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Abstract

Distributionally robust learning (DRL) is increasingly seen as a viable method to
train machine learning models for improved model generalization. These minimax
formulations, however, are more difficult to solve. We provide a new stochastic
gradient descent algorithm to efficiently solve this DRL formulation. Our approach
applies gradient descent to the outer minimization formulation and estimates the
gradient of the inner maximization based on a sample average approximation. The
latter uses a subset of the data sampled without replacement in each iteration, pro-
gressively increasing the subset size to ensure convergence. We rigorously establish
convergence to a near-optimal solution under standard regularity assumptions and,
for strongly convex losses, match the best known O(ε−1) rate of convergence up
to a known threshold. Empirical results demonstrate the significant benefits of our
approach over previous work in improving learning for model generalization.

1 Introduction

Consider a general formulation of the distributionally robust learning (DRL) problem of active
interest. Let X denote a sample space, P denote a probability distribution on X, and Θ ⊆ Rd
denote a parameter space. Let us define LP (θ) := EP [l(θ, ξ)] to be the expectation with respect
to (w.r.t.) P of a loss function l : Θ × X → R representing the estimation error for a learning
model with parameters θ ∈ Θ over data ξ ∈ X. Further define the worst-case expected loss
function R(θ) := EP∗(θ)[l(θ, ξ)] = supP∈P{LP (θ)}, which maximizes the loss LP over a well-
defined set of measures P . Letting Pb denote a base distribution, this set often takes the form
P = {P |D(P, Pb) ≤ ρ,

∫
dP (ξ) = 1, P (ξ) ≥ 0} where D(·, ·) is a distance function on the space

of probability distributions on X and the constraints limit the feasible candidates to be within a
distance of ρ from Pb. We seek to find parameters θ ∈ Θ that solve the DRL problem formulated as

R(θ∗rob) = min
θ∈Θ

{
R(θ)

}
= min

θ∈Θ

{
sup
P∈P
{LP (θ)}

}
, (1)

for a given X and P . In practice, training with DRL amounts to dynamically reweighing the data using
the inner optima P ∗(θ) at any value the parameters θ take over the space Θ. The inner maximization
problem sets these weights to emphasize data that experience high loss at θ. This reweighing approach
arises from solid theoretical foundations and can provide strong guarantees on model generalization.

DRL and Model Generalization: In machine learning, optimal values for the model parameters
θ are calculated from a finite training dataset (of size N ) and this model is then used for inference
over other test datasets, all of which are typically assumed to be identically distributed [33, 34].
The equal-weight empirical distribution UN = {1/N} over the finite training dataset is the non-
parametric maximum likelihood estimator [23] of the (unknown) distribution underlying the datasets.
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Let θ∗erm denote the minimizer of the empirical loss LUN (·) over Θ. In real-world applications, any
two finite datasets sampled from the same underlying distribution can violate the identical distribution
assumption, leading to poor generalization when using θ∗erm over other datasets [24]. Popular model
selection techniques, such as cross-validation [32], seek to improve the estimation error between
training and testing datasets, but they can be computationally prohibitive and lack rigorous guarantees.

With roots in non-parametric statistics [23] and optimization [28, 7], several studies [20, 2, 7, 21, 19]
have proposed as an alternative approach the DRL formulation (1) using the empirical distribution
UN over the finite training dataset as the base distribution Pb. This alternative approach explicitly
treats the ambiguity in the identity of the true (stationary but unknown) distribution, denoted by
P0. In general, we know that UN is not equal to P0 and it is highly likely that, at θ∗rob, the worst-
case distribution P ∗(θ∗rob) is not equal to P0. However, for Wasserstein distance metrics and an
appropriately chosen value of ρ in the set of measures P , Blanchet et al. [2] show that P contains a
distribution P whose relevant loss function characteristics are the same as those for the true (unknown)
distribution P0 with high probability. A broad guideline is provided in [2, 21] such that these high
probability guarantees are achieved by setting ρ = O(

√
d/N) for binary classification with logistic

models. The DRL approach thus holds great promise and a general theory is actively being pursued.

Goal: Our main objective is to solve the DRL problem (1) in an efficient manner to ensure it is a viable
alternative approach for model generalization. The primary difficulty is the minimax formulation,
particularly the inner maximization problem. While its solution may be explicitly available in some
cases – e.g., constraining P by certain Wasserstein distance metrics admits an explicit characterization
of the robust objective function EP∗(θ)[l(θ, ξ)] [2, 30, 8, 4, 5] – these reductions do not hold in
general for all interesting Wasserstein distance metrics and they require solving a convex non-linear
program [5]. Namkoong and Duchi [21] show that the inner maximization can be efficiently solved
(see Section 2) under χ2-divergence constraints. Hence, we focus on the entire general class of
φ-divergence distance functions: Dφ(P, Pb) = EPb [φ( dPdPb )], where φ(s) is a non-negative convex
function having the value 0 only at s = 1. Members of this class include the modified χ2 divergence,
with φ(s) = (s−1)2, and the Kullback-Leibler (KL) divergence, with φ(s) = s log s−s+1. Defining
the vector P := (pn) of dimension N and setting the base Pb to the uniform empirical distribution
UN , we then have that the loss function and constraint set P are given by LP (θ) =

∑N
n=1 pnl(θ, ξn)

and P = {P |
∑N
n=1 pn = 1, pn ≥ 0,∀n,Dφ(P,UN ) = 1

N

∑N
n=1 φ(Npn) ≤ ρ}, respectively.

