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Abstract

In the rapidly changing real-world scenarios,001
data drift and “cold-start” issues present sig-002
nificant challenges for the development of ma-003
chine learning models, along with the high cost004
and resource scarcity of domain experts. Tra-005
ditional compact models fine-tuned on small006
number of domain-specific examples often out-007
perform generic LLMs, despite the fine-tuned008
models struggling with rapid data changes.009
This study introduces ALERTS, an ensemble010
system designed to address these data chal-011
lenges. The system comprises 1) an LLM to012
enhance early-stage performance and adapt to013
sudden data drifts, 2) an Active Learning (AL)-014
assisted compact model iteratively fine-tuned015
on annotations from daily human expert work-016
flows, and 3) a switch mechanism that evalu-017
ates both models in real-time and selects the018
best performing ones. We conducted empirical019
studies to understand the performance between020
LLMs and AL-assisted compact models, then021
evaluated our system’s effectiveness through022
AL simulations of real-world scenarios. Our023
work offers a novel framework for developing024
robust language model systems across various025
dynamic real-world scenarios.026

1 Introduction027

Developing and deploying machine learning mod-028

els in real-world domain-specific scenarios (e.g.,029

legal, clinical, and education (Xu et al., 2022; Pap-030

pas et al., 2020)) presents numerous challenges.031

For instance, such tasks generally require exten-032

sive domain-specific knowledge (Karabacak and033

Margetis, 2023) and high cost to recruit domain034

experts for high-quality and large-scale data anno-035

tation (Rasmussen et al., 2022; Wu et al., 2022),036

while facing domain experts’ resource scarcity and037

unwillingness to be “data slaves”. The difficul-038

ties in acquiring expert annotations motivate the039

rapid development of efficient low-resource train-040

ing methods, such as Active Learning (AL, Settles041

(2009)), where a sampling strategy can efficiently 042

select the most helpful data, query for annotation, 043

and iteratively fine-tune the model. 044

Critically, real-world tasks and scenarios are 045

constantly changing, leading to a common but 046

very tough challenge called data drift (Žliobaitė 047

et al., 2014)–when the statistical properties of the 048

data drift from time to time. For example, in the 049

biomedical domain, new diseases are discovered 050

quite rapidly, enfocing clinicians to constantly learn 051

new knowledge about diseases and treatments. A 052

similar phenomenon can be found at the very be- 053

ginning of model training, namely “cold-start” is- 054

sues, which is also a long-lasting challenge for 055

low-resource learning techniques. 056

Recently, Large Language Models (LLMs, 057

Brown et al. (2020)) have shown great capabil- 058

ity in a variety of generic tasks off-the-shelf. A 059

variety of prompting strategies, without the need 060

to fine-tune LLMs, were proposed to enhance 061

LLMs’ domain-adaptation capabilities, including 062

few-shot In-Context Learning (ICL, Brown et al. 063

(2020)), Retrieval-Augmented Generation (Guu 064

et al., 2020), etc. However, recent work shows 065

that traditional compact models fine-tuned on high- 066

quality domain-specific datasets can reliably out- 067

perform much larger LLMs after being fine-tuned 068

with a small number of examples (Xu et al., 2023). 069

Fine-tuned domain-specific models and LLMs 070

are not without limitations in the rapidly changing 071

real-world, nevertheless, we ask, can we benefit 072

from both types of models to make up for each 073

other’s shortcomings? Precisely, can we develop 074

a system that leverages LLMs’ extraordinary task- 075

solving capabilities to overcome the “cold-start” 076

and data drift challenges for domain-specific fine- 077

tuned compact models, while being able to switch 078

back to the fine-tuned models once it can reliably 079

outperform LLMs? 080

This work presents ALERTS: Active Learning 081

and Ensemble LLM Real-Time Switch, an ensem- 082
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Figure 1: System Architecture of ALERTS

