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ABSTRACT

Pre-trained foundation models (FMs) have shown exceptional performance in
univariate time series forecasting tasks. However, several practical challenges
persist, including managing intricate dependencies among features and quantifying
uncertainty in predictions. This study aims to tackle these critical limitations by in-
troducing adapters—feature-space transformations that facilitate the effective use
of pre-trained univariate time series FMs for multivariate tasks. Adapters operate
by projecting multivariate inputs into a suitable latent space and applying the FM
independently to each dimension in a zero-shot manner. Inspired by the literature
on representation learning and partially stochastic Bayesian neural networks, we
present a range of adapters and optimization/inference strategies. Experiments con-
ducted on both synthetic and real-world datasets confirm the efficacy of adapters,
demonstrating substantial enhancements in forecasting accuracy and uncertainty
quantification compared to baseline methods. Our framework, AdaPTS, positions
adapters as a modular, scalable, and effective solution for leveraging time series
FMs in multivariate contexts, thereby promoting their wider adoption in real-world
applications. We release the code at https://github.com/abenechehab/AdaPTS.

1 INTRODUCTION

Time series forecasting is a well-established machine learning problem that involves analyzing se-
quential data to predict future trends based on historical patterns. Two key challenges frequently arise
in this context: (a) time series are often multivariate, incorporating multiple descriptive features (Wei,
2019), and (b) estimating the uncertainty of a forecast is equally important, requiring probabilistic
model outputs (Gneiting & Katzfuss, 2014). These challenges are particularly relevant in real-world

460 480 500 520 540 560 580 600
Time Steps

ETTh1 (H = 96)

Ground Truth Moment Moment+AdaPTS ±1, 3, 5 std

(a) (b)

Figure 1: (a) Augmenting Moment time series foundation model with the AdaPTS framework
provides probabilistic and more accurate predictions. (b) The AdaPTS framework: The input time
series is transformed through a feature space transformation φ that maps into a stochastic latent space.
The prediction is then conducted using a pre-trained FM before transforming back the predicted,
now distribution, to the original feature space. The fire symbol indicate trainable weights while the
snowflake implicates that the parameters of the FM are kept frozen.
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applications where risk assessment depends on reliable forecasts, such as healthcare (Jones & Spiegel-
halter, 2012), finance (Groen et al., 2013), energy management (Zhang et al., 2014; Nowotarski &
Weron, 2018), and weather prediction (Palmer, 2012; Bi et al., 2023).

Existing foundation models (FMs) for time series forecasting, such as Chronos (Ansari et al.,
2024), are typically trained for univariate forecasting tasks due to tractability constraints, as the
wide range of real world time series problems typically have different numbers of features. Even
without discretization, handling multivariate time series directly within these models (Moment
(Goswami et al., 2024), Moirai (Liu et al., 2024)) remains computationally challenging due to
the high-dimensional dependencies among features. This limitation raises a fundamental question:
how can we leverage existing pre-trained univariate FMs to enable probabilistic forecasting for
multivariate time series?

To address this, we introduce AdaPTS, a novel framework designed to augment FMs with prob-
abilistic adapters. As illustrated in Figure 1, AdaPTS applies a stochastic feature transformation
that maps the input time series into a latent space, where predictions are made using the frozen FM.
Our framework sets itself apart from existing literature by enforcing an invertibility constraint on
the adapter, allowing predictions to be transformed back into the original feature space. Beyond
enhancing forecasting accuracy, the integration of stochasticity into the adapter’s latent representation
ensures that the model captures uncertainty, thereby improving both calibration and robustness.

Our approach leads to several novel insights and contributions, which we summarize as follows:

1. Multivariate FM adaptation. We introduce a principled methodology for adapting existing
pre-trained univariate FMs to multivariate probabilistic forecasting, resulting in the AdaPTS
framework.

2. Theoretical foundations of adapters. We provide a theoretical analysis to support the
necessity of adapters, starting with the analytically tractable case of linear adapters and
linear FMs. We then build on the literature on partially stochastic Bayesian neural networks
to introduce probabilistic adapters.

3. Empirical validation. We conduct extensive experiments on multivariate time series
forecasting benchmarks, demonstrating that our approach improves forecasting accuracy
baseline methods. We also analyze the interpretability of the learned latent representation
and show that adapters enable cost-effective adaptation by reducing the dimensionality of
the feature space.

2 ADAPTS: ADAPTERS FOR PROBABILISTIC MULTIVARIATE TIME SERIES
FORECASTING

2.1 PROBLEM SETUP

Consider a multivariate long-term time series forecasting task, represented by: a data matrix X ∈
RL×D where L is the context window size and D is the multivariate time series dimensionality,
and a target matrix Y ∈ RH×D, where H is the forecasting horizon. We denote by xd ∈ RL×1

(respectively yd ∈ RH×1) the d-th component of the input (respectively target) multivariate time
series.

Our goal is to use a frozen pre-trained univariate time series foundation model denoted as fFM :
RL×1 → RH×1 (Fig. 1b) and exploit the information stored in its weights to achieve the best
forecasting performance, measured by the mean squared error (MSE) loss:

L = ∥Y − fFM(X)∥2F (1)

On multivariate time series, for simplicity, we denote by fFM(X) the application of fFM to each
channel independently, in which case the loss can be written as: 1

D

∑D
d=1 ∥yd − fFM(xd)∥22.

