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Magic Clothing: Controllable Garment-Driven Image Synthesis

"An old woman sitting on a park bench" "A muscular man wearing sunglasses" "A black lady lying on the grass""A young woman"

"A mature woman with purple hair" "A girl with blond hair and blue eyes" "A cute girl with big eyes" "A happy girl on the beach"

"A handsome boy in white pants" "A photo of a model"

"A smiling woman in white shorts" "A beautiful girl in a colorful skirt"

Figure 1: Examples of our garment-driven image synthesis results. Given a target garment and a text prompt, ourMagic Clothing
is able to generate photorealistic (1st row) and anime-style (2nd row) characters with different finetuned latent diffusion models
(LDMs) [33]. Besides, more of conditional controls can be combined with our Magic Clothing such as ControlNet [51] and
IP-Adapter [50] (3rd and 4th rows).
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ABSTRACT
We propose Magic Clothing, a latent diffusion model (LDM)-based
network architecture for an unexplored garment-driven image syn-
thesis task. Aiming at generating customized characters wearing the
target garments with diverse text prompts, the image controllability
is the most critical issue, i.e., to preserve the garment details and
maintain faithfulness to the text prompts. To this end, we introduce
a garment extractor to capture the detailed garment features, and
employ self-attention fusion to incorporate them into the pretrained
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LDMs, ensuring that the garment details remain unchanged on the
target character. Then, we leverage the joint classifier-free guidance
to balance the control of garment features and text prompts over
the generated results. Meanwhile, the proposed garment extractor
is a plug-in module applicable to various finetuned LDMs, and it can
be combined with other extensions like ControlNet and IP-Adapter
to enhance the diversity and controllability of the generated char-
acters. Furthermore, we design Matched-Points-LPIPS (MP-LPIPS),
a robust metric for evaluating the consistency of the target image
to the source garment. Extensive experiments demonstrate that our
Magic Clothing achieves state-of-the-art results under various con-
ditional controls for garment-driven image synthesis. Our source
code is publicly available (for the review process, please refer to
our supplementary material).

CCS CONCEPTS
• Computing methodologies → Computer vision tasks; Com-
puter vision problems; Supervised learning.

KEYWORDS
Garment-driven image synthesis, Latent diffusion models
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1 INTRODUCTION
Latent diffusion model (LDM)-based generative approaches [7, 9, 13,
15, 30, 33, 41] have achieved great success in text-to-image synthesis
in recent years. Besides the textual condition, many other forms of
conditional control have been explored for LDM-based image syn-
thesis, such as pose, sketch and facial conditions [29, 43, 51]. Among
these researches, little attention has been paid to image synthesis
conditioned on a specific garment so far, which is a promising task
with enormous application prospects for e-commerce and meta-
verse, etc. Such a garment-driven image synthesis task aims to
generate a character wearing the target garment according to the
customized text prompt, where the image controllability is the most
critical issue. More specifically, the main challenges of garment-
driven image synthesis include preserving the garment details and
maintaining faithfulness to the text prompts.

Previous approaches to traditional subject-driven image synthe-
sis [12, 19, 20, 25, 35, 38, 42, 54] usually focus on overall conditional
information like appearance and structure, and invert the subject
image into the text-embedding space, which are insufficient to cap-
ture the complicated fine-grained features of the garments. Another
popular task similar to garment-driven image synthesis is virtual
try-on (VTON) [8, 14, 21, 27, 28, 45, 48], aiming to generate a spe-
cific person wearing the target clothes. However, VTON is more of
an image-inpainting task, which only requires faithfully preserv-
ing the target garment features without any creative capability of
following arbitrary customized text prompts.