Related Work: Assuming convex loss functions l(·, ξn), the DRL problem (1) is convex in θ. Ben-
Tal et al. [1] consider the typical Lagrangian dual algorithm used for this convex-concave case;
see (10) in the supplement. Such a reformulation renders a standard stochastic optimization problem,
which they solve by applying classical stochastic gradient descent (SGD) methods. However, when l
is non-convex, this approach cannot guarantee convergence to global optima. Moreover, Namkoong
and Duchi [20] observe that the characteristics of certain dual variables can cause instability in SGD.

Namkoong and Duchi [20] therefore propose an alternative approach, for convex losses l(θ, ξ),
that interleaves stochastic mirror-descent steps in each of the θ and P variables. This requires a
computationally demanding step that samples an N -sized non-uniform pmf, which requires O(N)
computational effort, and is only slightly smaller than the effort needed to solve the inner maximization
problem exactly (see below). Coupled with the iterations in a composite dimension d + N , this
results in slow convergence, as observed in our empirical results in the supplement. To rectify this,
Namkoong and Duchi [21] propose to directly obtain the optimal P ∗(θ) that defines R(θ), namely
solving (1) as a large deterministic problem that is well-defined for finite N . For χ2-divergence, they
show that the inner maximization can be reduced to two one-dimensional root-finding problems,
which can be solved via bisection search, thus requiring an expensive O(N logN) computational
effort (see Proposition 2) at each iteration. They also establish a guarantee that the deterministic
algorithm for convex losses l converges to an ε-optimal solution with O(Nε−2) computational effort.

Recent work [10, 15] seeks to reduce the computational effort of this costly full-gradient method
by developing an algorithm to efficiently estimate the gradient of the inner maximization problem
through a multi-level Monte Carlo randomization procedure introduced by Giles [12]. Although
there are important differences in the two algorithms and the theoretical arguments supporting each
algorithm and its parameters (see the discussion below), both approaches hold great promise in theory
especially for large datasets where, for convex losses l, Levy et al. [15] establish a computational
effort complexity of O(ε−3) under their algorithm and we establish a computational effort complexity
of O(ε−2) under the algorithm in [10]. Despite this great promise, our analysis and experiments
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expose two adverse factors. Each iteration is more expensive because it solves multiple inner
maximization problems. At the same time, the algorithm inherently produces an increase in the
variance of the gradient estimator of the robust loss as a result of the added randomization of the
Giles estimator; this can negatively impact both the computational effort and solution quality of the
overall approach.

Our Contributions: Our main focus is to devise an algorithmic approach and theoretical results to
efficiently solve DRL formulations and to improve generalization more consistently and more quickly
than alternative methods. We consider in Section 2 a new SGD algorithm, tailored to large DRL
problems, where our Algorithm 1 significantly reduces the expense of solving the inner maximization
over the full training dataset by subsampling the support of P from the (finite) training dataset in
the iterates of the algorithm and estimating the robust loss via a sample average approximation.
Subsampling (mini-batching) typically works well with SGD because the gradient estimates are
unbiased. However, in the DRL context, our Theorem 3 shows that subsampling produces a bias in
the estimation of the robust loss gradient because, with fixed mini-batch subsampling, chances are
high that critical data that suffer high loss will be missed, leading to an optimistic estimation of the
robust loss; empirical results (in the supplement) illustrate the important impact of this bias.

Namkoong and Duchi [21] bypass this important issue of bias by assembling the full-data gradient,
whereas the Giles estimator approach of Levy et al. [15] and Ghosh and Squillante [10] randomizes
the choice of the mini-batch size over the entire dataset. Although Levy et al. [15] provide an
analysis of the bias induced by mini-batching, our algorithm is fundamentally different in that we
are the first to solve the DRL formulation by assembling the mini-batch through sampling without
replacement from the training dataset [11], whereas in strong contrast sampling with replacement is
employed in [20, 21, 15]. Our alternative Giles estimator approach [10], devised independently of
and simultaneously to the Giles estimator approach of Levy et al. [15], also employs sampling without
replacement. While our general theory in the without-replacement sampling approach is harder
to establish because the individual samples in the mini-batch are not distributionally independent,
our analysis establishes stronger theoretical results that show our without-replacement sampling
approach herein is able to match the best-known convergence guarantees of SGD. Thus the estimation
is significantly improved for the same computational effort by only considering unique samples ξ and
their losses l(θ, ξ) in approximating R(θ). Indeed, an M -sized set sampled with replacement has on
average only about N(1− e−M/N ) unique support points (see the supplement); this issue leads Levy
et al. [15] to show that the variance of their R(θ) estimator may not vanish with increasing batch
size, thus contributing to their worse computational effort complexity which can not achieve the
best-known SGD convergence guarantees.

Our Algorithm 1 reduces the identified inherent bias by progressively increasing the subsample size
with the iterates up to the maximum size N . This represents the first such approach to simultaneously
reduce bias and decrease the computational burden of solving large DRL formulations, together with
the first analysis of a general progressively increasing subsampling-based approach in the context
of DRL and bias reduction. Shamir [26] considers sampling with and without replacement, but
in the context of standard (single-level) SGD, showing that SGD without replacement achieves
similar performance on the same order as SGD with replacement, which is in strong contrast to our
corresponding results in the DRL setting. We establish in Theorem 4 that convergence to a close
neighborhood of a local optimal solution is assured, even for non-convex losses l, provided that the
subsamples increase at a certain minimal rate. We further extend our analysis for strongly convex
losses l in Theorem 6 to show that our algorithm achieves O(ε−1) effort to reduce the optimality gap
to ε, matching the best SGD rates known for stochastic optimization [22]. The dependence on N
is via poly-log terms. This holds for all ε ≥ Ē∗ = O(N−(1−δ)) where δ is a small positive value.
Hence, for strongly convex losses, we match the best rates of standard SGD w.r.t. ε, like [21] (but
without their O(N) dependence), with only poly-log N dependence, like [15] (but without their
worse ε order). A forthcoming article extends these theoretical results to the case of convex losses l.
Our theoretical results guide the setting of key algorithm parameter values to realize this optimally
balancing of the fundamental tradeoff between computational effort and stochastic error. Additional
theoretical results, all proofs and further technical details can be found in the supplement.