We now formally define an adapter, a tool by means of which we aim to best use the foundation
model fFM for multivariate forecasting:
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Definition 2.1 (adapter). An adapter is a feature-space transformation φ : RD → RD′
that is

applied to the data prior to the foundation model1. The forecast is then obtained by transforming the
predictions back to the original feature space:

Ŷ(X;φ) = φ−1
(
fFM(φ(X))

)
According to this definition, an adapter is valid only if the inverse transformation φ−1 : RD′ → RD,
such that ∀x ∈ RD, φ−1 ◦ φ(x) = x, is well-defined on RD′

. In the rest of the paper, we relax this
condition by naming the direct transformation as encoder (φ ≜ enc), and respectively, the inverse
transformation as decoder (φ−1 ≜ dec). In this case, the predictions obtained after the application of
the adapter become: Ŷ(X; enc,dec) = dec

(
fFM(enc(X))

)
.

2.2 FAMILIES OF ADAPTERS

Linear AutoEncoders. In addition to the setup introduced in Eq. (13), we extend Linear AutoEn-
coders to provide a simple yet effective method for dimensionality reduction while preserving the
temporal relationships within time series data. In this more general case, the encoder compresses the
multivariate time series X into a potentially lower-dimensional representation Z = XWθenc , where
W ∈ RD×D′

is the linear transformation matrix, and D′ ≤ D. The decoder reconstructs the forecast
to the original feature space after prediction as Ŷ = fFM(Z)Wθdec . Finally, the parameters of the
encoder θenc and the decoder θdec are jointly optimized to minimize the objective in Eq. (2).

Deep non-linear AutoEncoders. Deep non-linear AutoEncoders extend their linear counterparts by
employing multiple layers of non-linear transformations. The encoder maps the input X to a latent
space Z = enc(X; θenc), where enc is parameterized by a deep neural network. Similarly, the decoder
reconstructs the predictions of the foundation model in the latent space: Ŷ = dec(fFM(Z); θdec).

Besides AutoEncoders, Normalizing Flows (Kobyzev et al., 2021) such as RealNVP (Dinh et al.,
2017) are a valid choice in the context of adapters, thanks to their inherently invertible nature.
However, their training may be challenging due to various optimization related concerns. We defer a
discussion on Normalizing Flows as adapters to Appendix C.

2.3 PROBABILISTIC ADAPTERS

Variational AutoEncoders. Following the Bayesian perspective on adapters, VAE assume a prior
distribution over the latent representation Z, typically N (0, I). The encoder then outputs parameters
of the posterior distribution qϕ(Z|X), and in our context, the decoder generates reconstructions of
predictions Ŷ ∼ pθ(Y|X, fFM(Z)) where θ parametrize a likelihood model p. We then define the
training objective of the VAE, which brings together the forecasting loss and a regularization term, in
a similar way to the evidence lower bound (ELBO) (Kingma & Welling, 2013) objective:

Proposition 2.2 (VAE adapter training objective). The training objective for the VAE adapter is the
maximization of an ELBO-like lower bound on the marginal likelihood of the target Y:

log pθ(Y|X, fFM) ≥Eqϕ(Z|X) [log pθ(Y|X, fFM(Z))]

−KL (qϕ(Z|X) ∥ p(Z)) ,

where KL denotes the Kullback-Leibler divergence.

The derivation of this lower bound and a discussion on the implications of each term of the loss are
deferred to Appendix B.4.
Remark 2.3. In practice, we use the Gaussian likelihood as our likelihood model:
pθ(Y|X, fFM(Z)) = N (Y; Ŷ, σ2I), with Ŷ = decθ(fFM(Z)). In this case the forecasting loss
term boils down to the MSE objective in Eq. (2) up to a multiplicative and additive noise-related
constants: logN (Y; Ŷ, σ2I) = − 1

2σ2 ∥Y− Ŷ∥2F − HD
2 log(2πσ2). Notice that one can also learn a

model of the noise where decθ(fFM(Z)) = [µθ(Y|X, fFM(Z)), σθ(Y|X, fFM(Z))].

1In practice, φ is applied on matrices X in RL×D . This denotes the application of φ on each row of X.
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Dataset H No adapter with adapter

Moment PCA LinearAE dropoutLAE LinearVAE VAE

ETTh1 96 0.411±0.012 0.433±0.001 0.402±0.002 0.395±0.003 0.400±0.001 0.404±0.001

192 0.431±0.001 0.440±0.000 0.452±0.002 0.446±0.001 0.448±0.002 0.431±0.001

Illness 24 2.902±0.023 2.98±0.001 2.624±0.035 2.76±0.061 2.542±0.036 2.461±0.008

60 3.000±0.004 3.079±0.000 3.110±0.127 2.794±0.015 2.752±0.040 2.960±0.092

Weather 96 0.177±0.010 0.176±0.000 0.169±0.000 0.156±0.001 0.161±0.001 0.187±0.001

192 0.202±0.000 0.208±0.001 0.198±0.001 0.200±0.001 0.204±0.000 0.226±0.000

ExchangeRate 96 0.130±0.011 0.147±0.000 0.167±0.013 0.130±0.011 0.243±0.039 0.455±0.010

192 0.210±0.002 0.222±0.000 0.304±0.005 0.305±0.013 0.457±0.020 0.607±0.021

Table 1: Performance comparison between the baseline Moment model without adapters against
different adapter architectures (PCA, LinearAE, dropoutLinearAE, LinearVAE, and VAE),
for multivariate long-term forecasting with different horizons H . We display the average test MSE ±
standard error obtained on 3 runs with different seeds. Best results are in bold, with lower values
indicating better performance.

