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Abstract

Clinical notes are essential for physicians to ac-
curately assess patient conditions, particularly
in oncology where records are extensive. Effi-
cient and effective information extraction from
these notes is crucial for effective treatment.
This is not a trivial task due to the lengthy and
specialized content in the notes. Current meth-
ods that capture token-level or sentence-level
relations, which are context-dependent, are
sometimes insufficient for knowledge-intensive
tasks such as information extraction from EHR
that require external knowledge. To address
this, we introduce a knowledge-enhanced hier-
archical multimodal cross-attention approach.
This method employs a cross-attention mech-
anism to integrate textual knowledge with pa-
tient network knowledge, aiming to synthesize
information across multiple data levels, includ-
ing word, sentence, note, and patient levels.
This approach can efficiently highlight key sen-
tences in clinical notes. We validate our method
using extensive experiments on a large real-
world dataset. The results demonstrate that our
proposed model outperforms baseline models
by up to 4.17% and 2.79% regarding F1 and
accuracy.

1 Introduction

Electronic Health Records (EHRs) play a crucial
role in enabling physicians to assess a patient’s con-
dition precisely (Weed et al., 1968). However, in
cases of severe illness, these records, along with as-
sociated textual materials, often become extensive
and complex. This complexity poses a challenge
for healthcare professionals to quickly extract es-
sential information. Although the primary purpose
of EHRs is to manage patients’ health-related in-
formation, they are increasingly used for secondary
purposes, such as addressing the above-mentioned
challenges and improving healthcare practices (Sar-
war et al., 2022). EHRs contain diverse data, in-
cluding demographics, medical history, medica-

tions, lab results, and diagnoses, making them valu-
able for data mining and analytics (Yadav et al.,
2018). These techniques have been used to study
groups of patients, identify characteristics, provide
personalized treatments, evaluate medical interven-
tions, predict diseases, detect health conditions,
and track disease progression (Yadav et al., 2018;
Luque et al., 2019; Zeng et al., 2018; Karimi et al.,
2015; Stiglic et al., 2020).

Summarising key information in EHRs holds
substantial clinical significance, as it has the poten-
tial to expedite departmental workflows, diminish
redundant human labor, and enhance clinical com-
munication (Jin et al., 2024; Kahn Jr et al., 2009).
Key verbatim is the exact, specific words, phrases
or sentences extracted from the longer text (Siddiqi
and Sharan, 2015). It is important in understand-
ing and representing the longer text. This becomes
more profound in oncology clinics, where patient
records can span hundreds of pages due to frequent
visits. Therefore, the efficient understanding of
clinical notes and extraction of key verbatim from
these EHRs are paramount for delivering timely
and effective treatment.

With the advancement of natural language un-
derstanding techniques, language models like bidi-
rectional encoder representations from transform-
ers (i.e., BERT; (Devlin et al., 2018)) have been
increasingly applied to tasks such as text extrac-
tion and classification. However, clinical notes
present unique challenges due to their length and
the specialized context, often containing terminol-
ogy not found in standard datasets used for pretrain-
ing these models. While specialized algorithms
like Clinical BERT (Huang et al., 2019) have been
developed to improve the accuracy of processing
healthcare texts, and models adapted for longer
texts are available, gaps remain in leveraging the
potential useful information among sentences and
across different notes in EHRs mining domain. Be-
sides aiming to maximize the usefulness of tex-



tual information, approaches like DeepNote-GNN
(Golmaei and Luo, 2021) are developed to extract
relationships in EHRs. However, the potential for
the fusion of different techniques still exists. Will
exploring the relationships among different health-
related entities (e.g., patients, drugs, physicians,
treatments) help in understanding textual EHRs?
We developed a novel multimodal approach to op-
timize the solution.

