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Abstract

In the rapidly changing real-world scenarios,
data drift and “cold-start” issues present sig-
nificant challenges for the development of ma-
chine learning models, along with the high cost
and resource scarcity of domain experts. Tra-
ditional compact models fine-tuned on small
number of domain-specific examples often out-
perform generic LLMs, despite the fine-tuned
models struggling with rapid data changes.
This study introduces ALERTS, an ensemble
system designed to address these data chal-
lenges. The system comprises 1) an LLM to
enhance early-stage performance and adapt to
sudden data drifts, 2) an Active Learning (AL)-
assisted compact model iteratively fine-tuned
on annotations from daily human expert work-
flows, and 3) a switch mechanism that evalu-
ates both models in real-time and selects the
best performing ones. We conducted empirical
studies to understand the performance between
LLMs and AL-assisted compact models, then
evaluated our system’s effectiveness through
AL simulations of real-world scenarios. Our
work offers a novel framework for developing
robust language model systems across various
dynamic real-world scenarios.

1 Introduction

Developing and deploying machine learning mod-
els in real-world domain-specific scenarios (e.g.,
legal, clinical, and education (Xu et al., 2022; Pap-
pas et al., 2020)) presents numerous challenges.
For instance, such tasks generally require exten-
sive domain-specific knowledge (Karabacak and
Margetis, 2023) and high cost to recruit domain
experts for high-quality and large-scale data anno-
tation (Rasmussen et al., 2022; Wu et al., 2022),
while facing domain experts’ resource scarcity and
unwillingness to be “data slaves”. The difficul-
ties in acquiring expert annotations motivate the
rapid development of efficient low-resource train-
ing methods, such as Active Learning (AL, Settles

(2009)), where a sampling strategy can efficiently
select the most helpful data, query for annotation,
and iteratively fine-tune the model.

Critically, real-world tasks and scenarios are
constantly changing, leading to a common but
very tough challenge called data drift (Zliobaite
et al., 2014)—when the statistical properties of the
data drift from time to time. For example, in the
biomedical domain, new diseases are discovered
quite rapidly, enfocing clinicians to constantly learn
new knowledge about diseases and treatments. A
similar phenomenon can be found at the very be-
ginning of model training, namely “cold-start” is-
sues, which is also a long-lasting challenge for
low-resource learning techniques.

Recently, Large Language Models (LLMs,
Brown et al. (2020)) have shown great capabil-
ity in a variety of generic tasks off-the-shelf. A
variety of prompting strategies, without the need
to fine-tune LLMs, were proposed to enhance
LLMs’ domain-adaptation capabilities, including
few-shot In-Context Learning (ICL, Brown et al.
(2020)), Retrieval-Augmented Generation (Guu
et al., 2020), etc. However, recent work shows
that traditional compact models fine-tuned on high-
quality domain-specific datasets can reliably out-
perform much larger LLMs after being fine-tuned
with a small number of examples (Xu et al., 2023).

Fine-tuned domain-specific models and LLMs
are not without limitations in the rapidly changing
real-world, nevertheless, we ask, can we benefit
from both types of models to make up for each
other’s shortcomings? Precisely, can we develop
a system that leverages LLMs’ extraordinary task-
solving capabilities to overcome the “cold-start”
and data drift challenges for domain-specific fine-
tuned compact models, while being able to switch
back to the fine-tuned models once it can reliably
outperform LLMs?

This work presents ALERTS: Active Learning
and Ensemble LLM Real-Time Switch, an ensem-
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Figure 1: System Architecture of ALERTS

ble system we designed that aims to tackle the
pervasive challenges of data drift in the real world
with three primary modules: 1) An LLM supported
by zero-shot and few-shot ICL prompting strate-
gies to bootstrap the system’s performance during
early-stages and data drifts. 2) An AL-assisted,
locally fine-tuneable compact model. We expect
this model can be passively and iteratively trained
with implicitly collected annotations during human
experts’ daily work. 3) A “Switch” mechanism
that evaluates the predictions from different models
in real-time using the collected data, determining
which model’s prediction should be used based on
the current performance.