ble system we designed that aims to tackle the083

pervasive challenges of data drift in the real world084

with three primary modules: 1) An LLM supported085

by zero-shot and few-shot ICL prompting strate-086

gies to bootstrap the system’s performance during087

early-stages and data drifts. 2) An AL-assisted,088

locally fine-tuneable compact model. We expect089

this model can be passively and iteratively trained090

with implicitly collected annotations during human091

experts’ daily work. 3) A “Switch” mechanism092

that evaluates the predictions from different models093

in real-time using the collected data, determining094

which model’s prediction should be used based on095

the current performance.096

We first conduct an empirical study to analyze097

“When and how can AL-assisted small models out-098

perform LLMs?” Our results show that the AL-099

assisted T5 model, with hundreds of human annota-100

tions, can consistently outperform GPT-3.5 and per-101

form on par with GPT-4 in existing domain-specific102

datasets. Based on the findings, we designed and103

developed our ensemble system. We conduct an104

AL experiment to evaluate the effectiveness of our105

system in a simulated real-world data annotation106

scenario with simulated data drifts. Results show107

that our ensemble system can successfully identify108

the best candidate model and consistently yield ac-109

curate predictions during cold starts and data drifts.110

More importantly, our work paves a broader av-111

enue for the future design and development of AI112

systems, with significant practical implications, in113

different real-world scenarios.114

2 Related Works115

2.1 Active Learning116

Active Learning (AL) (Sharma et al., 2015; Shen117

et al., 2017; Ash et al., 2019; Teso and Kersting,118

2019; Kasai et al., 2019; Zhang et al., 2022; Yao119

et al., 2023) is a cyclical process that involves: 1)120

selecting examples from an unlabeled data reposi- 121

tory utilizing AL selection strategies to be labeled 122

by human annotators, 2) training the model with 123

the newly labeled data, and 3) assessing the tuned 124

model’s performance. 125

A few AL surveys (Settles, 2009; Olsson, 2009; 126

Fu et al., 2013; Schröder and Niekler, 2020; Ren 127

et al., 2021) of sampling strategies provide two 128

high-level selection concepts: data diversity-based 129

strategies and model uncertainty-based strategies. 130

The diversity-based approach aims to identify the 131

most representative examples from the unlabeled 132

data space while maximizing the diversity, while 133

the uncertainty-based approach attempts to locate 134

examples that the model is least confident about. 135

Many attempts have been made to assist ac- 136

tive learning models in the cold start stages, such 137

as using the Masked Language Model (Yuan 138

et al., 2020), representative sampling strategies (Jin 139

et al., 2022), Outlier-based Discriminative AL 140

(ODAL) (Barata et al., 2021), etc.) Yet, these meth- 141

ods mostly focus on the active learning sampling 142

strategies, and thus are tied to specific task/dataset 143

or sampling strategy. 144

2.2 Large Language Models and Domain 145

Adapatation 146

Large Language Models (LLMs) (Brown et al., 147

2020; OpenAI, 2023; Touvron et al., 2023a,b) have 148

shown great capability in a variety of tasks (Wei 149

et al., 2021; Chung et al., 2022). Moreover, in- 150

novative prompting methods, such as Chain-of- 151

Thoughts (Wei et al., 2023; Chung et al., 2022), 152

and In-Context Learning (ICL) (Brown et al., 2020) 153

were proposed to harness the potential of LLMs. 154

In addition to the prompting strategies, domain 155

adaption of LLMs has also been a recent focus. 156

Xu et al. (2023) proposed Mental-LLM which fine- 157

tunes the Alpaca and FLAN-T5 model on mental 158

corpus. RAFT (Zhang et al., 2024) utilized RAG 159
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Figure 2: The sampling process of our data diversity-
based strategy.

Algorithm 1 Active Learning Sampling Process

1: function SELECT(Dt, Dp, N, strategy)
2: Dt: unlabeled data in the training split
3: Dp: previously selected data
4: N : number of data needed
5: strategy: Active Learning strategy
6: if strategy = "similarity" then

7: S ←
(∑

dp∈Dp
cos(di,dp)

|Dp|

)
1≤i≤|Dt|

8: id← argsort(S)

9: step← |Dt|
N

10: result← (idi)i≡0(mod step),1≤i≤|Dt|
11: return result, id− result
12: end if
13: if strategy = "uncertainty" then
14: S ← (Uncertainty(di))1≤i≤|Dt|
15: id← argsort(S)
16: return id<N , id≥N