Overall, this study makes several contributions
to the field of EHR analysis. First, we propose a hi-
erarchical multimodal cross-attention approach for
identifying key sentences associated with critical
information in clinical notes. We employ Clin-
icalBERT for the textual representation of sen-
tences, while capturing word-level details. Second,
we leverage the external knowledge and textual
notes to build a heterogeneous network and lever-
age Graph Attention Transformers (GATSs) to learn
implicit relations among patients and drugs, such
as having shared illnesses or using similar treat-
ments from the same physician. Third, we design
a cross-attention mechanism that can bridge the
intrinsic connection between information learned
from text and the knowledge embedded in the pa-
tient network. We adopt Bi-LSTM to represent
the combined textual and network knowledge at
the sentence level within the context of individual
notes. By aggregating information across word,
sentence, note, and patient levels into the binary
classification framework, our model is able to in-
corporate all relevant information in one unified
framework. Finally, we empirically demonstrate
that our approach facilitates the efficient extraction,
highlighting key sentences in clinical notes. Our
model is trained and evaluated using a dataset from
an oncology clinic, where key sentences essential
for diagnosis and other critical information have
been labeled and verified by professional oncologi-
cal physicians. The overall framework is shown in
Figure 1.

2 Related Work

2.1 Extractive Summarization

Current text summarization methods originated
from extractive algorithms. Following the initial
use of rule-based extraction (Tas and Kiyani, 2007),
deep learning language models have demonstrated
superior performance, exemplified by fine-tuned
BERT models (Liu, 2019). With the emergence
of language generation models, such as Llama and

ChatGPT (Touvron et al., 2023; OpenAl, 2024), ab-
stractive summarization has developed and adapted
to meet the varying requirements of different tasks
(Mehta, 2016). Although abstractive summariza-
tion can outperform extractive methods in certain
areas, such as statistical machine translation, extrac-
tive techniques remain crucial, in contexts where
recognizing key information in lengthy texts is nec-
essary and maintaining the originality of the output
information is essential (Shi et al., 2021; Cho et al.,
2014; Villanueva Jr and Simske, 2023; Mutlu et al.,
2020). Compared to abstraction summarization,
the key point of extraction summarization is to find
the important paragraph or sentence in the texts
(Moratanch and Chitrakala, 2017).

Earlier text extraction approaches include rule-
based, statistical, machine learning approaches and
domain-specific techniques (Siddiqi and Sharan,
2015; Moratanch and Chitrakala, 2017). Yang et al.
(2022) highlighting the advancements and efficacy
of deep learning in automatically understanding
and processing large volumes of information. Jin
et al. (2024) reviews Automatic Text Summariza-
tion(ATS) techniques, emphasizing practical imple-
mentations and the impact of Large Language Mod-
els (LLMs). Although LLM-based ATS achieves
better performance in terms of consistency and rel-
evance than human summarization and can han-
dle tasks across a wide range of domains, which
is superior to task-specific deep learning methods
(Zhao et al., 2023; Tang et al., 2023; Basyal and
Sanghvi, 2023; Zhang et al., 2024), the issues of
prompt sensitivity and high resource requirements
still dominate in real-world applications (Narayan
et al., 2021; Liu et al., 2023).

2.2 Electronic Health Record Mining

Extraction summarization algorithms have found
applications across diverse domains such as news,
academia, law, and business (Venkatachalam et al.,
2020; Mutlu et al., 2020; Jackson et al., 2003; Ki-
tamori et al., 2017), where they enhance efficiency
by condensing extensive texts into digestible sum-
maries. This is particularly evident in the health-
care sector (Gao et al., 2017; Malmasi et al., 2017,
Jackson et al., 2017; Wenzina and Kaiser, 2013).
By distilling critical information from vast amounts
of data, these algorithms support healthcare profes-
sionals in making informed decisions efficiently.
Given the volume and complexity of medical
records, Wang et al. (2018) summarised clinical
information extraction applications focusing on ex-



tracting key information from clinical texts. Com-
monly used health-related key information extrac-
tion tools, such as cTAKES (Savova et al., 2010),
MetaMap (Aronson, 2001), and MedLEE (Fried-
man et al., 1994), are designed to extract informa-
tion from unstructured, narrative, and redundant
text data in EHRs. However, these tools are con-
sidered outdated due to their reliance on rule-based
or heuristic methods, especially in light of the ad-
vancements in deep learning and LLMs.

