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ABSTRACT

Sparse sequential highly-multivariate data of the form characteristic of hospital
in-patient investigation and treatment poses a considerable challenge for represen-
tation learning. Such data is neither faithfully reducible to 1D nor dense enough
to constitute multivariate series. Conventional models compromise their data by
requiring these forms at the point of input. Building on contemporary sequence-
modelling architectures, we design a value-aware transformer, prompting a recon-
ceptualisation of our data as 1.5−dimensional: a token-value form both respecting
its sequential nature and augmenting it with a quantifier. Experiments focused on
sequential in-patient laboratory data up to 48hrs after hospital admission show that
the value-aware transformer performs favourably versus competitive baselines on
in-hospital mortality and length-of-stay prediction within the MIMIC-III dataset.

1 INTRODUCTION

Modelling the sequence of events in electronic health records (EHRs) poses fundamental challenges
to contemporary sequence models owing to the complex, heterogeneous nature of the data. Even
choosing a good input representation for such data presents difficult trade-offs. The variety of data
shapes encountered within the records for different patients and across different sections of their
visit is substantial. While there are some variables, such as patient demographics, that one might
reasonably expect all patients to have an entry for, the heterogeneity of structure sets in as soon as
the patient’s individual health status is more intricately explored. During an admission to hospital,
a series of laboratory tests (hereafter referred to as ‘labs’ for succinctness) may be conducted on
a patient: the number of possible types of test might be large (in the hundreds), these may be
measured repeatedly, once, or not at all. Hospital stays may vary significantly in length and this
variation is not necessarily indicative of severity. Very ill patients may have short survival, or may
be artificially sustained on life support in expectation of a recovery that fails to arrive. There are
further complications: some tests may have been conducted in advance - attributed to their historical
health record; or recorded in a different modality of their health record (e.g. notes, charts, etc.). The
vast complexity and heterogeneity of EHR data presents representation learning with fertile ground
for innovation.

1.1 OUR CONTRIBUTIONS

This paper seeks to address a particular data regime which is under-studied: that of sparse sequential
and highly-multivariate data, where the total number of variables typically outstrips the total number
of measurements for a given data instance. Table 6 illustrates this for the MIMIC-III lab-events
dataset, where the mean number of completely unmeasured variables for a given visit is 697 out of
a possible 753. As we shall describe, conventional approaches to modelling this data make severe
simplifying assumptions, or rely heavily on imputation. Many contemporary works restrict both the
variables selected and the population studied, so as to reduce missingness. To address these issues,
we:

• Present a data encoding that effectively captures sparse sequential highly-multivariate data
while avoiding considerable imputation.

• Propose neat adaptations to make a standard transformer architecture value-aware, equip-
ping it to learn and generate this data encoding.

• Provide an empirical study on a real-world dataset demonstrating that a pre-trained value-
aware transformer performs competitively on challenging downstream predictive tasks.
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1.2 RELATED WORK

This work sits on the intersection of a number of exciting areas of research: representation learning
for healthcare, transformer architectures, sparse sequence modelling. Here we try to do justice to
some of the many relevant works.

Representation learning for EHRs. Researchers seeking to make secondary use of the signal
within EHRs have paid particular attention to the developments in deep learning (Shickel et al.,
2017; Si et al., 2020), with applications ranging from unsupervised patient stratification Landi et al.
(2020) to learning personalised comorbidity networks (Qian et al., 2020). The wave of excitement
set in motion by transformer architectures (Vaswani et al., 2017) quickly propagated to the health-
care world. Large language models such as BERT (Devlin et al., 2018) have been subjected to
rounds of secondary pre-training on medical corpora (Alsentzer et al., 2019), with the aim of har-
nessing signal locked up in the idiosyncratic natural language formats such as clinical notes. By
encoding events as tokens, transformers can also be utilised for studying EHR event sequences.
When arranged to constitute a sentence, these tokens capture the pattern of a patient’s stay. This
approach can be pursued at various levels of granularity, for instance Li et al. (2020) use BERT to
model sequences of diagnoses over multiple visits. Applying the same methodology at a finer grain
presents a natural model for within-visit medical event sequences such as labs. But while knowledge
of the performance of a lab test conveys information, it is the lab test together with its value that is
the more complete indicator of the health status of a patient. Choi et al. (2020) made progress on
integrating labs and their values using a graph convolutional transformer, modelling the graphical
and hierarchical structure of EHRs in an exciting piece of work. However, their method was not
designed to model repeat measurements of labs - a common phenomenon within the natural course
of medical investigation and treatment, motivating our work.