In view of the aforementioned challenges, we introduce Magic
Clothing, an LDM-based network architecture that focuses on
character generation conditioned on the given garments and text
prompts. To preserve the fine-grained garment details, we propose

a garment extractor with the UNet architecture [34]. By leveraging
the power of pretrained LDMs [33], it allows smooth incorporation
of detailed garment features into the denoising UNet through self-
attention fusion. To maintain faithfulness to arbitrary customized
text prompts, we randomly drop garment features and text prompts
from a joint distribution in training to enable the joint classifier-
free guidance, which effectively balances the control of garment
features and text prompts over the generated results. Our garment
extractor is also a plug-in module compatible with various fine-
tuned LDMs or extensions like ControlNet [51] and IP-Adapter [50]
to further control the pose, face and even style of the character
without degrading the garment details. In practice, we propose a
novel robust metric, namely Matched-Points-LPIPS (MP-LPIPS) to
quantify the garment-driven image synthesis quality. It measures
the consistency of the target image to the source garment by com-
paring the patches obtained from point matching, thus mitigating
the undesired effect of pose and background on the evaluation.

In summary, the main contributions of this work are as follows:
• Magic Clothing is, to the best of our knowledge, the first
LDM-based work to investigate the unexplored garment-
driven image synthesis task.

• We propose a garment extractor to incorporate garment
features into the denoising process via self-attention fusion.
And the joint classifier-free guidance is applied to balance
the control of garment features and text prompts.

• Our garment extractor is a plug-in module applicable to
various finetuned LDMs, which can be easily combined with
other powerful extensions, such as ControlNet [51] or IP-
Adapter [50], to employ additional conditions.

• We develop a robust metric namely MP-LPIPS to evaluate
the consistency of the target image to the source garment.
Qualitative and quantitative experiments demonstrate our
state-of-the-art performance on garment-driven image syn-
thesis with high controllability.

2 RELATEDWORK
2.1 Latent Diffusion Models
Latent diffusion models (LDMs) [33] have been successfully used
for text-to-image generation tasks. Based on this robust founda-
tional model, various LDM-based researches and applications have
emerged. To add spatial conditioning controls to the pretrained
LDMs, ControlNet [51] incorporated trainable encoder blocks into
the original UNet. Meanwhile, T2I-Adapter [29] proposed a compact
network design that provided the same functionality as ControlNet
but with reduced complexity. To further reduce the training cost,
Uni-ControlNet [55] proposed a unified framework that handles
different conditional controls in a flexible and composable manner
within one single model. On the other hand, LDMs have also played
a significant role in the domain of image editing. InstructPix2Pix [3]
retrained the UNet of LDMs by adding extra input channels to the
first convolutional layer on a large dataset of image editing exam-
ples to make it follow the edit instructions. MasaCtrl [4] converted
the self-attention in diffusion models into mutual self-attention to
enable consistent image generation and complex non-rigid image
editing simultaneously without additional training cost. InfEdit [46]
performed consistent and faithful image editing for both rigid and
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Figure 2: Overview of our Magic Clothing. We propose a garment extractor that captures the garment features and incorporate
these features into the denoising process in self-attention layers. Besides the paired garment and character images, we obtain
the text prompts for training through BLIP [23]. Only the garment extractor requires additional training, which is a plug-in
module compatible with other useful extensions like ControlNet [51] or IP-Adapter [50].

non-rigid semantic changes through the denoising diffusion con-
sistent model and attention control mechanisms. In this paper, we
make full use of the power of pretrained LDMs in text-to-image
generation, and introduce an extra garment extractor for garment-
driven image synthesis.

2.2 Subject-Driven Image Synthesis
Given an image of a particular subject, the subject-driven image
synthesis task is to generate a novel image in different contexts
while maintaining high fidelity to its key visual features. Textual In-
version [12] learned to represent the concept through new "words"
in the embedding space of a frozen text-to-image model, which can
be composed into natural language sentences and generate cus-
tomized images. DreamBooth [35] finetuned the pretrained LDMs
model with the newly designed class-specific prior preservation loss
to make it learn to bind a unique identifier with that specific subject.
However, finetuning the entire UNet for each subject raises signifi-
cant computational cost. To address this, HyperDreamBooth [36]
proposed a hypernetwork capable of efficiently generating an ini-
tial prediction of a subset of network weights and significantly
accelerated the finetuning process. BLIP-Diffusion [22] introduced
a new multimodal encoder which is pretrained to provide subject
representation. By leveraging such visual representation, diffusion
models can yield a wide range of subject variations. IP-Adapter [50]

designed a decoupled cross-attention mechanism that separates
cross-attention layers for text features and image features. De-
spite its simplicity, this method achieved comparable or even better
performance than specifically finetuned models. Versatile Diffu-
sion [47] expanded the existing single-flow diffusion pipeline into
a multitask multimodal network to enable cross-modal generality.
Break-A-Scene [2] extracted a distinct text token for each concept
from a single image by introducing a two-phase customization pro-
cess that optimizes a set of dedicated textual embedding and the
model weights. In this work, we focus on an unexplored garment-
driven image synthesis task, which requires much better detail
preservation together with the creative capability following diverse
text prompts.