Our empirical results in Section 3 consider convex DRL formulations of binary classification problems.
We compare the computation and generalization performance of our algorithm with the corresponding
performance under the algorithms proposed in [20, 21, 15, 10] and under a regularized ERM formula-
tion tuned via k-fold cross validation (CV), the standard practical approach for model generalization.
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Our results show that Algorithm 1 attains equivalent or (often) superior generalization performance as
k-fold CV and the other DRL methods. Meanwhile, our algorithm provides significant improvements
in the computational effort required by the other DRL methods and orders of magnitude reductions
in the computational effort required by k-fold CV. Furthermore, the key parameters of our DRL
algorithm do not require fine tuning and are set based on our theoretical results, whereas the key
parameters of the other DRL methods require fine tuning while also impacting both the solution
quality and computation effort of the Giles approach. Additional empirical results, including the
impact of key algorithmic parameters, and related technical details can be found in the supplement.

2 Algorithm and Analysis

Algorithm 1 presents our progressively sampled subgradient descent algorithm that follows SGD-like
iterations for the outer minimization problem in (1) according to

θt+1 = θt − γt∇θR̂t(θt) = θt − γtGt, (2)

where γt is the step size (or gain sequence or learning rate), R̂t(·) is a sample-average approximation
of the robust loss R(·) from the inner maximization formulation over Dφ-constrained P , and Gt :=

∇θR̂t(θt). Our algorithm uses progressively increasing sample sizes Mt to estimate Gt. This
view of (1) permits us to depart from the convex-concave formulations of Ben-Tal et al. [1] and
consider non-convex losses l, as long as the subgradient∇θR̂t(·) approximates the gradient∇θR(·)
sufficiently well. We first establish that the gradient ∇θR(·) exists, recalling that R(θ), as the
optimal value of the inner maximization problem, is an extreme value function. Let us define the
set Θ∅ := {θ : l(θ, ξn1

) = l(θ, ξn2
), ∀n1, n2} and, for a small ς > 0, define the set Θ∅,ς :=

∪θo∈Θ∅{θ : |θ − θo| < ς} to be the ς-neighborhood of Θ∅. We assume in Proposition 1 that the
learning model precludes this neighborhood set in order to avoid a degenerate case in which the inner
maximization objective function does not depend on the decision variables pn and the entire feasible
set is optimal. The existence and form of ∇θR(θ) is then derived in part by exploiting Danskin’s
Theorem [29, Theorem 7.21].
Proposition 1. Let the feasible region Θ be compact and assume Θ ⊆ Θc

∅,ς , for a small ς > 0.
Further suppose φ in the Dφ-constraint has strictly convex level sets, and let ρ < ρ̄(N,φ) with
ρ̄(N,φ) defined in the supplement. Then: (i) the optimal solution P ∗ of R(θ) = supP∈P{LP (θ)}
is unique, and the gradient is given by ∇θR(θ) =

∑
n∈N p

∗
n(θ)∇θl(θ, ξn); and (ii) for all ρ, the

gradient∇θR(θ) is a sub-gradient of R(θ).

Algorithm 1 ProgressiveSSD(γ, {Mt}, θ0, ρ)

Given: Step size γ; Sample sizes {Mt}Tt=1,
MT = N ; Initial θ0; Dφ constraint ρ; small
δ > 0.
for t = 1, 2, . . . , T do

{SampleMt without replacement}
Mt ← ∅
for m = 1, . . . ,Mt do
ξm ∼ Uniform (N \Mt)
Mt ←Mt ∪ {ξm}

end for

Assemble Zt ← {l(θt, ξm), ∀m ∈Mt}

ρt ← ρ+ c
(

1
Mt
− 1

N

)(1−δ)/2

P ∗t ← InnerMax(Zt,Mt, ρt)
Set Gt ←

∑
m∈Mt

p∗t,m∇θl(θt, ξm)
Set θt+1 ← θt − γ Gt

end for
return θT

Algorithm 2 InnerMax(Z,M, ρ)

Given: loss values Z; subsampled supportM;
Dφ constraint ρ.
M ← |M|, base Pb =

{
1
M ,∀m ∈M

}
z̄ ← maxm{zm | zm ∈ Z}
M′ ← {m ∈M : zm = z̄} and M ′ ← |M′|
P ′ ←

{
1
M ′ I{m ∈M

′}, ∀m ∈M
}

If Dφ(P ∗, Pb) ≤ ρ then
P ∗ ← P ′ and return P ∗

for α ∈ [0, ᾱ] do
for λ ∈ [λ, λ̄] do
M′ ← {m |λ ≤ zm − αφ′(0)}
P ′ ←

{
1
M (φ′)−1( zm−λα ),m ∈M′

}
If
∑
m p
′
m = 0, then

P ∗(α)← P ′, and break
end for
If Dφ(P ∗(α), Pb) = ρ, then
P ∗ ← P ∗(α) and break

end for
return P ∗

Next, we construct the estimate R̂t from the inner maximization problem restricted only to a relatively
small subsetMt of the full dataset with size |Mt| = Mt. Define P := (pm) of dimension Mt and
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define the objective coefficients zm := l(θ, ξm). We then have

R̂t(θ) = max
P=(pm)

∑
m∈Mt

pmzm s.t.
∑

m∈Mt

φ(Mtpm) ≤Mtρt,
∑

m∈Mt

pm = 1, pm ≥ 0. (3)