Healthcare benchmarks. In order to objectively compare systems such as those described above,
EHR-specific benchmark tasks have been proposed, many based on the MIMIC dataset Johnson et al.
(2016). Of particular relevance here are the prediction tasks for in-hospital mortality and length-of-
stay proposed in Harutyunyan et al. (2019); Purushotham et al. (2018). In related work, and with
a view to further increasing reproducibility, Wang et al. (2020) provided a pre-processing pipeline
that addresses concerns such as unit conversion, outlier filtering and aggregation that are common
in these tasks. The considerable heterogeneity of structure in EHRs means that the benchmarking
papers need to make many design and preprocessing choices for the cohorts selected, the variables
used, and the definitions of prediction targets. Not all of these choices are desirable for applications:
e.g. in Harutyunyan et al. (2019) labels are defined in such a way that the events of interest could
occur within the data visible to the model rather than being restricted to predicting future events,
while in Purushotham et al. (2018) their largest feature set includes only 11 of the approx. 700 raw
features available in the MIMIC-III lab tests, chosen due to their minimal missingness rate. Some
of these considerations (targets labels) we would like to refine so as to provide more utility, others
(forced variable selection and aggregation) do not align with the purpose of this work, which is to
remove the need for cherry-picking of variables. This makes direct comparison with these works
challenging - a point which other authors have highlighted, even when using largely similar cohorts,
variables and identical prediction targets (Che et al., 2018).

Irregular times series. A closely related problem is that of studying irregularly-sampled multi-
variate time-series. Shukla & Marlin (2020) detailed three different types of input representations:
series-based, vector-based and set-based, capturing time, variable and value for a range of scenarios.
Horn et al. (2020) focus on the set-based approach considering each times series to be a bag-of-
events, proposing a model which applies a set function together with a single attention mechanism
between elements of the set, topped with a classifier. In their experiments, an out-of-the-box trans-
former is state-of-the-art for the Physionet 2012 prediction task (Goldberger et al., 2000), and per-
forms competitively on a MIMIC-III mortality prediction task (based on Harutyunyan et al. (2019)).
Another approach is elicited in (Che et al., 2018), where they introduce a GRU-based architecture,
designed with inbuilt decay mechanisms. Their method is attuned to time-series variables such as
flow data or regularly-sampled labs and relies on the imputation of missing values, which, for our
data regime would constitute on average 98% of the input (see Table 6).
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2 DATA GREATER THAN 1D

Sequences of words such as those found in natural language are neatly represented as 1D data using
tokens. Sequences of lab results such as those found early in EHRs are neatly represented as (token,
value) pairs, which might suggest that the ideal representation of this data should a multivariate se-
ries with one dimension per lab type. To model it in this form would require considerable imputation
due to the data’s sparsity. However, the presence or missingness of particular labs in a sequence are
informative: they are requested by healthcare professionals guided by clinical intuition that the EHR
may not capture. By imputing the data, this valuable signal is weakened. Perhaps we can make do
with just a 1D form - and if so, how should that 1D be constituted? These are the key questions that
a practitioner hoping to model in our data regime faces. As we will discuss in this section, when the
data is sparse and highly-multivariate, the choice is not clear a priori. For the motivational problem
of lab-result sequences there may be only few or a large number of measurements with multiple
repeat samples of the same lab - characteristics which may contain important information.

We close the section by proposing a variation on the conventional approaches, which we refer to
as “1.5−dimensional” data: a form preserving the sequential nature of the lab orders, together
with information about the values, but without the need for full multivariate or sparse vector-based
sequence representations and the imputation issues that would ensue.

2.1 CHARACTERISTICS OF LAB-RESULT SEQUENCES

In-patient lab-result sequences are generated by a process of hospital investigation and treatment
which imbue them with particular characteristics. Relevance: the labs are pertinent to the health
investigation being conducted on the patient. Only a small proportion of the all of the labs available
might be obtained during any given visit. Repeats: these relevant measurements may be taken
once, or repeated many times. Pragmatism: difficult or inconvenient labs will not be taken unless
absolutely necessarily. This leads to a rare-token problem also commonly encountered in natural
language. If we believe that these characteristics deliver valuable information, then the way that we
represent our data should not compromise them.

2.2 COLLAPSING DATA DOWN TO 1D

A common way to deal with this difficult data dimensionality is to ‘collapse’ it to 1D. There are two
natural ways of doing this: the horizontal collapse and the vertical collapse, illustrated in Figure 1.