Remark 2.4. The KL divergence regularization term can be multiplied by a scaling factor β to
control the disentanglement—independence of the latent representation components. This results
in β-VAE (Higgins et al., 2017), which is what we use in practice while referring to it as the VAE
adapter throughout the paper.

Dropout as approximate VI. Dropout (Srivastava et al., 2014) can be interpreted as a form of
variational inference, where a variational distribution is imposed over the weights of a neural
network (Gal & Ghahramani, 2016). Specifically, applying dropout during training corresponds to
approximating a posterior over the weights using a Bernoulli distribution. This perspective allows the
deterministic models introduced in Section 2.2, such as Linear AutoEncoders, to be transformed into
probabilistic models by introducing stochasticity through dropout.

3 EXPERIMENTS & RESULTS

3.1 TIME SERIES FORECASTING

Baseline. We compare our method against the vanilla application of the foundation model Moment
small from the Moment family of models (Goswami et al., 2024). This means that for each dataset,
we apply Moment small independently to each feature. Additionally, we compare our learning-based
adapters against PCA, an adapter that has been used in the literature for model-based reinforcement
learning (Benechehab et al., 2025) and time series classification (Feofanov et al., 2024; 2025).
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Figure 2: Impact of the number of com-
ponents on model performance. The
dashed line indicates Moment perfor-
mance without adapters, the shaded area
its standard deviation, and the vertical
line the number of original features.

AdaPTS improves the performance of Moment . We
present the forecasting error measured by the Mean
Squared Error (MSE) in Table 1 and the Mean Abso-
lute Error (MAE) in Appendix E. On the ETTh1 dataset
with a prediction horizon H = 96, all adapter-based
variants outperform the baseline Moment model, with
dropoutLinearAE achieving the best performance,
showing an 8% improvement. Similar results are ob-
served for the Illness dataset, where all adapters im-
prove over the baseline. Notably, the VAE achieves a
significant 15% improvement, reducing the MSE from
2.902 to 2.461 at H = 24. In the Weather dataset, the
dropoutLinearAE adapter shows the best improve-
ment across all adapter architectures for H = 96, while
its deterministic counterpart, LinearAE, takes the lead
at H = 192. The results on the ExchangeRate dataset are
mixed, with some adapters matching the baseline perfor-
mance (dropoutLinearAE at H = 96) while others
show degraded performance, particularly at a longer prediction horizon (H = 192), which is also
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Figure 3: Visualization of the latent representation obtained by different adapters on Illness(H = 24).
Shaded colors indicate the time dimension, with lighter colors representing earlier timesteps.

observed for the ETTh1 dataset. Overall, AdaPTS improves the forecasting accuracy of Moment in
5 out of the 8 considered tasks, matches its performance in 2, and degrades performance in 1 task.

Dimensionality Reduction. Fig. 2 illustrates the impact of varying latent space dimensions on
forecasting performance across different adapters. For the ETTh1 dataset with a 96-step horizon, all
adapter architectures achieve optimal performance at 7 components (matching the original feature
count), with MSE values consistently lower than the baseline. Notably, at just 5 components, all
adapters (except the PCA baseline) match the baseline score, demonstrating the suitability of our
framework for low-resource setups through dimensionality reduction. The Illness dataset (H = 24)
presents more compelling results, as the VAE adapter achieves significantly optimal performance
with only 2 components, underscoring the potential of our approach for cost-effective adaptation of
time series foundation models.

Interpretability of the latent representations. Fig. 3 compares the representation learning capa-
bilities of different adapters on the Illness(H = 24) dataset, focusing on their ability to distinguish
between training and test data. To visualize the raw dataset, we employ PCA for dimensional-
ity reduction, retaining only two principal components, which is justified by the 95.6% explained
variance. When representing the training and test datasets in the space of the first two principal
components, we observe a clear distribution shift, potentially complicating the forecasting task for
the baseline foundational model. In contrast, using AdaPTS results in well-overlapping Gaussian
distributions for the training and test data in the latent space. This demonstrates our framework’s
ability to enforce a structured, isotropic representation that mitigates distribution shift. This effect
is particularly pronounced with the VAE adapter and, to a lesser extent, with LinearVAE and
dropoutLinearAE.
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Figure 4: Reliability diagram
for the first feature of the
ETTh1 (H = 96) dataset us-
ing LinearVAE.

On the calibration of the probabilistic adapters. To evaluate the
calibration of our adapter-based probabilistic forecasters, we use
quantile calibration as depicted in the reliability diagram in Fig. 4.
In an ideal scenario, a well-calibrated probabilistic forecast should
align with the red dashed diagonal, indicating that the empirical
proportion of observations falls within the predicted quantiles at the
expected rate. The overall conclusion is that we observe a gradual
deviation from ideal calibration as the prediction horizon increases
(darker shades). While early prediction horizons display reasonably
well-calibrated predictions, longer-horizon forecasts systematically
underestimate uncertainty, as shown by the curve falling below the
diagonal. This indicates that observed values exceed predicted quan-
tiles more frequently than expected, suggesting that the predictive
distribution becomes too narrow, resulting in overconfident fore-
casts.