The uncertainty radius ρt = ρ + ηt now changes with the iteration t where ηt represents a small
additional inflation; Theorem 3 below motivates why this is included. Now suppose P ∗t (θ) =

(p∗t,m(θ)) is an optimal solution to (3). Then a valid subgradient for R̂t(θt) is obtained as an
expression analogous to that in Proposition 1(i) under appropriate substitutions w.r.t. θt, P ∗t and
Mt. Writing the Lagrangian objective of (3) as L(α, λ, P ), with an explicit expression given in
the supplement, we then have the optimal objective value R̂∗t (θ) = minα≥0,λ maxp̂m≥0 L(α, λ, P );
refer to [18]. The optimal primal and dual variables can then be obtained for various φ functions by
the general Algorithm 2 to solve the Lagrangian formulations. Importantly, a worst-case bound on
the computational effort required to obtain an ε-optimal solution to (3) can be obtained.

Proposition 2. For any φ-divergence, Algorithm 2 finds a feasible primal-dual solution (P̃ ∗t , α̃
∗, λ̃∗)

to (3) with an objective function value R̃∗t such that |R̂∗t (θ)−R̃∗t | < ε with a worst-case computational
effort bounded by O(Mt logMt + (log 1

ε )2), where ε is a small precision parameter.

The machine-precision ε does not relate to any formulation or algorithm parameters (e.g., Mt, N, ρ),
and it is required because Algorithm 2 solves two one-dimension bisection searches in sequence. In
the sequel we assume that ε is a fixed small value and Algorithm 2 returns the exact unique solution
(P ∗t , α

∗, λ∗) to problem (3), and that the computational effort is bounded by O(Mt logMt).

2.1 Small-Sample Approximation of∇θR(θ)

In Algorithm 1, the gradient ∇θR is approximated using the gradient expression in Proposition 1(ii)
with the optimal P ∗t for a small sample size Mt. This estimate is expected to suffer a bias because
a subsample of the full dataset might miss data where loss is high when subsampling the dataset,
and this leads to optimistic estimation of the robust loss R(θ) and its gradient. Let the mass vector
P ∗ = (p∗1, . . . , p

∗
N ) be the optimal solution to the full-data version of (3), i.e., with Mt = N , and let

the mass vector P ∗t = (p∗1, . . . , p
∗
Mt

) be the optimal solution when restricted to any subsetMt.
Assumption 1. The φ-divergence satisfies uniformly for all s and ζ < ζ0 the continuity condition
(for constants ζ0, κ1, κ2 > 0): |φ(s(1 + ζ))− φ(s)| ≤ κ1ζφ(s) + κ2ζ.

The above condition, as described in [29], only allows for (local) linear growth in φ, and it can be
verified for many common φ-divergences of interest including the modified χ2- and KL-divergences.
Let Et and Pt respectively denote expectation and probability w.r.t. the random setMt.
Theorem 3. Suppose Assumption 1 and the assumptions of Proposition 1 hold, and further suppose
the gradient∇R̂t(θ) is the optimal solution to (3) over a subsampleMt of sizeMt sampled uniformly
without replacement from a set of sizeN . Define ηt = c( 1

Mt
− 1
N )(1−δ)/2 for small constants c, δ > 0,

and set the Dφ-target in (3) to be ρt = ρ + ηt. Then, there exists a small positive M ′ defined in
the supplement and of order o(N) such that, for all Mt ≥ M ′, the subgradient ∇θR̂t(θ) and full-
gradient∇θR(θ) satisfy for any C <∞ and 1− τ̄t = O(η

2δ/(1−δ)
t ):

Pt(η−2
t ‖∇θR̂t(θ)−∇θR(θ)‖22 ≤ C) ≥ τ̄t.

Corollary 1. If the conditions for Theorem 3 are satisfied, then ‖Et[∇θR̂t(θ)]−∇θR(θ)‖22 = O(η2
t ).

The proof of Theorem 3 (in the supplement) includes exact expressions for the corresponding
constants such as τ̄t, whose dependence on the constant C and on the magnitude of ∇θR(θ) is made
explicit in Lemma 9. Theorem 3 provides a bound on the squared bias in approximating the true
gradient ∇θR(θ) with the subsample estimate ∇θR̂(θ) as a function of the sample size Mt. Levy
et al. [15] develop an analogous bias result for the case when the subsampleMt is gathered through
sampling support points ξn with replacement by building on standard concentration bounds. In strong
contrast, ourMt is sampled without replacement which, as previously motivated, is more practical in
terms of avoiding repeated computation with sample points that get sampled multiple times. Unlike
the with-replacement case, the samples within ourMt are no longer independent. Consequently, our
analysis is built from the ground up starting with tools of probability related to sampling finite sets
without replacement; see the start of Appendix A.3. Motivating the form of ηt, note that sampling a
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subset of size M uniformly without replacement from a larger finite set of size N induces variance
terms of the form ( 1

M −
1
N ) in place of the standard 1

M .

To provide an outline of the proof, it starts by constructing P̃ ∗, a restriction of the (unique) P ∗ onto
the (random) subsetMt in the restricted problem (3), where p̃∗m ∝ p∗m, ∀m ∈Mt. The assumptions
ensure with probability at least τ̄t that p̃∗m 6= 0. With the same high probability, P̃ ∗ is also a feasible
solution to (3) when ρt is inflated as assumed. Next, we establish that its objective function value
is within ηt of the optimum with high probability, which yields the desired result. The Corollary 1,
which is the main form of Theorem 3 used in the sequel, follows from Theorem 17.4 in [13].