Horizontal collapse. The horizontal collapse retains the sequential structure of the data, and re-
moves the value aspect. One form of the horizontal collapse is to ignore the value from the token-
value pair. We then have sequences of lab orders, and the premise is that there is sufficient informa-
tion contained in the presence of a lab order to inform the underlying state of a patient. This capi-

Figure 1: The 1D horizontal data collapse forms a sequence of lab tokens while ignoring their values;
a 1D vertical collapse takes a summary statistic (e.g. the mean) for each lab sequence.
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talises on recent advancements in NLP and has formed the basis for some of the medical sequence-
modelling applications mentioned in Section 1.2.

Vertical collapse. An alternative form of 1D collapse is to collate repeated values of a variable using
a summary measure (such as the mean, median, max, most-recent) and then use these summary
measures – one per variable – as the input to a model. This representation respects the unique value
scales on a per-variable basis, however it compromises the sequential nature of the data and collapses
repeated measurements.

2.3 IMPUTING FOR MULTIVARIATE SEQUENCES

An enticing candidate for the representation of (token, value) pairs is as a multivariate sequence
with one sequence dimension per token. This retains each variable’s independent value-scale and
the innate temporally-ordered nature of the data. However, the sparsity of our specific data regime
is problematic, affecting its suitability: a program of severe imputation is required in order to use
this input form. This commonly takes the form of sequential forward- or backward-filling of data;
per-variable mean imputation; or the use of sentinel values, the choice of which will necessarily
depend on the variable in question (so as not to inappropriately assign a sentinel value that is com-
monly attained by true data points). Imputation is not necessarily evil, but does require careful
application, even in a relatively dense data regime. Not all missingness is made equal and even
the most advanced general-purpose imputation schemes rely on assumptions (MCAR or MAR: see
Mohan & Pearl (2021)) which are often unrealistic in a healthcare setting. Unrealistic imputation
can have unexpected downstream implications (Caruana, 2021) which can be dangerous for critical
applications. Even a sparse vector-based multivariate representation such as that detailed in Shukla
& Marlin (2020) would require on average 98% of its input to be imputed for our data (see Table 6).

2.4 1.5D DATA

Both the 1D collapse and the multivariate sequence approaches introduce their own issues or simpli-
fications for sparse sequential highly-multivariate data. We propose to interpolate these data regimes
and use an alternative data format: ([TOK],[VAL]), where [TOK] is the name of the variable and
where [VAL] is its value, which has been transformed and discretised in such a way that it is mean-
ingfully comparable across all variables. Such an approach:

• retains the sequential nature of the data: it is a 1D sequence of tokens.
• removes the need for considerable imputation (cf. Tables 1 and 6)
• reduces the heterogeneous value dimension to a common scale, contextualised by its token.

For numeric labs, the value tokenisation can be achieved via quantilisation: conditional population
statistics for the lab results can be used to attribute a category to each of the values, depending on
which quantile the value lies in. If there are no prior distributional statistics available, they can
be extracted from the training set data (for simplicity and generality we took this approach in our
analysis). For categorical labs we can encode them in any manner which is consistent. Where no
category can be associated from those mentioned previously, a sentinel category can be used - this
may be necessary in the case where a result is not recorded, or the lab itself is not seen within the
training set.

Table 1: Comparison of number of inputs required for 1D, 1.5D and regularly-sampled multivariate
sequence representations, where: l is # variables, n is number of sequence steps of the model, m is
# data entries in a particular sequence. See Table 6 for an analysis of our dataset.

Data representation # Inputs # Imputations Signal compromised

1D (vertical) l ∈ [l −m, l − 1] sequence structure & repeat measures
1D (horizontal) n n−m values of measurements
1.5D 2n 2(n−m) raw value-scales
Multivariate sequences l · n l · n−m investigative pattern
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The discrete categories chosen should be chosen dependent on the application. Since our variables
are physiological measurements we choose to use a quantilisation that accentuates the extremities
of the distributions, assigning the following discretisation:

• [XLOW]: the value lies below the 10% percentile
• [LOW] : the value lies between the 10% and 25% percentiles
• [MID] : the value lies between the 25% and 75% percentiles
• [HIGH] : the value lies between the 75% and 90% percentiles
• [XHIGH] : the values lies above the 90% percentile.

The token [UNK] was assigned if the lab did not feature in the train set, or if there was no numeric
lab value associated with the lab. This specific quantilisation should not be read as definitive: other
natural candidates are using quartiles, deciles, or a normal/abnormal discretisation, and should be
informed by the modelling application.

