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ABSTRACT

CD8+ “killer” T cells and CD4+ “helper” T cells play a central role in the adap-
tive immune system by recognizing antigens presented by Major Histocompati-
bility Complex (pMHC) molecules via T Cell Receptors (TCRs). Modeling bind-
ing between T cells and the pMHC complex is fundamental to understanding
basic mechanisms of human immune response as well as in developing thera-
pies. While transformer-based models such as TULIP have achieved impressive
performance in this domain, their black-box nature precludes interpretability and
thus limits a deeper mechanistic understanding of T cell response. Most existing
post-hoc explainable AI (xAI) methods are confined to encoder-only, co-attention,
or model-specific architectures and cannot handle encoder-decoder transformers
used in TCR-pMHC modeling. To address this gap, we propose Quantifying
Cross-Attention Interaction (QCAI), a new post-hoc method designed to inter-
pret the cross-attention mechanisms in transformer decoders. Quantitative evalu-
ation is a challenge for XAI methods; we have compiled TCR-XAI, a benchmark
consisting of 274 experimentally determined TCR-pMHC structures to serve as
ground truth for binding. Using these structures we compute physical distances
between relevant amino acid residues in the TCR-pMHC interaction region and
evaluate how well our method and others estimate the importance of residues in
this region across the dataset. We show that QCAI achieves state-of-the-art per-
formance on both interpretability and prediction accuracy under the TCR-XAI
benchmark.

1 INTRODUCTION

T cells play a pivotal role in the adaptive immune system by identifying and responding to antigenic
proteins, both from pathogens such as viruses, bacteria and cancer cells (Joglekar & Li, 2021) as
well as in the context of autoimmunity. The final and arguably most critical component of T cell
response is binding between the peptide Major Histocompatibility Complex (pMHC) which con-
tains an antigenic peptide bound to a MHC molecule and the surface receptor on T cells (TCR).
The specificity of this interaction underpins T cell-mediated immunity and is an intense area of re-
search in both the development of therapies and fundamental understanding of immune response.
Understanding T cell response is the key to vaccines that confer long-lasting immunity, and can also
enable effective personalized cancer therapies (Rojas et al., 2023; Poorebrahim et al., 2021).

Transformer models have recently been use to analyze T cell immunity (Hudson et al., 2023; Li
et al., 2023; Karthikeyan et al., 2023; Driessen et al., 2024; Cornwall et al., 2023). Specifically,
models have been developed to predict TCR-pMHC binding such as TULIP (Meynard-Piganeau
et al., 2024), Cross-TCR-Interpreter (Koyama et al., 2023), TCR-BERT (Wu et al., 2024b), and
BERTrand (Myronov et al., 2023)1. However these models are black boxes and suffer from a lack
of interpretability, which is critically important in elucidating the mechanisms involved in T cell
response. To address this challenge, post-hoc explanation techniques (Kenny et al., 2021) have been
developed to connect elements of the input and model to the outputs. However, current existing
post-hoc methods (e.g., AttnLRP (Achtibat et al., 2024), TokenTM (Wu et al., 2024a), and TEP-

1For a comprehensive discussion, please consult Section A.4 of the Appendix.
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Figure 1: Quantifying Cross-Attention Interaction (QCAI) is a post-hoc explanation method
designed for cross-attention mechanisms. In this paper, we show that QCAI enables insight into the
structural basis for TCR-pMHC binding.

CAM (Chen et al., 2024)) are designed for encoder-only transformer or convolution neural network
(CNN) models, while state-of-the-art TCR-pMHC binding predictors adopt encoder-decoder archi-
tectures.

The main contribution of this paper is to fill this gap with a novel post hoc explanation method
that we call Quantifying Cross-Attention Interaction (QCAI) that enables interpretation of any
encoder-decoder transformer model while taking cross-attention into account. Our motivation is
the application of TCR-pMHC modeling, but cross-attention is used extensively in vision and NLP
applications as well and thus QCAI is potential to be applied to other fields. Figure 1 shows how
QCAI is used to analyze decoder blocks; cross-attention between the CDR3 and peptide sequences is
captured used to generate importance scores by residue position. Another important contribution of
this paper is to provide a way to quantify the performance of XAI methods for TCR-pMHC binding.
Typically XAI methods are evaluated qualitatively (e.g. in image analysis), but in the context of
immunology, interpretations that match intuition are challenging to justify. We introduce TCR-
XAI, a compilation of 274 experimentally-determined X-ray crystallography structures of TCR-
pMHC complexes. For each complex we determine interaction distance between the CDR3 regions
and peptide. Using this benchmark, we can determine whether the importance scores over the input
produced by any particular method matches the expected interaction shown in the experimental
structure.

We performed extensive evaluation of QCAI against other post hoc methods and demonstrate the
benefit of incorporating cross-attention. We conduct an extensive comparison with other methods
over the TCR-XAI benchmark and demonstrate that QCAI achieve state-of-the-art performance. We
also analyze two case studies of TCR-pMHC systems to highlight mechanisms identified by QCAI.

2 PRELIMINARIES

In this section we first outline some basic concepts for self-attention and cross-attention and then
discuss limitations in existing post-hoc methods. Transformer-based architectures typically consist
of L stacked encoder layers, or a combination of encoder and decoder layers. Each layer comprises
two primary components: Multi-Head Attention (MHA) and a Feed-Forward Network (FFN), each
followed by layer normalization and residual connections (Vaswani, 2017). The distinction between
encoder and decoder modules lies in their input structure and the type of attention mechanism em-
ployed.

In the encoder, each layer takes the output of the previous layer hl−1 ∈ RN×d and computes hl ∈
RN×d, where N is the number of tokens and d is the hidden dimension. In contrast, the decoder
layer integrates two inputs: hl−1 ∈ RN×d from the previous decoder layer, and h′

l ∈ RN ′×d from
the corresponding encoder layer. The decoder output remains hl ∈ RN×d, with N ′ denoting the
number of source tokens.

These inputs are linearly projected into query (Ql), key (Kl), and value (Vl) matrices for the MHA
computation. For encoder, it could be computed following Ql = WQ

l hl−1, Kl = WK
l hl−1, and

Vl = WV
l hl−1. For decoder, it could be computed following Ql = WQ

l hl−1, Kl = WK
l h′

l, and
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Vl = WV
l h′

l. Where WQ
l ,WK

l ,WV
l ∈ Rd×d are trainable projection matrices. For brevity, bias

terms are omitted. Considering a single attention head for simplicity, the attention matrix Al for
layer l is computed as:

Al = softmax
(
QlK

⊤
l√
d

)
.

The shape of Al is RN×N for the encoder and RN×N ′
for the decoder. The output of the attention

module is computed as: hl = WO
l (AlVl + hl−1) ∈ RN×d, where WO

l ∈ Rd×d is a learnable output
projection matrix. Outputs from multiple attention heads are concatenated before being linearly
transformed.

2.1 LIMITATIONS OF CURRENT INTERPRETABILITY METHODS FOR TRANSFORMERS

Several post-hoc interpretability methods, such as TokenTM (Wu et al., 2024a), AttnLRP (Achtibat
et al., 2024), and AttCAT (Qiang et al., 2022), have demonstrated reliable performance on encoder-
only transformer models that rely on self-attention. However, these methods are not designed to
extract the interaction information from cross-attention found in decoder layers. As a result, their ap-
plicability is limited in models that include decoder components, such as TULIP (Meynard-Piganeau
et al., 2024) and MixTCRpred (Croce et al., 2024).

The core distinction between self-attention and cross-attention lies in the source of the key (K) and
value (V ) matrices. While self-attention derives Q, K, and V from the same input, cross-attention
uses separate inputs for Q and (K,V ). Consequently, the attention matrix A in cross-attention has
dimensions RN×N ′

instead of RN×N , where N is the number of query tokens and N ′ is the number
of key tokens. Additionally, A now represents the fused information from both modalities. This
asymmetry poses a challenge for interpretability: the attention matrix no longer provides a direct
measure of query token importance of one input modality, making it difficult to attribute model
predictions to input query tokens.

3 QUANTIFYING CROSS-ATTENTION INTERACTION

In this section we present our main contribution, which is a way to handle the aforementioned
asymmetry so that cross-attention can be captured. Since the attention matrix is computed as a scaled
dot-product QK⊤, which captures the cosine similarity between query and key representations,
interpreting the cross-attention mechanism can be structured into three key steps: 1. identifying
which components of the attention matrix contribute most significantly to the model’s prediction, 2.
decomposing these importance values into contributions from the query and key inputs, respectively,
and 3. aggregating the cross-attention explanation with other layers’ explanation.

Inspired by GradCAM (Selvaraju et al., 2017), we propose to compute the importance of the atten-
tion matrix Al at layer l using the gradient of the loss Lc with respect to Al for a target class c, in
conjunction with the attention weights themselves. Specifically, we define the importance score map
as:

S(Al) = EH

(
ReLU

(
∂Lc

∂Al
⊙Al

))
+ I ∈ RN×N ′

,

where EH(·) denotes averaging across all attention heads, ⊙ represents element-wise multiplication,
and I denotes the identity matrix for residue connection. This formulation highlights the attention
entries that both have high weights and contribute significantly to the class-specific loss. The next
step is to quantify this attention importance map into contributions from the query and key inputs.
By analyzing the structure of the attention matrix, which serves as a soft alignment between queries
and keys, we aim to attribute the importance scores back to the input tokens in both sequences.