3 METHOD
3.1 Preliminary
Unlike other pixel-space based diffusion models, latent diffusion
models (LDMs) [33] are designed to perform the denoising process
in the latent space for reducing the computational cost. Our ap-
proach is based on the LDM framework, which consists of three
main networks, i.e. Vector Quantized Variational AutoEncoder (VQ-
VAE) [11], CLIP VIT-L/14 [32], and a denosing UNet [34]. The VQ-
VAE enables image representation in the latent space, whose en-
coder E compresses the original image x into the image latent z

2024-04-13 08:57. Page 3 of 1–10.
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and decoder D reconstructs the image x from the image latent z
with minor information loss. The CLIP VIT-L/14 T is utilized to
convert the original text prompts y into token embeddings Ty. Dur-
ing training, the noise 𝜖 corresponding to the time step 𝑡 is added to
the image latent z to get a noise latent z𝑡 , and the denoising UNet
𝜖𝜃 is designed to predict the input noise 𝜖 given the noise latent z𝑡 ,
time step 𝑡 and the token embeddings Ty. The optimization process
is performed by minimizing the following loss function:

L = EE(x),Ty,𝜖∼N(0,1),𝑡
[
∥𝜖 − 𝜖𝜃 (z𝑡 , 𝑡,Ty)∥22

]
. (1)

3.2 Network Architecture
Figure 2 presents an overview of our method. During training, we
convert the character image I𝐶 ∈ R3×𝐻×𝑊 and the garment image
I𝐺 ∈ R3×𝐻×𝑊 into the image latents z𝐶 , z𝐺 ∈ R4×

𝐻
8 ×𝑊

8 , respec-
tively, using VAE Encoder E. On the other hand, we caption I𝐶 with
BLIP [23] to obtain the text prompt y and transform it into token
embeddings Ty. Transferring knowledge from the image synthesis
to feature extraction, we introduce a garment extractor E𝐺 that has
the same UNet architecture as the denoising UNet to extract the de-
tailed garment features. Inspired by the powerful spatial-attention
mechanisms [6, 18, 48, 49], we incorporate the extracted garment
features into the original denoising process smoothly through self-
attention fusion. More concretely, 𝛼𝑖 and 𝛽𝑖 refer to the normalized
attention hidden states of the 𝑖-th self-attention block in the original
denoising UNet 𝜖𝜃 and the garment extractor E𝐺 , respectively. The
calculation of self-attention in 𝜖𝜃 after incorporation of garment
features is modified as:

Attention(𝛼𝑖 , 𝛽𝑖 ) = Softmax(
W𝑄𝛽𝑖 (W𝐾 [𝛼𝑖 , 𝛽𝑖 ])𝑇√

𝑑
)W𝑉 [𝛼𝑖 , 𝛽𝑖 ],

(2)
where [·] denotes concatenation operation, 𝑑 is the feature dimen-
sion, and W𝑄 ,W𝐾 ,W𝑉 are linear projection weights of query, key,
and value in self-attention layers.

To maintain the text-to-image synthesis capabilities of the origi-
nal LDM and reduce the training cost, we keep the weights of 𝜖𝜃
frozen. Then we only train our garment extractor with its weights
initialized by the weights of 𝜖𝜃 , which further speeds up the training
process. Our training objective is summarized as:

L = Ez𝐶 ,𝛽,Ty,𝜖∼N(0,1),𝑡
[
∥𝜖 − 𝜖𝜃 (z𝐶𝑡 , 𝛽, 𝑡,Ty)∥22

]
, (3)

where z𝐶𝑡 is obtained by adding noise to the character image latent
z𝐶 at time step 𝑡 , and 𝛽 is the overall garment features from self-
attention blocks of our garment extractor E𝐺 .