Multiple events might approximately coincide: to break these ties we used a consistent ordering of
labs. For our application the order of coincident tests should have no direct bearing on the informa-
tiveness of the tests themselves, but a random ordering would make it harder for the model to learn
these patterns. This can be more explicitly dealt with using temporal embeddings (see Appendix D).

The [VAL] tokens should contextualised by their associated [TOK]. The sequence of [VAL]s,
while plausibly carrying some autoregressive signal, are not in-of-themselves readily interpretable
as the sequential data of a single variable. They augment a 1D sequence of tokens with values, hence
the apt moniker “1.5D data”.

3 VALUE-AWARE TRANSFORMERS

Transformer architectures in their various guises have shown exceptional performance on tokenised
sequence modelling tasks, but they lack a principled approach for learning (token, value) sequences.
The 1.5D data form lays a foundation for doing so. We outline guiding principles which provide
a basis for utilising this input form based on the discussion in Section 2.4, then design a neat and
minimalistic transformer architecture for learning and generating it.

3.1 DESIGN PRINCIPLES

1. Tokens are primary. First, there were tokens, and then came their values.

Principle 1 makes a statement about precedence. The sequence of values [VAL], by themselves, are
bereft of meaning and without a clear autoregressive interpretation. To benefit from these qualities
the model must contextualise them using their respective tokens.

2. Values should be loosely-coupled to their token.

Loose-coupling is most easily defined by contrast with a strong-coupling where each token [TOK]
and its quantifier, the value [VAL], is explicitly concatenated during preprocessing to form a new
token [TOK-VAL]. Strong-coupling drops a fundamental symmetry present in the raw data: the
information that the pairs ([TOK],[VAL1]) and ([TOK],[VAL2]) are of the same variable is
not provided to the model if using this representation. This concatenation approach scales poorly
with the number of distinct tokens and values tokens1. At the other extreme there is no-coupling.
No-coupling is to treat the tokens and values as completely separate entities. Modelling them in this
way both causes the 1.5D form to lose its meaning.

3. Values should have the opportunity to influence the autoregressive learning of the token
sequence.

While the core autoregressive properties of the 1.5D sequence lie amongst the tokens, there may be
useful information in their associated values which we should aim to capitalise on.

1For further comparison with strong-coupling and empirical experiments see Appendix E.
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3.2 TAILORING A VALUE-AWARE TRANSFORMER

The temporal nature of our sequence data make a decoder-only style transformer a compelling candi-
date architecture. Large decoder-only models such as GPT-3 (Brown et al., 2020) have demonstrated
astonishing performance, especially for natural language generation, and while data generation is not
the primary use-case here, the future-masking inductive bias is an appropriate one for event data.
We highlight three core components that adapt a plain decoder-only transformer to the 1.5D data:

Embeddings. To respect principle 1 and ensure loose-coupling of the ([TOK],[VAL]) pairs we
use separate embedding layers for the tokens and the values. These two embeddings are then con-
catenated. Only after this concatenation is a positional embedding added, so that both parts have
their position consistently encoded.

For our experiments the number of tokens is ≈ 700 and the number of values ≈ 10 - we map the
tokens to R100 and the values to R5 to force some compression. Deciding the optimal dimensionality
of embedding is an open problem, but many embedding algorithms do not suffer much loss of
performance due to over-parameterisation Yin & Shen (2018).

Attention. The loosely-coupled embedding concatenation means that information about the values
is included within the embeddings that are propagated through the attention layers. This is key so that
principle 3 is respected. We use a now established bag of tricks (Wang, 2021) with the normalise-
attend-feedforward (with residuals) structure for the attention layers constituting our value-aware
transformer.

Output layers. The choice of autoregressive prediction head for the transformer is another cru-
cial design consideration. Both values and tokens should be predicted, and how this is done has a
significant effect on the overall learning of the model because of its proximity to the loss calculation.

Splitting the final attention layer’s output embedding into two parts proved to work better than
sharing the entire embedding by some margin. In respect of principle 1, the lion’s share is dedicated
to next-token prediction and the remaining part of the embedding used for next-value prediction.
Dedicated token-prediction and value-prediction layers are then attached to their respective segment
of the embedding. To respect the priority of tokens, the value-prediction layer is conditional on the
predicted token, explicitly including it whether correct or incorrect.