4 CONCLUSION

In this paper, we investigate how pre-trained univariate time series foundation models can be adapted
for probabilistic multivariate forecasting. To address this challenge, we introduce the AdaPTS
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framework. Our method offers a novel approach to training feature space transformations that facilitate
uncertainty quantification and enhance the performance of baseline foundation models. Through a
series of experiments, we demonstrate that our framework improves forecasting accuracy, provides
reasonably well-calibrated uncertainty estimates, reduces inference cost through dimensionality
reduction, and offers interpretable feature space latent representations.

REPRODUCIBILITY STATEMENT

In order to ensure reproducibility we will release the code at https://github.com/abenechehab/AdaPTS,
once the paper has been accepted. The implementation details and hyperparameters are listed in
Appendix D.2.
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Appendix
Outline. The related works are referenced in Appendix A. In Appendix B, we provide the theoretical
foundations of our framework, notably the linear case analysis (B.1) and the probabilistic adapters
approach (B.3). We then provide a perspective on Normalizing Flows as adapters in Appendix C.
The experimental setup is presented in Appendix D, including all the implementation details in
Appendix D.2. Finally we showcase some additional results and ablation studies in Appendix E.
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A RELATED WORK

Time Series Foundational Models. Over the past two years, a plethora of foundation models
have been proposed with a particular focus on time series forecasting. Some of these models
like GPT4TS (Tian et al., 2023) and Time-LLM (Jin et al., 2024) ”reprogram” a Large Language
Model to the forecasting setting by freezing most of its layers and fine-tuning additional time
series-specific modules to a new downstream task. The majority of these time series FMs including
Lag-Llama (Rasul et al., 2024), Chronos (Ansari et al., 2024), Moirai (Liu et al., 2024),
TimesFM (Das et al., 2024) and Moment (Goswami et al., 2024) are trained from scratch on a large
volume of time series data.

Adapters. The multivariate setting presents a significant challenge for time series FMs, as different
tasks involve varying numbers of channels2. To the best of our knowledge, the only model that
naturally accommodates any number of channels is Moirai (Liu et al., 2024), which, however,
suffers from high computational demand due to processing all channels flattened in the transformer
simultaneously, leading to a quadratic memory complexity w.r.t. to the number of channels. Most
foundation models, instead, treat each one of these independently, which, as noted by Feofanov et al.
(2024; 2025), remains computationally expensive when full fine-tuning is required. For classification
tasks with hundreds or thousands of features, they demonstrated that simple adapters like the rotation
matrix obtained through Principal Components Analysis (PCA) mitigate this issue. At the same
time, Benechehab et al. (2025) showed that PCA preserves channel interactions by learning new
disentangled components. However, in both cases, PCA provided little improvement over independent
processing, leaving room for further enhancements. In the context of tabular regression, foundation
models such as (Ma et al., 2024, TabDPT) also use PCA to adapt to a variable number of features.

Less related to our work, Li & Marlin (2016) use a Gaussian process adapter in the context of irregular
time series classification. In other domains, adapters have been used for multimodal (text-time series)
representation learning (Zhang et al., 2024) and computer vision (Li et al., 2025; Yin et al., 2023; Pan
et al., 2022).

B THEORETICAL FOUNDATIONS

B.1 THE LINEAR CASE

In this section we consider the definition of adapters provided in Definition 2.1. We note that
in the literature, there exist alternatives to adapt to the multivariate setting (Zhang & Yan, 2023;
Tian et al., 2023), but we have chosen this family of adapters due to their high flexibility as: (a)
any foundation model can be plugged-in, (b) no requirement of fine-tuning due to feature-level
transformations (Feofanov et al., 2024; 2025), (c) adaptation to the computation budget by defining
the number of encoded channels.

Optimality of an adapter. In order for an adapter to be useful, it has to achieve a lower forecasting
error than the identity baseline. In fact, the loss defined in Eq. (1) corresponds to the forecasting loss
obtained by using an adapter implementing the identity matrix I. Therefore, we define the optimality
of the adapter based on improving the forecasting error of the identity baseline:

L ≥ L(φ) = ∥Y − φ−1
(
fFM(φ(X))

)
∥2F

The purpose of this section is to study the optimization problem that the adapter φ is aiming to solve:

φ∗ = argmin
φ

∥Y − φ−1
(
fFM(φ(X))

)
∥2F (2)

Under mild assumptions on the adapter function class and the backbone foundation model fFM,
we aim at characterizing the optimal solution φ∗ and prove that it realizes the optimality condition:
L(φ∗) ≤ L.