We first conduct an empirical study to analyze
“When and how can AL-assisted small models out-
perform LLMs?” Our results show that the AL-
assisted TS model, with hundreds of human annota-
tions, can consistently outperform GPT-3.5 and per-
form on par with GPT-4 in existing domain-specific
datasets. Based on the findings, we designed and
developed our ensemble system. We conduct an
AL experiment to evaluate the effectiveness of our
system in a simulated real-world data annotation
scenario with simulated data drifts. Results show
that our ensemble system can successfully identify
the best candidate model and consistently yield ac-
curate predictions during cold starts and data drifts.
More importantly, our work paves a broader av-
enue for the future design and development of Al
systems, with significant practical implications, in
different real-world scenarios.

2 Related Works

2.1 Active Learning

Active Learning (AL) (Sharma et al., 2015; Shen
et al., 2017; Ash et al., 2019; Teso and Kersting,
2019; Kasai et al., 2019; Zhang et al., 2022; Yao
et al., 2023) is a cyclical process that involves: 1)

selecting examples from an unlabeled data reposi-
tory utilizing AL selection strategies to be labeled
by human annotators, 2) training the model with
the newly labeled data, and 3) assessing the tuned
model’s performance.

A few AL surveys (Settles, 2009; Olsson, 2009;
Fu et al., 2013; Schroder and Niekler, 2020; Ren
et al., 2021) of sampling strategies provide two
high-level selection concepts: data diversity-based
strategies and model uncertainty-based strategies.
The diversity-based approach aims to identify the
most representative examples from the unlabeled
data space while maximizing the diversity, while
the uncertainty-based approach attempts to locate
examples that the model is least confident about.

Many attempts have been made to assist ac-
tive learning models in the cold start stages, such
as using the Masked Language Model (Yuan
et al., 2020), representative sampling strategies (Jin
et al., 2022), Outlier-based Discriminative AL
(ODAL) (Barata et al., 2021), etc.) Yet, these meth-
ods mostly focus on the active learning sampling
strategies, and thus are tied to specific task/dataset
or sampling strategy.

2.2 Large Language Models and Domain
Adapatation

Large Language Models (LLMs) (Brown et al.,
2020; OpenAl, 2023; Touvron et al., 2023a,b) have
shown great capability in a variety of tasks (Wei
et al., 2021; Chung et al., 2022). Moreover, in-
novative prompting methods, such as Chain-of-
Thoughts (Wei et al., 2023; Chung et al., 2022),
and In-Context Learning (ICL) (Brown et al., 2020)
were proposed to harness the potential of LLMs.
In addition to the prompting strategies, domain
adaption of LL.Ms has also been a recent focus.
Xu et al. (2023) proposed Mental-LLM which fine-
tunes the Alpaca and FLAN-TS model on mental
corpus. RAFT (Zhang et al., 2024) utilized RAG
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Figure 2: The sampling process of our data diversity-
based strategy.

Algorithm 1 Active Learning Sampling Process

1: function SELECT(Dy, D,, N, strategy)

2 Dy: unlabeled data in the training split
3: D,: previously selected data

4: N': number of data needed

5 strategy: Active Learning strategy

6 if strategy = "similarity"” then

7.' S F <deEDP COS(di,dp))

Dl 1<i<| Dy
8: id < argsort(S)
9: step %
10: result < (id;)i=o(mod step),1<i<|Dy|
11: return result, id — result
12: end if
13: if strategy = "uncertainty"” then
14: S « (Uncertainty(d;))1<i<|p,|
15: id < argsort(S)
16: return id. y, id> N
17: end if

18: end function

to retrieve related documents, and by filtering out
unrelated documents, RAFT can consistently im-
prove the model’s performance in domain-specific
QA tasks. These methods have been proved ef-
fective for LLMs’ domain adaption, still, in real-
world domain-specific scenarios, it’s often not
feastable to use LLMs due to the privacy risks
(Plant et al., 2022) and the high demand on compu-
tational power (Luccioni et al., 2023).

3 Preliminary Empirical Study

We first conduct a preliminary empirical study
to compare AL-assisted compact models against
State-Of-The-Art LLMs, to formulate a better un-
derstanding of “When and how can AL-assisted
small models out-perform Large Language Mod-
els”, a critical but overlooked research question.