Finally, we control the relative weight given to the cross-entropy losses for the tokens L[TOK] and
the values L[VAL] using a hyperparameter γ ∈ [0, 1]:

L = γL[TOK] + (1− γ)L[VAL]. (1)

3.2.1 PRE-TRAINING

With a view to later fine-tuning tasks we include one type of special token: an [EOS] token for the
end-of-sequence. The [EOS] has a distinguished role as the token upon whose output embedding
we perform classification or regression. There is a different [EOS] for the tokens (∈ R100) and
for the values (∈ R5).2. The last special token we include is a [PAD] - to fill up empty slots in
the sequence. The [PAD] class is not used when calculating the cross-entropy losses L[TOK] and
L[VAL]. During pre-training the model seeks to minimise the total loss, equation 1.

3.2.2 FINE-TUNING

Fine-tuning a value-aware transformer for a classification task consists of replacing the autoregres-
sive output layers with a classification head, directly harnessing the embeddings output from the top
attention layer. There is a small but important difference in approach from common bidirectional
language models. There, the first token is often denoted as [CLS] and is imbued with a special clas-
sification function, with a classifier head being attached to it (Devlin et al., 2018). Because we are
using a (future-masked) decoder-style transformer, classification on a prepended start-of-sequence
token would be useless: during fine-tuning, the model would see exactly the same input for each
data instance, hence is unable to learn anything. In our setting classification is instead done on the

2These are always concatenated together during the input embedding stage.
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Figure 2: Architecture diagrams for pre-training and fine-tuning a value-aware transformer

[EOS] token: we use a floating classification head which attaches itself at this position, taking as its
input the output embedding of [EOS]. We use a simple but flexible one-hidden-layer feed-forward
neural net with an output layer to the number of classes relevant for the classification problem.
For regression tasks we use exactly the same set up except with a single class output and a further
non-linearity. For fine-tuning the model seeks to minimise a problem-dependent loss. For our ex-
periments we used a propensity-weighted cross-entropy loss for imbalanced classification problems
and a MSE loss for the regression problem.

4 EXPERIMENTS

MIMIC-III (‘Medical Information Mart for Intensive Care’)3 is a core resource for machine-learning
researchers pursuing the advancement of healthcare. It is a large publicly accessible anonymised
database comprising comprehensive information relating to patients admitted to the critical care
unit at a large US hospital. The heterogeneity of data structure encountered within it are exemplar
of the electronic health records of healthcare systems across the world.

4.1 MIMIC-III LAB-EVENTS

Lab-event sequences occurring early within an admission to hospital embody the sparse sequential
highly-multivariate data characteristics described above, making the MIMIC-III lab-events an ex-
cellent dataset to benchmark on. We focus our experiments on the lab-events data which is available
up until 48 hours after admission, pre-training a value-aware transformer to learn its autoregressive
structure. We then tackle three challenging downstream problems by fine-tuning the value-aware
transformer. The first and second are classification tasks: in-hospital mortality prediction, both
death within 3 days, and death after 7 days; the third is a regression task: predicting the remaining
length-of-stay (LOS) at 48 hours.

4.2 EXPERIMENT 1: PRE-TRAINING

In the first experiment we investigated whether incorporating values assists in the prediction of
tokens by comparing the value-aware transformer to a plain transformer which uses the same base

3Available at https://physionet.org/content/mimiciii/1.4
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Table 2: Pre-training performance: value-aware transformer vs. a transformer on Dev. set. L[TOK]

indicates the token cross-entropy loss, and p[TOK] the corresponding average probability of correct
next-token prediction.

Model Data dim. L[TOK] p[TOK] L[VAL] p[VAL]

Random – 0.0013 – 0.1250
Transformer (depth 4) 1 h 1.331 0.2642 – –
VA-transformer (depth 4) 1.5 1.322 0.2674 1.347 0.2600
Transformer (depth 6) 1 h 1.319 0.2666 – –
VA-transformer (depth 6) 1.5 1.291 0.2750 1.332 0.2639

architecture. We captured their respective token cross-entropy losses L[TOK] for comparison. We
made the competition as fair as possible, choosing the same fixed input sequence length and their
respective best learning rate hyperparameters with all other settings kept the same. We let each run
until a fixed early stopping threshold on the Dev. set was met. Further details may be found in
Appendix B.

The results in Table 2 demonstrate that the value-aware transformer provides a promising improve-
ment over the transformer, with better average next token prediction for both the small (depth 4) and
large (depth 6) versions of the model. Comparing the two depth 6 models, the value-aware trans-
former provides a 3.2% boost over its transformer sibling in the average probability of correct token
prediction, whilst also generating values with considerably greater than random probability.