3.1 QUANTIFYING QUERY IMPORTANCE FROM CROSS-ATTENTION

For the query input Ql at layer l, its importance scores with respect to the loss Lc for class c can be
estimated in a GradCAM-style fashion as:

S(Ql) = ReLU
(
∂Lc

∂Ql
⊙Ql

)
,
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where ⊙ denotes element-wise multiplication. To obtain token-level importance scores from this
matrix, we compute the column-wise maximum:

ωQ
l = argmax

i
S(Ql)i,j ∈ RN ,

where i indexes the feature dimension, j indexes the query tokens, and argmax
i

denotes the max-

imum across the feature dimension. However, this importance score is intrinsic to Ql itself and
does not reflect how Ql is influenced by the attention mechanism. Explaining the attention matrix
is a key component of post-hoc methods for interpreting transformer models (Wu et al., 2024a). In
the case of cross-attention, the query and key matrices originate from different inputs, and thus the
resulting attention matrix is not necessarily square. To better understand how Ql contributes within
the attention process, we define its attention-conditioned importance scores as S(Ql;Al), the query
importance modulated by the attention matrix Al. We approximate this as:

S(Ql;Al) ∝
∂Lc

∂Al
·Ql,

where · is matrix product. From the previous step, we have already obtained the attention importance
map ∂Lc

∂Al
⊙ Al. We now seek a transformation that allows us to infer S(Ql;Al) from this. The

attention matrix is computed via scaled dot-product as Al = QlK
⊤
l with softmax and

√
d ignored

for simplicity. We can express with linear operations (e.g., ReLU, EH , and (·) + I) ignored for
simplicity.:

S(Al) =
∂Lc

∂Al
·QlK

⊤
l ,

To isolate the influence of Ql, we need to eliminate K⊤
l from the right-hand side. Since Kl is not

guaranteed to be square or invertible, we employ the Moore-Penrose pseudoinverse:

∂Lc

∂Al
·QlK

⊤
l = S(Al)

∂Lc

∂Al
·Ql = S(Al) ·Kl(K

⊤
l Kl)

−1 ∈ RN×d .

This yields a decomposition of attention importance into the query space. Then, the importance
scores corresponding to the token part can be obtained following:

ωA
l = argmax

i

(
∂Lc

∂Al
·Ql

)
i,j

∈ RN ,

where i indexes the feature dimension, j indexes the query tokens, and argmax
i

denotes maximum

taken over feature dimension. However, to ensure robustness, particularly in cases where Ql is
also influenced by other layers. We conservatively combine this result with the intrinsic query
importance:

S(Ql;Al) = max
(
ωA
l , ω

Q
l

)
.

Here, the maximum is applied element-wise to capture the strongest importance attribution from
either source.

3.2 QUANTIFYING KEY IMPORTANCE FROM CROSS-ATTENTION

Similar to the approach used to extract query importance scores, the key matrix importance can
also be quantified into two components: (1) the intrinsic importance of the key matrix, denoted as
S(Kl), and (2) the attention-conditioned importance, S(Kl;Al), which reflects how the key matrix
contributes to the attention mechanism.

The intrinsic importance of the key matrix with respect to the loss Lc for class c can be estimated
using a GradCAM-style formulation:

S(Kl) = ReLU
(
∂Lc

∂Kl
⊙Kl

)
.
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To obtain token-level importance scores from this matrix, we compute the column-wise maximum:

ωK
l = argmax

i
S(Kl)i,j ∈ RN ′

.

where i indexes the feature dimension, j indexes the key tokens, and argmax
i

denotes the maximum

across the feature dimension (d). Similar to the issue encountered in query attention quantifica-
tion, the attention matrix is no longer necessarily square for key attention quantification. However,
compared to decomposing query importance, extracting key importance from the attention matrix
is more straightforward, since attention explicitly maps queries into the key space. Thus, we can
directly analyze the attention matrix to determine which key tokens exert the strongest influence on
the query representations. Because transformer models rely primarily on token-level outputs, we
focus on interpreting token-level activations. The attention matrix A ∈ RN×N ′

indicates how each
query token (rows) attends to the key tokens (columns). To evaluate the overall importance of each
key token in guiding the query representations, we compute the maximum relevance of each key
across all queries and attention heads:

ωA
l

′
= argmax

i

(
EH

(
ReLU

(
∂Lc

∂Ai,j
·Ai,j

)))
∈ RN ′

,

where EH denotes averaging over attention heads and i and j index the queries and keys respectively,
and argmax

i
denotes the maximum across the feature dimension.

Finally, we combine this attention-derived importance with the intrinsic importance to produce a
robust estimate of key token relevance:

S(Kl;Al) = max
(
ωA
l

′
, ωK

l

)
,

where the maximum is taken element-wise to reflect the highest attribution signal from either source.

3.3 AGGREGATION OF LAYER IMPORTANCE SCORES

Inspired by the attention flow perspective (Abnar & Zuidema, 2020), we aggregate token-level im-
portance scores across layers to track how relevance propagates from the final output back through
the decoder and encoder layers. Let k denote the index of the first decoder layer (with cross-
attention) encountered when traversing the model from the output layer backwards. All subsequent
layers with smaller indices are assumed to be encoder layers with self-attention. To capture how
importance propagates through these layers, we define the aggregated token-level importance scores
at layer k, denoted by S̃k, recursively as follows:

S̃k =

{
S(Qk;Ak) · S̃k+1 (query)
S(Kk;Ak) · S̃k+1 (key)

.

In models with multiple decoder blocks that contain cross-attention, importance interactions may
diverge and converge at different points. To handle such cases, we adopt a conservative strategy and
aggregate importance via element-wise maximum to retain the most influential attribution signal:

S̃k =

max
(
S(Qk;Ak), S̃k+1

)
(query)

max
(
S(Kk;Ak), S̃k+1

)
(key)

.

These recursive rules ensure that attention importance is correctly traced through both cross-
attention and self-attention components. Consequently, if the explanation path contains any decoder
block with cross-attention, the final output of our QCAI method will be a vector of token-level
importance scores, indicating the contribution of each input token to the model’s prediction.

4 EXPERIMENTAL RESULTS AND DISCUSSION

We first evaluate our proposed QCAI method using a state-of-art BERT-based model named TULIP,
a transformer architecture tailored for predicting TCR-pMHC binding, which focuses on the role
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Figure 2: ROC-AUC of predicted importance scores for TCR-pMHC binding site identification
across a threshold of interaction distances demonstrates that QCAI surpasses competing methods in
all cases.

of cross-attention and outperforms one of the widely used baseline models, NetTCR-2.2 (Jensen &
Nielsen, 2023). TULIP adopts an encoder-decoder design and processes three modalities in parallel:
CDR3a, CDR3b, and peptide sequences (Meynard-Piganeau et al., 2024). Each encoder indepen-
dently transforms input sequences into latent feature representations, while decoder layers model
inter-sequence interactions (Devlin, 2018; Vaswani, 2017). As a self-regressive generative model,
TULIP estimates the conditional probability distribution of each sequence (e.g., peptide) conditioned
on the others (e.g., CDR3a, CDR3b) (Meynard-Piganeau et al., 2024).

We compare our QCAI method against several existing post-hoc interpretability techniques, includ-
ing AttnLRP (Achtibat et al., 2024), TokenTM (Wu et al., 2024a), AttCAT (Qiang et al., 2022),
Rollout (Abnar & Zuidema, 2020), GradCAM (Selvaraju et al., 2017), LRP (Binder et al., 2016),
and RawAttn (Wiegreffe & Pinter, 2019). For methods that require aggregation across all layers and
compute on attention matrix, we apply them exclusively to the self-attention layers and omit cross-
attention components, as these competing methods do not support cross-attention explanations. All
experiments were implemented in Python using the PyTorch framework. Testing was conducted on
a local workstation equipped with two NVIDIA A2000 GPUs, 16 Intel Xeon E5 CPU cores, and 64
GB of RAM.

4.1 A BENCHMARK FOR TCR-PMHC BINDING INTERPRETATION

To quantitatively assess the quality of interpretability methods, we constructed a benchmark that we
call TCR-XAI using structural data from TCR-pMHC complexes. We collected 274 valid samples
from the STCRDab (Leem et al., 2018) and TCR3d 2.0 (Lin et al., 2025) datasets, which consist
of 213 (77.7%) MHC-I samples and 61 (22.3%) MHC-II samples. Only samples with complete
TCR α and β chains, full peptide sequences, intact CDR3 regions, and non-overlapping MHC and
peptide chain IDs were retained. Statistics of the benchmark set are discussed in Section A.9 of
the Appendix. For each sample, we computed residue-level distances: (1) from each CDR residue
to the closest atom in the peptide, and (2) from each peptide residue to the closest atom in any
CDR region. A smaller distance indicates a stronger interaction, and atomic distance as a proxy for
ground-truth importance. We believe this is a simple, yet highly useful assumption since protein
folding and, by extension, protein-protein interactions are most routinely evaluated by the close-
ness of packing, which signals the exclusion of water molecules and demands the formation of all
possible hydrogen bonds (without water molecules). Other types of interatomic interactions such
as hydrophobic contacts and ionic bonds contribute to binding, but they generally cannot be re-
alized without exclusion of water. Thus, the formation of a stable protein-protein interface has a
sharp distance threshold, above-which the interaction is not likely to be stable. The importance of
residue-level distance is evident in prior work, starting with TCRdist Mayer-Blackwell et al. (2021),
a classic unsupervised method for TCR-pMHC binding prediction. It defines the TCRdist distance
as “the similarity-weighted mismatch distance between the potential pMHC-contacting loops of the
two receptors.” Using distance as an indicator is also common in TCR-pMHC transformer model
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explanations, though typically for qualitative rather than quantitative evaluation (e.g., PISTE (Feng
et al., 2024) and TCR-BERT (Wu et al., 2024b)).

4.2 ROC ANALYSIS AND PERTURBATION EXPERIMENTS

To evaluate the explainability of different post-hoc interpretation methods, we quantitatively assess
their ability to identify true TCR-pMHC binding sites using the TCR-XAI benchmark. We computed
ROC curves (ROC curves for each threshold are shown in Section A.7 in the Appendix.) by compar-
ing predicted residue importance against ground-truth binding site annotations derived from struc-
tural data, where the ground-truth was defined according to distance threshold between 3 and 6 Å,
with the ROC using predicted importance as the threshold. As shown in Figure 2, QCAI achieves
AUCs of 0.5492, 0.5489, and 0.6024 for CDR3a, CDR3b, and peptide respectively and consistently
outperforms other methods. Notably, QCAI exceeds 0.6 on the peptide chain, demonstrating strong
alignment between its predicted importance scores and the underlying structural binding interac-
tions.