2Throughout the paper, the words features, channels, and components are used interchangeably to refer to the
number of variates in a multivariate time series, represented as D in ??.
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We first consider the linear case where we constrain the adapter φ to the class of linear transformations,
parametrized by a matrix Wφ ∈ RD×D: φ(X) = XWφ.
Assumption B.1. Wφ has full rank: rank(Wφ) = D, insuring its invertibility.
Assumption B.2. For ease of derivation, we consider a similar linear parametrization for the
foundation model: fFM(X) = W⊤

FMX+ bFM1⊤ where WFM ∈ RL×H , bFM ∈ RH , and 1 a vector
of ones of dimension D.
Proposition B.3 (Optimal linear adapter). Under Assumption B.1 and Assumption B.2, the closed-
form solution of the problem:

L(Wφ) = ∥Y −
(
W⊤

FMXWφ + bFM1
⊤)W−1

φ ∥2F (3)

writes as:

W∗
φ = (B⊤A)+B⊤B (4)

where W∗
φ = argminWφ∈GLD(R) L(Wφ), A = Y − W⊤

FMX, B = bFM1⊤, and (B⊤A)+

denoting the pseudo-inverse operator.

Proof. We begin by expanding the loss function:

L(Wφ) = ∥Y − (W⊤
FMXWφ + bFM1⊤)W−1

φ ∥2F
= ∥A−BW−1

φ ∥2F

where A = Y −W⊤
FMX and B = bFM1⊤. Expanding the Frobenius norm:

L(Wφ) = Tr
(
(A−BW−1

φ )⊤(A−BW−1
φ )

)
Taking the gradient with respect to W−1

φ yields:

∂L
∂W−1

φ

= −2B⊤A+ 2B⊤BW−1
φ

Knowing that Wφ is invertible, We have that: ∂L
∂Wφ

= −W−⊤
φ

∂L
∂W−1

φ
W−⊤

φ

hence

∂L
∂Wφ

= −2W−T
φ

(
B⊤A−B⊤BW−1

φ

)
W−T

φ .

Setting ∂L
∂Wφ

= 0 and multiplying both sides by W⊤
φ , we obtain:

B⊤A = B⊤BW−1
φ .

Multiplying both sides by Wφ:
B⊤AWφ = B⊤B.

Finally applying the pseudo-inverse to solve for Wφ gives our final result:

W∗
φ = (B⊤A)+B⊤B.

Given the convexity of L(Wφ) (which follows from the convexity of the Frobenius norm ∥·∥2F, the
inverse operation, and an affine transformation), we conclude that W∗

φ is a global solution for Eq. (3).
Remark B.4. We make use of the pseudo-inverse due to the current construction of the matrix B
(with identical rows) which implies that the product B⊤A is degenerate. To bypass this limitation
and further ensure the invertibility of W∗

φ, we can revisit the definition of the foundation model in
Assumption B.2 to include channel dependent biases and ensure a full rank matrix B.
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Remark B.5. In this case, the fact that the matrix B = bFM1⊤ have identical columns renders the
matrix B⊤A degenerate (with rank(B⊤A) = 1). In practice, we add a positive constant to the
diagonal in order to numerically stabilize the matrix inversion: W∗

φ = (B⊤A+ λI)−1B⊤B, with
λ > 0. In Appendix B.2 we show that we are able to reach an optimal solution regardless of this
added regularization.

B.2 WORKING EXAMPLE

Synthetic data. Our synthetic dataset comprises a multivariate time series with several independent
and other linearly correlated channels (Fig. 5), designed to evaluate a linear feature-space transforma-
tion. The data generation process creates five (uncorrelated) base signals—sinusoids with distinct
frequencies, amplitudes, and i.i.d. noise— and derives eight additional channels through linear
combinations of these bases with additive Gaussian noise of different magnitude (σ ∈ (0.1, 0.2, 0.5)).
This construction provides a controlled environment where the ground truth relationship between
channels is known: the underlying data manifold is effectively five-dimensional, but the observed
eight-dimensional multivariate time series includes varying levels of noise and linear mixing.

Randomly generated linear FMs. The experimental setup in Fig. 5 consists in randomly sampling
the linear parameters of a toy foundation model: WFM and bFM. To simulate a realistic scenario,
we use Glorot-uniform initialization distribution as it would be the case in neural network-based
architectures. We then compute the closed-form solution W∗

φ on raw data X, and compare the
resulting loss value with the baseline (using the identity matrix I as adapter) and the PCA-only
adapter.

Independent Correlated

I WPCA W *
2

3

4

M
SE

1e1

I WPCA W *

Figure 5: Optimality of W∗
φ. Comparing the MSE obtained with W∗

φ against the baseline, for 1000
randomly generated linear FM.

Fig. 5 shows that in the case of uncorrelated data (left column) PCA is equivalent to the identity matrix,
while the solution W∗

φ to the problem L(Wφ) reaches an order of magnitude better forecasting loss.
In the correlated case, we observe that PCA has a similar performance to the optimal solution. This
example motivates the adapter idea through the existence of better linear transformations than the
identity matrix in the case of linear foundation models.
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B.3 PROBABILISTIC ADAPTERS

We now present an alternative to the optimization of adapters, which is based on a Bayesian treatment
of their parameters. There are many options on how to carry out inference over these parameters, and
we can draw from the literature on Bayesian inference for neural networks (Papamarkou et al., 2024).

Considering a FM which yields point predictions, the appeal of Bayesian adapters is that they enable
probabilistic predictions, which can be used for uncertainty quantification. Note that this is the
case for models such as Chronos and Moirai, which output a distribution over the time series
continuous values3. For deterministic FMs such as Moment (Goswami et al., 2024), a Bayesian
treatment of adapters yields an ensemble of such predictions, which is key for accounting for the
predictive uncertainty.