During inference, given an input garment image and a text
prompt for the character, Magic Clothing is capable of generat-
ing an image of the character wearing the target garment. To add
more conditional controls, our garment extractor can be utilized
with other LDMs and extensions like ControlNet and IP-Adapter,
which will be discussed in Section 3.4. Meanwhile, the garment
features are shared across all denoising steps, adding minimal com-
putational cost to the original LDM inference process.

3.3 Joint Classifier-free Guidance
Classifier-free guidance [16] is a method that helps the diffusion
models to attain a trade-off between sample quality and diversity

"A fair-skinned old woman in a scarf and a long skirt"Input

Figure 3: Example results with different text guidance scales
𝑆𝑇 and garment guidance scales 𝑆𝐺 . With a larger 𝑆𝑇 , the
generated image becomes more faithful to the text prompt.
While with a larger 𝑆𝐺 , more garment details are preserved.

by jointly training a conditional and an unconditional diffusion
model. The implementation during training is relatively simple
by setting the conditional control c = ∅ with some probability.
During inference, the score estimate 𝜖𝜃 (z𝑡 , c) linearly combine
the conditional and unconditional predictions as the following
equation:

𝜖𝜃 (z𝑡 , c) = 𝜖𝜃 (z𝑡 ,∅) + 𝑠 · (𝜖𝜃 (z𝑡 , c) − 𝜖𝜃 (z𝑡 ,∅)), (4)

where 𝑠 ⩾ 1 represents the strength of conditional controls.
As for our garment-driven image synthesis task, two variant

conditional controls should be considered: detailed garment fea-
tures 𝑐𝐺 and text prompts 𝑐𝑇 . If we consider them as independent
controls, we can naivelymodify the independent classifier-free guid-
ance in [24] for our use. Specifically, garment features c𝐺 and text
prompts c𝑇 can be independently set to ∅ with some probability
during training. Then at inference time, we introduce the garment
guidance scale 𝑆𝐺 and text guidance scale 𝑆𝑇 to adjust the strengths
of conditional controls from the garment and text prompts, respec-
tively. The score estimate with independent classifier-free guidance
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is calculated as:

𝜖𝜃 (z𝑡 , c𝐺 , c𝑇 ) =𝜖𝜃 (z𝑡 ,∅,∅)
+ 𝑆𝐺 · (𝜖𝜃 (z𝑡 ,∅, c𝑇 ) − 𝜖𝜃 (z𝑡 ,∅,∅))
+ 𝑆𝑇 · (𝜖𝜃 (z𝑡 , c𝐺 ,∅) − 𝜖𝜃 (z𝑡 ,∅,∅)).

(5)

Despite its simplicity, fusing two denoising scores as done in Equa-
tion 5 could lead to undesired results since this method ignores
the fact that our two conditional controls may have overlapping
semantics.

Drawing inspiration from [3], we leverage joint classifier-free
guidance to balance these two conditional controls. Here joint indi-
cates that we set the drop rate of garment features and text prompts
according to a joint distribution. More precisely, we randomly set
5% of training samples with c𝐺 = ∅𝐺 , 5% with c𝑇 = ∅𝑇 and an-
other 5% with both c𝐺 = ∅𝐺 and c𝑇 = ∅𝑇 . Our joint classifier-free
guidance score estimate is:

𝜖𝜃 (z𝑡 , c𝐺 , c𝑇 ) =𝜖𝜃 (z𝑡 ,∅,∅)
+ 𝑆𝐺 · (𝜖𝜃 (z𝑡 , c𝐺 ,∅) − 𝜖𝜃 (z𝑡 ,∅,∅))
+ 𝑆𝑇 · (𝜖𝜃 (z𝑡 , c𝐺 , c𝑇 ) − 𝜖𝜃 (z𝑡 , c𝐺 ,∅)).