We also conducted perturbation studies on to assess whether each method identifies important
residues; we adopt two commonly used metrics: Log-Odds Score (LOdds) and Area Over the Per-
turbation Curve (AOPC). AOPC measures explanation quality by averaging the drop in model con-
fidence as top-k important features are removed. Higher AOPC indicates better alignment between
explanation and model behavior. LOdds computes the change in log-odds of the model’s prediction
before and after perturbing a feature. A larger LOdds value indicates greater importance of the per-
turbed feature. Perturbation is implemented by replacing the k highest-scoring tokens with padding
tokens (< PAD >). We evaluate the CDR3a, CDR3b and peptide chains separately, with k=4
for the CDR3a and CDR3b chains, and k=7 for peptides to match the average number of predicted
binding residues across TCR-XAI.

Chains CDR3a k=4 CDR3b k=4 Peptide k=7

LOdds AOPC LOdds AOPC LOdds AOPC

QCAI (Ours) -3.328 0.014 -3.498 0.045 -1.470 0.013
AttnLRP (Achtibat et al., 2024) -2.481 0.020 -2.662 0.032 -0.017 0.000
TokenTM (Wu et al., 2024a) -2.195 0.021 -2.383 0.032 -0.736 0.012
AttCAT (Qiang et al., 2022) -2.825 0.020 -3.131 0.044 -0.694 0.006
Rollout (Abnar & Zuidema, 2020) -2.356 0.022 -2.653 0.032 -0.044 -0.001
GradCAM (Selvaraju et al., 2017) -2.700 0.019 -3.112 0.038 -1.004 0.009
LRP (Binder et al., 2016) -2.938 0.020 -3.127 0.043 -1.167 0.011
RawAttn (Wiegreffe & Pinter, 2019) -2.734 0.015 -3.250 0.039 -0.691 0.010

Table 1: Perturbation experiment results using fixed thresholds. Thresholds for the α and β chains
are k=4, and for the peptide chain k=7. The average number of binding regions are 3.64, 4.12, and
7.05 for α, β, and peptide chains respectively.

Table 1 shows that QCAI consistently outperforms other methods across most metrics. QCAI
achieves the most negative LOdds and highest AOPC scores in the CDR3b and peptide chains,
indicating greater disruption to the model’s confidence when informative residues are perturbed.
Although Rollout outperforms QCAI in AOPC on the CDR3a chain, QCAI still achieves the best
LOdds score.

4.3 IDENTIFICATION OF BINDING REGION RESIDUES WITH IMPORTANCE SCORES

Using the TCR-XAI benchmark we construct an evaluation metric that we call Binding Region Hit
Rate (BRHR). To compute BRHR, we first choose a percentile threshold t ∈ (0, 1] and identify the
top t fraction of residues with respect to highest importance scores S. Each of these residues is
marked a hit if its interaction distance is in the top t fraction of interaction distances. We compute
the hit rate for each input sequence type in each sample and take the mean across TCR-XAI to obtain
the final BRHR. This metric reflects the proportion of true binding residues (according to structural
proximity) that are successfully identified by the explanation method.
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Figure 3: Comparison of TCR-pMHC Binding Region Hit Rate (BRHR) across different methods
on different chains. At any selected percentile of distance/importance, the higher the hit rate the
more closely the importance tracks physical interaction distance. QCAI surpasses other methods in
all practical cases.

As shown in Figure 3, our method achieves state-of-the-art performance compared to all other ex-
planation methods. For the peptide chain, our method consistently outperforms all other methods
before the 50th percentile. After this threshold other methods prevail but have high false positive
rate of other methods (as seen in the ROC analysis). We postulate that the latter effect is due to the
fact that these methods can only access self-attention weights from the encoder and cannot benefit
from the regulatory influence of cross-attention layers.

4.4 CASE STUDIES

To highlight the ability of QCAI to assist in the interpretation of TCR-pMHC binding we discuss
two specific examples, one for CD8+ T cells and one for CD4+ T cells. In both cases the anal-
ysis of importance using QCAI finds residue positions in CDR3s that form critical contacts with
epitope peptides and, by revealing unconstrained positions in longer CDR loops, can explain large
differences in TCR-peptide-HLA binding affinity.

In the first case study (Figure 4(a)) we consider the immunodominant CD8+ T-cell peptide from
the influenza matrix protein which has been used to understand influenza T cell response. Multiple
crystal structures (1OGA (Stewart-Jones et al., 2003) and 5TEZ (Yang et al., 2017)) of different
TCRs recognizing this peptide have revealed a common mode of binding that involves the insertion
of a single CDR3b sidechain (R98 in the 1OGA structure) into a notch between the peptide and the
HLA-A2 alpha-2 helix and, otherwise, makes numerous contacts with the HLA-A2, whose shape
depends on the peptide. In one distinct example, the TCR in the 5TEZ structure is rotated by 40
degrees around the HLA-TCR axis to create a very different group of TCR-HLA-A2 contacts, but
this TCR also places a CDR3b sidechain (W99 in the 5TEZ structure) in the notch between peptide
and HLA-A2 alpha-2 helix. Consistent with the common aspect of binding, the QCAI evaluation
finds importance in the position of the notch-binding residue and in several N-terminal flanking
positions of CDR3b. The distinct aspect of binding for the two TCRs arises in the longer and less-
constrained CDR3a for the 5TEZ TCR, which may explain its 25-fold lower affinity than for the
1OGA TCR. We note that for both binding orientations, AttnLRP and TokenTM produce weaker
importance scores overall.

The second case study considers a self-antigen in the autoimmune disease of rheumatoid arthritis.
The HLA-DR4-bound citrullinated peptide, named vimentin-64cit59-71, has been analyzed in the
complex with two different TCRs (Loh et al., 2024) (indicated with PDB codes, 8TRR and 8TRQ in
Figure 4(b)). The QCAI evaluation finds an overall similar number of important positions in the two
TCRs, including a concentration of importance along one edge of the hairpin formed by the CDR3a
in both TCRs (highlighted with a dark outline in Figure 4(b)). The CDR3a contributes the largest
direct contact with the peptide in both complexes. Interestingly, the CDR3b of the 5-fold-lower-
affinity 8TRQ complex is longer and contains more positions of lower importance, again suggesting
that the entropic cost of ordering this loop is responsible for the reduced affinity. For this case study,
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Figure 4: Case studies on systems from TCR-XAI. (a) We consider the same TCR-pMHC bound
in two distinct binding orientations. For this system QCAI identifies key residues from both orien-
tations. (b) We consider the same pMHC bound to two distinct TCRs. Here QCAI identifies the
importance of the hairpin region of CDR3a in both cases.

AttnLRP does not produce meaningful results while TokenTM does not capture the importance of
residues in the peptide proximal to the CDR3a hairpin.

To investigate how QCAI explanations differ for similar TCR-pMHC complexes, we conducted a
case study on two TCR-MHCII-peptide structures, 2PXY and 2Z31, which investigates whether
a germline-encoded motif structurally guides TCR recognition of MHC (Feng et al., 2007). They
differ by two amino acids in the CDR3b loop (Feng et al., 2007). To convince chain alignment,
amino acids were re-indexed starting from 1 for each chain. As shown in Figure 5, QCAI with
TULIP assigns similar importance scores to the peptide in both complexes but produces different
pattern of importance for the CDR3b loop. Both complexes correctly highlight A5 as an important
contact region, and QCAI identifies additional contact sites in 2PXY. In 2PXY, residues S6 and G7
receive higher scores, whereas the corresponding region in 2Z31 receives lower scores, where are
also the contact regions. These results indicate that QCAI can detect critical contact regions even
with minor sequence changes. However, such changes can affect the overall explanation quality.
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Figure 5: Case studies of two closely related TCR-pMHC complexes from TCR-XAI. These com-
plexes differ by only two amino acids in the CDR3b, highlighted in the figure with red rectangles.

5 CONCLUSIONS

In this paper, we present Quantifying Cross-Attention Interaction (QCAI) to interpret the cross-
attention in the decoders of transformer models, aiming to better understand encoder-decoder TCR-
pMHC binding prediction models. QCAI quantifies the importance of the cross-attention matrix
into contributions from query and key inputs, revealing how they influence each other. To rigorously
evaluate the explanations, we created a new structural explanation benchmark, TCR-XAI, along
with a novel evaluation metric, the Binding Region Hit Rate (BRHR). On this benchmark, QCAI
achieves state-of-the-art results across perturbation metrics (LOdds and AOPC), ROC-AUC, ROC
curve analysis, and BRHR.

5.1 FUTURE WORK

In future work, we plan to pursue two primary directions: (1) extending the metrics used to evaluate
explainability, and (2) applying QCAI to broader range of immunological and protein-protein inter-
action tasks. Beyond distance-based measures, energy functions (e.g., REF15 (Alford et al., 2017))
offer a promising alternative for quantifying explanations in TCR-pMHC binding prediction. Inves-
tigating a range of energy-based models to better understand the relationship between explainability
and protein energetics will be an important next step.

Given the emergence of several cross-attention models for protein-protein interactions and immuno-
logical tasks, such as PALM-H3 (He et al., 2024) for antigen generation, UniPMT (Zhao et al., 2025)
for peptide-MHC prediction, ProtAttBA (Liu et al., 2025) for antibody-antigen prediction, and HB-
Former (Zhang et al., 2024) for human-virus interaction identification, QCAI provides a method for
opening the black box of cross-attentions in these models and revealing their underlying mecha-
nisms. In addition, QCAI can be extended beyond these applications. For instance, we have already
applied it to CLIP encoders with cross-attention, as discussed in Appendix A.10. Exploring broader
applications of QCAI across these tasks and domains is an important direction for future work.