3.1 Active Learning-assisted Models

We choose T5 (Raffel et al., 2020) as representa-
tives for locally fine-tunable compact models based
on existing works that demonstrate its strong perfor-
mance for domain-specific fine-tuning (Yao et al.,
2022; Mou et al., 2021). We initialize the TS5 model
with T5-base, a pre-trained weight that has been
trained on many general-domain downstream tasks.

3.2 Active Learning Strategies

Following the established taxonomies of AL strate-
gies (Schroder and Niekler, 2020), we designed
and implemented one data diversity-based strat-
egy and one model uncertainty-based strategy.
We illustrate the details of each strategy below and
in Algorithm 1.

Data Diversity-Based Strategy. During the
data pre-processing stage, we utilize Sentence-
BERT (Wang et al., 2020) to embed each data con-
tent as a vector to prepare for the diversity-based
AL sampling. For each iteration of the diversity-
based AL sampling strategy, we 1) calculate the
average cosine similarity score between each un-
used training data and all previously used training
data, 2) sort the unused data by the average simi-
larity score, and 3) select representative examples
with the same interval from the sorted list to ensure
diversity. For instance, in order to select 4 exam-
ples from 10 unused data, we select the 1st, 4th, 7th
and 10th data from the ranked list after Step 2. This
strategy design allows us to ensure the diversity and
representativeness of selected examples.

Model Uncertainty-based Strategy. The model
Uncertainty-Based Strategy (Sener and Savarese,
2018) aspires to identify samples the model is least
confident about. Within each iteration, the model
operates on the training data, computing the log-
its and locating the samples holding the minimal
average probability on the highest-ranked tokens.

In addition to the aforementioned two types of
AL strategies, we also include a random AL sam-
pling baseline. For each iteration in the AL simu-
lations, we follow a common practice of sampling
16 data samples with a specified strategy and then
evaluate the model on the test split. Each AL set-
ting was executed 10 times, and we report the mean
and standard errors.

3.3 Large Language Models

For the experiments with LLM, we utilize two
SOTA generic LLMs: GPT-3.5 and GPT-4 (Ope-



Dataset Domain Task # Test Data
BioMRC (Pappas et al., 2020) Biomedical Multi-Choice 6, 250
CUAD (Hendrycks et al., 2021) Law Classification 4,182
Unfair_TOS (Lippi et al., 2019) Law Classification 1,620
ContractNLI (Koreeda and Manning, 2021) Law NLI 1,991
Casehold (Zheng et al., 2021) Law Multi-Choice 3,600

Table 1: Datasets involved in our empirical study.

nAl, 2023). We probe the best-performing prompt- Strategy Not-None Ratio  None Ratio
ing strategy for each dataset with LLMs through Random 0.1247 0.8752
extensive experiments on GPT-3.5 (reported in Ta- Diversity 0.1255 0.8744
ble 4) and apply the same settings for GPT-4. Uncertainty 0.1458 0-8541
Complete dataset 0.1252 0.8747

3.4 Datasets

We thoroughly examine existing expert-annotated
datasets for specific real-world domains that re-
quire extensive expertise and choose BioMRC (Pap-
pas et al., 2020), CUAD (Hendrycks et al., 2021),
Unfair_TOS (Lippi et al., 2019), ContractNLI (Ko-
reeda and Manning, 2021) and Casehold (Zheng
et al., 2021) for our evaluation. The datasets are
in legal and biomedical domains and are com-
prised of different types of tasks, including Multi-
ple Choice, Classification, and Natural Language
Inference (MacCartney and Manning, 2008). The
dataset details are in Table 1.

3.5 Results

We plot the results on four legal domain datasets
in Figure 3, and the results on BioMRC in Ap-
pendix A. The horizontal lines symbolize the best
performance of GPT-3.5 and GPT-4, respectively.
Unsurprisingly, all AL approaches suffer from
the “cold-starting” problem. However, on all four
datasets, the T5-base with AL can reliably outper-
form GPT-3.5 and eventually reach a saturated
performance that is comparable with or even ex-
ceeds GPT-4, leveraging a total of several hundred
data selected. For BloMRC, as shown in Figure 5,
the T5-base can also consistently beat GPT-3.5 but
is saturated at a slightly lower performance com-
pared to GPT-4. However, we believe GPT-4 might
have seen or been trained on most of these datasets
because they are publically available text corpora.
Regardless, our fine-tuned T5-base achieves com-
parable performance with GPT-4 despite having
hundreds of times fewer parameters and requiring
significantly less computational power.