Han et al. (2022) demonstrated that deep learn-
ing models, including CNN (LeCun et al., 1998),
LSTM (Hochreiter and Schmidhuber, 1997), and
BERT (Devlin et al., 2018), significantly outper-
formed traditional cTAKES in predicting social
determinants of health from clinical notes. Simi-
larly, Sarrouti et al. (2022) found that the fine-tuned
encoder-decoder model T5 (Raffel et al., 2020) sur-
passed baseline models in biomedical text infor-
mation extraction. Additionally, generative models
such as BART (Lewis et al., 2019) also have been
adopted in EHR mining. However, LLMs are not
without limitations, including issues of inconsis-
tency, lack of domain-specific knowledge, biases,
hallucinations, high resource intensity, and limited
handling of long documents (Reese et al., 2023;
Kasneci et al., 2023; Chang et al., 2024).

2.3 Graph Neural Network in NLP

Graph Neural Networks (GNNs) have been ex-
tensively developed for graph data analysis, with
popular models including GCN (Kipf and Welling,
2016), GraphSage (Hamilton et al., 2017), and GAT
(Velickovic et al., 2017), among others. Recent re-
search has witnessed a surge in interest in applying
and developing various GNN variants for many
NLP tasks, such as sentence classification(Huang
and Carley, 2019; Lu et al., 2020), relation extrac-
tion (Qu et al., 2020; Sahu et al., 2019), and sum-
marization(Fernandes et al., 2018; Yasunaga et al.,
2017). In these studies, GNNs often serve as a
rear-mounted module(Yang et al., 2021), further ag-
gregating textual features modeled by pre-trained
LLMs.

Another line of research employs GNNs as en-
coders of graph data for tasks such as retrieval
augmentation (Abaho and Alfaifi, 2023), reasoning
(Perozzi et al., 2024), and classification (Ostendorff
et al., 2019; Chen et al., 2024). Despite these ad-
vancements, the potential of GNNs as knowledge
enhancers for LLMs in extractive summarization
remains under-explored. To address this gap, we

propose a novel methodology that leverages GNNs
for enhancing LLM-based extractive summariza-
tion.

3 Methodology

Our proposed model is shown in Figure 1. First,
we pre-train a graph encoder to derive low-
dimensional patient representations. Subsequently,
the hierarchical sentence embeddings, concate-
nated with the updated sentence embeddings, are
propagated through a classification layer for in-
ference. Finally, a cross-attention module is
applied, as a fusion layer, to update the sen-
tence embeddings obtained from the hierarchical
language model with the patient representations.
This architecture incorporates multi-modality from
both the language model, capturing word-to-word
and sentence-to-sentence relations, and the graph
model, capturing the prior knowledge of patients.
And this prior-knowledge-enhanced architecture
thereby can facilitate a more precise extraction of
key verbatim.

3.1 Graph Construction

Consider an undirected heterogeneous graph G =
(V, E), where V represents the set of nodes, and
FE represents the set of edges. In this healthcare
context, our proposed graph consists of three types
(T = {p, 0,m}) of nodes: patient Nodes (V,,), on-
cology nodes (V,), and medication nodes (V;y,).
Nodes v, € Vj, v, € V, and v,,, € V,, repre-
sent a patient, a specific oncology diagnosis, and
a specific medication prescribed to patients corre-
spondingly.

The edges in the graph represent relationships
between these nodes and are of two types: patient-
oncology edges (FE),,) and patient-medication
edges (Epm). An edge e, = (vp, v,) € Ep, indi-
cates that patient v}, has been diagnosed with oncol-
ogy condition v,, and an edge ey, = (vp,vm) €
E,,,, indicates that patient v, has been prescribed
medication v,,.

Formally the graph can be represented as:

G = (Vp UV, U Vi, Epo U Ep)

3.2 Graph Encoder

We adopt a heterogeneous GAT to derive meaning-
ful embeddings for the patient nodes that capture
the complex relationships within the heterogeneous
healthcare graph data.
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Figure 1: The overall framework of our proposed method.