17: end if
18: end function

to retrieve related documents, and by filtering out160

unrelated documents, RAFT can consistently im-161

prove the model’s performance in domain-specific162

QA tasks. These methods have been proved ef-163

fective for LLMs’ domain adaption, still, in real-164

world domain-specific scenarios, it’s often not165

feastable to use LLMs due to the privacy risks166

(Plant et al., 2022) and the high demand on compu-167

tational power (Luccioni et al., 2023).168

3 Preliminary Empirical Study169

We first conduct a preliminary empirical study170

to compare AL-assisted compact models against171

State-Of-The-Art LLMs, to formulate a better un-172

derstanding of “When and how can AL-assisted173

small models out-perform Large Language Mod-174

els”, a critical but overlooked research question.175

3.1 Active Learning-assisted Models 176

We choose T5 (Raffel et al., 2020) as representa- 177

tives for locally fine-tunable compact models based 178

on existing works that demonstrate its strong perfor- 179

mance for domain-specific fine-tuning (Yao et al., 180

2022; Mou et al., 2021). We initialize the T5 model 181

with T5-base, a pre-trained weight that has been 182

trained on many general-domain downstream tasks. 183

3.2 Active Learning Strategies 184

Following the established taxonomies of AL strate- 185

gies (Schröder and Niekler, 2020), we designed 186

and implemented one data diversity-based strat- 187

egy and one model uncertainty-based strategy. 188

We illustrate the details of each strategy below and 189

in Algorithm 1. 190

Data Diversity-Based Strategy. During the 191

data pre-processing stage, we utilize Sentence- 192

BERT (Wang et al., 2020) to embed each data con- 193

tent as a vector to prepare for the diversity-based 194

AL sampling. For each iteration of the diversity- 195

based AL sampling strategy, we 1) calculate the 196

average cosine similarity score between each un- 197

used training data and all previously used training 198

data, 2) sort the unused data by the average simi- 199

larity score, and 3) select representative examples 200

with the same interval from the sorted list to ensure 201

diversity. For instance, in order to select 4 exam- 202

ples from 10 unused data, we select the 1st, 4th, 7th 203

and 10th data from the ranked list after Step 2. This 204

strategy design allows us to ensure the diversity and 205

representativeness of selected examples. 206

Model Uncertainty-based Strategy. The model 207

Uncertainty-Based Strategy (Sener and Savarese, 208

2018) aspires to identify samples the model is least 209

confident about. Within each iteration, the model 210

operates on the training data, computing the log- 211

its and locating the samples holding the minimal 212

average probability on the highest-ranked tokens. 213

In addition to the aforementioned two types of 214

AL strategies, we also include a random AL sam- 215

pling baseline. For each iteration in the AL simu- 216

lations, we follow a common practice of sampling 217

16 data samples with a specified strategy and then 218

evaluate the model on the test split. Each AL set- 219

ting was executed 10 times, and we report the mean 220

and standard errors. 221

3.3 Large Language Models 222

For the experiments with LLM, we utilize two 223

SOTA generic LLMs: GPT-3.5 and GPT-4 (Ope- 224
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Dataset Domain Task # Test Data

BioMRC (Pappas et al., 2020) Biomedical Multi-Choice 6, 250
CUAD (Hendrycks et al., 2021) Law Classification 4, 182
Unfair_TOS (Lippi et al., 2019) Law Classification 1, 620
ContractNLI (Koreeda and Manning, 2021) Law NLI 1, 991
Casehold (Zheng et al., 2021) Law Multi-Choice 3, 600

Table 1: Datasets involved in our empirical study.

