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Abstract

In this paper, we study the problem of sparse mean estimation under adversarial corruptions,
where the goal is to estimate the k-sparse mean of a heavy-tailed distribution from samples
contaminated by adversarial noise. Existing methods face two key limitations: they require
prior knowledge of the sparsity level k and scale poorly to high-dimensional settings. We
propose a simple and scalable estimator that addresses both challenges. Specifically, it
learns the k-sparse mean without knowing k in advance and operates in near-linear time
and memory with respect to the ambient dimension. Under a moderate signal-to-noise ratio,
our method achieves the optimal statistical rate, matching the information-theoretic lower
bound. Extensive simulations corroborate our theoretical guarantees. At the heart of our
approach is an incremental learning phenomenon: we show that a basic subgradient method
applied to a nonconvex two-layer formulation with an ℓ1-loss can incrementally learn the k
nonzero components of the true mean while suppressing the rest. More broadly, our work
is the first to reveal the incremental learning phenomenon of the subgradient method in the
presence of heavy-tailed distributions and adversarial corruption.

1 Introduction

Almost all statistical methods rely explicitly or implicitly on certain assumptions on the distribution of the
data. In practice, however, these assumptions are only approximately satisfied, mainly due to the presence
of heavy-tailed distributions and adversarial corruptions (Rousseeuw et al., 2011). To resolve these issues,
the field of robust statistics has been developed to construct estimators that exhibit “insensitivity to small
deviations from the (model) assumptions” (Huber, 2011, p.2). Robust statistics has a long history with the
fundamental work of John Tukey (Tukey, 1960; 1962), Peter Huber (Huber, 1964; 1967), and Frank Hampel
(Hampel, 1971; 1974). It has been applied across various domains, such as biology, finance, and computer
science (Rousseeuw et al., 2011).

Nonetheless, in high-dimensional scenarios, robust statistics contend with the curse of dimensionality.
Firstly, the majority of estimators in the literature demand exponential runtime with respect to data di-
mension. To resolve this problem, special attention has been devoted to algorithmic robust statistics, which
aims to design efficient algorithms for different tasks in the high-dimensional robust statistics (see the re-
cent book (Diakonikolas & Kane, 2023) and survey paper (Diakonikolas & Kane, 2019)). Secondly, generic
high-dimensional robust statistical tasks are often oblivious to the intrinsic structure of the data. As such,
they rely on overly conservative sample sizes that have an undesirable dependency on the data dimension.

In this paper, we aim to address these challenges for one of the most fundamental problems in robust
statistics, namely robust sparse mean estimation. More specifically, given an ϵ-corrupted set of samples from
an unknown and possibly heavy-tailed distribution P with a k-sparse mean µ⋆ = E[X] ∈ Rd, our goal is
to design a computationally and statistically efficient estimator µ̂ of the mean µ⋆. Throughout this paper,
we focus on the so-called strong contamination model (Diakonikolas & Kane, 2023, Definition 1.6) for the
corruption in the data, which encompasses a variety of existing models, such as Huber’s contamination model
(Huber, 1964).
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Definition 1 (Strong contamination model). Given a corruption parameter ϵ ∈ (0, ϵ0) and distribution P,
the ϵ-corrupted samples are generated as follows: (i) the algorithm specifies the number of samples n and
then n i.i.d. samples are drawn from P. (ii) An arbitrarily powerful adversary then inspects the samples,
removes ϵn of them, and replaces them with arbitrary points. The resulting ϵ-corrupted samples are given to
the algorithm.

Designing a statistically and computationally efficient estimator for the mean is highly nontrivial in this
setting due to the following reasons. First, contrary to the robust (dense) mean estimation, there is a
conjectured computational-statistical tradeoff (Diakonikolas et al., 2017b; Brennan & Bresler, 2019; 2020)
for the robust k-sparse mean estimation, which asserts that any efficient algorithm needs Ω̃(k2) samples, while
its statistically-optimal (but possibly inefficient) counterpart only requires Õ(k) samples. This conjecture
has neither been proved nor refuted. Second, most existing mean estimators are designed for light-tailed
distributions (Balakrishnan et al., 2017; Diakonikolas et al., 2019b; Cheng et al., 2021). The only two efficient
estimators available for heavy-tailed distributions (Diakonikolas et al., 2022b;a), however, are impractical for
real-world applications, as they rely on computationally intensive techniques such as the ellipsoid algorithm
and the sum-of-squares method. A fundamental question thus arises:

Can we design a practically efficient estimator for the robust sparse mean estimation problem
that overcomes the conjectured computational-statistical tradeoff?

In this work, we provide an affirmative answer to this question under moderate assumptions. Our proposed
approach comprises two stages. In the first stage, we provide a coarse-grained estimation of the mean that is
enough to identify the top-k nonzero elements of the mean. In particular, we show that a simple subgradient
method applied to a two-layer diagonal linear neural network with ℓ1-loss can identify the top-k nonzero
elements of the mean incrementally and sequentially while keeping the zero entries arbitrarily small. After
the identification of the top-k nonzero elements, in the second stage, we provide a finer-grained estimation of
the nonzero elements of the mean by employing a generic robust mean estimator—such as those introduced
in Diakonikolas & Kane (2019); Cheng et al. (2020)—restricted to the top-k nonzero elements, thereby
reducing the effective dimension of the problem from d to k. Our proposed approach achieves optimal
statistical error, sample complexity, and computational cost under moderate assumptions. Furthermore, we
demonstrate that these assumptions do not alter the inherent complexity of the problem, as evidenced by
a matching information-theoretic lower bound. Table 1 provides a summary of our results compared to the
existing estimators. Our contributions are summarized below:

- Overcoming the computational-statistical tradeoff. We demonstrate that our algorithm can
surpass the conjectured computational-statistical tradeoff under additional conditions. At a high
level, we require an ϵ-dependent upper bound for the coordinate-wise third moment and a lower
bound for the signal-to-noise ratio (SNR). Additionally, we demonstrate that our algorithm matches
the information-theoretic lower bound under exactly the same conditions.

- Near-linear dependency on the dimension. The first stage of our algorithm is coordinate-wise
decomposable and fully parallelizable. Therefore, it runs in Õ(d) time and memory on a single
thread, and in Õ(d/K) time and Õ(d) memory on K threads. Moreover, the computational cost of
the second stage of our algorithm is independent of d. In contrast, the existing robust sparse mean
estimators have a poor dependency on d (see Table 1).

- No prior knowledge on the sparsity level. Our method does not require prior knowledge of
the sparsity level k. In contrast, all existing methods for robust sparse mean estimation (in both
light- and heavy-tailed settings) require knowledge of the sparsity level k.

- Superior practical performance. Through extensive experiments, we show that, despite its
simplicity, our method performs well across a broad class of heavy-tailed distributions, including
those with unbounded variance.
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Algorithm ℓ2-error Sample complexity Running time

Lower bound Ω(
√

ϵ) Ω̃(k/ϵ) -

(Depersin, 2020; Prasad et al., 2020a) O(
√

ϵ) Õ(k/ϵ) exp(d)

(Diakonikolas et al., 2022b) O(
√

ϵ) Õ
(
k2/ϵ

)
poly(d)

(Diakonikolas et al., 2022a) O(
√

ϵ) Õ(kO(1)/ϵ) poly(d)

Ours (Stage 1)∗ O(
√

kϵ) Õ(1/ϵ) Õ(d)

Ours (full)∗ O(
√

ϵ) Õ(k/ϵ) Õ(d)

Table 1: Comparisons between different algorithms for robust sparse mean estimation. Here, k represents the sparsity level, d
is the ambient dimension, and ϵ denotes the corruption ratio. We use Ω̃(·) and Õ(·) to hide logarithmic factors. For simplicity,
the dependency on the sample size is omitted in the above comparisons. ∗Our algorithms require some mild assumptions as
detailed in Theorem 1.

2 Related Work

Robust (sparse) mean estimation. Robust mean estimation is a fundamental problem in statistics,
with its earliest work dating back to Tukey (1960); Huber (1964). However, throughout its extensive history
(Yatracos, 1985; Donoho & Liu, 1988; Donoho & Gasko, 1992; Huber, 2011), and even up to recent times
(Lugosi & Mendelson, 2019b;c; Depersin, 2020; Prasad et al., 2020a), most statisticians have primarily fo-
cused on developing statistically optimal estimators, often overlooking the fact that these estimators can be
computationally inefficient. It is only recently, following the seminal work of Lai et al. (2016); Diakonikolas
et al. (2019a), that researchers have started to develop polynomial-time algorithms for robust mean estima-
tion (Diakonikolas et al., 2017a; Steinhardt et al., 2017; Cheng et al., 2019) as well as other robust learning
tasks, including robust PCA (Balakrishnan et al., 2017) and robust regression (Chen et al., 2013).