Each node v € Vj is associated with an fea-
ture vector hf’l at layer [ and s € {p,0,m}. We

compute the attention coefficients o/ ; that quan-

tify the importance of node features of node o

j
(q € {p,0,m}) to node v;:

exp (LeakyReLU (azq [w? hf’l w4 h]q’l]) )

exp (LeakyReLU (azt [Wﬁhfl HWthtkl]))
teET keEN (i)EVy

W$ W4 W' is node-type-specific learnable
weight matrix and ¢ € {p,o0,m} , ay, and ay is
a learnable attention vector, || denotes concatena-
tion, and V(i) denotes the neighborhood of node
v;. The embedding of node v; is updated by ag-
gregating the features of its neighbors of different
types, weighted by the attention coefficients:

K
s, l+1

hH =

ke

o(z >

l t1.1,1
teT jEN (i) EV,

=1

h;fl is the feature vector of node v;ﬁ at layer [
and o is a non-linear activation function, ReLU. In
order to stabilize the learning process, we use K
independent attention heads and their outputs are
concatenated.

The training objective is to optimize the embed-
dings for the link prediction task. Specifically, we

aim to predict the existence of edges between nodes
in the graph. For this purpose, we employ a binary
cross-entropy loss function over the observed and
non-observed edges:

£=- > logo(hih,)— > log(l—oc(hyh,))

(u,v)EE (u,v)¢E

where o is the sigmoid function, and (u, v) rep-
resents a node pair, with (u,v) € E indicating
an existing edge and (u,v) ¢ F indicating a non-
existent edge.

We pre-train a GAT on the constructed heteroge-
neous healthcare graph and obtain patient embed-
dings, which will be used in the following steps for
better extract key informaiton from the healthcare
documents, that capture the intricate relationships
between patients, their oncological diagnoses, and
prescribed medications.

3.3 Hierarchical Sentence Encoder

As shown in Figure 2, we adopt Clinical BERT
to obtain the textual representation of each sen-
tence. ClinicalBERT, a transformer-based model
pre-trained on clinical text, is capable of captur-
ing token-level details effectively (Huang et al.,
2019). For each sentence S consisting of n tokens
[t1,t2,...,ty], the initial token embeddings E; are
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Figure 2: The framework of hierarchical sentence encoder.

passed through ClinicalBERT to generate contex-
tualized embeddings.

Let E; = [eys, €1, €a,...,€,] be the initial em-
beddings of the tokens in sentence S. These embed-
dings are processed by Clinical BERT to produce
updated embeddings H; = [hs, hi,ha, ... hy)]
The embedding of the initial token [CLS], hg,
represents the entire sentence embedding.

H = ClinicalBERT(E) SpERT = hes

where spgrT denotes the sentence embedding de-
rived from the [CLS] token.

ClinicalBERT only captures contextual informa-
tion within a sentence. We adopt BiLSTM to cap-
ture inter-sentence information.To integrate note-
level (between-sentence) context in the sentence
embedding, we employ a Bidirectional Long Short-
Term Memory (Bi-LSTM) layer. This layer pro-
cesses the sequence of sentence embeddings ob-
tained from ClinicalBERT, capturing dependencies
and contextual information at the note level. Let
{s1,82,...,8m,} be the sequence of sentence em-
beddings for a clinical note containing m sentences.
These embeddings are input into the Bi-LSTM
layer to obtain updated sentence embeddings. The
Bi-LSTM processes the sequence as follows:

LSTM(SZ‘, ﬁi—l)

—
h; =
ti = i;STM(SZ, zi_._l)

s =0 byl

where HZ and E are the forward and backward
hidden states of the Bi-LSTM at position i, and h;
is the concatenated hidden state representing the up-
dated sentence embedding. This process yields the

note-level-context-updated sentence embeddings
!/

{s],s},...,s],
3.4 Cross-Attention for Multi-modality
Fusion

To include the patient-level information from GAT
and combine the sentence embeddings with patient
embeddings, we employ a cross-attention mecha-
nism. This mechanism allows the model to attend
to relevant parts of both embeddings, resulting in a
fused representation.