The successful outcome of Experiment 1 demonstrates that there is both valuable signal in the
1.5D representation, and that the value-aware transformer is able to exploit it. The second and
third experiments test whether we can channel its superior generative modelling into a performance
gain on downstream tasks.

4.3 EXPERIMENT 2: IN-HOSPITAL MORTALITY PREDICTION

In-hospital mortality is a challenging clinical outcome to predict because of its highly-imbalanced
nature: thankfully a minority of the patients admitted to hospital die. Just 0.84% of visits in our
Train set result in death within 3 days of admission. Accuracy is a poor metric of success here -
we can attain 99.16% by always predicting that there is no death. Instead we optimise for balanced
accuracy, using a Train set propensity-weighted binary cross-entropy loss. We consider two targets:
mortality ≤ 3 days (which has Train set propensity of 0.0084), and mortality > 7 days (whose Train
set propensity is 0.0496).

We compare the performance of a fixed-specification classifier (a one-hidden layer feed-forward
neural network with hidden dimension 100) when trained on various types of 1D vertical collapse
(listed as ‘FFNN’), with the use of the same classifier head for the fine-tuning of the plain trans-
former model (using the 1D horizontal representation) and the value-aware transformer (using the
1.5D representation).

The value-aware transformers clearly outperform the other methods for these two tasks, as shown
in Table 3. Interestingly, the FFNNs using the quantilised values perform better than using when
using the raw values, likely due to a mixture of measurement sparsity and a sensitivity to value
extremities, indicating that there is some merit to the discretisation scheme we chose in Section 2.4
for this application.

4.4 EXPERIMENT 3: LOS PREDICTION

To round off our experiments we choose a regression task, and length-of-stay is another core problem
faced by caregivers. The accurate prediction of LOS enables more efficient delivery of care. When
the hospital is under strain or run inefficiently there is a negative impact on patient outcomes.

We use the same fixed-specification regression network for all models. This has the same archi-
tecture as for experiment 2, the only differences being a single-class output and a final soft-plus

8



Under review as a conference paper at ICLR 2022

Table 3: In-hospital mortality classification performance on the Test set, with all metrics multiplied
by 100 for ease of reading and the mean ± std reported over 5 runs.

Model Data Mortality ≤ 3 days Mortality > 7 days
Bal-acc AUROC Bal-acc AUROC

FFNN raw values (mean) 1 v 57.7 ± 4.4 61.0 ± 3.3 62.4 ± 3.0 66.1 ± 5.4
FFNN quants (mean, one-hot) 1 v 54.6 ± 6.4 73.6 ± 1.4 70.4 ± 0.5 77.9 ± 1.5
FFNN quants (mean, integer) 1 v 60.3 ± 2.8 70.7 ± 3.0 68.6 ± 0.7 77.2 ± 0.6
Transformer (depth 4) 1 h 66.6 ± 1.3 76.1 ± 0.7 69.5 ± 0.6 77.7 ± 0.2
Transformer (depth 6) 1 h 66.3 ± 2.0 75.2 ± 1.3 69.9 ± 1.0 77.6 ± 0.6
VA-Transformer (depth 4) 1.5 72.5 ± 3.9 82.5 ± 2.0 72.3 ± 1.6 80.8 ± 0.3
VA-Transformer (depth 6) 1.5 71.6 ± 2.5 81.3 ± 1.2 72.4 ± 0.5 81.0 ± 0.3

Table 4: Remaining length-of-stay regression performance on Test set.

Model Data dim. Remaining LOS at 48hrs
MSE R2

FFNN raw values (mean) 1 v 158.6 ± 6.6 0.091 ± 0.038
FFNN quants (mean, one-hot) 1 v 131.5 ± 0.9 0.246 ± 0.005
FFNN quants (mean, integer) 1 v 131.6 ± 1.3 0.246 ± 0.007
Transformer (depth 4) 1 h 132.4 ± 1.7 0.241 ± 0.010
Transformer (depth 6) 1 h 131.5 ± 1.2 0.246 ± 0.007
VA-Transformer (depth 4) 1.5 126.9 ± 1.4 0.273 ± 0.008
VA-Transformer (depth 6) 1.5 125.2 ± 3.0 0.282 ± 0.017

non-linearity, for the reason that remaining-LOS is a non-negative real number. We compare this
regression network’s performance when the input takes the form of the 1D vertically collapsed data
with a pre-trained transformer trained on the 1D horizontally collapsed data and a value-aware trans-
former trained on the 1.5D representation.

