fλ‖

=‖SĈ−1nλ S̄
∗
n(fρ − fλ) + SĈ−1nλS

∗(fλ − fρ)‖

=‖SC−1/2λ C
1/2
λ Ĉ

−1/2
nλ Ĉ

−1/2
nλ S̄∗n(fρ − fλ) + SC

−1/2
λ C

1/2
λ Ĉ

−1/2
nλ Ĉ

−1/2
nλ C

1/2
λ C

−1/2
λ S∗(fλ − fρ)‖.

Note that, the following inequalities holds ‖SC−1/2λ ‖ = ‖C−1/2λ CC
−1/2
λ ‖1/2 ≤ 1, ‖Ĉ−1/2nλ S̄∗n‖ =

‖Ĉ−1/2nλ ĈnĈ
−1/2
nλ ‖1/2 ≤ 1, and ‖C−1/2λ S∗‖ = ‖C−1/2λ CC

−1/2
λ ‖1/2 ≤ 1. Thus, we obtain

‖f̃λ − fλ‖ ≤ [‖C1/2
λ Ĉ

−1/2
nλ ‖+ ‖C1/2

λ Ĉ
−1/2
nλ ‖2]‖fλ − fρ‖.

The empirical error is also related to fρ that can be estimated by fρ = Lrg with ‖g‖ ≤ R. Thus, we estimate the empirical
error in terms of r ∈ (0, 1/2) and r ∈ [1/2, 1], respectively.

A.3.4. ESTIMATE FOR APPROXIMATION ERROR

The last term we need to estimate is approximation error ‖fλ − fρ‖, whose proof is standard (Smale & Zhou, 2007;
Caponnetto & De Vito, 2007; Rudi & Rosasco, 2017).

Lemma A.22 (Approximation error). Let fλ and fρ be defined by (16) and (6). Under Assumption 3.3, the approximation
error holds for any λ > 0 and r > 0,

‖fλ − fρ‖ ≤ Rλr.

Proof. Under Assumption 3.3, there exists g ∈ L2
ρX such that fρ = Lrg with ‖g‖ ≤ R. The identity A(A + λI)−1 =

I−λ(A+λI)−1 is valid for λ > 0 and A the bounded self-adjoint positive operator and by the definition of fλ (Proposition
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A.12), we have

‖fλ − fρ‖ =‖LL−1λ fρ − fρ‖ = ‖(LL−1λ − I)fρ‖ = ‖λL−1λ fρ‖

=‖λr(λ1−rL−(1−r)λ )(L−rλ Lr)g‖

≤‖λr‖‖λ1−rL−(1−r)λ ‖‖L−rλ Lr‖‖g‖.

Note that ‖λ1−rL−(1−r)λ ‖ ≤ 1 and ‖L−rλ Lr‖ ≤ 1, while R := ‖g‖L2
ρX

according to Assumption 3.3. The proof is
completed.

The estimate of approximation error is standard and holds for any r > 0. When r approaches zero, the approximation error
gradually becomes the distance between two unrelated estimators fλ and fρ.

A.4. Proof of Main Results

Proof of Theorem 3.9. Firstly, we recall the error decomposition of E(f̂M,λ)− E(fρ) in Lemma A.13 that is

E(f̂M,λ)− E(fρ) ≤ 4‖f̂M,λ − f̃M,λ‖2ρ + 4‖f̃M,λ − f̃λ‖2ρ + 4‖f̃λ − fλ‖2ρ + 4‖fλ − fρ‖2ρ. (37)

We need to combine analytical results for those four errors in Lemmas A.14, A.20, A.21 and A.22. We combine the
constraints about n used in the first three error terms as n ≥ 16(N∞(λ) + 1) log(2/δ). Let λ = n−

1
2r+γ and N∞ ≤ Fλ−α

under Assumption 3.8, and then the restrict on n becomes almost surely n ≤ n
α

2r+γ . It holds

2r + γ ≥ α. (38)

Estimate sample variance. According to Lemma A.14 and Lemma A.9, when n ≥ 16(N∞(λ) + 1) log(2/δ), it holds with
the probability at least 1− δ

‖f̂M,λ − f̃M,λ‖ ≤ 8

(
B
√
N∞(λ)

n
+

√
B2N (λ)

n

)
log

2

δ
.