Let P be the patient embedding obtained from
the GAT, and spgrr be the sentence embedding
obtained from Clinical BERT. The cross-attention
mechanism is formulated as follows:

Q=Wgp
K = WgSBERT
V = Wysggrr

W, Wi and Wy, are learned weight matrices
that transform the patient embedding and the sen-
tence embedding into the query, key, and value
matrices, respectively.

The attention scores A are computed by tak-
ing the dot product of the query and key matrices,
scaled by the square root of the dimension of the
key vectors dj, followed by a softmax function to
normalize the scores.

>
< \% dk

The final fused embedding c is obtained by multi-
plying the attention scores A with the value matrix
V. This embedding captures the combined infor-
mation from both the patient knowledge graph and




the sentence embeddings. The fused embedding
c is then concatenated with the original sentence
embedding sprrT and the note-level updated sen-
tence embedding s/, to form the final representation
for classification.

3.5 Final Classification

We concatenate the fused embedding c, the note-
level updated sentence embedding s and the orig-
inal sentence embedding sp g7 to form the final
representation:
fi = [c;sperr; S]] yi = FFNN(f;)

where y; is the predicted label for sentence S;.

This final representation f; is fed into a Feed-
Forward Neural Network (FFNN) to predict
whether each sentence contains key information.
The loss function is Binary Cross-Entropy Loss:

1 N

— 2 [wilog (@) + (1 = yi) log(1 — )]

=1

L=

where N is the number of sentences in the dataset,
y; is the true label for the i-th sentence (1 if the
sentence contains key information, 0 otherwise), y;
is the predicted probability that the ¢-th sentence
contains key information, obtained from the FFNN.
And parameters in Clinical BERT, Bi-LSTM, Cross-
attention module and FFNN are jointly optimized.

4 Experiments

4.1 Data

We collected 300,000 pages of clinical notes ob-
tained from an oncology clinic, comprising clinical
notes from roughly 2,000 patients. Each patient’s
documentation includes records from multiple vis-
its, with lengths ranging from 90 to 700 pages. We
engaged 20 physicians to annotate key sentences
indicative of ten specific elements: clinical events,
medical history, medication, family history, on-
cology events, oncology medication, procedures,
oncology procedures, reproductive potential, and
social history. We only keep the pages that contain-
ing key sentences. Then we refined the dataset to
16,000 pages containing positive samples.

We collected 300,000 pages of clinical notes
from an oncology clinic, encompassing records
from approximately 2,000 patients. Each patient’s
documentation includes records from multiple vis-
its, with document lengths ranging from 90 to 700
pages. To annotate key sentences indicative of ten

specific elements—clinical events, medical history,
medication, family history, oncology events, oncol-
ogy medication, procedures, oncology procedures,
reproductive potential, and social history—we en-
gaged 20 physicians.

After annotation, we filtered the dataset to retain
only the pages containing key sentences, resulting
in a refined dataset of 16,000 pages with positive
samples. We adopt 8:1:1 split for train, test and
validation datasets. This unique dataset, annotated
by experts, provides a robust foundation for devel-
oping and evaluating our model.

4.2 Experimental Results

We selected a diverse set of baseline models to
comprehensively evaluate the performance of our
proposed GEHE (Graph-Enhanced Hierarchical
Encoder) framework. The chosen baselines in-
clude state-of-the-art models for contextualized
text representation and generative language mod-
eling. BERT, a widely used transformer model,
captures bidirectional context, while RoOBERTa im-
proves upon BERT with enhanced training pro-
cedures (Devlin et al., 2019; Liu et al., 2019).
BART, a denoising autoencoder, integrates bidirec-
tional and autoregressive transformers (Lewis et al.,
2020). TS frames NLP tasks as text-to-text prob-
lems, excelling across benchmarks (Raffel et al.,
2020). These models are considered to have strong
performance among language models. For genera-
tive models, we selected the latest LLMs that are
designed to handle various text-generation tasks,
including Llama3, GPT3.5 and GPT4 (Brown et al.,
2020; OpenAl, 2023). These baselines provide a
robust comparison for evaluating the effectiveness
of our GEHE framework.