Note that the bias identified in Theorem 3 vanishes only with Mt ↗ N as t → ∞. Since fixed
bias in gradients violates a basic requirement for SGD [3, Section 4.3] that the gradient estimator
E[∇θR̂t(θ)] = Θ(∇θR(θ)) (using standard time complexity notation [31]), then the convergence
of (2) cannot be guaranteed when Mt = M for all t, where M < N . To address this bias issue, in
strong contrast with using the full-data gradient∇θR(θ) [21] or randomizing the subset size Mt over
the entire dataset [15, 10], our algorithm chooses to grow the mini-batch size Mt progressively with t.
Bottou et al. [3, Section 5.1] show that even with unbiased gradient estimation, keeping step sizes
γt fixed and directly increasing the mini-batch size Mt is more advantageous because (informally)
the larger Mt makes the gradient estimates more accurate. In our case, we grow the sample size in
the SGD algorithm (2) to eliminate bias. Since this also provides a decrease in stochastic error as
a consequence, it is no longer necessary to diminish the step size γt; indeed, doing so negates the
benefits of the extra work in computing gradients using a larger Mt. Algorithm 1 therefore takes
fixed-length steps γ. The maximum size N is reached after a (large) finite number of iterations T , at
which point our algorithm reduces to a deterministic full-gradient optimization approach.

2.2 Convergence of Algorithm 1

Seen in the above light, for a finite N , the strictly increasing Mt sequence will eventually end at
an iterate T < ∞ where MT = N , that is T := inft{Mt ≥ N}. Hence, Algorithm 1 is not
guaranteed to converge by the T th iteration. We can nevertheless provide a finite-stop guarantee on
the performance of the method over any loss function with Lipschitz gradients.

Theorem 4. Suppose the constant step size γt = γ satisfies γ ≤ 1
2L , a lower bound Rinf exists for

the robust loss function R(θ), ∀θ ∈ Θ, and the conditions of Theorem 3 hold. Then, the variance
of the estimate ∇R̂t(θ) calculated over the sampled-without-replacementMt with subsample size
Mt obeys E[‖∇R̂t(θ) − E[∇R̂(θ)]‖22] ≤ C( 1

Mt
− 1

N ). Further assume the gradient ∇θR(θ) is
L-Lipschitz. Then, at termination,

T∑
t=1

‖∇θR(θt)‖22 ≤
R(θ0)−Rinf
γ
2 (2− Lγ)

+ C
Lγ + 1

2− Lγ

T∑
t=1

η2
t . (4)

The first result in Theorem 4 establishes that the variance of ∇R̂t(θ) obeys a bound which is as to
be expected for sampling without replacement from any finite set [35]. Combining this with the
bias (see Corollary 1) allows us to progressively decrease the mean squared error. This leads to the
result (4) in Theorem 4, which shows that the sum of the gradients of R(θt) at iterates visited by
the algorithm is bounded above, in particular, by

∑T
t=1( 1

Mt
− 1

N )(1−δ). If this summation remains
finite as T → ∞, then the upper bound of (4) remains finite, and thus the gradients ‖∇θR(θt)‖22 at
the iterates converge to 0; in other words, the algorithm converges to a local optimal solution. The
summation can converge for Mt increasing moderately, such as at a polynomial rate.

Theorem 4 assumes that the gradient ∇θR(θ) of the robust loss is Lipschitz continuous. The
gradients of such extreme value functions are in general not Lipschitz even if the objective function
is Lipschitz. For example, a linear objective l(θ, ξn) = θtξi leads to R(θ) = maxp

∑
i piθ

tξi and
when maximized over a polyhedral constraint set it will not preserve the 0-Lipschitzness of the
objective functions, because the optimal solutions P ∗ are picked from the discrete set of vertices
of the polyhedron and thus ∇θR(θ) is piecewise discontinuous. Our Proposition 1 assumptions
yield an inner maximization with a non-zero linear objective over a strictly convex feasible set. The
desired smoothness can then be obtained with some additional conditions on the loss functions
l(θ, ξi). Proposition 5 provides one such condition where the Lipschitzness of∇θR(θ) follows from
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the Hessian of R(θ) being bounded in norm, which is often satisfied by common statistical learning
losses, e.g., log-logistic and squared losses of linear models over compact spaces.

Proposition 5. Assume the conditions in Proposition 1 hold. Further suppose that the Hessians
∇2
θl(θ, ξn) exist, ∀θ and each ξn, and are bounded in Frobenious norm ‖∇2

θl(θ, ξn)‖F ≤ L, ∀θ, n.
Then, the robust loss also follows ‖∇2

θR(θ)‖F ≤M for some positive M <∞.

A key consideration then is to obtain θT as close as possible to the minimizer θrob that attains
Rinf . The tradeoff in (4) suggests that increasing Mt aggressively will lead to smaller gradients at
termination, but this will also increase the computational effort in each iteration. In the remainder of
the section, we study this tradeoff under an additional assumption that the loss functions l(·, ξ) are
strongly convex for each ξ, which we will show in Theorem 6 yields the strong convexity of R(θ).
Consequently, it also provides a unique minimizer θrob for (1) that satisfies Rinf := R(θrob). We
therefore seek a lower bound on how close the value of R(θT ) and its gradient at termination of our
progressively sampled Algorithm 1 can get to the unique optimal solution as a function of the sample
growth sequence {Mt}, and also seek to establish convergence guarantees for the computational
effort needed by our algorithm to attain a desired optimality gap larger than this lower bound.