Transformers are widely used for TCR-pMHC binding prediction, but they remain black-box mod-
els. While post-hoc methods like QCAI improve explainability, they cannot directly integrate these
insights into prediction. Beyond post-hoc methods, an important future direction is to develop
explain-by-design models that provide inherent explainability and utilize mechanistic TCR-pMHC
insights to improve predictive performance.
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A SUPPLEMENTARY MATERIAL

A.1 POST-HOC EXPLANATION METHODS

A variety of explainable AI (XAI) methods have been developed to interpret deep learning mod-
els (Saranya & Subhashini, 2023). These methods fall into two broad categories: explain-by-design,
which integrates interpretability into the model architecture (Dwivedi et al., 2023), and post-hoc,
which analyzes model behavior after training (Kenny et al., 2021). Post-hoc approaches offer a
promising avenue for interpreting TCR-pMHC models and uncovering the underlying factors driv-
ing binding predictions. Several families of post-hoc methods have been proposed, including:

• The Class Activation Map (CAM) (e.g., CAM (Zhou et al., 2016), GradCAM (Selvaraju
et al., 2017), GradCAM++ (Chattopadhay et al., 2018))

• Layer-wise Relevance Propagation (LRP) (e.g., LRP (Binder et al., 2016), Partial
LRP (Voita et al., 2019), Conservative LRP (Ali et al., 2022), AttnLRP (Achtibat et al.,
2024))

• Attention-based methods (e.g., Raw Attention (Wiegreffe & Pinter, 2019), Attention Roll-
out (Abnar & Zuidema, 2020), AttCAT (Qiang et al., 2022))

• Model-specific hybrid methods (e.g., TokenTM (Wu et al., 2024a), GAE (Chefer et al.,
2021))

These techniques have been successfully applied to TCR-pMHC models. For example, TEPCAM
uses CAM to interpret a CNN-based predictor (Chen et al., 2024), while TCR-BERT relies on at-
tention weight analysis for interpretability (Wu et al., 2024b). These efforts have revealed struc-
tural determinants of TCR-pMHC binding. However, existing post-hoc methods primarily support
encoder-only or co-attention mechanisms (Chefer et al., 2021), limiting their applicability to modern
encoder-decoder models, which consists of cross-attention. This poses a major barrier to understand-
ing how such models capture TCR-pMHC interactions.

A.2 CLASS ACTIVATION MAPS

Class Activation Map (CAM)-based methods have achieved significant success in explaining Con-
volutional Neural Networks (CNNs) by generating class-discriminative localization maps. Grad-
CAM (Selvaraju et al., 2017), one of the most effective CAM methods, leverages the gradient of the
class score Lc with respect to the feature maps Fd from the last convolutional layer. These gradients
are used to compute importance weights for each feature map channel, enabling spatial localization
of the regions most relevant for class c. The importance weight wc

d for feature map Fd is computed
as:

wc
d = E

(
∂Lc

∂Fd

)
,

where E denotes global average and wc
d represents the global average pooled gradient for feature

map Fd. The final CAM is then computed as a weighted sum over channels, followed by a ReLU
activation:

GradCAMc = ReLU

(∑
d

wc
dFd

)
.

The resulting heatmap is upsampled to the input resolution to highlight input regions most relevant
to the prediction for class c.

A.2.1 ATTENTION ROLLOUT

CAM-based approaches are primarily designed for CNNs. To interpret transformer-based models,
Attention Rollout was proposed by Abnar & Zuidema (2020), which estimates the flow of attention
across layers. This method computes how information propagates through the self-attention mecha-
nism across layers. Given the raw attention weights WA

l for layer l, the augmented attention matrix
is defined as

Al =
1

2
(WA

l + I),
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where I is the identity matrix, modeling the residual connection. The cumulative attention, or
rollout, is then computed recursively:

Rl =

{
AlRl−1, if l > 0

Al, if l = 0
,

capturing the total attention contribution from input tokens through layer l.

A.3 TCR-PMHC BINDING PREDICTION

T cells are important component of our immune system, which can be mainly catogorized in two
CD8+ and CD4+ T cells. CD8+ T cells are initiated through the Major Histocompatibility Com-
plex I (MHCI) pathway, while CD4+ T cells are initiated through the MHCII pathway. Epitope
prediction for CD8+ T cells has had remarkable success, while the mechanisms of CD4+ T cell
response are less understood. T cell immune response can be viewed as consisting of two stages
of recognition. In the first stage, a antigen is taken up by antigen-presenting cells (APCs), where
it undergoes joint processing (i.e., cleavage) and binding to Major Histocompatibility Complex II
(MHCII) molecules. Peptide-MHC complexes are then presented on the APC cell surface (Davis
& Bjorkman, 1988; Neefjes et al., 2011). In the second stage, T cell receptors (TCRs) on T cells
“recognize” pMHC complexes and a T cell response is initiated. TCR recognition is mediated by
its α and β domains, which consist of variable (V), joining (J), constant (C), and, in the β chain,
diversity (D) regions (Bosselut, 2019).

Accurate prediction of T cell responses requires a comprehensive understanding of both of these
stages (Peters et al., 2020; Nielsen et al., 2020). Early efforts in the area of computational epitope
prediction focused on characterizing peptide-MHCII binding using allele-specific machine learning
models (Nielsen et al., 2020) with tools such as SMM (Peters & Sette, 2005; Kim et al., 2009),
NetMHC (Lundegaard et al., 2008; Nielsen et al., 2003), NetMHCpan (Hoof et al., 2009; Nielsen
et al., 2007), and NetMHCcons (Karosiene et al., 2012). More recent work has focused on modeling
antigen processing computationally with the Antigen Processing Likelihood (APL) algorithm (Mettu
et al., 2016; Bhattacharya et al., 2023; Li et al., 2024a;b; Charles et al., 2022), which seeks to model
the contributions of antigen structure on which peptides are made available for MHCII binding.

Accurately predicting TCR-pMHC binding remains critical for advancing quantitative immunol-
ogy and adaptive immunity research (Hudson et al., 2023). For this stage of prediction, both
unsupervised and supervised methods have been developed (Hudson et al., 2023; 2024). Unsu-
pervised methods process cluster TCR sequencing datasets through dimensionality reduction and
clustering (Dash et al., 2017; Glanville et al., 2017) through a carefully chosen similarity metric
(e.g., TCRdist3 (Mayer-Blackwell et al., 2021)). These methods cluster TCRs by analyzing their
complementarity-determining regions (CDRs) using only TCR sequence data, without requiring
binding labels or epitope information (e.g., GIANA (Zhang et al., 2021), ClusTCR (Valkiers et al.,
2021), GLIPH2 (Huang et al., 2020) iSMART (Zhang et al., 2020)). The resulting cluster labels
serve as the output for each input TCR sequence (Hudson et al., 2024) and are typically analyzed by
practitioners to guide and supplement experimental methods. In contrast, supervised machine learn-
ing techniques make use of large amounts of TCR-pMHC data for training (Hudson et al., 2023)
from databases such as VDJdb (Bagaev et al., 2020), McPAS-TCR (Tickotsky et al., 2017) and the
IEDB (Vita et al., 2019). Supervised approaches (e.g. TITAN (Weber et al., 2021), STAPLER (Kwee
et al., 2023), ERGO2 (Springer et al., 2021), MixTCRpred (Croce et al., 2024), NetTCR2.2 (Jensen
& Nielsen, 2023), TULIP (Meynard-Piganeau et al., 2024)) use a variety of deep learning models
providing reasonable performance and generalization capability.

A.3.1 TCR-PMHC BINDING PROBLEM FORMATION

The TCR-pMHC binding prediction problem can be formulated as a classification task: given the
TCR alpha (α) and beta (β) chains, an epitope e, and an MHC molecule m, the model predicts
whether the pair binds (binder) or does not bind (non-binder). The TCR chains and the epitope are
proteins or peptides, typically represented as amino acid sequences. Formally, we define amino acid
units as a ∈ A, where A is the set of amino acid characters. For a single TCR-pMHC binding case,
α = [aαi ]

Nα
i=1, β = [aβi ]

Nβ

i=1, and e = [aei ]
Ne
i=1, with Nα, Nβ , Ne ∈ Z+ representing the sequence

lengths. The MHC allele type is denoted by m ∈ M , where M is the set of all MHC alleles. The
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pMHC-TCR binding classification is formulated as a conditional probability: pbind = P (e|α, β,m).
If pbind > t, where t ∈ [0, 1], the case is classified as positive, otherwise negative.

A.4 TCR-PMHC PREDICTION TRANSFORMER MODELS

Transformers (Vaswani, 2017), as a successful deep learning models in different areas, have a series
of variants such as Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al.,
2019) and Generative Pre-training Transformers (GPT) (Radford et al., 2018). These models support
multi-sequence inputs and excel in modeling interactions, are well-suited for this task. Because
TCR-pMHC interactions are determined by interactions among the TCR α and β chains, epitope,
and MHC, several state-of-the-art models, such as TULIP (Meynard-Piganeau et al., 2024) and
cross-TCR-interpreter (Koyama et al., 2023), adopt encoder-decoder transformer architectures to
learn these complex relationships.

Figure 6: The architecture figure of TULIP
model (Meynard-Piganeau et al., 2024).

TULIP: TULIP is a transformer-
based model with an encoder-
decoder architecture designed for
TCR-pMHC binding prediction.
It operates through three parallel
modality processing pipelines, pro-
cessing CDR3a, CDR3b, and epitope
sequences separately (Meynard-
Piganeau et al., 2024). The encoders
transform the input sequences
into feature representations, while
the decoders model interactions
across different sequences (Devlin,
2018; Vaswani, 2017). As an auto-
regressive generative model, TULIP
computes the conditional probability distribution of sequences (e.g., epitope) given others (e.g.,
CDR3a, CDR3b, and MHC) during training (Meynard-Piganeau et al., 2024). For evaluation,
TULIP retains only the epitope stream to produce the binding score. In this setting, the peptide
features serve as the query, while the CDR3a and CDR3b features are used as the keys and values
in the cross-attention module. To compute gradients for TULIP, we design an amino-acid-wise loss
function. The ground truth is derived from the TCR alpha, TCR beta, and epitope sequences. These
sequences are first one-hot encoded, and the model’s predicted probabilities are compared against
them using a negative log-likelihood (NLL) loss. This formulation allows us to attribute importance
scores at the amino acid level based on how well the model reconstructs each residue.

Figure 7: The architecture of CrossTCRInterpreter
model (Koyama et al., 2023).

CrossTCRInterpreter:
CrossTCRInterpreter is an encoder-
decoder transformer for TCR-pMHC
binding prediction (Koyama et al.,
2023). It takes the CDR regions of
the alpha and beta chains, along with
the peptide sequence, as inputs. The
CDR alpha and beta chains are con-
catenated using a colon (:) to form
the TCR input. The TCR and peptide
sequences are then independently
encoded by an encoder module.
Subsequently, cross-attention is
employed to model the interaction
between the two inputs and predict
whether the pair represents a binder
or a non-binder. We apply a binary
classification loss to extract the
model gradients.
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Figure 8: The architecture figure of BERTrand model (My-
ronov et al., 2023).