nAI, 2023). We probe the best-performing prompt-225

ing strategy for each dataset with LLMs through226

extensive experiments on GPT-3.5 (reported in Ta-227

ble 4) and apply the same settings for GPT-4.228

3.4 Datasets229

We thoroughly examine existing expert-annotated230

datasets for specific real-world domains that re-231

quire extensive expertise and choose BioMRC (Pap-232

pas et al., 2020), CUAD (Hendrycks et al., 2021),233

Unfair_TOS (Lippi et al., 2019), ContractNLI (Ko-234

reeda and Manning, 2021) and Casehold (Zheng235

et al., 2021) for our evaluation. The datasets are236

in legal and biomedical domains and are com-237

prised of different types of tasks, including Multi-238

ple Choice, Classification, and Natural Language239

Inference (MacCartney and Manning, 2008). The240

dataset details are in Table 1.241

3.5 Results242

We plot the results on four legal domain datasets243

in Figure 3, and the results on BioMRC in Ap-244

pendix A. The horizontal lines symbolize the best245

performance of GPT-3.5 and GPT-4, respectively.246

Unsurprisingly, all AL approaches suffer from247

the “cold-starting” problem. However, on all four248

datasets, the T5-base with AL can reliably outper-249

form GPT-3.5 and eventually reach a saturated250

performance that is comparable with or even ex-251

ceeds GPT-4, leveraging a total of several hundred252

data selected. For BioMRC, as shown in Figure 5,253

the T5-base can also consistently beat GPT-3.5 but254

is saturated at a slightly lower performance com-255

pared to GPT-4. However, we believe GPT-4 might256

have seen or been trained on most of these datasets257

because they are publically available text corpora.258

Regardless, our fine-tuned T5-base achieves com-259

parable performance with GPT-4 despite having260

hundreds of times fewer parameters and requiring261

significantly less computational power.262

Strategy Not-None Ratio None Ratio

Random 0.1247 0.8752
Diversity 0.1255 0.8744
Uncertainty 0.1458 0.8541

Complete dataset 0.1252 0.8747

Table 2: Label distributions of complete dataset and
data sampled by different AL strategies in Unfair_TOS.
The ratio is calculated by dividing the corresponding
data type by all data counts.

Analysis of AL Strategies on Unfair_TOS. We 263

observe the AL models in Unfair_TOS merely out- 264

put “None” regardless of the input prior to the 265

20th iteration, but we can also observe clear ad- 266

vantage differences between AL strategies, where 267

the uncertainty-based strategy can lead to better per- 268

formance and saturate at higher results compared 269

to the other settings. 270

The Unfair_TOS dataset consists of around 85% 271

of data labeled None, and the rest of the data lies 272

in eight other categories. We believe the AL model 273

will be able to achieve a higher averaged F1 score 274

if the AL strategy can select more Not-None data 275

for the model to learn from. As a result, we cal- 276

culate the label ratio for the original dataset and 277

the data sampled by different AL strategies on 278

the Unfair_TOS dataset, which can be found in 279

Table 2. The ratio is calculated by dividing the 280

corresponding data type by the count of all data. 281

We sum the counts of all other eight data types 282

and denote them as Not-None. We can observe 283

the model uncertainty-based strategy selects sig- 284

nificantly more Not-None labeled data than ran- 285

dom (t(14) = −2.46, p < 0.05) and diversity 286

(t(14) = −2.51, p < 0.05), which justifies the bet- 287

ter performance of the uncertainty-based strategy. 288

Influence of Few-Shot Example Numbers. To 289

establish a more solid evaluation, we conducted 290

an additional experiment by evaluating GPT-4’s 291

performance when given different amounts of few- 292
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Figure 3: AL simulation results. The horizontal line represents two close-domain LLMs’ best performance. We
report the mean value (line) and standard error (colored shaded area) over 10 trials. Each AL iteration comprises
16 examples. We can observe the T5-base with AL can reliably outperform GPT-3.5 and reach a saturated
performance that is comparable with or even exceeds GPT-4 on all four datasets.

shot demonstrations. We used 1, 10, 50, and the293

maximum amount subject to the model limit. If294

GPT-4 can only handle less than 50 examples, we295

omit the results for the 50 shots and report the max-296

shot results instead. To ensure reproducibility and297

control cost, we randomly sample 200 examples298

from the original test split with fixed seed = 42.299

The result is reported in Table 3. We observe300

that generic LLM’s (GPT-4) performance does not301

always increase when we add more and more data302

into the prompt, and with 1̃0 shots can generally303

result in a saturated performance. Also, in three304

of the five datasets experimented, GPT-4 can only305

fit fewer than 20 few-shot examples in their con-306

text limit, justifying the need for small, fine-tuned307

models for domain-specific tasks.308

4 LLM+AL Ensemble System309

The architecture of our system is illustrated in Fig-310

ure 1. We aim to develop a system capable of311

learning from a stream of annotations, delivering312

high-quality predictions from the beginning, and313

continuously improving as more data becomes314

available. When the data distribution shifts, i.e.,315

data drift, the system should adapt to the new dis-316

tribution and maintain high-quality predictions.317

Our system consists of three modules:318

1. An LLM: This component provides zero-shot 319

or few-shot in-context learning predictions to 320

quickly bootstrap the system’s capabilities, 321

thereby addressing the cold-start issue for the 322

Active Learning (AL) model. 323

2. An AL-assisted, locally fine-tunable compact 324

model: This model is trained with collected 325

implicit annotations, enhancing performance 326

as more data becomes available and adapting 327

to the evolving data. 328

3. A “Switch” module: This module evaluates 329

the predictions from different models in real- 330

time using the collected data, determining 331

which model’s prediction should be used 332

based on current performance. 333

4.1 Switch Module 334

The “switch” module is designed to evaluate the 335

performance of the LLM and AL-assisted model 336

in real-time, determining which model’s prediction 337

should be used based on current performance. 338

To address the data drift issue and maintain an 339

up-to-date validation set, the switch will collect the 340

first batch of data samples as the initial validation 341

set. After obtaining this initial set, the switch will 342
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Dataset 1-shot 10-shot 50-shot
max-shot