Our notion of efficiency will be developed w.r.t. the total computational effort Wt that is expended
up until iterate t, where Wt =

∑
s≤t ws and ws is the individual work in each iterate s. From

the discussion following Proposition 2, we assume the relation wt = keMt logMt holds for some
constant ke. Defining the ratio νt := Mt+1/Mt as the growth factor of the sequence {Mt}, we
consider two important cases: (i) Diminishing-factor growth with νt ↘ 1 as t ↑, e.g., the polynomial
growth of νt = 1 + 1

t ; and (ii) Constant-factor growth with νt = ν > 1, ∀t. Assuming M0 = 1,
the algorithm employs subsample set size Mt = b

∏t
s=1 νsc in iteration t, until a maximum of T

iterations when MT ≥ N . For constant growth sequences, we have T = dlog(N)/ log νe, and we
use the notation T (ν) and WT (ν) to denote the total iterations and total computational effort as
functions of ν. Our final result characterizes guarantees on the rate at which the expected optimality
gap ET := ET −1[R(θT )] − R(θrob) decreases w.r.t. WT . Recall that δ defines the parameter ηt
in Theorem 3, and denote by E0 the optimality gap at the starting iterate. We drop the integrality
requirement on sequences like b

∏
νsc in our analysis of Theorem 6 to provide a clear and insightful

exposition, but note that the conclusions remain unaltered.

Theorem 6. Suppose all the conditions of Theorem 4 are satisfied and the loss functions l(θ, ξn)
are c-strongly convex. Then the function R(θ) is c-strongly convex. Further suppose that γ ≤
min{ 1

4L , 4c} is fixed. Then: (i) For diminishing growth sequences Mt, we have that ETWT →∞
as νt → 1+; and (ii) For constant growth sequences, we have that the total effort WT (ν) is a
decreasing function over ν ∈ (1,∞), with limν→1+(ν − 1)WT (ν) = ke(N logN − (N − 1)).
Moreover, ET (ν) ≤ ĒT (ν) where ĒT (ν) is an increasing function over ν ∈ (1,∞) with its infimum
Ē∗ = infν ĒT (ν) = (1/N1−δ)(E0 + 8CLc2)) attained as ν → 1+. Finally, we have
limν→1+ WT (ν) (ĒT (ν)− Ē∗) = 8CLc2(1− δ)(1− γ

4c ) · ke
(
Nδ logN − (Nδ −N−(1−δ))

)
.

Several key properties of our Algorithm 1 are apparent from Theorem 6 for the case of strongly-
convex R(θ). To understand these results, first note (referring to the supplement for details) that if
the full batch-gradient method is applied in each iteration (Mt = N ), a strongly-convex objective R
would enjoy a linear (i.e., constant factor) reduction of size (1− γ/4c) in the error R(θt)−R(θrob)
for a step-size γ chosen to satisfy the conditions of Theorem 6. The average optimality gap can be
written as a sum of this deterministic error and an additional term representing the stochastic error
induced by the subsampling of the support. The best convergence results for SGD methods on
strongly convex objective functions ensure that ε-expected-optimality-gap solutions are obtained with
O(ε−1) work complexity [29]. Theorem 6(i) establishes that any general diminishing-factor growth
of Mt will lead to the stochastic error decreasing to zero much slower than the geometric drop in
the deterministic error, and thus the stochastic error dominates. Consequently, there is a suboptimal
reduction in the optimality gap ET w.r.t. the total computational effort WT .

Constant factor sequences, however, can achieve a balance in the tradeoff between the rate of
reduction in stochastic error and the drop in deterministic error. Note first that, for smaller ν > 1,
the sample size sequence Mt grows more slowly, hence leading to larger terminating iteration T
and total computational effort WT ; an exact expression for WT (ν) is provided in the supplement
for any ν ∈ (1,∞). Consequently, WT falls as the growth factor ν grows. This also leads to a
poorer guarantee ĒT (ν) on the attainable optimality gap and thus requiring ν → 1+ to improve the
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guarantees on ET . Theorem 6 characterizes an absolute limit in Ē∗ on how much optimality gap
reduction can be guaranteed in this regime because the algorithm takes only a finite T number of
iterations, and shows Ē∗ = O(N−(1−δ)) independent of the step length γ. This theorem also leads
to the following corollary that our algorithm attains any desired gap Ē∗ + ε with O(ε−1) effort.

Corollary 2. Suppose all the conditions of Theorem 6 are satisfied and a solution with guar-
anteed expected optimality gap within Ē∗ + ε is desired. Then, there exists a νε ∈ (1,∞)
such that when Algorithm 1 is run with sample size sequence Mt = bνtεc, it terminates with
T (ε) = dlogN/ log νεe steps and produces the desired solution with total computation effort
WT (ε) = 1

ε

(
κ1νε + κ2νε(ν

1−δ
ε − 1) + o( ν1−δ

ε ˘1)
)
, where κ1, κ2 ∈ (η,∞) for a fixed η > 0

and for all ε ≥ 0. Moreover, νε ↘ 1 as ε→ 0.

(The expression an = o(bn) denotes that an/bn → 0 as n → ∞.) Expressions for the constants
κ1 and κ2 are given in the proof of the corollary in the supplement. Since δ is an arbitrarily small
chosen constant, κ1 and κ2 depend on N only through poly-log terms. Hence, for such a desired ε,
our progressively subsampled algorithm for the DRL formulation matches the best rate results for the
SGD family of algorithms for strongly convex stochastic optimization formulations.