Robust sparse mean estimation, as a distinct variant, has attracted considerable attention, particularly in
extremely high-dimensional settings. However, the situation for robust sparse mean estimation is more
nuanced compared to the dense case. Firstly, unlike the dense case, there is a conjectured computational-
statistical tradeoff (Diakonikolas et al., 2017b; Brennan & Bresler, 2019; 2020), suggesting that efficient
algorithms demand a qualitatively larger sample complexity than their inefficient counterparts. In particular,
there is evidence that such a tradeoff is unavoidable for Stochastic Query (SQ) algorithms (Diakonikolas
et al., 2017b). On the other hand, most prior works have primarily concentrated on the light-tailed setting
(Balakrishnan et al., 2017; Diakonikolas et al., 2019b; Cheng et al., 2021). Researchers have only recently
addressed the heavy-tailed setting using stability-based approaches (Diakonikolas et al., 2022b) and sum-of-
squares methods (Diakonikolas et al., 2022a). While these algorithms are polynomial-time, they may not be
practical when dealing with high-dimensional settings.

Incremental learning. Over the past few years, it has been shown practically and theoretically that
gradient-based methods tend to explore the solution space in an incremental order of complexity, ultimately
favoring low-complexity solutions in numerous machine learning tasks (Gissin et al., 2019; Ma et al., 2025).
This phenomenon is known as incremental learning. Specifically, researchers have investigated incremental
learning in various contexts, such as matrix factorization and its variants (Li et al., 2020; Ma et al., 2022;
Jin et al., 2023), tensor factorization (Razin et al., 2021; 2022; Ma et al., 2022), deep linear networks (Arora
et al., 2019; Gidel et al., 2019; Li et al., 2021; Ma & Fattahi, 2022), and general neural networks (Hu et al.,
2020; Frei et al., 2022). In essence, incremental learning is believed to be crucial for understanding the
empirical success of optimization and generalization in contemporary machine learning (Gissin et al., 2019).
However, to the best of our knowledge, its emergence in adversarial settings remains unexplored.

Notation: We use the notations a(n) ≲ b(n) and a(n) = O(b(n)) to denote a(n) ≤ Cb(n), for a universal
constant C and sufficiently large n. Similarly, the notations a(n) ≳ b(n) and a(n) = Ω(b(n)) are used to
denote a(n) ≥ Cb(n), for a universal constant C and sufficiently large n. The notation a = Θ(b) is used to
denote a = O(b) and b = O(a). Moreover, the notation a(n) = o(b(n)) implies that limn→+∞ a(n)/b(n) = 0.
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The sign(·) function is defined as sign(x) = x/|x| if x ̸= 0, and sign(0) = [−1, 1]. We also define s̃ign(x) =
x/|x| if x ̸= 0, and s̃ign(0) = 0. Given a set X , the indicator function IX (·) is defined as IX (x) = 1 if
x ∈ X , and IX (x) = 0 otherwise. Similarly, and with a slight abuse of notation, for an event E , we define
the indicator function I(E) = 1 if E occurs, and I(E) = 0 otherwise. We denote [n] := {1, 2, · · · , n}. For
two functions f, g : Rd → R, we define ∥f − g∥∞ = supx∈Rd |f(x) − g(x)|. For two vectors x, y ∈ Rd, their
Hadamard product is defined as x⊙y = [x1y1 · · · xdyd]⊤. For a vector x ∈ Rd, we define x2 = [x2

1, · · · , x2
d]⊤.

For a vector x ∈ Rd and index set I with size k, the notation [x]I ∈ Rk refers to the projection of x onto
I. Moreover, we define x ∧ y = min{x, y}. We represent mixtures of probability distributions as linear
combinations of their corresponding density functions. For example, given two distributions P1 and P2 and
a scalar 0 ≤ ϵ ≤ 1, we define the mixture P3 = (1 − ϵ)P1 + ϵP2. A sample from P3 is drawn from P1 with
probability 1 − ϵ and from P2 with probability ϵ.

3 Overview of Our Approach

To lay the groundwork, we begin by introducing the standard median-of-means (MoM) estimator (Ne-
mirovskij & Yudin, 1983; Jerrum et al., 1986; Alon et al., 1996) originally designed for estimating the mean
of a one-dimensional random variable. MoM estimator serves as a cornerstone for more sophisticated meth-
ods as detailed in Lugosi & Mendelson (2019c); Prasad et al. (2020b); Lecué & Lerasle (2020); Diakonikolas
et al. (2022b).
Definition 2 (Median-of-means estimator for one-dimensional case). Given a set of ϵ-corrupted samples
S = {X1, · · · , Xn} ⊂ R, we first partition them into J subgroups S1, · · · , SJ with equal sizes, where we assume
n is divisible by J for simplicity. We then calculate the sample mean for each subgroup, i.e., X̄j = 1

B

∑
i∈Sj

Xi

where B = n/J . Subsequently, the median-of-means (MoM) estimator is obtained by taking the median of
the sample means X̄1, · · · , X̄J , i.e., µ̂MoM = median

{
X̄1, · · · , X̄J

}
.

Alternatively, the MoM estimator can be expressed as the minimizer of the following ℓ1-loss:

µ̂MoM = arg min
µ∈R

1
J

J∑
j=1

∣∣X̄j − µ
∣∣ . (1)

By appropriately selecting the number of subgroups J , it can be shown that the MoM estimator matches
the information-theoretic lower bound Ω(σ

√
ϵ) for heavy-tailed distributions under the strong contamination

model (Definition 1).
Proposition 1 (One-dimensional MoM estimator). Consider a corruption parameter ϵ ≤ 1

8 , a failure prob-
ability δ, and a set S of n many ϵ-corrupted samples from a distribution P with mean µ⋆ ∈ R and vari-
ance E[(X − µ⋆)2] ≤ σ2. Suppose that n ≳ log(1/δ)/ϵ. Then, upon choosing the number of subgroups
J = Θ(⌈ϵn⌉ + log(1/δ)), with probability at least 1 − δ over the sample set S, the MoM estimator µ̂MoM
satisfies |µ̂MoM − µ⋆| = O (σ

√
ϵ).

A more precise statement of Proposition 1 and its proof are presented in Appendix A.

Naively applying MoM estimator to different coordinates of a high-dimensional random variable leads to an
undesirable dependency on the dimension d. More precisely, the coordinate-wise MoM, which corresponds
to the solution to the following convex optimization

µ̂MoM = arg min
µ∈Rd

Lcvx(µ) := 1
J

J∑
j=1

∥∥X̄j − µ
∥∥

1 , (cvx)

suffers from a suboptimal error rate of ∥µ̂MoM − µ⋆∥2 = O(σ
√

dϵ) (see Theorem 5 in Appendix A). This
error is unavoidable for the MoM estimator since the coordinate-wise error O(σ

√
ϵ) is uniformly distributed

across each coordinate. An alternative approach, the geometric MoM (Minsker, 2015), which replaces the
∥·∥1 in cvx by ∥·∥2, also suffers from a similar error.
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Two-layer model To address the above issue, we model the mean µ as a two-layer model u2 − v2 for
u, v ∈ Rd, and obtain (u, v) by minimizing the following nonconvex ℓ1-loss

min
u,v∈Rd

Lncvx(u, v) = 1
2J

J∑
j=1

∥∥X̄j −
(
u2 − v2)∥∥

1 . (ncvx)

To solve this optimization problem, we propose a subgradient method (SubGM) with small initialization
u(0) = v(0) = α1⃗, where 1⃗ = [1, · · · , 1]⊤ ∈ Rd and α > 0 is a sufficiently small factor. At each iteration,
SubGM updates the solution as

u(t + 1) = u(t) − ηg(t) where g(t) ∈ ∂uLncvx(u(t), v(t)),
v(t + 1) = v(t) − ηh(t) where h(t) ∈ ∂vLncvx(u(t), v(t)). (SubGM)

Here, η > 0 is the stepsize, and ∂uLncvx(u, v) and ∂vLncvx(u, v) indicate the (Clarke) subdifferentials of
Lncvx, defined as:

∂uLncvx(u, v) = 1
J

J∑
j=1

sign(u2 − v2 − X̄j) ⊙ u, (2)

∂vLncvx(u, v) = − 1
J

J∑
j=1

sign(u2 − v2 − X̄j) ⊙ v. (3)

The detailed implementation of our proposed algorithm is presented in Algorithm 1.

Algorithm 1 Robust sparse mean estimation via incremental learning
Input: dataset S, corruption parameter ϵ, failure probability δ, initialization scale α, stepsize η, and
iteration time T ∈

[
2
η log(1/α), 6

η log(1/α)
]
.