Table 2: Label distributions of complete dataset and
data sampled by different AL strategies in Unfair_TOS.
The ratio is calculated by dividing the corresponding
data type by all data counts.

Analysis of AL Strategies on Unfair_TOS. We
observe the AL models in Unfair_TOS merely out-
put “None” regardless of the input prior to the
20th iteration, but we can also observe clear ad-
vantage differences between AL strategies, where
the uncertainty-based strategy can lead to better per-
formance and saturate at higher results compared
to the other settings.

The Unfair_TOS dataset consists of around 85%
of data labeled None, and the rest of the data lies
in eight other categories. We believe the AL model
will be able to achieve a higher averaged F1 score
if the AL strategy can select more Not-None data
for the model to learn from. As a result, we cal-
culate the label ratio for the original dataset and
the data sampled by different AL strategies on
the Unfair_TOS dataset, which can be found in
Table 2. The ratio is calculated by dividing the
corresponding data type by the count of all data.
We sum the counts of all other eight data types
and denote them as Not-None. We can observe
the model uncertainty-based strategy selects sig-
nificantly more Not-None labeled data than ran-
dom (t(14) = —2.46, p < 0.05) and diversity
(t(14) = —2.51, p < 0.05), which justifies the bet-
ter performance of the uncertainty-based strategy.

Influence of Few-Shot Example Numbers. To
establish a more solid evaluation, we conducted
an additional experiment by evaluating GPT-4’s
performance when given different amounts of few-
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Figure 3: AL simulation results. The horizontal line represents two close-domain LLMs’ best performance. We
report the mean value (line) and standard error (colored shaded area) over 10 trials. Each AL iteration comprises
16 examples. We can observe the T5-base with AL can reliably outperform GPT-3.5 and reach a saturated
performance that is comparable with or even exceeds GPT-4 on all four datasets.

shot demonstrations. We used 1, 10, 50, and the
maximum amount subject to the model limit. If
GPT-4 can only handle less than 50 examples, we
omit the results for the 50 shots and report the max-
shot results instead. To ensure reproducibility and
control cost, we randomly sample 200 examples
from the original test split with fixed seed = 42.

The result is reported in Table 3. We observe
that generic LLM’s (GPT-4) performance does not
always increase when we add more and more data
into the prompt, and with 10 shots can generally
result in a saturated performance. Also, in three
of the five datasets experimented, GPT-4 can only
fit fewer than 20 few-shot examples in their con-
text limit, justifying the need for small, fine-tuned
models for domain-specific tasks.

4 LLM+AL Ensemble System

The architecture of our system is illustrated in Fig-
ure 1. We aim to develop a system capable of
learning from a stream of annotations, delivering
high-quality predictions from the beginning, and
continuously improving as more data becomes
available. When the data distribution shifts, i.e.,
data drift, the system should adapt to the new dis-
tribution and maintain high-quality predictions.
Our system consists of three modules:

1. An LLM: This component provides zero-shot
or few-shot in-context learning predictions to
quickly bootstrap the system’s capabilities,
thereby addressing the cold-start issue for the
Active Learning (AL) model.

2. An AL-assisted, locally fine-tunable compact
model: This model is trained with collected
implicit annotations, enhancing performance
as more data becomes available and adapting
to the evolving data.

3. A “Switch” module: This module evaluates
the predictions from different models in real-
time using the collected data, determining
which model’s prediction should be used
based on current performance.

4.1 Switch Module

The “switch” module is designed to evaluate the
performance of the LLM and AL-assisted model
in real-time, determining which model’s prediction
should be used based on current performance.