(avg. # of shots)

BioMRC 0.835 0.810 - 0.760 (13 shots)
Unfair_tos 0.441 0.488 0.567 0.563 (137 shots)

ContractNLI 0.715 0.750 - 0.740 (47 shots)
CUAD 0.795 0.790 - 0.82 (18 shots)

CaseHOLD 0.660 0.790 - 0.735 (19 shots)

Table 3: GPT-4 result with different number of few-shot examples

continuously update the validation data by replac-343

ing a random sample in the set with a newly anno-344

tated data sample at a configurable probability p,345

and the replaced sample will be used in model fine-346

tuning. This approach allows users to customize347

the switch’s sensitivity to data drift by adjusting348

the value of p. For instance, if users are more con-349

cerned about data drift, they can set a higher p350

value to update the validation set more frequently.351

Conversely, if they prioritize the system’s stability,352

they can set a lower p value to update the validation353

set less frequently. The candidate models will be354

evaluated on the selected validation set, and the355

best performing model’s prediction will be used as356

the output of the ensemble system.357

4.2 Evaluation Metric358

To evaluate the performance of our ensemble, par-359

ticularly during the cold start and data drift phases,360

we utilize the Area Under the Curve (AUC) of the361

Number of Data versus Accuracy plot as our evalu-362

ation metric, which is also the average accuracy of363

different time stamp.364

4.3 Power Analysis of AL Models’365

Performance366

The design goal of the switch is to identify the367

optimal candidate model with the fewest samples in368

the validation set. Therefore, we conduct a power369

analysis on the empirical study to determine the370

amount of test data for the switch module.371

First, we calculate the effect size by measuring372

the difference between the performance of the best373

model and the second-best model in the AL simu-374

lation results. We compute Cohen’s d effect size375

(Cohen, 1988) on Unfair_TOS, resulting in 0.34.376

Next, using this effect size, we determine the377

required sample size for the comparison with a378

power of 0.8 and a significance level of 0.05. The379

resulting sample size is 137. This approach ensures380

our switch has an 80% chance of identifying the381

best model when there are differences between the 382

two models’ performance. Additionally, in our 383

experiment, if 137 samples constitute less than 10% 384

of the training samples used, we set the size of the 385

validation set to 10% of the training set. 386

5 Evaluation and Results 387

We evaluate our LLM+AL Ensemble system by 388

conducting a close simulation of a real-world sce- 389

nario. We iteratively provide golden truth annota- 390

tions to the system, which then selects a subset of 391

these annotations as validation data and determines 392

the backend model for output. We compare our 393

system against the following baselines: 394

1. LLM Few-Shot Prompting: We use GPT-4’s 395

best performance as the baseline. 396

2. Random Sampling AL: We use an AL model 397

(T5) with a random sampling strategy as the 398

backend model. 399

5.1 Datasets 400

To mimic domain experts’ daily work, we use 401

two expert-annotated datasets in the mental health 402

domain: SDCNL(Haque et al., 2021) and Dread- 403

dit(Turcan and McKeown, 2019). Specifically, we 404

construct two subsets for each dataset, one with a 405

90:10 label distribution ratio and the other with a 406

10:90 label distribution ratio, tosimulate data drift 407

in real-world scenarios. The system is first pro- 408

vided with the first subset we constructed. Then, 409

in the middle of the experiment, we switch to the 410

second subset to simulate a data drift in the label 411

distribution ratio. In this way, we can probe the 412

system’s performance when facing the real world’s 413

rapidly changing needs. 414

5.2 Results 415

The results are shown in Figure 4. The x-axis rep- 416

resents the number of data samples, and the y-axis 417

represents the accuracy of two candidate models. 418
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Dataset Metric
GPT-3.5

GPT-4
0 shot 1 shots 3 shots 10 shots

CUAD Accuracy 0.6404 0.8048 0.8293 0.8178 0.8837
BioMRC Accuracy 0.4067 0.5169 0.5040 0.4532 0.8259

Unfair_tos F1 0.4201 0.3847 0.3758 0.4206 0.4863
ContractNLI Accuracy 0.4580 0.5990 0.5750 0.6420 0.8240

Casehold Accuracy 0.3040 0.3020 0.3330 0.4010 0.6970

Table 4: Hyper-parameter tuning experiment results for GPT-3.5 and GPT-4.
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Figure 4: System evaluation results. The accuracy of LLM versus T5 models is depicted for the SDCNL (a) and
Dreaddit (b) datasets. The x-axis represents the number of data samples, while the y-axis denotes accuracy. The
green and purple lines show the accuracy of the LLM and T5 models, respectively. The shaded regions indicate
periods when either the LLM (green) or T5 (purple) models are in use. A data drift event (dashed blue line) occurs
around step 400, leading to a temporary decline in the accuracy of the T5 model. The system dynamically switches
between using LLM and T5 to maintain optimal performance.