BERTrand: BERTrand is
an encoder-only transformer
model (Myronov et al., 2023).
It takes the TCR beta chain and pep-
tide sequence as inputs. These two
sequences are concatenated using
a <SEP> token and are processed
jointly by a transformer encoder
as an integrated input. Similar to
CrossTCRInterpreter, BERTrand is
a classification model designed to
predict whether the TCR-pMHC pair
is a binder or a non-binder. We apply
a binary classification loss to obtain
the model gradients.

A.5 PERTURBATION EXPERIMENTS

We evaluated the robustness of interpretability methods using perturbation-based metrics across
varying values of k. Figure 9 presents the comparison results for both AOPC and LOdds across all
chains.
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Figure 9: Comparison of Area Over the Perturbation Curve (AOPC) and Comparison of Log-Odds
Score (LOdds) across different values of k for all chains.

We also conducted with an integrated dataset that includes data from VDJdb, IEDB and McPAS-
TCR. For both AOPCs and LOdds, the thresholds for peptide, CDR3a, and CDR3b are 7, 4, and 4
respectively.
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AOPCs LOdds
Chain Method TCR-XAI Integrated TCR-XAI Integrated

peptide QCAI 0.014 0.036 -1.62 -0.84
peptide TokenTM 0.013 0.026 -0.77 0.09
peptide AttnLRP 0.012 0.026 -0.42 -0.50
CDR3a QCAI 0.014 0.020 -3.50 -2.63
CDR3a TokenTM 0.021 0.020 -2.43 -2.35
CDR3a AttnLRP 0.020 0.020 -2.72 -2.44
CDR3b QCAI 0.048 0.027 -3.61 -3.08
CDR3b TokenTM 0.033 0.025 -2.53 -2.78
CDR3b AttnLRP 0.034 0.024 -2.82 -2.88

Table 2: AOPCs and LOdds comparison on TCR-XAI and Integrated datasets.

A.6 MAXIMUM VS. AVERAGE FOR AGGREGATION

High attention weights indicate meaningful interactions and so we used maximum across different
cross-attention layers to retain all activated signals. Ablation studies in the table below show that
max generally outperforms average, with small exceptions on peptide BRHR and CDR LOdds.

Chain Mix ROC-AUC(3.4) BRHR.25 AOPCs LOdds

peptide Max. 0.60 74.3 0.014 -1.52
peptide Avg. 0.60 76.7 0.013 -1.51
CDR3a Max. 0.55 79.1 0.014 -3.37
CDR3a Avg. 0.50 72.6 0.013 -3.51
CDR3b Max. 0.55 79.3 0.046 -3.54
CDR3b Avg. 0.54 75.3 0.045 -3.63

Table 3: Maximum vs. Average for aggregation comparison across chains for ROC-AUC (3.4),
BRHR, AOPCs, and LOdds.

A.7 ROC CURVES OF RESIDUE-LEVEL IMPORTANCE SCORES FOR BINDING REGION
IDENTIFICATION

We compared QCAI with other methods using ROC curves. We mainly set the distance threshold at
3, 3.4, 4, and 5 Å. 3.4 Å is chosen because it corresponds to the van der Waals diameter between
two carbon atoms, implying that residues within this distance are considered to be in contact.
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Figure 10: ROC curve comparison of the alpha, beta, and epitope chains between QCAI and other
post-hoc methods. The distance threshold is set to 3.4 Å.
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Figure 11: ROC curve comparison of the alpha, beta, and epitope chains between QCAI and other
post-hoc methods. The distance thresholds are set to 3, 4, and 5 Å.

A.8 BINDING REGION HIT RATE

We compare the Binding Region Hit Rate (BRHR) across the TCR α and β chains as well as the
epitope region for different explanation methods. Here, HR.t denotes the hit rate calculated based
on the top t percentile of importance scores.
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To consider performance relative to training set similarity we consider the change in BRHR of
samples indexed by the Levenshtein distance each input modality to the TULIP training dataset (this
approach is also used in the original TULIP paper). In the Table A.8 each cell represents the BRHR
of all samples with the minimum Levenshtein distance to the sequences of TULIP training dataset
smaller than the given threshold. As a sample’s distance between the sequences of TCR-XAI and the
sequences of training dataset increases we find that the BRHR score of QCAI on TULIP decreases
slightly but remains reliable with the BRHR drop within 0.05, which is small relative to the BRHR
difference between QCAI and other methods. This shows that QCAI’s performance is preserved
even as samples differ from the training set.

Levenshtein 1 > d 2 > d 3 > d 4 > d 5 > d 6 > d 7 ≤ d
Distance (d)

Peptide .77(.23) .77(.24) .80(.23) .77(.24) .75(.25) .74(.25) .76(.25)
CDR3a .83(.17) .81(.18) .84(.19) .82(.19) .79(.20) .79(.20) .79(.20)
CDR3b .83(.20) .80(.21) .77(.21) .78(.21) .78(.20) .78(.20) .78(.20)

Table 5: The change in BRHR for samples indexed by their Levenshtein distance.

To examine how model confidence and prediction outcomes affect BRHR, we further compare
BRHR on positive and negative samples for both TULIP and Cross-TCR-Interpreter. Because
TULIP provides only relative binding likelihood scores, we perform QCAI analysis on Cross-TCR-
Interpreter separately for its predicted positive and negative samples. For TULIP, we additionally
set a manual threshold by treating the top 50% scoring pairs as positive and the remaining 50% as
negative. The BRHR results shown in Table A.8 indicate that negative samples decreased the quality
of explanation comparing to the positive samples.

BRHR Cross-TCR-Interpreter Cross-TCR-Interpreter TULIP TULIP

Samples Positive Negative Positive Negative

Peptide .61 .55 .75 .74
CDR3a .41 .46 .79 .79
CDR3b .87 .87 .81 .79

Table 6: The BRHR of predicted positive and negative samples.

A.9 TCR-XAI BENCHMARK

Figure 12: In the example (8TRQ) from the TCR-XAI benchmark, the peptide, CDR3a, and CDR3b
regions are highlighted based on their residue-level distances to the nearest interacting residues.
Additionally, we report statistics for the minimum distance in each sample and MHC distribution.

We have compiled 274 samples from the STCRDab (Leem et al., 2018) and TCR3d 2.0 (Lin et al.,
2025) datasets. Only samples with fully provided CDR3 regions and peptide sequences were se-
lected. Among them, 213 (77.7%) are MHC-I and 61 (22.3%) are MHC-II complexes. For each
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sample, we computed the distance from each residue in the CDR3 regions to the nearest atom in
the peptide, and vice versa from the peptide residues to the CDR3 regions. The resulting dataset in-
cludes both the CDR3 and peptide sequences along with their corresponding residue-level distances.
Since the model lacks structural input, we allow a one-residue positional tolerance to account for
minor attention shifts. To this end, we smooth each method’s output importance scores by convolv-
ing them with the kernel [1/3, 1/3, 1/3] prior to evaluation. The detailed information can be found
in Table 9. Compared with the TULIP training dataset, there are 176 distinct epitopes, and none
appears in more than 3.3% (9) of the samples.

A.10 COMPUTATIONAL EFFICIENCY OF QCAI

We evaluate QCAI efficiency based on datasets including VDJdb, IEDB, McPAS-TCR, and TCR-
XAI. All evaluations are conducted on CPU (32 E5 cores). QCAI involves pseudo-inverse operations
making it more computationally expensive than alternative approaches, but it is still relatively ef-
ficient on a per sample basis. For example benchmark sets with thousands of test samples would
need on the order of seconds for QCAI evaluation - this is far smaller than what would be needed by
practitioners.

Method TCR-XAI McPAS-TCR VDJdb IEDB

QCAI 2.19 ms 2.18 ms 1.30 ms 1.90 ms
TokenTM 0.11 ms 0.15 ms 0.05 ms 0.11 ms
AttnLRP 0.04 ms 0.02 ms 0.02 ms 0.04 ms

Table 7: Milliseconds per sample for each method across different datasets.

A.11 ABLATION STUDY: QCAI ON CROSS- VS. SELF-ATTENTION

To investigate whether QCAI applied to cross-attention or self-attention contributes more to the
final explanation, we compare QCAI applied only to cross-attention, only to self-attention, and
to both, using perturbation experiments. Applying QCAI solely to self-attention is equivalent to
Rollout. As shown in Figure A.10 and Table A.10, the performance of QCAI on cross-attention
alone is comparable to applying it to both cross- and self-attention, and both outperform Rollout.
These results indicate that cross-attention is the main contributor to the final explanation and plays
a significant role in cross-attention incorporated transformers.

CDR3ak=4 CDR3bk=4 Peptidek=7

LOdds AOPC LOdds AOPC LOdds AOPC

QCAI -3.328 0.014 -3.498 0.045 -1.470 0.013
QCAI (Cross-Attention) -3.728 0.017 -3.511 0.048 -1.417 0.012
Rollout (Self-Attention) -2.356 0.022 -2.653 0.032 -0.044 -0.001
AttnLRP -2.481 0.020 -2.662 0.032 -0.017 0.000
TokenTM -2.195 0.021 -2.383 0.032 -0.736 0.012

Table 8: Comparison of AOPC and LOdds for QCAI applied to cross-attention only, self-attention
only (Rollout), and both.
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Figure 13: Comparison of AOPC and LOdds for QCAI applied to cross-attention only, self-attention
only (Rollout), and both.

A.12 APPLICATION OF VISION-LANGUAGE MODELS

Since QCAI can be applied broadly to cross-attention modules, we illustrate its use in a vision-
language model (VLM). For this case study, we employ CLIP Radford et al. (2021), a widely used
vision foundation model. CLIP provides separate vision and text encoders with aligned features,
so we added a cross-attention layer to fuse image features (as key and value) with text features
(as query). We use a subset of the MS-COCO dataset Lin et al. (2014), containing 73,000 images
for multi-label classification. The dataset is split 9:1, with 65,700 training samples and 7,300 test
samples. The input consists of an image–text pair, where the text is generated following the CLIP
paper’s recommendation as “a photo of a ...” with the corresponding labels (e.g., “a photo of a
cat”, “a photo of a couch”) Radford et al. (2018). Features extracted via cross-attention are used
for label prediction. After 100 epochs of training, the model achieves 94.08% accuracy and 0.9997
ROC-AUC on the test set.