3 Empirical Results

Numerous experiments were conducted to empirically evaluate our progressively sampled subgradient
descent (PSSG) Algorithm 1, with the main objectives of reaching the optimal solutions of the DRL
formulation and improving model generalization more consistently and more quickly than alternative
methods. In addition, we seek to understand the characteristics of our PSSG method and assess the
efficacy of the DRL approach in general as a viable alternative to regularized ERM in producing good
model generalization. Specifically, we compare the performance of PSSG with that of competing
algorithms to solve the DRL formulation (1), namely the full-support gradient (FG) algorithm
of [21] and the multi-level Monte Carlo (Giles) algorithm of [15] and [10]; given the benefits we
established here and in [10] for sampling without replacement over sampling with replacement, our
empirical results focus on the multi-level Monte Carlo (Giles) algorithm of [10]. We also include in
supplement B consideration of the standard SGD (fixed minibatch Mt = M ) method to gauge the
impact of the bias shown in Theorem 3; and further include consideration of the SGD method of [20]
for a small dataset to demonstrate that the method was not competitive. These methods were all
re-implemented since full source code was not made available with the corresponding publications.

Following [21], all examples use a logistic binary classification loss l(θ, (x, y)) = log(1 +
exp(−yθtx)) where x represents samples with d features and y represents the class labels ±1.
All algorithms sampled the initial θ0 uniformly from the hypercube [−1, 1]d. All experiments were
implemented in Python 3.7 and run on a 16-core 2.6GHz Intel Xeon processor with 128GB memory.
Additional empirical results and technical details can be found in the supplement.

Generalization. We investigate whether the DRL formulation (1) can improve the generalization of
learning models against an ERM-trained model that is regularized via 10-fold CV. Experiments were
conducted over 13 public-domain datasets as detailed in Table 1 with sizes ranging from O(102) to
O(106). We include MNIST, a non-convex neural-network model, where we follow [15] and admit
only the last logistic classification layer into the DRL formulation. Table 1 presents a comparison
of the test misclassification produced by the DRL algorithms and the regularized ERM algorithm
at termination for the 13 datasets. (The parameter settings for each algorithm are detailed below).
The 95% confidence intervals (CIs) are calculated over 10 permutations of the datasets into training
(80%) and testing (20%) sets. We highlight in bold the methods that produce a generalization error
(within its CIs) that is clearly the best. As evident, at least one DRL method – always including PSSG
– produces models of equal or better quality as the regularized ERM formulation for all datasets.

Recall that the DRL methods provide this level of performance by solving a single instance of the
DRL formulation (1), thus avoiding the burdensome 10-fold CV enumeration. Table 1 provides the
average CPU time in seconds recorded over the 10 permutations. The average time taken by the ERM
10-fold regularization in solving its formulation multiple times in a serial computing mode to identify
the best regularization parameter (parameter λ below) exceeds that taken on average to solve the DRL
formulation by one to two orders of magnitude. The computation time of a single PSSG DRL run
is of the same order as that of a single ERM run, as anticipated by Theorem 6 and its Corollary 2.
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Dataset √
d
N

Test Misclassified (%) CPU Time (secs)
FG Giles PSSG ERM FG Giles PSSG ERM

adult∗ 0.051 17.1±0.0 16.7±0.1 16.6±0.1 16.7±0.1 45 214 36 2542
fabert† 0.312 9.1±0.2 9.9±0.2 9.2±0.1 9.9±0.1 32 61 20 4128
gina_agnostic† 0.529 13.2±0.1 15.4±0.4 13.1±0.2 15.9±0.7 33 21 13 1765
gina_prior† 0.475 13.7±0.4 14.3±1.0 12.7±0.3 14.6±0.7 34 38 31 1147
guillermo† 0.463 30.7±0.2 34.1±0.3 30.7±0.2 32.0±0.4 908 505 116 31547
hiv1∗ 0.166 5.9±0.1 6.3±0.2 5.8±0.0 6.1±0.1 41 45 35 1012
IMDB.drama † 0.091 36.1±0.1 37.0±0.1 36.2±0.0 36.2±0.1 176 865 89 19436
la1s.wc† 2.029 9.3±0.0 8.3±0.3 8.2±0.1 9.0±0.1 17 47 12 2456
MNIST⊕ 1.342 2.0±0.1 1.7±0.1 1.5±0.0 1.8±0.1 39 28 20 984
OVA_Breast† 2.660 3.2±0.1 3.8±0.4 3.0±0.1 3.4±0.2 140 23 37 4310
rcv1‡ 0.242 5.7±0.0 5.3±0.0 5.1±0.0 6.3±0.0 2628 1271 543 701843
riccardo† 0.463 4.9±0.1 2.0±0.1 1.5±0.1 1.7±0.1 259 201 120 86575
tr31.wc† 3.305 2.7±0.3 2.7±0.4 2.7±0.2 2.9±0.3 6 14 6 987

Table 1: Comparison of the DRO and regularized ERM formulations over 13 publicly available
machine learning (ML) datasets, from UCI∗ [17], OpenML† [6], MNIST⊕ [14] and SKLearn‡
[16].The first set of four columns provides a 95% confidence interval of the percentage misclassified
over withheld test datasets. The second set of four columns provides the average CPU time taken.

Figure 1: Comparison of PSSG (green), FG (red) and Giles (blue) on the fraction of misclassification
in testing (y-axis) versus cumulative CPU time (log-scale x-axis) over the hiv1, la1s.wc and
riccardo datasets, with ρ set as noted.

This indicates a significant computational savings in using DRL because of the elimination of the
expensive hyper-parameter tuning step.