The sample variance can be bounded by

‖f̂M,λ − f̃M,λ‖2ρ ≤ 64

(
B
√
N∞(λ)

n
+

√
B2N (λ)

n

)2

log2 2

δ

≤ 128

(
B2N∞(λ)

n2
+
B2N (λ)

n

)
log2 2

δ

≤ 128
(
κ2B2n

α−4r−2γ
2r+γ + κ2B2n

−2r
2r+γ

)
log2 2

δ
.

(39)

To ensure the convergence rate for the sample variance in (39) is optimalO(n
−2r
2r+γ ), the above inequality yields n

α−4r−2γ
2r+γ ≤

n
−2r
2r+γ , which leads to the following restriction

2r + 2γ ≥ α. (40)

Combining the restrictions for covariance operator difference 2r + γ ≥ α (38) and sample variance 2r + 2γ ≥ α (40), we
provide the restriction 2r + γ ≥ α. We then bound the sample variance as follows:

‖f̂M,λ − f̃M,λ‖2ρ ≤ 128
(
κ2B2n

α−4r−2γ
2r+γ + κ2B2n

−2r
2r+γ

)
log2 2

δ
≤ c1n

−2r
2r+γ , (41)

where c1 = 256κ2B2.
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Estimate Nyström error. According to Lemma A.20, Lemma A.9, and Lemma A.10, when M ≥ 67 log 4κ2

λδ ∨
5N∞(λ) log 4κ2

λδ and n ≥ 16(N∞(λ) + 1) log(2/δ), Nyström error holds

‖f̃M,λ − f̃λ‖ ≤ 18Rλr, when r ∈ (0, 1/2).

‖f̃M,λ − f̃λ‖ ≤ 9Rλr, when r ∈ [1/2, 1].

Then, the Nyström error can be stated as

‖f̃M,λ − f̃λ‖2ρ ≤ 324R2n
−2r
2r+γ . (42)

Estimate empirical error. According Lemma A.21 and Lemma A.9, when n ≥ 16(N∞(λ) + 1) log(2/δ), there holds

‖f̃λ − fλ‖2ρ ≤ 4R2n
−2r
2r+γ . (43)

Estimate Approximation error. According Lemma A.22, for λ > 0 and r > 0 there exists

‖fλ − fρ‖2ρ ≤ R2n
−2r
2r+γ . (44)

Substituting (39), (42), (43) and (44) to (37), we prove the final result. With probability 1 − δ, the conditions n ≥
16(N∞(λ) + 1) log(2/δ) and

M ≥ 67 log
4κ2

λδ
∨ 5N∞(λ) log

4κ2

λδ
.

can guarantee the optimal error bound for Nyström approximation with uniform sampling

E(f̂M,λ)− E(fρ) ≤ c2n
−2r
2r+γ .

where c2 = 256κ2B2 + 987R2.

Proof of Corollary 3.12. Under Assumption 3.8, using Theorem 3.9 and Nyström approximation with uniform subsampling,
we can obtain the desired results when considering the worst case N∞(λ) ≤ κ2

λ with α = 1.

Proof of Corollary 3.15. Let λ = n−
1

2r+γ , andN∞(λ) w N (λ) for the data-dependent sampling strategy (Rudi & Rosasco,
2017) (Example 2), and then the restrict on n becomes almost surely n ≥ n

γ
2r+γ by Assumption 3.5. It holds for the entire

range of source condition r ∈ (0, 1], γ ∈ [0, 1].
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