To address the data drift issue and maintain an
up-to-date validation set, the switch will collect the
first batch of data samples as the initial validation
set. After obtaining this initial set, the switch will



max-shot

Dataset 1-shot 10-shot 50-shot (ave. # of shots)
BioMRC 0.835 0.810 - 0.760 (13 shots)
Unfair_tos 0.441 0.488 0.567 0.563 (137 shots)
ContractNLI 0.715 0.750 - 0.740 (47 shots)
CUAD 0.795 0.790 - 0.82 (18 shots)
CaseHOLD 0.660  0.790 - 0.735 (19 shots)

Table 3: GPT-4 result with different number of few-shot examples

continuously update the validation data by replac-
ing a random sample in the set with a newly anno-
tated data sample at a configurable probability p,
and the replaced sample will be used in model fine-
tuning. This approach allows users to customize
the switch’s sensitivity to data drift by adjusting
the value of p. For instance, if users are more con-
cerned about data drift, they can set a higher p
value to update the validation set more frequently.
Conversely, if they prioritize the system’s stability,
they can set a lower p value to update the validation
set less frequently. The candidate models will be
evaluated on the selected validation set, and the
best performing model’s prediction will be used as
the output of the ensemble system.

4.2 Evaluation Metric

To evaluate the performance of our ensemble, par-
ticularly during the cold start and data drift phases,
we utilize the Area Under the Curve (AUC) of the
Number of Data versus Accuracy plot as our evalu-
ation metric, which is also the average accuracy of
different time stamp.

4.3 Power Analysis of AL Models’
Performance

The design goal of the switch is to identify the
optimal candidate model with the fewest samples in
the validation set. Therefore, we conduct a power
analysis on the empirical study to determine the
amount of test data for the switch module.

First, we calculate the effect size by measuring
the difference between the performance of the best
model and the second-best model in the AL simu-
lation results. We compute Cohen’s d effect size
(Cohen, 1988) on Unfair_TOS, resulting in 0.34.

Next, using this effect size, we determine the
required sample size for the comparison with a
power of 0.8 and a significance level of 0.05. The
resulting sample size is 137. This approach ensures
our switch has an 80% chance of identifying the

best model when there are differences between the
two models’ performance. Additionally, in our
experiment, if 137 samples constitute less than 10%
of the training samples used, we set the size of the
validation set to 10% of the training set.

5 [Evaluation and Results

We evaluate our LLM+AL Ensemble system by
conducting a close simulation of a real-world sce-
nario. We iteratively provide golden truth annota-
tions to the system, which then selects a subset of
these annotations as validation data and determines
the backend model for output. We compare our
system against the following baselines:

1. LLM Few-Shot Prompting: We use GPT-4’s
best performance as the baseline.

2. Random Sampling AL: We use an AL model
(T5) with a random sampling strategy as the
backend model.

5.1 Datasets

To mimic domain experts’ daily work, we use
two expert-annotated datasets in the mental health
domain: SDCNL(Haque et al., 2021) and Dread-
dit(Turcan and McKeown, 2019). Specifically, we
construct two subsets for each dataset, one with a
90:10 label distribution ratio and the other with a
10:90 label distribution ratio, tosimulate data drift
in real-world scenarios. The system is first pro-
vided with the first subset we constructed. Then,
in the middle of the experiment, we switch to the
second subset to simulate a data drift in the label
distribution ratio. In this way, we can probe the
system’s performance when facing the real world’s
rapidly changing needs.

5.2 Results

The results are shown in Figure 4. The x-axis rep-
resents the number of data samples, and the y-axis
represents the accuracy of two candidate models.



GPT-3.5

Dataset Metric GPT-4

0 shot 1 shots 3 shots 10 shots
CUAD Accuracy 0.6404 0.8048 0.8293 0.8178 0.8837
BioMRC Accuracy 0.4067 0.5169 0.5040 0.4532 0.8259
Unfair_tos F1 0.4201 0.3847 0.3758 0.4206 0.4863
ContractNLI ~ Accuracy 0.4580 0.5990 0.5750 0.6420 0.8240
Casehold Accuracy 0.3040 0.3020 0.3330 0.4010 0.6970

Table 4: Hyper-parameter tuning experiment results for GPT-3.5 and GPT-4.
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Figure 4: System evaluation results. The accuracy of LLM versus TS5 models is depicted for the SDCNL (a) and
Dreaddit (b) datasets. The x-axis represents the number of data samples, while the y-axis denotes accuracy. The
green and purple lines show the accuracy of the LLM and TS5 models, respectively. The shaded regions indicate
periods when either the LLM (green) or TS (purple) models are in use. A data drift event (dashed blue line) occurs
around step 400, leading to a temporary decline in the accuracy of the TS model. The system dynamically switches
between using LLM and T5 to maintain optimal performance.