As can be seen from Table 4, both the depth 4 and the depth 6 value-aware transformer surpass the
competitor models by a healthy margin on the LOS regression task, providing further compelling
evidence that additional information of worth is retained in the 1.5D input representation and that the
value-aware transformer is able to convert it into superior downstream performance across a range
of tasks.

5 CONCLUSION

This paper is devoted to sparse sequential highly-multivariate data - a form which is found through-
out the healthcare domain and whose value is difficult to unlock. We have analysed conventional
approaches to modelling this data using representation learning methods, highlighting the 1D vertical
and horizontal collapses and the considerable imputation necessitated by models using a multivariate
sequence input.

Offering a fresh perspective, we have reconceptualised the raw data as 1.5-dimensional and pre-
sented a token-value form which retains both sequential structure and information about the values,
without forcing considerable imputation before the point of input to a model. We have outlined
principles for the appropriate modelling of this data form, and based on these principles, made tar-
geted adaptations to a standard transformer architecture, efficiently tailoring it to the generation of
1.5D data.

In a series of experiments on the MIMIC-III lab-events dataset we have demonstrated both the
appropriateness of the 1.5D data representation and the suitability of the value-aware transformer
by clearly surpassing competitive baselines both as an autoregressive model, and on the challenging
real-world in-hospital mortality (classification) and length-of-stay (regression) prediction tasks.
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REPRODUCIBILITY STATEMENT

The codebase supporting this work has been made available with the submission. Included within
it are: the scripts used to pre-process the data; a va transformers package which is based on the
great work of Wang (2021); the scripts used for the pre-training, fine-tuning and baseline experi-
ments. Supplementary details of the pre-processing and experimental settings are outlined in Ap-
pendices A and B. The MIMIC-III dataset available at https://physionet.org/content/
mimiciii/1.4/ after suitable completion of training.
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A SUPPLEMENTARY DATASET INFORMATION

For a visit to be included in our dataset it must have lasted at least 48 hours from admission to
discharge or death. It must have at least ten lab-events recorded and death must not occur at 48
hours or before. Those visits that met these criteria were then randomly split on a patient identifier
into Train, Dev. and Test sets with the proportions 0.8 / 0.1 / 0.1. Some patients have multiple visits
so it was important to partition based on the patient so as not to introduce a data leak. The partition
statistics are detailed in Table 5. For our experiments, minimal processing of the data was performed
so as not to collapse exploitable signal within the raw data (see Section B for further details). We use
753 raw lab-event variables, and do not supplement them with static variables such as demographics,
since this study is focused on the effective utilisation of sequential data.

Table 5: MIMIC-III labs data statistics after preprocessing

Partition Train Dev. Test

# Patients 32989 4124 4124
# Visits 41403 5164 5072
# Labs/visit mean 142.8 142.3 143.8
# Labs/visit median 127.0 128.0 129.0
# Labs/visit 90% 248.0 245.7 250.0
Remaining LOS mean (hrs) 219.3 227.7 226.8
Remaining LOS median (hrs) 125.6 127.3 130.4
Mortality ≤ 3 days 0.00841 0.00833 0.00848
Mortality > 7 days 0.04959 0.04493 0.05205

Table 6: Comparison of the number of imputations required for 1D, 1.5D and multivariate series
data representations for the MIMIC-III lab-events data. where: l = 753 is # variables, n = 250 is
number of sequential steps (cf. Table 1). Vector-based is detailed in Shukla & Marlin (2020) and
has a varying sized input - we report the mean.

Data representation # Inputs # Imputations required/visit (Train set)
Mean (% Input) Median (% Input)

1D (vertical) 753 696.9 (92.6%) 699 (92.8%)
1D (horizontal) 250 115.4 (46.1%) 123 (49.2%)
1.5D 500 230.7 (46.1%) 246 (49.2%)
Multivariate sequences 188250 188107.2 (99.9%) 188123 (99.9%)
Vector-based 8020.7 7877.9 (98.0%) 6627 (98.1%)

B EXPERIMENTAL SETTINGS & HYPERPARAMETERS

Finetuning for the value-aware transformer. Dropout of probability 0.5 at the hidden layer of the
classifier, combined with learning rates between the orders of magnitude 1e-4 to 1e-5 worked well
across different iterations of our datasets and prediction tasks. We always used the same learning
rate for a model’s fine-tuning as it was pre-trained with. We found that some minor pre-epoch
exponential learning rate decay (≈ 0.9) lessened the deterioration due to over-fitting after it reached
its peak performance but the practical effect of this was marginal on experiments - after just a few
epochs, both transformers and value-aware transformers were at their best.