QCAI is then applied to analyze the model. Since each image-text pair has multiple labels, gra-
dients and QCAI are computed for one label at a time. Figure A.10 presents case studies on both
training and test samples, demonstrating that QCAI can identify interactions between the two input
modalities in cross-attention and highlight the relative importance of the image and text for a given
classification label.
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Figure 14: Example of QCAI explaining CLIP with cross-attention.
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A.13 TCR-XAI BENCHMARK SAMPLES

PDB MHC Peptide CDRA3 CDRB3

8TRQ MHCII GVYATSSAVRLR ALGDHSGSWQLI ASSLRTGANSDYT
4OZI MHCII QPFPQPELPYP LVGDGGSFSGGYNKLI SAGVGGQETQY
2AK4 MHCI LPEPLPQGQLTAY ALSGFYNTDKLI ASPGLAGEYEQY
5EU6 MHCI YLEPGPVTV AVLSSGGSNYKLT ASSFIGGTDTQY
7PBE MHCI YLQPRTFLL VVNINTDKLI ASSSANSGELF
4Z7W MHCII PSGEGSFQPSQENPQ AVGETGANNLF ASSEARRYNEQF
6V18 MHCII GGYRAPAKAAAT ALSDSGSFNKLT ASSLDWGGQNTLY
8EO8 MHCI LPFDKATIM AADGGAGSYQLT SAGPTSGRTDTQY
5WKH MHCI GTSGSPIINR GLGDAGNMLT ASSLGQGLLYGYT
7T2B MHCII ATGLAWEWWRTVYE ATDKKGGATNKLI ASSQGGGEQY
7SG1 MHCII QPFPQPELPYGSGGS LVGGLARDMR SVALGSDTGELF
3W0W MHCI RFPLTFGWCF GTYNQGGKLI ASSGASHEQY
5W1V MHCI VMAPRTLIL AGQPLGGSNYKLT ASSANPGDSSNEKLF
6AVF MHCI APRGPHGGAASGL LVGEILDNFNKFY ASSQRQEGDTQY
5NHT MHCI ELAGIGILTV AVGGGADGLT ASSQGLAGAGELF
3TPU MHCI FLSPFWFDI AVSAKGTGSKLS ASSDAPGQLY
2P5E MHCI SLLLMWIITQC AVRPLLDGTYIPT ASSYLGNTGELLF
4P2O MHCII PADPLAFFSSAIKGGGGSLV AALRATGGNNKLT ASSLNWSQDTQY
7NME MHCI QLPRLFPLL AEPSGNTGKLI ASSLHHEQY
5JZI MHCI KLVALGINAV AYGEDDKII ASRRGPYEQY
8I5C MHCI VVGAVGVGK AARDSNYQLI ASGDTGGYEQY
4E41 MHCII GELIGILNAAKVPAD AVDRGSTLGRLY ASSQIRETQY
6AM5 MHCI SMLGIGIVPV AVNFGGGKLI ASSLSFGTEAF
3E2H MHCI QLSPFPFDL AVSLERPYLT ASGGGGTLY
3MV8 MHCI HPVGEADYFEY AVQDLGTSGSRLT ASSARSGELF
3KPR MHCI EEYLKAWTF ILPLAGGTSYGKLT ASSLGQAYEQY
5HYJ MHCI AQWGPDPAAA AMRGDSSYKLI ASSLWEKLAKNIQY
5KS9 MHCII APSGEGSFQPSQENPQ AVALNNNAGNMLT ASSVAPGSDTQY
7T2D MHCII ATGLAWEWWRTVYE ALSGSARQLT ASSHREGETQY
1KJ2 MHCI KVITFIDL AARYQGGRALI TCSAAPDWGASAETLY
6RPB MHCI SLLMWITQV AVKSGGSYIPT ASSYLNRDSALD
6UON MHCI GADGVGKSAL AAAMDSSYKLI ASSDPGTEAF
1ZGL MHCII VHFFKNIVTPRTPG ALSGGDSSYKLI ASSLADRVNTEAF
3PQY MHCI SSLENFRAYV ILSGGSNYKLT ASSFGREQY
4Y19 MHCII QPLALEGSLQKRG AASVYAGGTSYGKLT ASRPRRDNEQF
6AVG MHCI APRGPHGGAASGL LVVDQKLV ASSGGHTGSNEQF
6V15 MHCII GGYAPAKAAAT ALSPSNTNKVV ASSLDWGVNTLY
4Z7U MHCII APSGEGSFQPSQENPQ ILRDRSNQFY ASSTTPGTGTETQY
7RM4 MHCI HMTEVVRHC ALDIYPHDMR ASSLDPGDTGELF
4QOK MHCI EAAGIGILTV AVNVAGKST AWSETGLGTGELF
3PWP MHCI LGYGFVNYI AVTTDSWGKLQ ASRPGLAGGRPEQY
7N6E MHCI YLQPRTFLL VVNRNNDMR AGQVTNTGELF
8WUL MHCI VVGAVGVGK AARSSGSWQLI ASSQDRGDSAHTLY
3DXA MHCI EENLLDFVRF IVWGGYQKVT ASRYRDDSYNEQF
6RP9 MHCI SLLMWITQV ALTRGPGNQFY ASSSPGGVSTEAF
4MJI MHCI TAFTIPSI ATDDDSARQLT ASSLTGGGELF
6V19 MHCII GGYAPAKAAAT ALSDSSSFSKLV ASSLDWASQNTLY
7RDV MHCII EGRVRVNSAYQS AASDDNNNRIF ASGGQSNERLF
3E3Q MHCI QLSPFPFDL AVSDPPPLLT ASGGGGTLY
4MS8 MHCI SPAEEAGFFL AVSAKGTGSKLS ASSDAPGQLY
2F53 MHCI SLLMWITQC AVRPTSGGSYIPT ASSYVGNTGELF
3QDJ MHCI AAGIGILTV AVNFGGGKLI ASSLSFGTEAF
6BJ2 MHCI IPLTEEAEL ALSHNSGGSNYKLT ASSFRGGKTQY
3QDM MHCI ELAGIGILTV AGGTGNQFY AISEVGVGQPQH
5TIL MHCI KAPYNFATM AALYGNEKIT ASSDAGGRNTLY
6VMX MHCI RPPIFIRRL AFGSSNTGKLI ASSQDLFTGGYT

Table 9: The samples contained in TCRxAI benchmarks

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

PDB MHC Peptide CDRA3 CDRB3

7RTR MHCI YLQPRTFLL AVNRDDKII ASSPDIEQY
8EN8 MHCI LPFDKSTIM AADGGAGSYQLT SAGPTSGRTDTQY
1YMM MHCII ENPVVHFFKNIVTP ATDTTSGTYKYI SARDLTSGANNEQF
5C07 MHCI YQFGPDFPIA AMRGDSSSYKLI ASSLWEKLAKNIQY
3VXU MHCI RFPLTFGWCF GTYNQGGKLI ASSGASHEQY
6VQO MHCI HMTEVVRHC AMSGLKEDSSYKLI ASSIQQGADTQY
1J8H MHCII PKYVKQNTLKLAT AVSESPFGNEKLT ASSSTGLPYGYT
8ENH MHCI LPFEKSTIM AADGGAGSYQLT SAGPTSGRTDTQY
2P5W MHCI SLLMWITQC AVRPLLDGTYIPT ASSYLGNTGELF
3UTT MHCI ALWGPDPAAA AMRGDSSYKLI ASSLWEKLAKNIQY
7Q99 MHCI NLSALGIFST AVNVAGKST AWSETGLGTGELF
6ZKZ MHCI RLPAKAPL AVTNQAGTALI ASSYSIRGSRGEQF
4GG6 MHCII SGEGSFQPSQENP ILRDGRGGADGLT ASSVAVSAGTYEQY
6TMO MHCI EAAGIGILTV AVNDGGRLT AWSETGLGMGGWQ
3QIU MHCII ADLIAYLKQATKG AAEPSSGQKLV ASSLNNANSDYT
5WKF MHCI GTSGSPIVNR GLGDAGNMLT ASSLGQGLLYGYT
8SHI MHCI VRSRRLRL ATDALYSGGGADGLT ASSYSEGEDEAF
5D2N MHCI NLVPMVATV ILDNNNDMR ASSLAPGTTNEKLF
5KSA MHCII QPQQSFPEQEA AVQFMDSNYQLI ASSVAGTPSYEQY
6MTM MHCI FEDLRVLSF GTERSGGYQKVT ASSMSAMGTEAF
2BNQ MHCI SLLMWITQV AVRPTSGGSYIPT ASSYVGNTGELF
4Z7V MHCII SGEGSFQPSQENP ILRDSRAQKLV ASSAGTSGEYEQY
2F54 MHCI SLLMWITQC AVRPTSGGSYIPT ASSYVGNTGELF
5BS0 MHCI ESDPIVAQY AVRPGGAGPFFVV ASSFNMATGQY
6CQR MHCII RFYKTLRAEQASQ AFKAAGNKLT ASSRLAGGMDEQF
5M00 MHCI KAVANFATM AALYGNEKIT ASSDDAAGGGGRNTLY
7N2Q MHCI LRVMMLAPF AVSNFNKFY ASSVATYSTDTQY
6EQB MHCI AAAAGGIIGGIILTV AVNDGGRLT AWSETGLGMGGWQQ
4P2R MHCII ANGVAFFLTPFKA AAEASNTNKVV ASSLNNANSDYT
4P2Q MHCII ADGLAYFRSSFKGG AAEASNTNKVV ASSLNNANSDYT
8DNT MHCI LLLDRLNQL AVREGAQKLV ASSLDLGADEQF
5E6I MHCI GILGFVFTL AGPGGSSNTGKLI ASSLIYPGELF
5TJE MHCI KAVYNFATM AALYGNEKIT ASSDAGGRNTLY
2J8U MHCI ALWGFFPVL ALFLASSSFSKLV ASSDWVSYEQY
1LP9 MHCI ALWGFFPVL ALFLASSSFSKLV ASSDWVSYEQY
3KPS MHCI EEYLQAFTY ILPLAGGTSYGKLT ASSLGQAYEQY
2BNR MHCI SLLMWITQC AVRPTSGGSYIPT ASSYVGNTGELF
5W1W MHCI VMAPRTLVL AGQPLGGSNYKLT ASSANPGDSSNEKLF
6CQL MHCII RFYKTLRAEQASQ AFKAAGNKLT ASSRLAGGMDEQF
5C09 MHCI YLGGPDFPTI AMRGDSSYKLI ASSLWEKLAKNIQY
4MXQ MHCI SPAPRPLDL AVSAKGTGSKLS ASSDAPGQLY
3SJV MHCI FLRGRAYGL VVRAGKLI ASGQGNFDIQY
1QRN MHCI LLFGYAVYV AVTTDSWGKLQ ASRPGLAGGRPEQY
3KXF MHCI LPEPLPQGQLTAY ALSGFYNTDKLI ASPGLAGEYEQY
5C0A MHCI MVWGPDPLYV AMRGDSSYKLI ASSLWEKLAKNIQY
7N2N MHCI TRLALIAPK AVLSPVQETSGSRLT ASSVGLFSTDTQY
8ES9 MHCI GVYDGREHTV AVQPLNAGNNRKLI SAREWGGTEAF
2NX5 MHCI EPLPQGQLTAY AVQASGGSYIPT ATGTGDSNQPQH
1G6R MHCI SIYRYYGL AVSGFASALT ASGGGGTLY
8GVB MHCI RYPLTFGW AVGFTGGGNKLT ASSDRDRVPETQY
8TRL MHCII EIFDSGNPTGEV IVNPANTGNQFY ASRRDYFSYEQY
5D2L MHCI NLVPMVATV AFITGNQFY ASSQTQLWETQY
5WLG MHCI SQLLNAKYL ATVYAQGLT ASSDWGDTGQLY
5NMG MHCI SLFNTIAVL AVRTNSGYALN ASSDTVSYEQY
7DZM MHCI TPQDLNTML IVRGLNNAGNMLT ASSLGIDAIY
7BYD MHCI GGAI LVGGGGYVLT ASSQDLGAGEVYEQY
5HHO MHCI GILEFVFTL AGAGSQGNLI ASSIRSSYEQY