1: Stage 1 (SubGM):
2: Pre-processing: Divide the dataset into J equal subgroups S1, · · · , SJ , where J = 100⌈ϵn⌉. Calcu-

late the sample means X̄j = J
n

∑
i∈Sj

Xi.
3: Initialization: u(0) = v(0) = α.⃗1
4: for t = 1, · · · , T do
5: Update u(t), v(t) via SubGM.
6: end for
7: Identification of top-k elements: Calculate I =

{
i ∈ [d] : |u2

i (T ) − v2
i (T )| ≥ α

}
.

8: Return µ̂(T ) = u2(T ) − v2(T ).
9: Stage 2 (optional):

10: Consider the projected dataset Sk = {[Xi]I : Xi ∈ S} and apply an existing robust mean estimator
(e.g. those introduced in Diakonikolas & Kane (2019); Cheng et al. (2020)) to Sk.

Our key contribution is to reveal the emergence of incremental learning: we show that SubGM with small
initialization learns the nonzero components (signals) long before overfitting the zero components (residuals)
to noise. Consequently, there exists a wide range of iterations within which the signals are in the order
of Ω(1) while the residuals remain in the order of O(α) (see Figure 1a). Remarkably, we show that this
interval only depends on the stepsize η and the initialization scale α, and it can be widened by reducing these
user-defined parameters. In stark contrast, differentiating between the signals and residuals is challenging
in the convex setting (cvx) precisely due to the lack of incremental learning, as shown in Figure 1b. After
successfully identifying the locations of the top-k elements, we can employ existing robust mean estimation
techniques (Diakonikolas & Kane, 2019; Cheng et al., 2020) on the dataset projected onto the recovered
support to further improve the estimation of the top-k nonzero elements.
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Figure 1: The predicted coefficients for ncvx and cvx. Each color corresponds to a different coordinate of the estimated
mean. We run the subgradient method with stepsize η = 0.07 in both settings. We initialize ncvx with α = 1×10−10 and use a
zero initialization for cvx. We generate the inliers with d = 500, n = 2000 from a lognormal distribution with a variance of 3.3
and a k-sparse mean with k = 4 and nonzero elements [5, 2, 2, 1.5]. The corruption rate is 0.05 and the outliers are generated
from a Cauchy distribution with a mean of 20 and variance of 50.

4 Main Result

In this section, we present the theoretical guarantees for Algorithm 1. We begin by analyzing the first stage
of the algorithm, which focuses on recovering the support of the true mean.

4.1 Stage 1: Identification of Support via Coarse-grained Estimation

We denote µ⋆
max = maxi{|µ⋆

i |} and µ⋆
min = mini{|µ⋆

i | : µ⋆
i ̸= 0}. Our main theorem is presented next.

Theorem 1 (Convergence guarantee for SubGM). Let P be a distribution on Rd with an unknown k-sparse
mean µ⋆, unknown covariance matrix Σ ⪯ σ2I, and unknown coordinate-wise third moment satisfying
E[|Xi − µ⋆

i |3] ≲ σ3/
√

ϵ, ∀1 ≤ i ≤ d. Consider an arbitrary sample set of size n ≳ log(d/δ)/ϵ collected
according to the strong contamination model (Definition 1) with corruption parameter ϵ ≤ c where c > 0 is
a sufficiently small universal constant. Upon setting the stepsize η ≤ σ

√
ϵ/µ⋆

max and the initialization scale
0 < α ≲ σ

√
ϵ/d ∧ µ⋆−5

max in Algorithm 1, with a probability of at least 1 − δ, the following statements hold for
any iteration 2

η log(1/α) ≤ T ≤ 6
η log(1/α):

• ℓ2-error. The ℓ2-error is upper-bounded by

∥µ̂(T ) − µ⋆∥2 ≲ σ
√

kϵ. (4)

• Identification of the top-k elements. If we additionally have ϵ ≲ µ⋆2
min/σ2, then we obtain

|µ̂i(T )| ≳ σ
√

ϵ, where µ⋆
i ̸= 0,

|µ̂i(T )| ≲ α, where µ⋆
i = 0.

(5)

Comparison to the existing results. Simply applying coordinate-wise MoM estimator results in an
ℓ2-error rate O(σ

√
dϵ), which is considerably worse than our result when k ≪ d. On the other hand, to

guarantee a correct support recovery, the previous efficient estimators rely on prior knowledge of k, while the
coordinate-wise MoM requires an accurate value of µ⋆

min to separate the signals from residuals (as evidenced
by Figure 1b). In contrast, our proposed algorithm only requires a lower bound µ̂min ≤ µ⋆

min to differentiate
the signals from residuals; in fact, this lower bound can be arbitrarily small (i.e., conservative) provided that
the initialization scale is chosen as α ≪ µ̂min. We also highlight that, much like other existing estimators
under the strong contamination model, our estimator requires prior knowledge of the corruption parameter
ϵ (or its upper bound).
Remark 1. The assumption of a coordinate-wise bounded third moment is imposed to facilitate the use of
Berry-Esseen-type bounds in our analysis. This requirement is primarily technical and arises from controlling

6



Under review as submission to TMLR

the finite-sample deviation of empirical means under contamination. We conjecture that this assumption can
be relaxed or entirely removed by leveraging more refined concentration or robust mean estimation techniques.
Establishing such extensions is left for future work.

Proof sketch. We next provide the proof sketch of the above theorem, deferring its details to Section 5.
Specifically, we analyze the coordinate-wise dynamic µ̂i(t) = u2

i (t) − v2
i (t) for some 1 ≤ i ≤ d. Without loss

of generality, we assume µ⋆
i ≥ 0. Upon defining βi(t) = 1

J

∑J
j=1 s̃ign(X̄j,i − µ̂i(t)), the update rules for ui(t)

and vi(t) can be written as

ui(t + 1) = (1 + ηβi(t)) ui(t), vi(t + 1) = (1 − ηβi(t)) vi(t). (6)

Based on the above update rules, βi(t) controls the growth rate of the dynamics. Indeed, during the initial
iterations, we have µ̂i(t) ≈ µ̂i(0) = u2

i (0)−v2
i (0) = 0, which in turn implies that βi(t) ≈ βi(0). Consequently,

the dynamics of ui(t) and vi(t) can be well approximated using the following exponential functions

ui(t) ≈ (1 + ηβi(0))tα, vi(t) ≈ (1 − ηβi(0))tα. (7)

Therefore, to analyze the behaviors of ui(t) and vi(t), it suffices to characterize the magnitude of βi(0) for
different coordinates. To achieve this, we define Jclean as the index set of the subgroups [J ] that do not
contain any outliers, and denote its complement as Joutlier = [J ]\Jclean. We have

βi(0) = 1
J

∑
j∈Jclean

s̃ign(X̄j,i) ± |Joutlier|
J

(denote δ = |Joutlier|
J )

≈ (1 − δ)E
[
s̃ign(X̄j,i)

]
± δ (for sufficiently large Jclean)

= (1 − δ)
(
1 − 2Pr

(
X̄j,i − µ⋆

i ≤ −µ⋆
i

))
± δ

≈ (1 − δ)(1 − 2Φ(−µ⋆
i ·
√

BVar(X))) ± δ. (due to finite-sample central limit theorem)

Here, B = n/J is the size of each subgroup, and Φ(·) represents the cumulative distribution function (CDF)
of the standard Gaussian distribution. Let us define Iresidual = {i : µ⋆

i = 0} and Isignal = {i : µ⋆
i ̸= 0}. Based

on the above characterization of βi(0), for all i ∈ Iresidual, we have 1−2Φ(−µ⋆
i ·
√

BVar(X)) = 0, which in turn
implies βi(0) ≈ ±δ. Furthermore, by setting J = C⌈ϵn⌉ with a suitably large constant C, B = n/J ≥ 1/(Cϵ)
can be made sufficiently large given a sufficiently small ϵ. This ensures that βi(0) ≈ Ω(1 − δ) ± δ for all
i ∈ Isignal. On the other hand, we have δ ≤ ⌈ϵn⌉/J ≤ 1/C since |Joutlier| ≤ ⌈ϵn⌉. As a result, |βi(0)|
can be made arbitrarily small for all i ∈ Iresidual and βi(0) = Ω(1) for all i ∈ Isignal. This discrepancy in
the growth rates of ui(t) and vi(t) enables our algorithm to separate the signals from residuals within just
a few iterations. In Section 5, we provide a more delicate analysis of the dynamics, showing that for all
T ∈ [ 2

η log(1/α), 6
η log(1/α)] we have

u2
i (t) − v2

i (t) = µ⋆
i ± O(σ

√
ϵ), for i ∈ Isignal,∣∣u2

i (t) − v2
i (t)

∣∣ = poly(α) ≪ σ
√

ϵ, for i ∈ Iresidual.
(8)

The above equation sheds light on the key difference between ncvx and cvx: unlike cvx where the error is
equally distributed across different coordinates, the error in ncvx is primarily distributed among the signals,
while the error in the residuals can be kept arbitrarily small by a proper choice of the initialization scale α.
This implies that, if the signals are sufficiently larger than the induced error, i.e., |µ⋆

i | ≳ σ
√

ϵ, ∀i ∈ Isignal,
our algorithm can successfully identify the signals.