Accuracy
Model
SDCNL Dreaddit
Ensemble System 83.49% 81.3%
LLM Few-Shot 65.50% 76.00%
AL-Assisted TS 71.55% 71.67%
Switch Accuracy 96.00% 98.00%

Table 5: Results of the ensemble system, compared to
the LLM few-shot in-context-learning and AL-assistede
T5. The best performance is shown in bold, and the
second best is shown in underline. Our ensemble system
out-performs both models in all datasets, demonstrating
the capability of our switch module. The accuracy of
the switch module is shown in the bottom line.

AL models in both datasets suffer from cold-
start issues in the early stage and after the data drift.
In both datasets, the system detects the change in
model performance and uses the LLM’s predic-
tions as the output. Once the AL model surpasses
its starting stage and achieves better performance,
the system switches to the AL model. In the exper-

iment on the Dreaddit dataset, the AL model ex-
periences a slight performance degradation due to
overfitting before the data drift. The system adeptly
switches back and forth between the AL model and
the LLM to maintain the best performance.

The Accuracy AUC of our system is shown in
Table 5. The results indicate that, despite the two
models performing differently on the two datasets,
our ensemble system consistently outperforms the
two baseline models on all datasets. This demon-
strates the effectiveness and generalization ability
of our switch design.

The accuracy of the switch module, i.e., its abil-
ity to successfully identify the true performance
difference between the two candidate models, is
shown in the bottom line of Table 5. The results
show that, even with minimal data, our switch de-
sign allows for accurate and sensitive measurement
of the two candidate models’ performances. This
enables the system to achieve the best performance
in addressing the data drift issue.



6 Discussion

In our empirical study, we observe that all AL
strategies suffer from well-known “cold-start” is-
sues (Chen et al., 2022; Jin et al., 2022), where the
model performs poorly in the early iterations due
to potential underfitting as a result of insufficient
labeled data. On the other hand, LLMs, specifically
GPT4 in our case, yield reasonably good perfor-
mance despite eventually being surpassed by AL
models fine-tuned on domain-specific datasets.

We propose a promising future paradigm for
real-world domain-specific tasks that incorporates
LLMs and AL fine-tuned smaller models in parallel.
Initially, the LLM’s prediction will be presented
to the human expert, and the collected annotations
will be used to train the AL model. When the AL
model begins to outperform the LLM, the system
will "switch" to present the AL model’s prediction.
Thus, the LLM’s prediction can help overcome the
"cold-start" problem of AL, while the system can
still benefit from AL’s continually improving and
up-to-date performance.

In our system evaluation, we observe that our
system consistently outperforms all baselines, and
the accuracy of our switch design demonstrates the
effectiveness of our system in real-world, domain-
specific scenarios.

We also envision that LLMs’ calibration ability
(Zhu et al., 2023), where data samples that the
LLM is least confident about tend to have lower
accuracy, can also help cold-starting AL models.
By utilizing a generic LLM as an assessor of the
difficulty of the data samples, we can identify the
hard-to-answer or incorrectly predicted examples
during the sampling process for annotation, which
may benefit the AL-assisted small models.

7 Conclusion

While LLMs such as GPT-4 have been endorsed
to outperform smaller models in many benchmark-
ing datasets, whether they can substitute smaller
models, especially in real-world tasks and domains
requiring extensive domain expertise, is critical but
overlooked. In this work, we first present an em-
pirical study evaluating the performance between
SOTA generic LLMs (GPT-3.5 and GPT-4) and
a much smaller language model (T5-base) fine-
tuned with different Active Learning strategies on
five specialized datasets representing real-world
domain-specific tasks. Our evaluation demon-
strates that AL-assisted models trained with expert

annotation can consistently achieve or exceed best-
performing LLMs with only a few hundred expert-
annotated data, justifying that human experts re-
main indispensable in domain-specific tasks.