Our model is trained on a A10G Nvidia GPU.
The models are evaluated using four standard met-
rics for information extraction, including Accuracy
(ACC), F1 Score (F1), Precision (Prec), and Recall
(Rec). The results of performance comparison with
baselines are presented in Table 1 and Table 2.

Our model (GEHE) achieves a substantial im-
provement over the baselines. GEHE boosts
the highest baseline accuracy by 3.77% (0.7711),
demonstrating superior capability in correctly clas-
sifying sentences as containing key information or
not. It also achieves the highest F1 Score at 0.8035,
which is 2.3% higher than the best baseline, ef-
fectively balancing Precision and Recall. GEHE’s
Precision of 0.7358 is 4.11% higher than the best
baseline, underscoring its strength in accurately



Table 1: Performance comparison with baseline models.

Model ACC F1 Prec Rec

BERT 0.7317 0.7765 0.6900 0.8877
RoBERTa 0.7334 0.7756 0.6947 0.8779
BART 0.7320 0.7805 0.6847 0.9076
TS5 0.7294 0.7801 0.6802 0.9145
GEHE (Ours) 0.7711 0.8035 0.7358 0.8915

identifying key information sentences. While T5’s
Recall is 2.3% higher than our model’s, GEHE
maintains a remarkable performance with a well-
balanced Precision and Recall, ensuring accurate
identification of most key sentences. Our model
stands out as the best in the task of identifying
important sentences in clinical notes.

Table 2: Performance for generative models. Note that
we use a sample of 300 sentences.

nism (with values from the graph and queries and
keys from the text) boosts precision to 0.7560 and
overall accuracy to 0.7690, though recall drops to
0.8268. Our GEHE model significantly enhances
the ability to extract key information, achieving an
accuracy of 0.7711 and an F1 score of 0.8035.
The ablation study highlights the importance of
each component in our GEHE framework. Adding
Bi-LSTM to ClinicalBERT enhances note-level
context, improving overall performance. Incorpo-

Model ACC F1 Prec Rec rating patient-specific information through graph
Llama3 0.5799 0.5156  0.6751 04559 embeddings in the cross-attention mechanism sig-
GPT3.5 0.5933 0.4404 0.7059 0.3200 ifi v b . . d th .

GPT4 07233 07296 07133 0.7467 ni .cant y boosts prec%smn, and the cross-attention
GEHE(Ours) 0.7726 0.8046 0.7348  0.8890 fusion balances precision and recall, crucial for

When compared to the aforementioned state-
of-the-art closed-source and open-source LLMs,
GEHE demonstrates superior performance across
all metrics, particularly in F1 Score and Accuracy.
Due to limited computing resources and data pri-
vacy issues, we evaluated the models on a seperated
300-sentence dataset. Despite the generative mod-
els’ strength in language generation tasks, they fall
short in the specific task of key verbatim extrac-
tion from clinical notes. GEHE’s focused approach
and its ability to integrate graph-based patient in-
formation with hierarchical textual representations
contribute significantly to its superior performance.

4.3 Ablation Study

We compared our model with various ablation set-
tings to isolate the impact of different components
of our approach.

The baseline ClinicalBERT model achieves an
accuracy of 0.7300 and an F1 score of 0.7759.
Adding contextual information beyond individual
sentences, the stacked Clinical BERT setup reaches
an accuracy of 0.7449 and precision of 0.7081 with-
out significantly enhancing recall. Adding a Bi-
LSTM layer to Clinical BERT to capture note-level
context achieves the highest recall, comparable to
our model. Introducing graph-based patient embed-
dings and using them in the cross-attention mecha-

minimizing false positives and negatives in clinical
applications.

4.4 Discussion

The results suggest that incorporating patient-
specific information through graph-based embed-
dings, combined with sentence embeddings de-
rived from Clinical BERT and contextualized via Bi-
LSTM, significantly enhances the model’s ability
to accurately extract key information from clinical
notes. The cross-attention mechanism effectively
fuses these multimodal representations, leading to
improved classification performance.