(6)

In Figure 3, we show the effects of these two parameters on
generated samples with the random seed fixed. It is noticeable that
the garment in the character become more similar to the input
garment with a larger 𝑆𝐺 and a larger 𝑆𝑇 will make the generated
result follow the text prompt more precisely. Since a large gap
between 𝑆𝑇 and 𝑆𝐺 may distort the garment details, we empirically
set 𝑆𝑇 = 7.5 and 𝑆𝐺 = 2.5 in our experiments.

3.4 Plug-in Mode
Since we keep the weights of the pretrained LDM [33] frozen and
only train our garment extractor E𝐺 , we can treat E𝐺 as a plug-in
module and combine it with various finedtuned LDMs to enhance
the diversity of generated characters. For instance, when combined
with various LoRA [17] or full-parameter finetuned LDMs, we are
able to create characters in different styles, such as science fiction,
realistic, and anime styles, etc. Moreover, our controllable image
synthesis process is compatible with other advanced LDM exten-
sions. To generate characters wearing the given garments with
target poses, we can combine ControlNet-Openpose [51] with our
Magic Clothing. And with ControlNet-Inpaint [51], our model is
able to perform the virtual try-on (VTON) task [8, 21, 27, 45, 48]
and generate high-fidelity results. For the purpose of generating a
specific person wearing the target garment, we can combine Magic
Clothing with IP-Adapter-FaceID [50], which takes the given por-
trait as an input condition. We remark that the finetuned LDMs
and multiple extensions like ControlNet [51] and IP-Adapter [50]
can be simultaneously combined with our Magic Clothing. In this
way, we achieve comprehensive conditional controls over the image
synthesis process, including text prompts, garments, styles, faces
and postures, etc. The superior performance of our plug-in models
on controllable image synthesis under various conditions is shown
in Section 4.3.3.

Ours

IP-Adapter

Source garment Target character

Figure 4: MP-LPIPS measures the consistency of the charac-
ter (right column) to the garment (left column) by compar-
ing patches centred on matched points. Given points in the
source garment, we use diffusion features [40] to retrieve
corresponding points in the target character.

4 EXPERIMENTS
4.1 Experimental Setup
4.1.1 Dataset. To train our Magic Clothing for this new task of
garment-driven image synthesis, we need not only the paired gar-
ment and character images, but also text prompts containing the
character descriptions. Since the VITON-HD dataset [8] only con-
tains the paired data of frontal half-body characters and correspond-
ing upper-body garments, we obtain the text prompts by captioning
these characters using BLIP [23].

To evaluate themodel performance, we provide 5 test text prompts
covering different ages, appearances, ornaments and backgrounds
of the target characters using GPT-4 [1]. And we select the gar-
ments in the test set of the VITON-HD dataset as our test garments,
which contains 2,032 upper-body garments. We generate 5 charac-
ter images for each test garment with the provided 5 text prompts,
resulting in a total of 10,160 images for evaluation.

4.1.2 ComparedMethods. We compare our results with three state-
of-the-art LDM-based subject-driven image synthesis models, IP-
Adapter [50], BLIP-Diffusion [22], and Versatile Diffusion [47]. In
addition, we train a ControlNet [51] that takes the garment di-
rectly as an input condition and generates images according to text
prompts, namely ControlNet-Garment. For fair comparison, all the
experiments are conducted at the resolution of 768 × 576.

4.1.3 Evaluation Metrics. To evaluate the garment fidelity, the de-
tails of the garment on the generated character must be compared

2024-04-13 08:57. Page 5 of 1–10.
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with those of the original garment. Following previous subject-
driven methods [35, 36], we use CLIP-I [32] to compute the simi-
larity of the same subject in different images. However, this metric
is sensitive to background and the character pose in our task. Re-
cently, S-LPIPS [53] is designed to tackle the problem of changes
in the shape and posture of generated characters, but it still relies
on human pose estimation [5, 39, 44] and paired images. Surpris-
ingly, it is reported in [40] that geometric corresponding points
can be accurately predicted from the intermediate layer activa-
tions of pretrained LDMs, even though they are not trained with
any explicit geometry supervision. Driven by the above prospects
and challenges, we propose Matched-Points-LPIPS (MP-LPIPS) that
measures the LPIPS distance [52] between pixels on garment I𝐺
and matched pixels on generated character I𝐶 . Specifically, we
uniformly select N points P𝐺 on each garment, calculating their
diffusion features [40] Ft,l (P𝐺 ) at time step 𝑡 and layer 𝑙 . Then we
find the matched points P𝐶 on the target character by calculating
cosine similarity as:

P𝐶 = argmin
P

Ft,l (P𝐺 )Ft,l (P)
∥Ft,l (P𝐺 )∥∥Ft,l (P)∥

, (7)

and finally define MP-LPIPS distance as:

𝑑MP−LPIPS =
1
𝑁

𝑁∑︁
𝑖=1

𝑑LPIPS
(
P𝑖𝐺 , P

𝑖
𝐶

)
. (8)

We measure the average LPIPS distance of the patches P𝐺 , P𝐶 ∈
R𝑁×𝐻×𝑊 centred on N pairs of points P𝐺 and P𝐶 , where 𝐻 and𝑊
indicate the height and width of the patch, respectively. As shown
in Figure 4, MP-LPIPS effectively measures the consistency of the
garment to the character without the need for manual annotation.
More importantly, it is robust to factors such as the background
and posture. More detailed settings are to be provided in the sup-
plementary material.

In addition, we use CLIP-T [32] to measure the faithfulness of
results to text prompts and CLIP aesthetic score [37] to evaluate
the general image quality.

4.2 Implementation Details
In our experiments, we initialize the weights of our garment ex-
tractor by inheriting the pretrained weights of the UNet in Stable
Diffusion v1.5 [33], and only finetune its weight while keeping
the weights of other modules frozen. Our model is trained on the
paired images from VITON-HD [8] dataset at the resolution of 768
× 576 and the corresponding captions that obtained from BLIP [23].
We adopt the AdamW optimizer [26] with a fixed learning rate of
5e-5. The model is trained for 100,000 steps on a single NVIDIA
A100 GPU with a batch size of 16. At inference time, the images
are generated with the UniPC sampler [56] for 20 sampling steps.

4.3 Experimental Results
4.3.1 Qualitative Results. Figure 5 presents qualitative results with
our text prompts and garment images from the VITON-HDdataset [8].
We can see that IP-Adapter [50] closely follows the textual condi-
tions and preserves the general appearance of the garment. How-
ever, it struggles to preserve the garment details such as printed
patterns or texts. BLIP Diffusion [22] and Versatile Diffusion [47] are

Table 1: Quantitative comparison with traditional subject-
driven image synthesis methods. The best and second best
results are reported in bold and underline, respectively.

Method MP-LPIPS ↓ CLIP-T ↑ CLIP-I ↑ CLIP-AS ↑
ControlNet-Garment 0.414 0.323 0.636 5.511
Versatile Diffusion 0.277 0.240 0.790 5.242
BLIP-Diffusion 0.224 0.233 0.765 5.316
IP-Adapter 0.194 0.289 0.760 5.426

Magic Clothing 0.143 0.336 0.803 5.526

Table 2: Ablation study of different classifier-free guidance
(CFG). The best results are reported in bold.

Method MP-LPIPS ↓ CLIP-T ↑ CLIP-I ↑ CLIP-AS ↑
Independent CFG 0.177 0.300 0.772 5.353
Joint CFG 0.143 0.336 0.803 5.526

weak at following text prompts and also have difficulty maintaining
garment details. To make matters worse, they tend to generate gar-
ment variations instead of characters when the garment details are
complex, as shown in the last line of the Figure 5. These traditional
subject-driven image synthesis methods typically embed the im-
age in the CLIP text embedding space, which emphasis on overall
structural similarity rather than preservation of fine-grained details.
However, humans are sensitive to subtle variations in garment fea-
tures such as printed patterns or text, making these conventional
methods inadequate for the garment-driven image synthesis task.
Although the results of ControlNet [51] follow the text prompts
reasonably well, they almost ignore the conditional control from
the garments, resulting in the garments on the generated characters
being completely different from the input garments. We believe
that this is mainly due to ControlNet failing to learn the spatial
correlations between the garments and the characters during its
training process. Compared to other methods, the results from our
Magic Clothing not only maintain faithfulness to the text prompts
but also preserve details of the given garment, demonstrating the
best performance in garment-driven image synthesis.