Model
Accuracy

SDCNL Dreaddit

Ensemble System 83.49% 81.3%
LLM Few-Shot 65.50% 76.00%
AL-Assisted T5 71.55% 71.67%

Switch Accuracy 96.00% 98.00%

Table 5: Results of the ensemble system, compared to
the LLM few-shot in-context-learning and AL-assistede
T5. The best performance is shown in bold, and the
second best is shown in underline. Our ensemble system
out-performs both models in all datasets, demonstrating
the capability of our switch module. The accuracy of
the switch module is shown in the bottom line.

AL models in both datasets suffer from cold-419

start issues in the early stage and after the data drift.420

In both datasets, the system detects the change in421

model performance and uses the LLM’s predic-422

tions as the output. Once the AL model surpasses423

its starting stage and achieves better performance,424

the system switches to the AL model. In the exper-425

iment on the Dreaddit dataset, the AL model ex- 426

periences a slight performance degradation due to 427

overfitting before the data drift. The system adeptly 428

switches back and forth between the AL model and 429

the LLM to maintain the best performance. 430

The Accuracy AUC of our system is shown in 431

Table 5. The results indicate that, despite the two 432

models performing differently on the two datasets, 433

our ensemble system consistently outperforms the 434

two baseline models on all datasets. This demon- 435

strates the effectiveness and generalization ability 436

of our switch design. 437

The accuracy of the switch module, i.e., its abil- 438

ity to successfully identify the true performance 439

difference between the two candidate models, is 440

shown in the bottom line of Table 5. The results 441

show that, even with minimal data, our switch de- 442

sign allows for accurate and sensitive measurement 443

of the two candidate models’ performances. This 444

enables the system to achieve the best performance 445

in addressing the data drift issue. 446
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6 Discussion447