4.2 Stage 2: Achieving Optimal Rate on the Support via Fine-grained Estimation

As illustrated in Section 4.1, a direct application of SubGM leads to an estimation error of O(
√

kϵ). In this
section, we show that this error can be further improved once the support of the mean is identified correctly.
Our key insight is that once the support of the mean is recovered, we can reduce the problem to a robust
dense mean estimation defined only over the recovered support. Under such a regime, existing estimators
designed for robust dense mean estimation (Diakonikolas & Kane, 2019; Cheng et al., 2020) can be employed
to further reduce the estimation error.
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Proposition 2 (Adapted from Proposition 1.6 in Diakonikolas et al. (2020)). Let P be a distribution on
Rk with an unknown mean µ⋆ and unknown covariance matrix Σ ⪯ σ2I. Suppose a sample set of size n
is collected according to the strong contamination model (Definition 1) with corruption parameter ϵ < 1/2.
Then, there exists an algorithm that runs in O(kn) time and memory and, with a probability of at least 1−δ,
outputs an estimator µ̂ that satisfies

∥µ̂ − µ⋆∥2 ≲ σ
√

ϵ + σ
√

k/n + σ
√

log(1/δ)/n.

Equipped with the above result, we next provide an end-to-end guarantee for our full algorithm.
Theorem 2 (Guarantee for the full algorithm). Let P be a distribution on Rd satisfying the conditions in
Theorem 1. Consider an arbitrary sample set of size n ≳ (k + log(d/δ))/ϵ that is collected according to the
strong contamination model (Definition 1) with corruption parameter ϵ ≲ µ2

min/σ2 ∧1. Then, with the choice
of α = Θ(σ

√
ϵ/d ∧ µ⋆−5

max) and η = Θ(σ
√

ϵ/µ⋆
max), our full algorithm runs in O(nd log(d)) time and memory

and, with a probability of at least 1 − δ, outputs an estimate µ̂ that satisfies

∥µ̂ − µ⋆∥2 ≲ σ
√

ϵ. (9)

Upon setting the sample size n = Θ ((k + log(d/δ))/ϵ), our proposed two-stage method runs in Õ(dk) time
and memory and returns a solution with an error in the order of O(σ

√
ϵ). Our next theorem shows that this

error is indeed information-theoretically optimal up to a constant factor and thus cannot be improved.
Theorem 3 (Information-theoretic lower bound). There exists a distribution P with k-sparse mean µ⋆,
covariance matrix Σ ⪯ σ2I, and coordinate-wise third moment satisfying E[|Xi − µ⋆

i |3] ≲ σ3/
√

ϵ, ∀1 ≤ i ≤
d such that, given any arbitrarily large sample set collected according to the strong contamination model
(Definition 1) with corruption parameter ϵ, no algorithm can estimate the mean µ⋆ with ℓ2-error o(σ

√
ϵ).

Comparison to the existing lower bounds. To achieve the optimal error rate, the sample complexity of
our method scales linearly with the sparsity level k. A careful reader may realize that our sample complexity
is unexpectedly smaller than the optimal sample complexity Ω((k log(d/k)+log(d/δ))/ϵ) introduced in Lugosi
& Mendelson (2019a) when k is sufficiently small. This is due to the additional assumptions we impose on the
coordinate-wise third moment of the distribution and the corruption parameter ϵ. On the other hand, it is
recently shown in Diakonikolas & Kane (2019); Prasad et al. (2020a) that under the bounded third moment,
the dependency of the estimation error on ϵ can be improved from ϵ1/2 to ϵ2/3. Our worse dependency on ϵ
is due to our more relaxed assumption on the third moment: unlike the assumptions made in Diakonikolas &
Kane (2019); Prasad et al. (2020a), our imposed upper bound on the third moment is inversely proportional
to

√
ϵ. Consequently, the imposed upper bound can get arbitrarily large with a smaller corruption parameter.

In this extreme case where ϵ → 0, this condition can be dropped all together.

Key differences between the first and second stages. We note that Stage 1 is primarily designed
to provide a coarse-grained estimate and, in particular, to enable support identification via incremental
learning. According to the first statement of Theorem 1, under the general moment conditions and the strong
contamination model, Stage 1 guarantees an ℓ2-estimation error of order O(σ

√
kε) within a suitable range of

iterations. Stage 2, on the other hand, refines the estimate of the recovered support to achieve the optimal
statistical rate O(σ

√
ε). However, the success of Stage 2 relies on correctly recovering the support, which in

turn requires a stronger signal-to-noise ratio (SNR) assumption on the contamination rate. Concretely, the
support identification guarantee in the second statement of Theorem 1 requires an additional condition of
the form ε ≲ µ⋆2

min/σ2, and Theorem 2 (end-to-end guarantee) inherits this requirement.

5 Proofs

The proofs of our main results are organized as follows. Section 5.1 presents preliminary lemmas. Section 5.2
establishes the convergence guarantee of SubGM (Theorem 1), and Section 5.3 provides the end-to-end
guarantee of the full algorithm (Theorem 2). Section 5.4 derives the information-theoretic lower bound
(Theorem 3), and Appendix A proves a formal variant of Proposition 1 to establish the properties of the
MoM estimator.

8
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5.1 Preliminaries

This section presents all the technical lemmas that will be used to prove our main results.
Lemma 1 (Chebyshev’s inequality (Vershynin, 2018, Corollary 1.2.5)). Suppose that X ∼ P with Var(X) <
∞. Then, for any δ > 0, we have

Pr (|X − E[X]| ≥ δ) ≤ Var(X)
δ2 . (10)

Lemma 2 (Hoeffding’s inequality (Vershynin, 2018, Theorem 2.2.6)). Let X1, · · · , Xn be independent ran-
dom variables such that ai ≤ Xi ≤ bi almost surely. Then for all δ > 0, we have

Pr
( n∑

i=1
Xi − E[Xi] ≥ δ

)
≤ exp

{
− 2δ2∑n

i=1(bi − ai)2

}
. (11)

Lemma 3 (Dvoretzky-Kiefer-Wolfowitz Inequality (Massart, 1990)). Let F (t) = Pr(X ≤ t) be the CDF of
a random variable X, and let F̂n(·) = 1

n

∑n
i=1 I(−∞,·](Xi) be the empirical CDF based on n i.i.d. samples

X1, . . . , Xn ∼ P. We have

Pr
(∥∥∥F̂n − F

∥∥∥
∞

≥ t
)

≤ 2e−2nt2
for all t ≥ 0. (12)

Lemma 4. Suppose X1, · · · Xn
i.i.d.∼ P. Then, with probability at least 1 − δ and for all a ∈ R, we have∣∣∣∣ 1n

n∑
i=1

s̃ign (Xi − a) − E
[
s̃ign (X − a)

]∣∣∣∣ ≤
√

2 log(2/δ)
n

. (13)

Proof. Note that s̃ign(Xi−a) = 1−I(−∞,a](Xi)−I(−∞,a)(Xi) and E
[
s̃ign (X − a)

]
= 1−Pr(X ≤ a)−Pr(X <

a). Therefore, we have∣∣∣∣ 1n
n∑

i=1
s̃ign (Xi − a) − E

[
s̃ign (X − a)

]∣∣∣∣
≤
∣∣∣∣ 1n

n∑
i=1

I(−∞,a](Xi) − Pr(X ≤ a)
∣∣∣∣+ sup

b<a

∣∣∣∣ 1n
n∑

i=1
I(−∞,b](Xi) − Pr(X ≤ b)

∣∣∣∣
≤ 2

∥∥∥F̂n − F
∥∥∥

∞
.

(14)

Upon setting t =
√

1
2n log

( 2
δ

)
in the Dvoretzky-Kiefer-Wolfowitz Inequality (Lemma 3), with probability at

least 1 − δ and for all a ∈ R, we have∣∣∣∣ 1n
n∑

i=1
s̃ign (Xi − a) − E

[
s̃ign (X − a)

]∣∣∣∣ ≤ 2
∥∥∥F̂n − F

∥∥∥
∞

≤
√

2 log(2/δ)
n

.□ (15)

Lemma 5 (Berry-Esseen bound (Vershynin, 2018, Theorem 2.1.3)). Suppose X1, · · · Xn
i.i.d.∼ P, where P

has zero mean and bounded third moment, i.e., µ = E[X] = 0, ρ = E[|X|3] < ∞. Then, upon denoting
Zn = (

∑n
i=1 Xi)/

√
nσ2 where σ2 = E[X2], we have

sup
a∈R

|Pr (Zn < a) − Φ(a)| ≤ 0.5ρ

σ3√
n

. (16)

Here Φ(·) is the CDF of standard Gaussian distribution.