To better assist domain-experts’ workflow with-
out annotation burden and to facilitate real
world’s rapidly changing requirements, we propose
ALERTS, a LLM+AL ensemble system. Results
show that our ensemble system can identify the best
performing model and consistently yield accurate
prediction during cold starts and data drifts.

8 Limitation

Our empirical experiment of AL-assisted models
solely utilizes a T5-base model, where the per-
formance of other models, such as BART (Lewis
et al., 2019) and even LLMs that can be efficiently
fine-tuned with Parameter-Efficient Fine-Tuning
techniques (Mangrulkar et al., 2022; Hu et al.,
2021; Lester et al., 2021), remains to be explored.
This work only benchmarks two SOTA generic
LLMs (GPT-3.5 and GPT-4). We are aware other
LLMs exist that we do not include in this work,
such as Mistral-7B (Jiang et al., 2023), Llama-2
and 3 (Touvron et al., 2023b), etc. We only im-
plemented and evaluated two fundamental types
(data diversity-based and uncertainty-based) of Ac-
tive Learning strategies in our work, and we are
aware there exist other families of AL strategies
that could extend our study, e.g., hybrid or ensem-
ble approaches (Krogh and Vedelsby, 1994; Qian
et al., 2020). Nevertheless, our empirical study
with two fundamental Active Learning strategies
justifies our primary statement that human experts
are still needed in real-world domain-specific data
annotation tasks.

Our system evaluation comprises two datasets
from the mental health domain. While we acknowl-
edge the existence of other domains and publicly
available domain-specific datasets, we defer the
analysis of the generalizability of our findings to
other domains and tasks for future research. In our
system evaluation, we only experiment with a ran-
dom sampling strategy to closely mimic the daily
work of domain experts. Designing and evaluating
an AL sampling strategy that addresses real-world
scenarios is also a future direction of research.

In addition, we primarily engage in model com-
parisons through automated metrics. However,
these may not necessarily provide an accurate repre-
sentation of a model’s performance. Also, an error



analysis on which type of questions LLMs may ex-
cel or fail is also meaningful for future work. There-
fore, human evaluation including human agreement
and error analysis, might be needed for a more com-
prehensive assessment.
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A Empirical Study Result on BioMRC

For BioMRC, as shown in Figure 5, the T5-base
with AL can quickly outperform GPT-3.5 and
eventually reach a saturated performance that is
slightly lower than GPT-4. We posit that GPT-4
may have performed exceptionally well due to its
exposure or training on BioMRC, given its source’s
public accessibility. Nevertheless, our refined T5-
base model demonstrates comparable performance
to GPT-4. Remarkably, this is achieved despite the
T5-base model’s comparative parameter deficiency
- in the hundreds of times less - and a significantly
lower demand for computational resources.

0.8 4 — diversity
—— uncertainty
0.7 4 —— random
— gpt-3.5
>
E 0.6 4 gpt-4
=}
Sos
0.4 1
0.3

15 20 25 30

Iteration
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Figure 5: Result on BioMRC

B Hyperparameters and Settings

Dataset Learning Rate  Training Epoch
BioMRC le-4 20
Unfair_TOS 1.5e-4 12
ContactNLI 1.5e-4 20
Casehold 4e-5 28
CUAD 6e-5 18
SDCNL le-5 20
Dreaddit le-5 20

Table 6: Hyperparameters for each dataset.

We report the experiment hyperparameters in Ta-
ble 6. All our experiments are executed on one of
two resources: 1) four NVIDIA V100 32G graphic
cards and 2) eight NVIDIA V100 32G graphic
cards. For GPT-3.5 and GPT-4, we used GPT-3.5-
0613 and GPT-4-0613 respectively.

For model uncertainty-based strategies, we cal-
culate the model probability on a randomly sam-
pled subset of the training data to reduce the time
complexity of the model uncertainty-based data
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sampling process. Compared to the naive ap-
proach’s O(n?) time complexity, our implemen-
tation remains to have a time complexity of O(n),
which is the same as that of non-AL’s (where n is
the number of training data).