Inference. Recalling that θ represents the set of parameters of encoder (encθ) and decoder (decθ),
we can attempt to obtain the posterior distribution over these parameters through Bayes theorem
Gelman et al. (2013):

p(θ|Y,X) ∝ p(Y|X, θ)p(θ),
where p(θ) is the prior distribution over the parameters and p(Y|X, θ) the likelihood, with Y,X rep-
resenting a training dataset in this context. Alternatively, we can rather treat the latent representation
Z as stochastic, where the interest is now to characterize the following posterior:

p(Z|Y,X) ∝ p(Y|X,Z)p(Z).

In these two formulations, the posterior distribution over the parameters, is instrumental in obtaining
predictive distributions useful for uncertainty quantification. For instance, in the case of inference
over θ, for new test data Y∗,X∗ we obtain:

p(Y∗|X∗,Y,X) =

∫
p(Y∗|X∗, θ)p(θ|Y,X)dθ.

Characterizing the posterior analytically, however, is intractable and we need to resort to approx-
imations. The literature on Bayesian inference offers various strategies, which can be adapted to
neural networks (Papamarkou et al., 2024), including variational inference (Graves, 2011), Laplace
approximations (Yang et al., 2024), and Markov chain Monte Carlo (MCMC) (Chen et al., 2014;
Tran et al., 2022).

Within the AdaPTS framework, we focus in particular on variational inference (VI) for VAE adapters
and on Monte Carlo dropout (Gal & Ghahramani, 2016) as an approximate form of VI for carrying
out inference over θ.

Treating adapters in a Bayesian manner while keeping the FM fixed aligns with the concept of
partially stochastic Bayesian neural networks, which provides theoretical guarantees on universal
conditional density estimation (Sharma et al., 2023). This framework ensures that the model can
approximate any conditional density, provided that stochasticity is introduced early enough in the
architecture and that the number of stochastic units matches or exceeds the output dimension. Using
probabilistic adapters, We comply with these conditions by making the encoder stochastic, allowing
the learned latent space to capture uncertainty while leveraging the FM’s fixed parameters.

B.4 PROOF OF PROPOSITION 2.2

To derive the evidence lower bound (ELBO) used in the training objective of the VAE adapter, we
start from the marginal likelihood of the observed data Y given the inputs X and foundation model
fFM. The marginal likelihood is expressed as:

log pθ(Y|X, fFM) = log

∫
pθ(Y|X, fFM(Z))p(Z) dZ, (5)

where Z is the latent variable, pθ(Y|X, fFM(Z)) is the likelihood model parameterized by θ, and
p(Z) is the prior distribution over the latent variable Z.

3In the case of Chronos, this distribution is obtained through a categorical distribution (with softmax
probabilities) over a tokenized space of the time series values.
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Direct optimization of this marginal likelihood is generally intractable due to the integration over Z.
To make this optimization feasible, we introduce a variational distribution qϕ(Z|X), parameterized by
ϕ, as an approximation to the true posterior pθ(Z|X,Y, fFM). Using qϕ(Z|X), we can reformulate
the log-marginal likelihood as follows:

log pθ(Y|X, fFM) = log

∫
qϕ(Z|X)

pθ(Y|X, fFM(Z))p(Z)

qϕ(Z|X)
dZ (6)

= logEqϕ(Z|X)

[
pθ(Y|X, fFM(Z))p(Z)

qϕ(Z|X)

]
. (7)

Using Jensen’s inequality, we can derive a lower bound on this log-marginal likelihood:

log pθ(Y|X, fFM) ≥ Eqϕ(Z|X)

[
log

pθ(Y|X, fFM(Z))p(Z)

qϕ(Z|X)

]
(8)

= Eqϕ(Z|X) [log pθ(Y|X, fFM(Z))]− Eqϕ(Z|X)

[
log

qϕ(Z|X)

p(Z)

]
. (9)

The second term can be rewritten as the Kullback-Leibler (KL) divergence between the variational
posterior qϕ(Z|X) and the prior p(Z):

KL (qϕ(Z|X) ∥ p(Z)) = Eqϕ(Z|X)

[
log

qϕ(Z|X)

p(Z)

]
. (10)

Substituting this into the inequality, we obtain the evidence lower bound (ELBO):

log pθ(Y|X, fFM) ≥ Eqϕ(Z|X) [log pθ(Y|X, fFM(Z))]−KL (qϕ(Z|X) ∥ p(Z)) . (11)

The ELBO consists of two terms:

• The forecasting term, Eqϕ(Z|X) [log pθ(Y|X, fFM(Z))], which measures how well the
model can reconstruct Y given the latent variable Z.

• The regularization term, KL (qϕ(Z|X) ∥ p(Z)), which encourages the variational posterior
to stay close to the prior distribution p(Z).

Thus, maximizing the ELBO provides a tractable way to train the parameters θ and ϕ by optimizing
the balance between forecasting accuracy and latent space regularization.