9
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5.2 Proof of Theorem 1

To prove this theorem, it is essential to first establish the uniform concentration of 1
J

∑J
j=1 s̃ign

(
X̄j,i + a

)
for all a ≥ 0.

Lemma 6. Suppose X1, · · · Xn
i.i.d.∼ P, where P has zero mean, variance σ2, and coordinate-wise third mo-

ment ρ. Moreover, suppose samples are generated according to the strong contamination model (Definition 1)
with corruption parameter ϵ. Suppose n ≥ 20000 log(2d/δ)/ϵ, J = 100⌈ϵn⌉, and ρ ≤ 0.005σ3/

√
ϵ. Upon di-

viding the samples into J equal subgroups S1, · · · , SJ and denoting the empirical mean of each subgroup by
X̄j = 1

J

∑
k∈Sj

Xk, with probability at least 1 − δ, the following statements hold

• For all a ≥ 20σ
√

ϵ and all 1 ≤ i ≤ d, we have: 3
5 ≤ 1

J

∑J
j=1 s̃ign

(
X̄j,i + a

)
≤ 1.

• For all 0 ≤ a ≤ 0.001σ
√

ϵ and all 1 ≤ i ≤ d, we have: −0.08 ≤ 1
J

∑J
j=1 s̃ign

(
X̄j,i + a

)
≤ 0.08.

Proof. We prove the two cases separately.

Case 1 : a ≥ 20σ
√

ϵ. We only need to prove the lower bound since the upper bound is trivial. We partition
the index set of subgroups 1, . . . , J into two disjoint subsets: Jclean, containing all subgroups free of outliers,
and Joutlier, containing those with at least one outlier. Note that |Joutlier| ≤ ⌈ϵn⌉. Therefore, we obtain

1
J

J∑
j=1

s̃ign
(
X̄j,i + a

)
≥ 1

J

∑
j∈Jclean

s̃ign
(
X̄j,i + a

)
− ⌈ϵn⌉

J
. (17)

Next, applying Lemma 4 and a union bound, we obtain that, with probability at least 1 − δ and for all
1 ≤ i ≤ d,

1
J

J∑
j=1

s̃ign
(
X̄j,i + a

)
≥ |Jclean|

J

(
E
[
s̃ign

(
X̄j,i + a

)]
−

√
2 log(2d/δ)

|Jclean|

)
− ⌈ϵn⌉

J

= |Jclean|
J

(
1 − 2Pr

(
X̄j,i ≤ −a

)
−

√
2 log(2d/δ)

|Jclean|

)
− ⌈ϵn⌉

J
.

(18)

To proceed, one can write

Pr
(
X̄j,i ≤ −a

)
= Pr

(
X̄j,i√

Var(X)/B
≤ − a√

Var(X)/B

)
(a)
≤ Φ

(
− a√

Var(X)/B

)
+ 0.5ρ

σ3
√

B

(b)
≤ exp

{
− Ba2

2Var(X)

}
+ 0.5ρ

σ3
√

B

≤ exp
{

−Ba2

2σ2

}
+ 0.5ρ

σ3
√

B
.

(19)

Here, (a) follows from the Berry-Esseen bound (Lemma 5). In (b), we use the concentration inequality for
standard Gaussian distribution. Combining the above inequalities and recalling our choices of J , B, and n,
we conclude that, with probability at least 1 − δ and for all 1 ≤ i ≤ d,

1
J

J∑
j=1

s̃ign
(
X̄j,i + a

)
≥ |Jclean|

J

(
1 − 2

(
exp
{

−Ba2

2σ2

}
+ 0.5ρ

σ3
√

B

)
−

√
2 log(2d/δ)

|Jclean|

)
− ⌈ϵn⌉

J

≥ 0.99 ·

(
1 − 2 ·

(
e−2 + 0.025

)
−
√

100
99 · 1

1 × 106

)
− 0.01

≥ 3
5 .

(20)
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This completes the proof of the first statement.

Case 2 : 0 ≤ a ≤ 0.001σ
√

ϵ. In this case, it suffices to provide an upper bound for
∣∣∣ 1

J

∑J
j=1 s̃ign

(
X̄j,i + a

)∣∣∣.
Following a similar derivation as in Case 1 , with probability at least 1 − δ and for all 1 ≤ i ≤ d, we have

∣∣∣∣∣∣ 1J
J∑

j=1
s̃ign

(
X̄j,i + a

)∣∣∣∣∣∣
≤ |Jclean|

J

(
1 − 2Φ

(
− a√

Var(X)/B

)
+ ρ

σ3
√

B
+

√
2 log(2d/δ)

|Jclean|

)
+ ⌈ϵn⌉

J

= |Jclean|
J

(
2Φ(0) − 2Φ

(
− a√

Var(X)/B

)
+ ρ

σ3
√

B
+

√
2 log(2d/δ)

|Jclean|

)
+ ⌈ϵn⌉

J

(a)
≤ 1.98a√

σ2/B
+ 0.99ρ

σ3
√

B
+
√

1.98 log(2d/δ)
J

+ ⌈ϵn⌉
J

≤ 1.98a
√

Bϵ + 0.05 +
√

1.98
9000 + 0.01

≤ 0.08.

(21)

Here, in (a), we use the anti-concentration for the standard Gaussian distribution. This completes the proof
of the second statement.

We are now ready to present the proof of Theorem 1. To this goal, we first present a more precise version
of its statement.

Theorem 4 (Convergence guarantee for SubGM). Let P be a distribution on Rd with an unknown k-sparse
mean µ⋆, unknown covariance matrix Σ ⪯ σ2I, and unknown coordinate-wise third moment satisfying
E[|Xi − µ⋆

i |3] ≤ 0.005σ3/
√

ϵ, ∀1 ≤ i ≤ d. Suppose a sample set of size n ≥ 20000 log(2d/δ)/ϵ is collected
according to the strong contamination model (Definition 1) with corruption parameter ϵ. Upon setting the
stepsize η ≤ σ

√
ϵ/µ⋆

max and the initialization scale 0 < α ≤ 0.001σ
√

ϵ/d ∧ µ⋆−5
max in Algorithm 1, with a

probability of at least 1 − δ, the following statements hold for any iteration 2
η log(1/α) ≤ T ≤ 6

η log(1/α):

• Near optimal ℓ2-error. The ℓ2-error is upper-bounded by

∥µ̂(T ) − µ⋆∥ ≤ 31σ
√

kϵ. (22)

• Coordinate-wise error bound. We obtain

|µ̂i(T ) − µ⋆
i | ≤ 30σ

√
ϵ, where µ⋆

i ̸= 0,

|µ̂i(T )| ≤ α, where µ⋆
i = 0.

(23)

Before proceeding to the proof, we note that second statement of Theorem 4 together with the assumption
ϵ ≤ µ⋆2

min/(961σ2) readily implies µ̂i(T ) ≥ σ
√

ϵ for every i such that µ⋆
i ̸= 0, leading to the second statement

of Theorem 1.

Proof of Theorem 4. Let us define Iresidual = {i : µ⋆
i = 0} and Isignal = {i : µ⋆

i ̸= 0}. We analyze coordinate-
wise dynamics µ̂i(t) := u2

i (t) − v2
i (t) separately for signals Isignal and residuals Iresidual.

11
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Signal dynamics. Without loss of generality, we assume that µ⋆
i > 0. Let us first revisit the update rule

for SubGM:

ui(t + 1) =
(

1 + η
1
J

J∑
j=1

s̃ign
(
X̄j,i − µ̂i(t)

))
ui(t),

vi(t + 1) =
(

1 − η
1
J

J∑
j=1

s̃ign
(
X̄j,i − µ̂i(t)

))
vi(t).

(24)

We further divide our analysis into two cases depending on the magnitude of |µ⋆
i |.