C Prompts Used for Each Dataset

Text in [[double brackets]] denotes input data.

C.1 BioMRC (Pappas et al., 2020)

I want you to act as an annotator for a
question answering system. You will
be given the title and abstract of a
biomedical research paper, along
with a list of biomedical entities
mentioned in the abstract. Your task
is to determine which entity should
replace the placeholder (XXXX) in
the title.

e

Here's how you should approach this
- task:

Carefully read the title and abstract of
the paper.

Pay close attention to the context in

< which the placeholder (XXXX) appears
< in the title.

Review the list of biomedical entities
< mentioned in the abstract.

Determine which entity from the list
best fits the context of the
placeholder in the title.

Output only the identifier for the
chosen entity (e.g., “@entityl1™). Do
not output anything else.

—

—

—

—

—

<INPUT>:
<title>:
[LTITLE]]
<abstract>:
[CABSTRACT]]
<entities>:
[LENTITY]]
<OUTPUT>:



C.2  UnfairTOS (Lippi et al., 2019)

I want you to act as an annotator for a

Term of Service (ToS) review system.
You will be given a piece of a Term

of Service. Your job is to determine
whether the ToS contains any of the

following unfair terms:

R A

Limitation of liability
Unilateral termination
Unilateral change
Content removal
Contract by using
Choice of law
Jurisdiction
Arbitration

If none of the above terms are present,
< you should output "None".

Here's how you should approach this
- task:

Carefully read the ToS.

Review the list of unfair terms.

For each unfair term, determine whether
it is present in the ToS.

Output only the unfair terms that are
present in the ToS. A ToS may have
multiple unfair terms. \

You should output all of them, separated
by a semicolon (;).

Do not output anything else.

—

—

—

—

<text>:
[LTEXT]]
<QUTPUT>:

C.3 ContractNLI (Koreeda and Manning,
2021)

I want you to act as an annotator for a
question answering system. You will

Your task is to determine the
hypothesis is contradictory,
entailed or neutral to the contract.

L

Here's how you should approach this
« task:

Carefully read the contract.
Carefully read the hypothesis.

be given a contract and a hypothesis.
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Determine whether the hypothesis is
contradictory, entailed or neutral
to the contract.

Output only the label (contradiction,
entailment, neutral). Do not output
anything else.

—

—

—

—

<INPUT>:
<premise>:
[[PREMISE]]
<hypothesis>:
[[HYPOTHESIS]]
<OUTPUT>:

C4 CUAD (Hendrycks et al., 2021)

I want you to act as an annotator for a
question answering system. You will
be given the question and a piece of
a contract. You will need to answer
the question based on the contract.
There are only two possible answers,
"Yes" or "No".

el

Here's how you should approach this
— task:

Carefully read the question.

Carefully read the contract.

Determine the answer to the question is
true or not.

Output only the exact answer (one of
"Yes"” or "No") of the questions. Do
not output anything else.

<INPUT>:

<text>:

[LTEXT]]

<question>:

[[QUESTIONI]

<OUTPUT>:

—

—

—

C.5 Casehold (Zheng et al., 2021)

I want you to act as an annotator for a
Question Answering system. You will
be given the question and several
answers. Your job is to determine
which answer best answers the
question.

A

Here's how you should approach this
task:

—

Carefully read the question.



Carefully read the answers.

Output the numeric index of the answers
— that best answers the question.

Do not output anything else.

<INPUT>:
<question>:
[[QUESTION]]
<answer>:
[LANSWER]]
<OUTPUT>:

C.6 SDCNL (Haque et al., 2021)

This person wrote this paragraph on

— social media.

If you are a psychologist, consider the
< mental well-being condition

— expressed in this post and answer
« the question: does the person want
— to suicide?

Only return Yes or No.

<INPUT>:
<text>:
[[POST]]
<OUTPUT>:

C.7 Dreaddit (Turcan and McKeown, 2019)

This person wrote this paragraph on

— social media.

If you are a psychologist, consider the
— mental well-being condition

— expressed in this post and answer
— the question: is this person

— stressful?

Only return Yes or No

<INPUT>:
<text>:
[[POST]]
<OUTPUT>:
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