C NORMALIZING FLOWS

Normalizing Flows make use of invertible transformations to map a simple base distribution (e.g.
Gaussian) to a complex data distribution. Each transformation T is designed to maintain invertibility
and efficient Jacobian computation. The transformation is applied iteratively: Z = Tk ◦ Tk−1 ◦ · · · ◦
T1(X). Current Normalizing Flow instantiations (e.g. RealNVP) make use of generic invertible
transformations such as coupling flows; the latters can be parametrized using a neural network leading
to powerful non-linear generative models that are trained to maximize the data log-likelihood:

log p(X) = log p(Z) +

k∑
i=1

log

∣∣∣∣det ∂Ti(·; θ)
∂Zi−1

∣∣∣∣
where θ denote the parameters of the non-linear parametrization of the invertible transformations Ti,
and Zi−1 is the output of the transformation Ti−1. In the context of time series adapters, we directly
optimize the parameters of the transformations based on their direct and inverse application on the
time series forecasting problem:

Lflow = ∥Y−T−1
1 ◦ T−1

2 ◦ · · · ◦ T−1
k (

fFM
(
Tk ◦ Tk−1 ◦ · · · ◦ T1(X; θ)

)
; θ)∥2F
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where the encoder is represented by the series of direct transformations: enc(·) = Tk ◦ Tk−1 ◦ · · · ◦
T1(·; θ), and respectively the decoder by the series of inverse transformations dec(·) = T−1

1 ◦ T−1
2 ◦

· · · ◦ T−1
k (·; θ).

As defined here, Normalizing Flows suffer from the constraint of keeping the same dimension in both
original and learned representation space. For this purpose, we investigate coupling a normalizing
flow with a linear encoder-decoder type of architecture to enable dimensionality reduction prior to
applying the transformation Ti. The parameters of the additional encoder and decoder are then jointly
trained to optimize the learning objective Lflow.

Given that the parameters of the encoder and the decoder are shared in Normalizing Flows, the
gradient-based optimization within our framework receives conflicting directions due to gradient flow
from both the direct and inverse transformations simultaneously. We discovered that this adapter
construction was challenging to optimize in practice, and we defer the exploration of this direction to
future research endeavors.

D EXPERIMENTAL SETUP

D.1 DATASETS

Our experiments are conducted on four publicly available real-world multivariate time series datasets,
commonly used for long-term forecasting (Ilbert et al., 2024; Wu et al., 2021; Chen et al., 2023; Nie
et al., 2023; Zeng et al., 2023). These datasets include the Electricity Transformer Temperature dataset
(ETTh1) (Zhou et al., 2021), ExchangeRate (Lai et al., 2018), Weather (Max Planck Institute, 2021),
and Influenza-like Illness (U.S. Centers for Disease Control and Prevention, 2024). All time series
are segmented with an input length of L = 512, prediction horizons H ∈ [96, 192] and H ∈ [24, 60]
for the Illness dataset, and a stride of 1, meaning each subsequent window is shifted by one step.
These datasets originate from various application domains, enabling a comprehensive evaluation of
our framework across diverse real-world scenarios.

Table 2: Characteristics of the multivariate time series datasets used in our experiments with various
sizes and dimensions.

Dataset ETTh1 Illness ExchangeRate Weather

# features 7 7 8 21
# time steps 13603 169 6791 51899
Granularity 1 hour 1 week 1 day 10 minutes
(Train, Val, Test) (8033, 2785, 2785) (69, 2, 98) (4704, 665, 1422) (36280, 5175, 10444)

D.2 IMPLEMENTATION DETAILS

In this section, we describe the full AdaPTS framework, starting from the data preprocessing, the
training algorithm, and the hyperparameters optimization.

Preprocessing. Given that the adapter as defined in Definition 2.1 is a feature space transformation,
we start by rescaling (StandardScaler and MinMaxScaler) the data where all the timesteps are
regarded as data points. To account for the temporal specificities in each batch, we use Reversible
Instance Normalization (RevIn) (Kim et al., 2022) that has been proven to mitigate time-related
distribution shifts in time series problems.

Training parameters. After the pre-processing phase, we proceed to split the data into a train-
validation-test sets, where the validation set serves as a tool to select the best hyperparameters for the
adapter. The resulting adapter that is instantiated with the optimal hyperparameters is then tested
against the unseen test dataset. For all of our experiments, we first train the linear forecasting head of
Moment (referred to as Linear Probing in Goswami et al. (2024)) with the Adam optimizer (Kingma
& Ba, 2017), a batch size of 32, a one cycle scheduler starting with 0.001 as learning rate. Once the
forecasting linear head is trained, we freeze its parameters and proceed to training the adapter. This is
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Figure 6: Moment on simulated independent data.

done using the Adam optimizer, a batch size of 32, a reduce on plateau scheduler starting with 0.001
as learning rate.

Hyperparameter optimization. In order to select the best hyperparameters for the adapter archi-
tecture we use Ray tune (Liaw et al., 2018) with the Heteroscedastic and Evolutionary Bayesian
Optimisation solver (HEBO) (Cowen-Rivers et al., 2022) engine, reporting the average mean squred
error (MSE) from k-fold cross validation. Table 3 shows the default hyperparameters for each
considered adapter.

Table 3: Adapters hyperparameters.

adapter LinearAE DropoutLinearAE LinearVAE VAE

p dropout − 0.1 − −
Number of layers − − − 2
Hidden dimension − − − 128
β − − 0.5 0.5
σ − − 1.0 1.0

E ADDITIONAL RESULTS

E.1 MOMENT APPLIED TO SYNTHETIC DATA.