Case 1 : µ⋆
i ≥ 20σ

√
ϵ. We define Ti = {min t : µ⋆

i − µ̂i(t) < 20σ
√

ϵ}. Hence, for all 0 ≤ t ≤ Ti, the first
statement of Lemma 6 can be invoked to show

0.6 ≤ 1
J

J∑
j=1

s̃ign
(
X̄j,i − µ̂i(t)

)
≤ 1. (25)

By incorporating this into Equation (24), we obtain

u2
i (t + 1) ≥ (1 + 0.6η)2

u2
i (t) ≥ (1 + 1.2η)u2

i (t), (26)
v2

i (t + 1) ≤ (1 − 0.6η)2
v2

i (t) ≤ v2
i (t). (27)

Notice that vi(0) = α at the initialization. We find that v2
i (t) ≤ α2, ∀0 ≤ t ≤ Ti, which remains adequately

small throughout the trajectory. Next, we examine the dynamics of u2
i (t). Taking into account that u2

i (0) =
α2 and u2

i (t) ≥ (1 + 1.2η)tu2
i (0), we have that within Ti ≤ 5

3η log
(

|µ⋆
i |

α

)
iterations, the following holds

u2
i (Ti) ≥ α2(1 + 1.2η)Ti ≥ µ⋆

i − 10σ
√

ϵ. (28)

This implies
µ̂i(Ti) = u2

i (Ti) − v2
i (Ti) ≥ µ⋆

i − 10σ
√

ϵ − α2 ≥ µ⋆
i − 20σ

√
ϵ, (29)

since v2
i (Ti) ≤ α2. Next, we show that |µ⋆

i − µ̂i(T ⋆
i )| ≤ 20σ

√
ϵ. To this goal, when t < Ti, we provide an

upper bound on the difference between two consecutive iterations as follows

|µ̂i(t + 1) − µ̂i(t)| ≤
∣∣u2

i (t + 1) − u2
i (t)

∣∣+
∣∣v2

i (t + 1) − v2
i (t)

∣∣
(a)
≤

∣∣∣∣∣
(

1 + η
1
J

J∑
j=1

s̃ign
(
X̄j,i − µ̂i(t)

))2
− 1
∣∣∣∣∣ · u2

i (t) + α2

(b)
≤
(
(1 + η)2 − 1

)
u2

i (t) + α2

(c)
≤ 3ηµ⋆

i + 2α2

(d)
≤ 4σ

√
ϵ.

(30)

Here in (a), we use the fact that
∣∣v2

i (t + 1) − v2
i (t)

∣∣ ≤ max{v2
i (t+1), v2

i (t)} ≤ α2. In (b), we use the estimate
0.6 ≤ 1

J

∑J
j=1 s̃ign

(
X̄j,i − µ̂i(t)

)
≤ 1. In (c), we use the fact that u2

i (t) ≤ µ̂i(t) + v2
i (t) ≤ µ⋆

i + α2. Lastly, in
(d), we use the condition that η ≤ σ

√
ϵ

µ⋆
max

and α2 ≤ 0.5σ
√

ϵ. Hence, we have

µ̂i(Ti) − µ⋆
i ≤ µ̂i(Ti − 1) − µ⋆

i︸ ︷︷ ︸
≤0 by definition of Ti

+ (µ̂i(Ti) − µ̂i(Ti − 1)) ≤ 4σ
√

ϵ. (31)

Combining with the fact that µ̂i(Ti) − µ⋆
i ≥ −20σ

√
ϵ, we derive that |µ⋆

i − µ̂i(T ⋆
i )| ≤ 20σ

√
ϵ.

We will now demonstrate that for any t ≥ T ⋆
i , the condition |µ⋆

i − µ̂i(t)| ≤ 30σ
√

ϵ always holds. Using the
fact n ≥ 20000 log(2d/δ)/ϵ and Theorem 5 (in the appendix), we have |µ̂MoM − µ⋆

i | ≤ 5σ
√

ϵ. Then, the
triangle inequality implies

|µ⋆
i − µ̂i(t)| ≤ |µ̂MoM − µ⋆

i | + |µ̂MoM − µ̂i(t)| . (32)

12
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Therefore, it suffices to show that |µ̂MoM − µ̂i(t)| ≤ 25σ
√

ϵ for every t ≥ T ⋆
i . To this goal, we use induction

on t. For t = T ⋆
i , we have

|µ̂MoM − µ̂i(T ⋆
i )| ≤ |µ̂MoM − µ⋆

i | + |µ⋆
i − µ̂i(T ⋆

i )| ≤ 25σ
√

ϵ. (33)

Now, let us assume that at time t ≥ T ⋆
i , |µ̂MoM − µ̂i(t)| ≤ 25σ

√
ϵ. Without loss of generality, we assume

µ̂i(t) ≤ µ̂MoM. Based on the definition of the MoM estimator, we have

J∑
j=1

s̃ign
(
X̄j,i − µ̂MoM

)
= 0 =⇒

J∑
j=1

s̃ign
(
X̄j,i − µ̂i(t)

)
≥ 0. (34)

Let βi(t) = 1
J

∑J
j=1 s̃ign

(
X̄j,i − µ̂i(t)

)
. With this notation, we can derive the following inequality

µ̂i(t + 1) − µ̂i(t) = (2ηβi(t) + η2β2
i (t))u2

i (t) + (2ηβi(t) − η2β2
i (t))v2

i (t) ≥ 0, (35)

where in the last inequality, we use the fact that u2
i (t) ≥ v2

i (t). On the other hand, following exactly the
same argument in Equation (30), we have

µ̂i(t + 1) − µ̂i(t) ≤ 4σ
√

ϵ. (36)

By combining the above two inequalities, we establish that |µ̂MoM − µ̂i(t + 1)| ≤ 25σ
√

ϵ. This completes the
proof of induction.

Case 2 : |µ⋆
i | ≤ 20σ

√
ϵ. Since µ̂i(0) = 0, at iteration t = 0 we already have |µ⋆

i − µ̂i(t)| ≤ 20σ
√

ϵ. Conse-
quently, the analysis reduces to the last phase of Case 1 , from which we can conclude |µ⋆

i − µ̂i(t)| ≤ 30σ
√

ϵ
for all t ≥ 0.

Residual dynamics. In this case, we employ induction on t to demonstrate that |u2
i (t) − v2

i (t)| ≤ α for
all 0 ≤ t ≤ T . For the base case, this relationship is valid as u2

i (0) − v2
i (0) = 0. Assuming that this relation

holds at time t, we can refer to Lemma 6 and deduce

−0.08 ≤ 1
J

J∑
j=1

s̃ign
(
X̄j,i

)
≤ 0.08. (37)

Hence, we have
u2

i (t + 1) ≤ (1 + 0.08η)2u2
i (t) ≤ (1 + η/6) u2

i (t),
v2

i (t + 1) ≤ (1 + 0.08η)2v2
i (t) ≤ (1 + η/6) v2

i (t).
(38)

Therefore, for all t ≤ 6
η log

( 1
α

)
, we obtain∣∣u2

i (t) − v2
i (t)

∣∣ ≤ max
{

u2
i (t), v2

i (t)
}

≤ α2(1 + η/6)t ≤ α. (39)

Putting everything together. Finally, since we set α ≤ 0.001√
d

σ
√

ϵ ∧ µ⋆−5
max, for any 2

η log
( 1

α

)
≤ T ≤

6
η log

( 1
α

)
, we have

∥µ̂(T ) − µ⋆∥2 ≤
√

k · 30σ
√

ϵ +
√

dα ≤ 31σ
√

kϵ. (40)
This completes the proof.

5.3 Proof of Theorem 2

The proof follows by combining Theorem 1 and Proposition 2. First, for the data distribution and corruption
model considered in Theorem 1, once we set the sample size n ≳ log(d/δ)/ϵ, then with probability at least
1 − δ/2, we can successfully determine the location of the top-k nonzero elements. For short, we represent
the indices of these top-k elements as Ik. Following the successful determination of these indices, we can
then narrow our focus to a k-dimensional subproblem on the dataset Sk := {[Xi]Ik

: Xi ∈ S} with the mean

13
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[µ⋆]Ik
. We can then apply Proposition 2 to this reduced dataset. Specifically, once the sample size satisfies

n ≳ (k + log(d/δ))/ϵ, there exists an estimator such that with probability at least 1 − δ/2, it can output a
µ̂ satisfying ∥µ̂ − [µ⋆]Ik

∥ ≲ σ
√

ϵ.

Combining these two steps via a simple union bound, we know that with a probability of at least 1 − δ, our
two-stage estimator µ̂ satisfies ∥µ̂ − µ⋆∥ ≲ σ

√
ϵ. This concludes the proof. □

5.4 Proof of Theorem 3

Consider two probability distributions P1 and P2, where P2 = (1−ϵ)P1+ϵQ for some distribution Q. Suppose
we draw n i.i.d. samples from P1. Under the strong contamination model (Definition 1) with parameter
ϵ, this same set of samples can be equivalently viewed as ϵ-corrupted samples from P2. Consequently, no
algorithm can distinguish between the two cases (see Li (2019) for details).