Table 10: The samples contained in TCRxAI benchmarks (continue table 1)
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1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

PDB MHC Peptide CDRA3 CDRB3

1QSE MHCI LLFGYPRYV AVTTDSWGKLQ ASRPGLAGGRPEQY
3RGV MHCI WIYVYRPMGCGGS AANSGTYQR ASGDFWGDTLY
2E7L MHCI QLSPFPFDL AVSHQGRYLT ASGGGGTLY
3MBE MHCII GAMKRHGLDNYRGYSLG AAEDGGSGNKLI ASSWDRAGNTLY
5M01 MHCI KAPANFATM AALYGNEKIT ASSDDAAGGGGRRNTLY
5SWZ MHCI ASNENMETM AASETSGSWQLI ASSRDLGRDTQY
5NMF MHCI SLYNTIATL AVRTNSGYALN ASSDTVSYEQY
8GVI MHCI RYPLTFGW AVVFTGGGNKLT ASSLRDRVPETQY
7N5C MHCI SSLCNFRAYV ILSGGCCNYKLT ASSFGREQY
8TRR MHCII GVYATSSAVRLR ALGDTGNYKYV ASSAVNSGNTLY
4OZG MHCII APQPELPYPQPG IVLGGADGLT ASSFRFTDTQY
4OZH MHCII APQPELPYPQPGS IVWGGATNKLI ASSVRSTDTQY
2OL3 MHCI SQYYYNSL AMRGDYGGSGNKLI TCSADRVGNTLY
7QPJ MHCI GLYDGMEHL AVRGTGRRALT ASSFATEAF
3VXM MHCI RFPLTFGWCF AVGAPSGAGSYQLT ASSPTSGIYEQY
6EQA MHCI AAAAGGIIGGIILTV AVNVAGKST AWSETGLGTGELF
2YPL MHCI KAFSPEVIPMF AVSGGYQKVT ASTGSYGYT
7RK7 MHCI YMDGTMSQV LVALNYGGSQGNLI AISPTEEGGLIFPGNTIY
8WTE MHCI VVGAVGVGK AARSSGSWQLI ASSQDRGDSAETLY
3UTS MHCI ALWGPDPAAA AMRGDSSYKLI ASSLWEKLAKNIQY
1QSF MHCI LLFGYPVAV AVTTDSWGKLQ ASRPGLAGGRPEQY
1OGA MHCI GILGFVFTL AGAGSQGNLI ASSSRSSYEQY
2GJ6 MHCI LLFGKPVYV AVTTDSWGKLQ ASRPGLAGGRPEQY
3QDG MHCI ELAGIGILTV AVNFGGGKLI ASSLSFGTEAF
2VLR MHCI GILGFVFTL AGAGSQGNLI ASSSRASYEQY
7NA5 MHCI YGFRNVVHI AVSNYNVLY ASSQEPGGYAEQF
8CX4 MHCI LRVMMLAPF AVNSPGSGAGSYQLT ASSVGTYSTDTQY
4PRI MHCI HPVGEADYFEY AVQDLGTSGSRLT ASSARSGELF
8YE4 MHCI NYNYLYRLF VVNAHSGAGSYQLT ASSETGGYEQY
5M02 MHCI KAPFNFATM AALYGNEKIT ASSDAGGRNTLY
2CKB MHCI EQYKFYSV AVSGFASALT ASGGGGTLY
3TFK MHCI QLSDVPMDL AVSAKGTGSKLS ASSDAPGQLY
7N2S MHCI TRLALIAPK AVSLGTGAGSYQLT ASSVGLYSTDTQY
5KSB MHCII GPQQSFPEQEA AVQASGGSYIPT ASSNRGLGTDTQY
2UWE MHCI ALWGFFPVL ALFLASSSFSKLV ASSDWVSYEQY
7Q9A MHCI LLLGIGILVL AVNVAGKST AWSETGLGTGELF
5C08 MHCI RQWGPDPAAV AMRGDSSYKLI ASSLWEKLAKNIQY
3HG1 MHCI ELAGIGILTV AVNVAGKST AWSETGLGTGELF
8I5D MHCI VVGAVGVGK AASSGSWQLI ASSLEGTVEETLY
5JHD MHCI GILGFVFTL AWGVNAGGTSYGKLT ASSIGVYGYT
7JWJ MHCI ASNENMETM AAVTGNTGKLI ASSRGTIHSNTEVF
4MNQ MHCI ILAKFLHWL AVDSATALPYGYI ASSYQGTEAF
6PY2 MHCII APFSEQEQPVLG ASPQGGSEKLV ASSSGGWGGGTEAF
7DZN MHCI TPQDLNTML IVRGLNNAGNMLT ASSLGIDAIY
4EUP MHCI ALGIGILTV AVSGGGADGLT ASSFLGTGVEQY
7N1E MHCI RLQSLQTYV ALSGFNNAGNMLT ASSLGGAGGADTQY
3QEQ MHCI AAGIGILTV AGGTGNQFY AISEVGVGQPQH
2IAN MHCII GELIGTLNAAKVPAD AALIQGAQKLV ASTYHGTGY
2VLJ MHCI GILGFVFTL AGAGSQGNLI ASSSRSSYEQY
6CQN MHCII RFYKTLRAEQASQ AFKAAGNKLT ASSGLAGGMDEQF
3VXR MHCI RYPLTFGWCF AVRMDSSYKLI ASSSWDTGELF
7NMG MHCI LWMRLLPLL AEPSGNTGKLI ASSLHHEQY
3D3V MHCI LLFGPVYV AVTTDSWGKLQ ASRPGLAGGRPEQY
5ISZ MHCI GILGFVFTL AFDTNAGKST ASSIFGQREQY
6U3N MHCII APMPMPELPYP AVGAGSNYQLI ASSLEGQGASEQF
6RSY MHCI RMFPNAPYL IGGGTTSGTYKYI ASSLGFGRDVMR
4MVB MHCI QPAEGGFQL AVSAKGTGSKLS ASSDAPGQLY

Table 11: The samples contained in TCRxAI benchmarks (continue table 2)