To validate the adapter optimality condition with large non-linear foundation models, we use Moment
(Goswami et al., 2024). The optimal linear adapter in this case minimizes the following intractable
objective:

L(Wφ) = ∥Y − fMoment
(
XWφ

)
W−1

φ ∥2F (12)

To approximately solve this optimization problem, we instantiate Wφ as a single-linear-layer encoder
denoted encθ, and respectively the inverse transformation W−1

φ as a single-linear-layer decoder
denoted decθ. We then use gradient-based optimization of the parameters θ using the Adam optimizer,
aiming at solving the following optimization problem:

θ∗ = argmin
θ

∥Y − decθ
(
fMoment(encθ(X))

)
∥2F (13)

Fig. 6 shows the performance gain obtained by optimizing a linear adapter on Moment-small
foundation model. Unlike the tractable case, we observe that in both data modalities (independent
and correlated data), PCA has little to no improvement over the identity baseline, while φθ∗ reaches
an order of magnitude better solution. This confirms our intuition about the existence of a better
solution than the identity matrix, even in the case of real-world complex foundation models.

E.2 MEAN ABSOLUTE ERROR

Table 4 shows the comparison of our method with baselines in terms of the Mean Absolute Error
(MAE).
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Dataset H No adapter with adapter

Momentsmall pca linear dropout linear VAE VAE

ETTh1 96 0.422±0.006 0.440±0.000 0.423±0.003 0.415±0.002 0.420±0.001 0.426±0.001

192 0.436±0.000 0.445±0.000 0.449±0.003 0.450±0.001 0.451±0.001 0.444±0.001

Illness 24 1.143±0.007 1.163±0.001 2.624±0.035 1.156±0.016 1.074±0.011 1.057±0.012

60 1.149±0.001 1.161±0.001 1.227±0.030 1.173±0.015 1.112±0.021 1.105±0.021

Weather 96 0.232±0.010 0.235±0.000 0.226±0.000 0.212±0.001 0.218±0.001 0.243±0.001

192 0.251±0.001 0.260±0.001 0.251±0.001 0.251±0.000 0.255±0.000 0.274±0.000

ExchangeRate 96 0.252±0.010 0.264±0.000 0.308±0.010 0.269±0.012 0.376±0.031 0.488±0.003

192 0.329±0.001 0.335±0.000 0.415±0.002 0.419±0.010 0.513±0.010 0.585±0.008

Table 4: Performance comparison between the baseline Moment model without adapters against
different adapter architectures (PCA, LinearAE, dropoutLAE, LinearVAE, and VAE), for
multivariate long-term forecasting with different horizons H . We display the average test MAE ±
standard error obtained on 3 runs with different seeds. Best results are in bold, with lower values
indicating better performance.

E.3 ABLATION STUDIES

Influence of σ and β in the VAE Adapter. Fig. 7 illustrates an ablation study examining the β

parameter in β-VAE and the noise scale σ of the likelihood model applied to the prediction Ŷ,
assessing their effects on MSE and Expected Calibration Error (ECE). The MSE heatmap (left)
demonstrates that increasing β generally diminishes MSE, with the lowest values observed at β = 2.0
and β = 4.0, particularly for higher log σ2. This indicates that stronger regularization through β can
enhance forecasting accuracy, possibly due to the disentangling effect of regularization towards a
prior distribution with statistically independent components. Conversely, the ECE heatmap (right)
shows that higher β and log σ2 values result in lower calibration error, with optimal results at β = 4.0
and log σ2 = 3.0. This outcome is anticipated, as larger values of β and σ mitigate overfitting,
where the model tends to exhibit overconfidence in its predictions. Additionally, it is observed that
maintaining a fixed σ during training generally outperforms including it in the optimization loop, a
configuration denoted as auto in Fig. 7.
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Figure 7: β and log σ2 VAE hyperparameters ablation on the Illness(H = 24) dataset. For reference,
the Moment baseline score on this task is 2.902±0.023.

LinearAE components. The ablation study presented in Fig. 8 examines the performance of
different components of the linear autoencoder adapter (LinearAE) across three datasets: ETTh1,
Weather, and ExchangeRate. The figure compares the full linear autoencoder with its encoder-only
(LinearEncoder) and decoder-only (LinearDecoder) variants. Overall, the results reveal that
the decoder component of the linear autoencoder plays the most important role in minimizing the
forecasting error across all datasets. The encoder-only variant’s contribution varies, being more
impactful in the Weather dataset compared to ETTh1 and ExchangeRate. These findings highlight
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the significance of the decoder in the LinearAE adapter and suggest that, in the deterministic case,
a decoder might be sufficient to capture feature dependencies.

ETTh1 Weather ExchangeRate
0.0

0.5
M

SE

linearEncoder linearAE linearDecoder

Figure 8: LinearAE components ablation.

Nevertheless, as shown in our previous experiments, particularly Table 1, probabilistic adapters
generally outperformed the deterministic ones. This underscores the importance of the encoder
as well, which is responsible for approximating the posterior distribution in the latent space—a
mechanism inherent to our probabilistic framework.
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