In our empirical study, we observe that all AL448

strategies suffer from well-known “cold-start” is-449

sues (Chen et al., 2022; Jin et al., 2022), where the450

model performs poorly in the early iterations due451

to potential underfitting as a result of insufficient452

labeled data. On the other hand, LLMs, specifically453

GPT-4 in our case, yield reasonably good perfor-454

mance despite eventually being surpassed by AL455

models fine-tuned on domain-specific datasets.456

We propose a promising future paradigm for457

real-world domain-specific tasks that incorporates458

LLMs and AL fine-tuned smaller models in parallel.459

Initially, the LLM’s prediction will be presented460

to the human expert, and the collected annotations461

will be used to train the AL model. When the AL462

model begins to outperform the LLM, the system463

will "switch" to present the AL model’s prediction.464

Thus, the LLM’s prediction can help overcome the465

"cold-start" problem of AL, while the system can466

still benefit from AL’s continually improving and467

up-to-date performance.468

In our system evaluation, we observe that our469

system consistently outperforms all baselines, and470

the accuracy of our switch design demonstrates the471

effectiveness of our system in real-world, domain-472

specific scenarios.473

We also envision that LLMs’ calibration ability474

(Zhu et al., 2023), where data samples that the475

LLM is least confident about tend to have lower476

accuracy, can also help cold-starting AL models.477

By utilizing a generic LLM as an assessor of the478

difficulty of the data samples, we can identify the479

hard-to-answer or incorrectly predicted examples480

during the sampling process for annotation, which481

may benefit the AL-assisted small models.482

7 Conclusion483

While LLMs such as GPT-4 have been endorsed484

to outperform smaller models in many benchmark-485

ing datasets, whether they can substitute smaller486

models, especially in real-world tasks and domains487

requiring extensive domain expertise, is critical but488

overlooked. In this work, we first present an em-489

pirical study evaluating the performance between490

SOTA generic LLMs (GPT-3.5 and GPT-4) and491

a much smaller language model (T5-base) fine-492

tuned with different Active Learning strategies on493

five specialized datasets representing real-world494

domain-specific tasks. Our evaluation demon-495

strates that AL-assisted models trained with expert496

annotation can consistently achieve or exceed best- 497

performing LLMs with only a few hundred expert- 498

annotated data, justifying that human experts re- 499

main indispensable in domain-specific tasks. 500

To better assist domain-experts’ workflow with- 501

out annotation burden and to facilitate real 502

world’s rapidly changing requirements, we propose 503

ALERTS, a LLM+AL ensemble system. Results 504

show that our ensemble system can identify the best 505

performing model and consistently yield accurate 506

prediction during cold starts and data drifts. 507

8 Limitation 508

Our empirical experiment of AL-assisted models 509

solely utilizes a T5-base model, where the per- 510

formance of other models, such as BART (Lewis 511

et al., 2019) and even LLMs that can be efficiently 512

fine-tuned with Parameter-Efficient Fine-Tuning 513

techniques (Mangrulkar et al., 2022; Hu et al., 514

2021; Lester et al., 2021), remains to be explored. 515

This work only benchmarks two SOTA generic 516

LLMs (GPT-3.5 and GPT-4). We are aware other 517

LLMs exist that we do not include in this work, 518

such as Mistral-7B (Jiang et al., 2023), Llama-2 519

and 3 (Touvron et al., 2023b), etc. We only im- 520

plemented and evaluated two fundamental types 521

(data diversity-based and uncertainty-based) of Ac- 522

tive Learning strategies in our work, and we are 523

aware there exist other families of AL strategies 524

that could extend our study, e.g., hybrid or ensem- 525

ble approaches (Krogh and Vedelsby, 1994; Qian 526

et al., 2020). Nevertheless, our empirical study 527

with two fundamental Active Learning strategies 528

justifies our primary statement that human experts 529

are still needed in real-world domain-specific data 530

annotation tasks. 531

Our system evaluation comprises two datasets 532

from the mental health domain. While we acknowl- 533

edge the existence of other domains and publicly 534

available domain-specific datasets, we defer the 535

analysis of the generalizability of our findings to 536

other domains and tasks for future research. In our 537

system evaluation, we only experiment with a ran- 538

dom sampling strategy to closely mimic the daily 539

work of domain experts. Designing and evaluating 540

an AL sampling strategy that addresses real-world 541

scenarios is also a future direction of research. 542

In addition, we primarily engage in model com- 543

parisons through automated metrics. However, 544

these may not necessarily provide an accurate repre- 545

sentation of a model’s performance. Also, an error 546

8



analysis on which type of questions LLMs may ex-547

cel or fail is also meaningful for future work. There-548

fore, human evaluation including human agreement549

and error analysis, might be needed for a more com-550

prehensive assessment.551
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A Empirical Study Result on BioMRC873

For BioMRC, as shown in Figure 5, the T5-base874

with AL can quickly outperform GPT-3.5 and875

eventually reach a saturated performance that is876

slightly lower than GPT-4. We posit that GPT-4877

may have performed exceptionally well due to its878

exposure or training on BioMRC, given its source’s879

public accessibility. Nevertheless, our refined T5-880

base model demonstrates comparable performance881

to GPT-4. Remarkably, this is achieved despite the882

T5-base model’s comparative parameter deficiency883

- in the hundreds of times less - and a significantly884

lower demand for computational resources.885
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Figure 5: Result on BioMRC

B Hyperparameters and Settings886

Dataset Learning Rate Training Epoch

BioMRC 1e-4 20
Unfair_TOS 1.5e-4 12
ContactNLI 1.5e-4 20
Casehold 4e-5 28
CUAD 6e-5 18
SDCNL 1e-5 20
Dreaddit 1e-5 20

Table 6: Hyperparameters for each dataset.

We report the experiment hyperparameters in Ta-887

ble 6. All our experiments are executed on one of888

two resources: 1) four NVIDIA V100 32G graphic889

cards and 2) eight NVIDIA V100 32G graphic890

cards. For GPT-3.5 and GPT-4, we used GPT-3.5-891

0613 and GPT-4-0613 respectively.892

For model uncertainty-based strategies, we cal-893

culate the model probability on a randomly sam-894

pled subset of the training data to reduce the time895

complexity of the model uncertainty-based data896

sampling process. Compared to the naive ap- 897

proach’s O(n2) time complexity, our implemen- 898

tation remains to have a time complexity of O(n), 899

which is the same as that of non-AL’s (where n is 900

the number of training data). 901

C Prompts Used for Each Dataset 902

Text in [[double brackets]] denotes input data. 903

C.1 BioMRC (Pappas et al., 2020) 904

I want you to act as an annotator for a
question answering system. You will
be given the title and abstract of a
biomedical research paper, along
with a list of biomedical entities
mentioned in the abstract. Your task
is to determine which entity should
replace the placeholder (XXXX) in
the title.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Here's how you should approach this
task:↪→

Carefully read the title and abstract of
the paper.↪→

Pay close attention to the context in
which the placeholder (XXXX) appears
in the title.