4.3.2 Quantitative Results. Table 1 shows the quantitative results
with our text prompts and garment images from the VITON-HD
dataset [8]. ControlNet [51] achieves high scores on CLIP-T and
CLIP-AS, which demonstrates its ability to follow text prompts and
generate images with high aesthetic quality. However, it fails to re-
tain garment details due to the spatial mismatch between the given
garment and target character. According to their CLIP-I scores,
Versatile Diffusion [47], Blip Diffusion [22] and IP-Adapter [50] can
generate characters that are more similar to the person wearing the
garment in the VITON-HD dataset. Nonetheless, they extract image
features using the CLIP image encoder [32], which captures only
semantic information and loses garment details, resulting in infe-
rior performance on MP-LPIPS. In comparison, our Magic Clothing
generates characters with fine-grained garment details and text
prompt fidelity, significantly outperforming other methods on all
the evaluation metrics.
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Figure 5: Qualitative comparison with traditional subject-driven image synthesis methods, including IP-Adapter [50], BLIP-
Diffusion [22], Versatile Diffusion [47], and ControlNet-Garment [51].

4.3.3 Plug-in Results. Figure 6 presents the results of our garment
extractor as a plug-in module combined with other finetuned LDMs
and extensions. When built upon LDMs [33] finetuned for animate-
style image synthesis, Magic Clothing is able to generate anime
characters wearing target garments (1st row). Further condition
controls can be added by combining it with other advanced ex-
tensions. For example, we can arbitrarily change the poses of the
characters (2nd row) with the help of ControlNet-Openpose [51].
While with ControlNet-Inpaint [51] (3rd row), Magic Clothing can
accomplish the traditional virtual try-on task. With the help of IP-
Adapter-FaceID [50], we can specify the identity of the characters
wearing the target garments (4th row). More remarkably, multiple
extensions can be simultaneously combined with Magic Clothing
to create a wide variety of customized images (5th row).

4.4 Ablation Study
To verify the effectiveness of our joint classifier-free guidance, we
train a model with the same network architecture but using in-
dependent classifier-free guidance as described in Section 3.3. In
contrast to our method, we set the drop rate of garment features and
text prompts independently to 10% during training. As summarized
in Table 2, our joint classifier-free guidance is substantially better
than the independent classifier-free guidance on all metrics. Bene-
fiting from the joint setting, our LDM-based model achieves a better
training balance between conditional and unconditional denoising.
The independent setting, on the other hand, largely favours the
conditional denoising with respect to both or one of the garment
and the text prompt. Note that since the text prompt for training
may naturally contain the information about garment, these two
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Figure 6: Examples of plug-in results of our Magic Clothing combined with finetuned anime-style LDMs (1st row), ControlNet-
Openpose (2nd row), ControlNet-Inpaint (3rd row), IP-Adapter-FaceID (4th row), and multiple extensions (5th row).

conditional controls can hardly be independent from each other
and are better considered jointly.

4.5 Limitation
Despite the state-of-the-art performance in garment-driven image
synthesis, limitations remain in our Magic Clothing. For instance,
the quality of our generated images are highly dependent on the
base diffusion models. Further improvement can be achieved by
using more powerful pretrained models like SDXL [31] and Stable
Diffusion 3 [10]. Another limitation is that due to the limited train-
ing samples in the VITON-HD dataset [8], Magic Clothing may fail
to generate perfect results for complicated garments such as down
jackets and coats. A possible solution in the future is to collect more
comprehensive dataset for training our garment extractor.

5 CONCLUSION
This paper presents Magic Clothing, an LDM-based network archi-
tecture for the unexplored garment-driven image synthesis task. A
garment extractor is employed to incorporate the garment details
via self-attention fusion, and the joint classifier-free guidance is
applied to balance the control of garment features and text prompts.
Our garment extractor is a plug-in module which can be easily com-
bined with other useful extensions for additional conditions. Com-
prehensive experiments demonstrate our superiority in generating
diverse images controlled by the given garments and text prompts,
implying the tremendous potential of controllable garment-driven
image synthesis.
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