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

PDB MHC Peptide CDRA3 CDRB3

1MI5 MHCI FLRGRAYGL ILPLAGGTSYGKLT ASSLGQAYEQY
3VXS MHCI RYPLTLGWCF AVRMDSSYKLI ASSSWDTGELF
7OW5 MHCI VVVGAGGVGK AMSVPSGDGSYQFT ASKVGPGQHNSPLH
8GVG MHCI RFPLTFGW AVGFTGGGNKLT ASSDRDRVPETQY
2VLK MHCI GILGFVFTL AGAGSQGNLI ASSSRSSYEQY
8GOM MHCI RLQSLQTYV ASSGNTPLV ASTWGRASTDTQY
1D9K MHCII GNSHRGAIEWEGIESG AATGSFNKLT ASGGQGRAEQF
6CQQ MHCII RFYKTLRAEQASQ AFKAAGNKLT ASSRLAGGMDEQF
5HHM MHCI GILGLVFTL AGAGSQGNLI ASSSSRSSYEQY
4N0C MHCI MPAGRPWDL AVSAKGTGSKLS ASSDAPGQLY
5C0B MHCI RQFGPDFPTI AMRGDSSYKLI ASSLWEKLAKNIQY
7PB2 MHCI VVVGADGVGK ALSGPSGAGSYQLT ASSYGPGQHNSPLH
1MWA MHCI EQYKFYSV AVSGFASALT ASGGGGTLY
4QRP MHCI HSKKKCDEL ALSDPVNDMR ASSLRGRGDQPQH
6RPA MHCI SLLMWITQV AVRDINSGAGSYQLT SVGGSGGADTQY
7N5P MHCI SSLCNFRAYV ILSGGSNYKLT ASSFFGREQY
7N1F MHCI YLQPRTFLL AVNRDDKII ASSPDIEQY
5C0C MHCI RQFGPDWIVA AMRGDSSYKLI ASSLWEKLAKNIQY
6D78 MHCI AAGIGILTV AVNFGGGKLI ASSWSFGTEAF
4JFF MHCI ELAGIGILTV AVNDGGRLT AWSETGLGMGGWQ
4N5E MHCI VPYMAEFGM AVSAKGTGSKLS ASSDAPGQLY
4JRX MHCI LPEPLPQGQLTAY ALSGFYNTDKLII ASPGETEAF
7NMF MHCI QLPRLFPLL AEPSGNTGKLI ASSLHHEQY
3QIW MHCII ADLIAYLEQATKG AAEPSSGQKLV ASSLNNANSDYT
6ZKX MHCI RLPAKAPLLGCG AVTNQAGTALI ASSYSIRGSRGEQF
1NAM MHCI RGYVYQGL AMRGDYGGSGNKLI TCSADRVGNTLY
8PJG MHCII PKYVKQNTLKLAR AVSEQDDKII ATSDESYGYT
8VCX MHCII GQVELGGGPGAESCQ IVSHNAGNMLT ASSLERETQY
5YXU MHCI KLVALGINAV AYGEDDKII ASRRGSAELY
3O4L MHCI GLCTLVAML AEDNNARLM SARDGTGNGYT
7SG2 MHCII QPFPQPEQPFPGS LVGGLARDMR SVALGSDTGELF
8GON MHCI RLQSLQIYV ASSGNTPLV ASTWGRASTDTQY
2JCC MHCI ALWGFFPVL ALFLASSSFSKLV ASSDWVSYEQY
6G9Q MHCI KAPYDYAPI AALYGNEKIT ASSDAGGRNTLY
6DKP MHCI ELAGIGILTV AVNFGGGKLI ASSWSFGTEAF
5NQK MHCI ELAGIGILTV AGGGGADGLT ASSQGLAGAGELF
2PYE MHCI SLLMWITQC AVRPLLDGTYIPT ASSYLGNTGELF
6R2L MHCI SLSKILDTV AVGGNDWNTDKLI ASSPLDVSISSYNEQF
2OI9 MHCI QLSPFPFDL AVSGFASALT ASGGGGTLY
8F5A MHCI TSTLQEQIGW AVTLNNNAGNMLT ASSVGGTEAF
7Z50 MHCII LQTLALEVEDDPC AASVRNYKYV ASSRQGQNTLY
6BGA MHCII YVVVPD AALRATGGNNKLT ASSLNWSQDTQY
3MV7 MHCI HPVGEADYFEY AVVQDLGTSGSRLT ASSARSGELF
8VD2 MHCII GQVELGGGTPIESC IVRVAIEGSQGNLI ASSLRRGDTIY
8VCY MHCII GQVELGGGSSPETCI IVSHNAGNMLT ASSLERETQY
5YXN MHCI KLVALGINAV AYGEDDKII ASRRGPYEQY
5E9D MHCI ELAGIGILTV AVTKYSWGKLQ ASRPGWMAGGVELY
6AMU MHCI MMWDRGLGMM AVNFGGGKLI ASSLSFGTEAF
5BRZ MHCI EVDPIGHLY AVRPGGAGPFFVV ASSFNMATGQY
3TJH MHCI SPLDSLWWI AVSAKGTGSKLS ASSDAPGQLY
3H9S MHCI MLWGYLQYV AVTTDSWGKLQ ASRPGLAGGRPEQY
4PRP MHCI HPVGQADYFEY AVQDLGTSGSRLT ASSARSGELF
5IVX MHCI RGPGRAFVTI AASASFGDNSKLI ASSLGHTEVF
4Y1A MHCII LQPLALEGSLQKRG AASSSAGGTSYGKLT ASRPRDPVTQY
2IAM MHCII GELIGILNAAKVPAD AALIQGAQKLV ASTYHGTGY
6U3O MHCII AVVQSELPYPEGS IAFQGAQKLV ASSFRALAADTQY

Table 12: The samples contained in TCRxAI benchmarks (continue table 3)
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1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

PDB MHC Peptide CDRA3 CDRB3

6V0Y MHCII GGYAPAKAAAT ALSDSGSFNKLT ASSLDWGGQNTLY
5NME MHCI SLYNTVATL AVRTNSGYALN ASSDTVSYEQY
7T2C MHCII TGLAWEWWRTVY LVGDTGFQKLV SARDPGGGGSSYEQY
2PXY MHCII RGGASQYRPSQ ALSENYGNEKIT ASGDASGAETLY
4G9F MHCI KRWIIMGLNK AMRDLRDNFNKFY ASREGLGGTEAF
3QIB MHCII ADLIAYLKQATKG AALRATGGNNKLT ASSLNWSQDTQY
4G8G MHCI KRWIILGLNK AMRDLRDNFNKFY ASREGLGGTEAF
7N2O MHCI LRVMMLAPF AVLSPVQETSGSRLT ASSVGLFSTDTQY
5TEZ MHCI GILGFVFTL AASFIIQGAQKLV ASSLLGGWSEAF
3D39 MHCI LLFGPVYV AVTTDSWGKLQ ASRPGLAGGRPEQY
6ZKW MHCI RLPAKAPLL AVTNQAGTALI ASSYSIRGSRGEQF
4FTV MHCI LLFGYPVYV AVTTDSWGKLQ ASRPGLMSAQPEQY
6PX6 MHCII APFSEQEQPVLG AVHTGARLM ASSHGASTDTQY
6V1A MHCII GGYRAPAKAAAT ALSDSSSFSKLV ASSLDWASQNTLY
1U3H MHCII SRGGASQYRPSQ AASANSGTYQR ASGDAGGGYEQY
7N4K MHCI SSLENFRRAYV ILSGGSNYKLT ASSFFGREQY
2Z31 MHCII RGGASQYRPSQ ALSENYGNEKIT ASGDASGGNTLY
2ESV MHCI VMAPRTLIL IVVRSSNTGKLI ASSQDRDTQY
5EUO MHCI GILGFVFTL AGAIGPSNTGKLI ASSIRSSYEQY
4JFD MHCI ELAAIGILTV AVNDGGRLT AWSETGLGMGGWQ
6ZKY MHCI RLPAKAPL AVTNQAGTALI ASSYSIRGSRGEQF
6TRO MHCI GVYDGREHTV VVNHSGGSYIPT ASSFLMTSGDPYEQY
7N2P MHCI GQVMVVAPR AVSNFNKFY ASSVATYSTDTQY
7R80 MHCI QASQEVKNW AQLNQAGTALI ASSYGTGINYGYT
1BD2 MHCI LLFGYPVYV AAMEGAQKLV ASSYPGGGFYEQY
4L3E MHCI ELAGIGILTV AVNFGGGKLI ASSWSFGTEAF
7PHR MHCI YLEPGPVTV ATDGSTPMQ ASSWGAPYEQY
3FFC MHCI FLRGRAYGL AMREDTGNQFY ASSFTWTSGGATDTQY
4JRY MHCI LPEPLPQGQLTAY AVGGGSNYQLI ASSRTGSTYEQY
5SWS MHCI ASNENMETM AASEGSGSWQLI ASSAGLDAEQY
6UZ1 MHCI LLFGYPVYV AVTTDRSGKLQ ASRPGAAGGRPELY
1FO0 MHCI INFDFNTI AMRGDYGGSGNKLI TCSADRVGNTLY
7JWI MHCI ASNENMETM AASETSGSWQLI ASSRDLGRDTQY
8D5Q MHCI HPGSVNEFDF ALGDPTGANTGKLT TCSAGRGGYAEQF
6VRM MHCI HMTEVVRHC VVQPGGYQKVT ASSEGLWQVGDEQY
7N2R MHCI TRLALIAPK AVSNFNKFY ASSVATYSTDTQY
1FYT MHCII PKYVKQNTLKLAT AVSESPFGNEKLT ASSSTGLPYGYT
3QFJ MHCI LLFGFPVYV AVTTDSWGKLQ ASRPGLAGGRPEQY
3GSN MHCI NLVPMVATV ARNTGNQFY ASSPVTGGIYGYT
6V13 MHCII GGYRAPAKAAAT ALSPSNTNKVV ASSLDWGVNTLY
7OW6 MHCI VVVGADGVGK AMSVPSGDGSYQFT ASKVGPGQHNSPLH
4OZF MHCII APQPELPYPQPGS IAFQGAQKLV ASSFRALAADTQY
4JFE MHCI ELAGIGALTV AVNDGGRLT AWSETGLGMGGWQ
3MV9 MHCI HPVGEADYFEY AVQDLGTSGSRLT ASSARSGELF
6Q3S MHCI SLLMWITQV AVRPTSGGSYIPT ASSYVGNTGELF
5MEN MHCI ILAKFLHWL AVDSATSGTYKYI ASSYQGTEAF
1AO7 MHCI LLFGYPVYV AVTTDSWGKLQ ASRPGLAGGRPEQY
4H1L MHCII QHIRCNIPKRISA AVGASGNTGKLI ASSLRDGYTGELF

Table 13: The samples contained in TCRxAI benchmarks (continue table 4)
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1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

B REPRODUCIBILITY STATEMENT

To comply with the double-blind review policy while ensuring reproducibility, we provide a self-
contained code package with detailed training instructions. Model weights are not included due
to their large size; however, the protein language model weights can be obtained from publicly
available repositories referenced in our documentation. After publication, we will release a public
repository containing the full code and trained weights.

C LARGE LANGUAGE MODEL USAGE STATEMENT

We employed large language models (LLMs), primarily ChatGPT, in two limited ways:

• as a coding assistant, and
• for polishing written text.

Coding Assistant LLMs were consulted to clarify documentation, organize API references, and
suggest debugging strategies. All code, documentation, and fixes obtained were manually reviewed
and verified by the authors.

Polishing Article LLMs were used only to refine the clarity and style of sentences written by the
authors and to format tables from raw data. No raw text or substantive content was generated by
LLMs. All refined content was manually checked and further revised by the authors.
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