↪→

↪→

Review the list of biomedical entities
mentioned in the abstract.↪→

Determine which entity from the list
best fits the context of the
placeholder in the title.

↪→

↪→

Output only the identifier for the
chosen entity (e.g., `@entity1`). Do
not output anything else.

↪→

↪→

<INPUT>:
<title>:
[[TITLE]]
<abstract>:
[[ABSTRACT]]
<entities>:
[[ENTITY]]
<OUTPUT>:

12



C.2 UnfairTOS (Lippi et al., 2019)905

I want you to act as an annotator for a
Term of Service (ToS) review system.
You will be given a piece of a Term
of Service. Your job is to determine
whether the ToS contains any of the
following unfair terms:

↪→

↪→

↪→

↪→

↪→

Limitation of liability
Unilateral termination
Unilateral change
Content removal
Contract by using
Choice of law
Jurisdiction
Arbitration

If none of the above terms are present,
you should output "None".↪→

Here's how you should approach this
task:↪→

Carefully read the ToS.
Review the list of unfair terms.
For each unfair term, determine whether

it is present in the ToS.↪→

Output only the unfair terms that are
present in the ToS. A ToS may have
multiple unfair terms. \

↪→

↪→

You should output all of them, separated
by a semicolon (;).↪→

Do not output anything else.

<text>:
[[TEXT]]
<OUTPUT>:

C.3 ContractNLI (Koreeda and Manning,906

2021)907

I want you to act as an annotator for a
question answering system. You will
be given a contract and a hypothesis.
Your task is to determine the
hypothesis is contradictory,
entailed or neutral to the contract.

↪→

↪→

↪→

↪→

↪→

Here's how you should approach this
task:↪→

Carefully read the contract.
Carefully read the hypothesis.

Determine whether the hypothesis is
contradictory, entailed or neutral
to the contract.

↪→

↪→

Output only the label (contradiction,
entailment, neutral). Do not output
anything else.

↪→

↪→

<INPUT>:
<premise>:
[[PREMISE]]
<hypothesis>:
[[HYPOTHESIS]]
<OUTPUT>:

C.4 CUAD (Hendrycks et al., 2021) 908

I want you to act as an annotator for a
question answering system. You will
be given the question and a piece of
a contract. You will need to answer
the question based on the contract.
There are only two possible answers,
"Yes" or "No".

↪→

↪→

↪→

↪→

↪→

↪→

Here's how you should approach this
task:↪→

Carefully read the question.
Carefully read the contract.
Determine the answer to the question is

true or not.↪→

Output only the exact answer (one of
"Yes" or "No") of the questions. Do
not output anything else.

↪→

↪→

<INPUT>:
<text>:
[[TEXT]]
<question>:
[[QUESTION]]
<OUTPUT>:

C.5 Casehold (Zheng et al., 2021) 909

I want you to act as an annotator for a
Question Answering system. You will
be given the question and several
answers. Your job is to determine
which answer best answers the
question.

↪→

↪→

↪→

↪→

↪→

Here's how you should approach this
task:↪→

Carefully read the question.
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Carefully read the answers.
Output the numeric index of the answers

that best answers the question.↪→

Do not output anything else.

<INPUT>:
<question>:
[[QUESTION]]
<answer>:
[[ANSWER]]
<OUTPUT>:

C.6 SDCNL (Haque et al., 2021)910

This person wrote this paragraph on
social media.↪→

If you are a psychologist, consider the
mental well-being condition
expressed in this post and answer
the question: does the person want
to suicide?

↪→

↪→

↪→

↪→

Only return Yes or No.

<INPUT>:
<text>:
[[POST]]
<OUTPUT>:

C.7 Dreaddit (Turcan and McKeown, 2019)911

This person wrote this paragraph on
social media.↪→

If you are a psychologist, consider the
mental well-being condition
expressed in this post and answer
the question: is this person
stressful?

↪→

↪→

↪→

↪→

Only return Yes or No

<INPUT>:
<text>:
[[POST]]
<OUTPUT>:
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