Therefore, it suffices to construct two probability distributions satisfying the conditions in Theorem 3.
Without loss of generality, we focus on the one-dimensional case, since additional coordinates can be set
identically. We require two distributions P1,P2 such that:

• Both distributions have variance at most σ2 and third central moment at most σ3/
√

ϵ;

• P2 can be written as (1 − ϵ)P1 + ϵQ for some distribution Q;

• Their means µ1, µ2 satisfy |µ1 − µ2| ≥ σ
√

ϵ.

Following Li (2019), we construct P1 as the point mass at 0, and let P2 = (1 − ϵ)P1 + ϵQ, where Q is the
point mass at σ/

√
ϵ. It is straightforward to verify that P1 and P2 satisfy all three conditions, completing

the proof. □

6 Simulation

In this section, we present numerical simulations to corroborate the theoretical results established in Sec-
tion 4. Further implementation details, together with additional simulation studies, are deferred to the
appendix. The complete codebase is publicly accessible at https://github.com/ying-hui-he/Robust_
mean_estimation.

Simulation setup. All the experiments are conducted on a MacBook Pro 2021 with the Apple M1 Pro
chip and a 16GB unified memory. We pick three representative heavy-tailed probability distributions: Fisk,
Pareto, and Student’s t. To make a fair comparison, we fix the data dimension at d = 100 and use the
constant-bias noise model introduced in Cheng et al. (2021) to generate outliers. Unless otherwise stated, we
set the corruption ratio at ϵ = 0.1 and the sparsity level at k = 4. As for the algorithm in Stage 2, we utilize
the filter-based algorithm RME_sp introduced in Diakonikolas et al. (2019b). Furthermore, we compare our
algorithms with the oracle estimator, which applies truncated coordinate-wise MoM to the clean data: we
estimate each coordinate via MoM, retain the top-k entries, and set the remaining coordinates to zero. In
all of our simulations, we set the number of iterations of SubGM to 200, which is in line with our theoretical
results.

Identification of top-k elements. In this experiment, we evaluate the success rate under varying cor-
ruption ratios ϵ, while keeping all other parameters fixed. Our theoretical result (Theorem 1) indicates that
provable identification is possible only when ϵ ≲ µ⋆2

min/σ2, suggesting that the success rate should deteriorate
as ϵ increases. We define the recovered index set obtained by SubGM as I, and the true index set of the top-k
elements as Ik. The success rate is then measured as |I ∩ Ik|/|I ∪ Ik|. The results, presented in Figure 2a,
are averaged over 50 independent trials for each setting. Notably, SubGM achieves exact recovery of the true
index set I even when up to 30% of the samples are corrupted, highlighting the robustness and practical
effectiveness of our method.
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(a) Success rate of identification of top-k elements in Stage 1 with varying corruption ratio ϵ
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(b) Comparsion between Stage 1 and full algorithms with different sparsity k
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(c) Performances of Stage 1 and full algorithms in infinite variance regime

Figure 2: The data dimension is fixed at d = 100. Unless otherwise specified, the corruption ratio is set to ϵ = 0.1 and the
sparsity level to k = 4. For the first two simulations, the distribution parameters c, b, ν are set to 3.1 (see Appendix B for
further details). The sample size is n = 600 in the first and third simulations, while in the second simulation it is scaled as
n = 100k, varying proportionally with the sparsity level.
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Comparison between Stage 1 and full algorithms. We evaluate the ℓ2-error of the Stage 1 and full
algorithms across varying sparsity levels k. Our theoretical results predict a gap in ℓ2-error between the two
algorithms—O(σ

√
kϵ) versus O(σ

√
ϵ)—when k is sufficiently large. To minimize the influence of sample size,

we set n = 100k, ensuring a sufficiently large number of samples. As shown in Figure 2b, the two algorithms
perform comparably when k is small. However, as k increases, the ℓ2-error of Stage 1 grows sublinearly,
while the full algorithm maintains a stable error level. These empirical findings are fully consistent with our
theoretical predictions.

Infinite variance regime. In this experiment, we evaluate the performance of our algorithm in the
infinite variance regime, fixing the sparsity level at k = 4 and the sample size at n = 600. When the
distribution parameters c, b, ν fall within the interval (1, 2], the Fisk, Pareto, and Student’s t distributions all
exhibit infinite variance (see Appendix B for further details). As shown in Figure 2c, both Stage 1 and the
full algorithm maintain strong performance in this setting, suggesting that our theoretical guarantees may
extend to the infinite variance regime. Notably, Stage 1 consistently outperforms the full algorithm across
all three distributions, implying that SubGM may possess greater robustness than existing estimators under
infinite variance.

7 Conclusion and Future Directions

Many estimation tasks in statistics become notoriously difficult in the robust setting when certain assump-
tions on the data are lifted. For instance, almost all statistically optimal robust mean estimators suffer from
overwhelmingly high computational costs. While classical results in robust statistics have shed light on the
statistical limits of robust estimation, its computational aspects have mostly remained elusive. In this work,
we aim to bridge this gap by presenting the first computationally efficient and statistically optimal method
for robust sparse mean estimation, thereby overcoming a conjectured computational-statistical barrier un-
der moderate conditions. We believe that our method can be extended to other estimation tasks in robust
statistics. In the following discussion, we highlight two promising directions for future research.
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A MoM Estimator under Strong Contamination Model

In this section, we prove the key properties of the 1-dimensional and high-dimensional MoM estimators under
the strong contamination model (Definition 1). The following is a more precise statement of Proposition 1,
which is adapted from Fact 2.1. in Diakonikolas et al. (2022b). As the complete proof does not appear in
the original source, we include it here for completeness.

Proposition 3 (One-dimensional MoM estimator). Consider a corruption parameter ϵ ≤ 1
8 , failure prob-

ability δ, and a set S of n many ϵ-corrupted samples from a distribution P with mean µ⋆ and vari-
ance E[(X − µ⋆)2] ≤ σ2. Then, with probability at least 1 − δ, the MoM estimator µ̂MoM satisfies
|µ̂MoM − µ⋆| ≤ σ

(
4
√

2
(√

ϵ +
√

1/n
)

+ 16
√

log(1/δ)/n
)

.

Proof. We partition the index set of the subgroups {1, · · · , J} into two parts: Jclean and Joutlier. Here
Jclean comprises all the subgroups without outliers, and Joutlier consists of subgroups containing at least one
outlier. According to our strong contamination model, we have |Joutlier| ≤ ⌈ϵn⌉. Subsequently, we observe
that

{|µ̂MoM − µ⋆| ≥ ξ} ⊆
{ ∑

j∈Jclean

I(|X̄j − µ⋆| ≥ ξ) ≥ J

2 − ⌈ϵn⌉
}

. (41)
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Here, X̄j = 1
B

∑
i∈Sj

Xi, where B = n/J is the size of each subgroup and Sj is the subgroup j. For simplicity,
let us denote Zj = I(|X̄j − µ⋆| ≥ ξ) and pξ = Pr

(
|X̄j − µ⋆| ≥ ξ

)
. Then, the above inclusion implies

Pr (|µ̂MoM − µ⋆| ≥ ξ) ≤ Pr
( ∑

j∈Jclean

Zj ≥ J

2 − ⌈ϵn⌉
)

= Pr
(

1
|Jclean|

∑
j∈Jclean

(Zj − E[Zj ]) ≥ J/2 − ⌈ϵn⌉
|Jclean|

− pξ

)
.

(42)

Since Zj is bounded, we can apply Hoeffding’s inequality (Lemma 2) to obtain

Pr (|µ̂MoM − µ⋆| ≥ ξ) ≤ exp
{

−2|Jclean|
(

J/2 − ⌈ϵn⌉
|Jclean|

− pξ

)2}
. (43)

Moreover, we can use Chebyshev’s inequality (Lemma 1) to establish an upper bound for pξ:

pξ = Pr
(
|X̄j − µ⋆| ≥ ξ

)
≤ σ2

Bξ2 = Jσ2

nξ2 . (44)

Upon defining J = 4⌈ϵn⌉ + 32 log(1/δ) and ξ = σ
(

4
√

2
(√

ϵ +
√

1/n
)

+ 16
√

log(1/δ)/n
)

, we have the
following estimates

|Jclean| ≥ J − ⌈ϵn⌉ ≥ 32 log(1/δ);
J/2 − ⌈ϵn⌉

|Jclean|
≥ J/2 − ⌈ϵn⌉

J
≥ 1

4 ;

pξ ≤ Jσ2

nξ2 ≤ 1
8 .

(45)

Combining these bounds with Equation (43), we obtain

Pr
(

|µ̂MoM − µ⋆| ≥ σ
(

4
√

2
(√

ϵ +
√

1/n
)

+ 16
√

log(1/δ)/n
))

≤ exp
{

−2 · 32 log(1/δ) ·
(

1
4 − 1

8

)2}
= δ.