The main parameter of the DRL formulation is the uncertainty radius ρ for the set of measures P ,
and following [2, 21] it is set to the same (base-10) order of magnitude as the value

√
d/N ; Table 1

records this quantity for each dataset. We provide in supplement B detailed comparisons of the
three DRL methods over multiple ρ values (and other key parameter values) for several datasets.
These results illustrate similar performance trends and insensitivities across the datasets relative to
the O(

√
d/N) guideline for FG and PSSG (which are independent of its growth factor). The Giles

method, however, exhibits complex interactions between ρ and its minimum mini-batch size parameter
that significantly impact both the solution quality and the computation time. Thus, fine tuning of
these two key parameters of the Giles method is required to achieve the best quality solution and the
smallest computational effort. In strong contrast, the interactions between ρ and the key parameters
of PSSG are relatively weak, with the growth factor only impacting the computational effort (and not
the solution quality). Hence, it is sufficient to run PSSG with key parameters that are set based on our
theoretical results without any fine tuning. This lack of fine tuning requirements is another important
advantage of PSSG, in addition to its solution quality and computational advantages.

Among the DRL methods, PSSG takes the least time to solve the problem for all datasets (with one
exception), often significantly so, while providing equal or better performance, including significant
performance improvement over ERM in several cases. As expected, FG takes more time to solve the
problem than PSSG for all datasets (comparable time for tr31.wc). For all but one dataset, Giles
takes significantly more time than PSSG to solve the problem, by an order of magnitude in several
cases. These longer computation times are due in large part to the added variability experienced by
the Giles method arising from the Monte Carlo randomization. The effect of this added variability is
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also evident in the consistently wider CIs of the misclassification errors for Giles, as well as in the
wider range of CPU times with an isolated case terminating the fastest (OVA_Breast) and several
cases terminating the slowest among DRL methods (e.g., adult, fabert, IMDB.drama, la1s.wc).

Figure 1 presents three representative comparisons of the empirical DRL runs over time, where the
sample paths of all ten runs for each method are plotted along with their average shown in bold;
corresponding plots for other datasets are provided in the supplement. The sample paths for PSSG
(green) exhibit relatively low variability overall with reductions in variability as the sample size Mt

grows with the iterations t. In strong contrast, the sample paths for Giles (blue) exhibit much higher
variability across the iterations, and are computationally more expensive, for the reasons explained
above. Although FG (red) also exhibits low variability, it is clearly more expensive computationally.

PSSG DRL. Our Algorithm 1 starts with an initial sample size of 1, the fixed step length γ = 0.5
and, following Theorem 6, the constant-growth factor ν = 1.001 is chosen close to 1. Although the
parameter δ appears prominently in the inflation of ρ to individual ρt as defined in Theorem 3, δ is
required only to be a small positive constant. Since the empirical results were found not sensitive
to δ, we set δ = 0.01. All DRL algorithms solved the inner-maximization formulation to within
ε-accuracy where ε = 10−7. Each method monitors the performance of the current model in correctly
classifying the withheld test validation set every (1/20)th of an epoch, and stops if the average of the
last 20 misclassification fraction values does not improve more than 1% when compared with the
average of the previous 80 evaluations. Hence, an algorithm run stops if the misclassification error in
the validation set over the current epoch is not improved by more than 1% over the four past epochs.

Theorem 3 provides the fundamental relationship between the bias suffered by a fixed batch size SGD
(Mt = M ) method in solving (1) and the batch sizeM . The important impact of this bias is illustrated
by empirical results presented in the supplement. Under a small growth factor of ν = 1.001, the
iterations of PSSG operate with Mt = 1 until t ≈ 400 when it then rises to Mt = 2. Hence, PSSG
initially enjoys the benefits of fast objective value reduction similar to SGD with fixed batch size, but
then eventually eliminates the introduced bias and thus also enjoys fast convergence. PSSG therefore
avoids the expense of hyper-parameter tuning the batch size of standard SGD for bias reduction.

We also consider the impact of two key algorithm parameters: sample size growth factor ν and step
length γ. Following Theorem 6, these settings are broadly expected to impact the computation times
and solution quality. Empirical results (in the supplement), contrasting the performance of PSSG
keeping one of the parameters γ and ν fixed while varying the other, show that the performance is
insensitive to ν for values smaller than 1.001 and γ larger than 0.5, indicating that an error floor Ē∗
has been reached. Hence we use these parameter values for all experiments in Table 1.

FG DRL. The step lengths of the FG algorithm are determined by the LBFGS-B algorithm with
a maximum of 0.5 for all experiments. This parameter can have a notable impact on the speed of
convergence, and our results in the supplement show this to be the best choice over many datasets.

Giles DRL. The parameters of the Giles algorithm are a minimum mini-batch size of 5 and a stepsize
sequence of γt = 0.5 ∗ (5000/(5000 + t)) for all experiments. As noted above, the minimum
mini-batch size has a significant impact on the performance of the Giles method. The value 5 was
chosen after careful study over multiple datasets as described in the supplement.

Regularized ERM. The 10-fold CV procedure partitions the full training dataset into 10 equal parts
and trains a regularized model over each dataset formed by holding out one of the 10 parts as the
validation dataset. The ERM loss objective is regularized by a λ‖θ‖22 term, and a fixed-batch SGD
(size 10) is used for each combination of partition and λ values. Enumeration is employed to find the
optimal λ from a grid of 20 points in the range [10−6, 106], starting with 106 and backtracking until
the average performance over the 10 validation datasets does not improve for three λ enumerations.
Note that the computational benefits of PSSG would be even larger if all λ values over all grid
points were enumerated. Our results in the supplement show a significant amount of variability in
the optimal λ over all the datasets, with no evident pattern relating to dataset characteristics, which
highlights the need for ERM computations over a wide range of λ values for each dataset.

Summary. Our empirical results support our theoretical results and show that PSSG achieves
the main objectives of reaching optimal solutions of the DRL formulation and improving model
generalization more consistently and more quickly than other methods. In particular, PSSG produces
equal or better quality models as FG, Giles and regularized ERM with significantly less computational
effort, often by orders of magnitude, thus providing a strong alternative approach to generalization.
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