The ablation study results highlight the impor-
tance of each component in our GEHE framework:

1. Contextual Integration: Adding Bi-LSTM to
Clinical BERT demonstrates the value of note-
level context, improving the model’s perfor-
mance across several metrics.

2. Graph-based Enhancements: Incorporating
patient-specific information through graph
embeddings in the cross-attention mecha-
nism provides a substantial boost to precision,
showing that patient context is crucial for ac-
curate extraction of key sentences.

3. Cross-Attention Fusion: The cross-attention
mechanism effectively combines multimodal



Table 3: Ablation study for model evaluation.

Model ACC F1 Prec Rec

ClinicalBERT 0.7300 0.7759 0.6877 0.8899
Clinical BERT-Clinical BERT 0.7449 0.7827 0.7081 0.8748
ClinicalBERT-BiLSTM 0.7400 0.7827 0.6973 0.8918
Gragh-Enhanced Clinical BERT-BiLSTM (only v from Gragh) 0.7690 0.7898 0.7560 0.8268
Gragh-Enhanced Clinical BERT-BiLSTM (GEHE, ours) 0.7711 0.8035 0.7358 0.8915

information, leading to a balanced improve-
ment in both precision and recall, which is
critical for clinical applications where both
false positives and false negatives carry signif-
icant consequences.

5 Conclusion

Our hierarchical multimodal cross-attention frame-
work, GEHE, provides a novel and effective graph-
knowledge-enhanced methods for Key Verbatim
Extraction. The model’s superior performance in
terms of Accuracy, F1 Score, and Precision under-
scores the importance of integrating diverse sources
of information and leveraging advanced attention
mechanisms. This approach not only advances
the state-of-the-art in clinical text analysis but also
holds potential for broader applications in health-
care and other domains where accurate information
extraction is critical.

The ablation study confirms that the hierarchical
multimodal cross-attention approach in our GEHE
model significantly enhances the performance of
key verbatim extraction from clinical notes. Each
component—Bi-LSTM for contextual note-level
information, graph-based patient embeddings, and
cross-attention fusion—contributes to the model’s
overall effectiveness, making it a robust solution
for clinical text analysis.

This research effectively addresses the complexi-
ties inherent in clinical text analysis. Our approach
is unique in its ability to combine word, sentence,
note, and patient-level data, providing a compre-
hensive framework for understanding clinical nar-
ratives. Furthermore, by pretraining our model on
datasets that include relational information between
patients, we open new avenues for understanding
how inter-patient relationships can be leveraged
to improve information extraction in healthcare
contexts. For practical implications, our model
contributes to the efficiency and effectiveness of
healthcare delivery. By facilitating the rapid identi-
fication of critical information in clinical texts, our

approach can assist healthcare providers in making
informed decisions more swiftly, leading to better
patient outcomes. Our validation of the model us-
ing real-world oncology clinic reports, verified by
professional oncological physicians, underscores
the applicability and potential impact of our method
in clinical settings.

Limitations

Our model’s performance heavily depends on the
quality and quantity of available clinical notes, and
it may not perform optimally with sparse or poor-
quality data. Future work should explore data aug-
mentation techniques and improved preprocessing
to enhance data quality and standardize clinical ter-
minology. Additionally, our GEHE framework’s
reliance on network data and defined entity relation-
ships limits its effectiveness for documents lacking
these relationships, reducing the accuracy of graph-
based embeddings and cross-attention mechanisms.

Another limitation is that our model has only
been validated on a medical dataset, raising con-
cerns about its generalizability to other domains.
The unique characteristics of medical data may not
be present in other types, potentially limiting its
applicability. Future work should test the model
across various domains to ensure broader applica-
bility and identify necessary adjustments.

Additionally, the use of patient-specific informa-
tion, such as embeddings from a Graph Attention
Network (GAT), raises concerns about privacy and
data security. Ensuring strict privacy standards
and data protection is essential but not fully ad-
dressed in this study. Future work should incorpo-
rate privacy-preserving techniques like differential
privacy or federated learning to secure patient data
and enable use across multiple institutions.
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