(46)

This completes the proof.

Directly applying MoM estimator to each coordinate of a d-dimensional dataset leads to the following propo-
sition.

Theorem 5 (High dimensional coordinate-wise MoM estimator). Consider a corruption parameter ϵ, failure
probability δ, and a set S of n many ϵ-corrupted samples from a distribution P with mean µ⋆ and coordinate-
wise variance E[(X − µ⋆)2] ≤ σ2, ∀1 ≤ i ≤ d. Then, with probability at least 1 − δ, the coordinate-wise MoM
estimator µ̂MoM satisfies ∥µ̂MoM − µ⋆∥∞ ≤ σ

(
4
√

2
(√

ϵ +
√

1/n
)

+ 16
√

log(d/δ)/n
)

and ∥µ̂MoM − µ⋆∥2 ≤

σ
√

d
(

4
√

2
(√

ϵ +
√

1/n
)

+ 16
√

log(d/δ)/n
)

.

Proof. The proof follows directly from Proposition 3 and a simple union bound.

B Additional Simulations

B.1 Experimental Details

We run our simulations on three heavy-tailed distributions: Fisk, Pareto, and Student’s t distributions. In
each case, we apply a symmetrization trick to make the density function symmetric around zero. The density
function of the Fisk distribution with parameter c is expressed as follows:

f(x; c) = c|x|c−1

2(1 + |x|c)2 for x ∈ R, c > 0. (47)
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The density function of the Pareto distribution with parameters b is

f(x; b) = {
b

2|x|b+1 for |x| ≥ 1,

0 for |x| < 1.
, for x ∈ R, b > 0. (48)

Lastly, the density function for student t-distribution is

f(x; ν) =
Γ
(

ν+1
2
)

√
νπΓ(ν/2)

(
1 + x2

ν

)−(ν+1)/2

for x ∈ R, ν > 0. (49)

Here Γ is the gamma function. In all three distributions described above, the parameters c, b, ν correspond-
ingly denote the existence of the c, b, ν-th moment. For instance, when c, b, ν fall within the range of (1, 2],
the variances are infinite. Regarding the outliers, we generate them via the constant-bias noise model as
introduced in Cheng et al. (2021).

Furthermore, unless stated otherwise, all simulations are conducted with the following predefined settings:
data dimension d is set to 100, sparsity level k is set to 4 with nonzero elements being [10, −5, −4, 2], sample
size m is set to 600, and the corruption ratio ϵ is set at 10%. As for our algorithm, we set the number
of subgroups to be J = 1.5⌈ϵn⌉ + 150. Note that, compared to the theoretical choice of J = 100⌈ϵn⌉ in
Algorithm 1, we choose a smaller J to make our algorithm work for a larger corruption ratio ϵ in practice.
Moreover, in SubGM, we set the initialization scale α = 10−5 and the step-size η = 0.05. We note that these
choices of parameters differ from those used in the experiments illustrated in Figure 1.

We select sparse_GD (Cheng et al., 2021) and sparse_filter (Diakonikolas et al., 2019b) as our benchmark
algorithms. We note that these algorithms do not come with theoretical assurances in the heavy-tailed
setting. Nonetheless, we have empirically found that these two algorithms surpass others in performance,
even in the heavy-tailed setting. We also highlight that the polynomial-time algorithms that come equipped
with theoretical guarantees for heavy-tailed setting (Diakonikolas et al., 2022b;a) are impractical since they
rely on time-consuming methods such as sum-of-squares and ellipsoid methods.

We employ both sparse_GD and sparse_filter in the second stage of our algorithm, setting the sparsity
parameter to k = |I|, where I is the index set identified in the first stage. In total, we evaluate six
estimators: oracle (which removes all outliers and applies truncated coordinate-wise MoM to the clean
data), sparse_GD, sparse_filter, stage_1, full_GD (our algorithm with sparse_GD in the second stage),
and full_filter (our algorithm with sparse_filter in the second stage). In stage_1, we run SubGM
for T = 600 iterations, whereas in full_GD and full_filter, we reduce the iteration count to T = 200 to
lower computational cost.

B.2 Sensitivity to Prior Knowledge of k

We underscore the fact that prior algorithms necessitate a prior knowledge of the exact sparsity level k.
In contrast, our approach can identify the sparsity level automatically. For this simulation, we assign
a true sparsity level of k = 10 with nonzero components [2, 2, 2, 2, 2, −2, −2, −2, −2, −2] and assess the
performance of the benchmark algorithms, namely sparse_GD and sparse_filter, while varying the input
k′, which is an upper bound of k, within the range of [10, 40]. As illustrated in Figure 3, the performance
of these benchmark algorithms is highly sensitive to the choice of k′ across all examined distributions.
Their performances further destabilize when the underlying distributions start to exhibit heavier tails. In
contrast, our algorithm automatically recognizes the sparsity pattern across all scenarios. For all subsequent
simulations, we provide the benchmark algorithms with the true sparsity level k to ensure a fair comparison.

B.3 Performance with Different k

In this simulation, we evaluate the performance of various algorithms under different sparsity levels k. We
set all nonzero entries of µ⋆ to 2. As shown in the first row of Figure 4, all algorithms—except stage_1 (as
predicted by Theorem 1) and sparse_filter (which underperforms at larger sparsity levels k)—achieve ℓ2-
error that remains largely independent of sparsity. In more heavy-tailed settings, depicted in the second row
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Figure 3: Comparison among different algorithms with varying input k′, where k = 10 and k′ ≥ k is an
upper bound of k. The second row corresponds to distributions with infinite variance.

of Figure 4, all algorithms display an increase in ℓ2-error as k grows. Nevertheless, across nearly all scenarios,
our full algorithms (full_GD and full_filter) outperform the benchmarks. We further hypothesize that
the weaker performance of full_filter for the Pareto distribution with b = 2 arises from the suboptimal
performance of sparse_GD and sparse_filter when used in Stage 2.

Clarification and connection to other figures. While sparse_GD and sparse_filter appear to per-
form reasonably well in Figure 4 for moderate sparsity levels, their performance is in fact sensitive to the
choice of the sparsity parameter k′. This sensitivity is explicitly illustrated in Figure 3, where even mild
overestimation of k leads to noticeable degradation. Moreover, as shown in Figure 5, this degradation be-
comes more pronounced under heavier-tailed distributions. Since full_filter relies on these methods in
Stage 2, such sensitivity propagates to the full algorithm and explains its weaker performance in certain
heavy-tailed settings.

B.4 Infinite Variance Regime

In this simulation, we evaluate the performance of the algorithms with respect to the heaviness of the tail
distributions. As shown in Figure 5, we vary the parameters c, b, ν over the range [1, 3.5]. Smaller parameter
values correspond to heavier tails, with values in the interval (1, 2] resulting in distributions of infinite
variance. Our algorithms (stage_1, full_GD, and full_filter) demonstrate superior robustness under
these heavy-tailed conditions, highlighting the advantage of our approach.

B.5 Performance with Different ϵ

In this simulation, we study the relationship between the ℓ2-error and the corruption ratio ϵ across all
six estimators. As shown in Figure 6, apart from the Oracle—whose error remains unaffected by ϵ (as
expected)—our proposed algorithms (either single-stage or full version) consistently outperform the alter-
natives. While our theoretical analysis predicts an ℓ2-error of order O(

√
ϵ), the empirical results reveal an
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Figure 4: Comparison among different algorithms for varying sparsity levels k. The second row corresponds
to distributions with infinite variance.
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Figure 5: Comparison among different algorithms in the infinite variance regime.

approximately linear dependence on ϵ. We attribute this discrepancy to the non-adversarial nature of the
outlier model used in our experiments. A promising direction for future work is to examine the performance
of the proposed methods under truly adversarial corruptions. We believe that constructing such adversarial
examples is far from trivial (see Shafieezadeh-Abadeh et al. (2023)) and is an interesting problem in its own
right.

B.6 Running Time

Next, we examine the running time of our algorithms and compare them with several relevant baseline
methods. Specifically, we run 600 iterations for stage_1, while in the full two-stage algorithms we restrict
Stage 1 to 200 iterations. As shown in Figure 7, all methods exhibit approximately linear scaling with respect
to the dimension d, consistent with the theoretical complexity of the underlying procedures.

Our proposed algorithms are slightly slower than some baselines in these experiments. This is mainly because
we do not aggressively tune hyperparameters for runtime optimization, and instead use conservative settings
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Figure 6: Comparison among different algorithms for different corruption rates ϵ.

to ensure stability across different distributions. Overall, the results confirm that the proposed methods
achieve near-linear time complexity while maintaining robustness and accuracy.
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Figure 7: Running time of the proposed methods and baseline algorithms as a function of dimension d.
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