Preprocessing of data for experiments. Minimal processing of the data was performed so as not
to collapse exploitable signal within the raw data. The visits in the Train set were used to extract
per-lab quantile distributions following the procedure outlined in Section 2.4. From these derived
distributions, we encoded each lab-event in the Train, Dev. and Test sets as ([LAB],[VAL]),
with [VAL] ∈ {[XLOW],[LOW],[MID],[HIGH],[XHIGH],[UNK]}. Finally, with visits rep-
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resented as sequences of token-value pairs, we append a special end-of-sequence token [EOS] to
mark the 48 hour point.

Experiment 1 We chose the input sequence length to be 250 for each of the sequence models,
because this sequence length choice captures the entirety of 90% of the visits in the Train set (cf.
Table 5). For the value-aware transformer we found that setting the loss hyperparameter to γ = 0.9
was most effective, putting greater weight on the learning of the tokens and counteracting the value
token’s greater at-random probability of being correctly predicted. Since the number of tokens is
≈ 750 its baseline probability of correct prediction is approximately 0.0013, while the number of
quantilised values is ≈ 10, hence the baseline chance of correctly predicting a [VAL] is orders
of magnitude higher, at around 0.1. Learning rates across the order of magnitude 1e-4 to 1e-5
were consistently performant for our data for both transformers and value-aware transformers. We
used gradient-clipping and a small amount of dropout in both feedforward and attention layers. We
trained each until it hit an early-stopping threshold of 7 epochs without improvement on the Dev.
set.

Experiment 2 To determine a competitive setting for the FFNN baselines we ran a hyperparameter
search against the Dev. set. The all-round best-performing hyperparameters from the search were
then chosen and 5 separate training runs were performed for each model, checkpointed at the epoch
with the best Dev. set loss. For the transformers and value-aware transformers, we fine-tuned the
4 pre-trained models from Experiment 1 (Section 4.2) five times each from scratch, checkpointing
them at the epoch with the lowest Dev. set loss. The loss for all models was the same: class-weighted
binary cross-entropy. The 5 runs of each competitor were then loaded from their checkpoints and
evaluated against Test set, with the mean ± standard deviation of key metrics reported in Table 3.
The Dev. set performance is detailed in Tables 7 & 8. Each model was trained until it hit an early
stopping threshold of 3 epochs without improvement on the Dev. set.

Experiment 3 Exactly the same procedure was followed as for Experiment 2, except that the MSE
loss was used for all models. The Test set results are reported in Table 4. The Dev. set performance
is detailed in Table 9.

13



Under review as a conference paper at ICLR 2022

C DEV. SET PERFORMANCE FOR MAIN PAPER EXPERIMENTS

Table 7: In-hospital mortality ≤ 3 days classification performance on the Dev. set

Model Data dim. Mortality ≤ 3 days
Balanced-accuracy AUROC

FFNN raw values (mean) 1 v 0.557 ± 0.049 0.638 ± 0.024
FFNN quants (mean, one-hot) 1 v 0.556 ± 0.077 0.784 ± 0.008
FFNN quants (mean, integer) 1 v 0.604 ± 0.037 0.732 ± 0.008
Transformer (depth 4) 1 h 0.698 ± 0.020 0.800 ± 0.012
Transformer (depth 6) 1 h 0.694 ± 0.013 0.797 ± 0.009
VA-Transformer (depth 4) 1.5 0.737 ± 0.049 0.845 ± 0.019
VA-Transformer (depth 6) 1.5 0.726 ± 0.020 0.831 ± 0.014

Table 8: In-hospital mortality > 7 days classification performance on the Dev. set

Model Data dim. Mortality > 7 days
Balanced-accuracy AUROC

FFNN raw values (mean) 1 v 0.616 ± 0.041 0.649 ± 0.055
FFNN quants (mean, one-hot) 1 v 0.696 ± 0.007 0.784 ± 0.015
FFNN quants (mean, integer) 1 v 0.691 ± 0.008 0.779 ± 0.003
Transformer (depth 4) 1 h 0.685 ± 0.004 0.773 ± 0.004
Transformer (depth 6) 1 h 0.687 ± 0.008 0.772 ± 0.003
VA-Transformer (depth 4) 1.5 0.727 ± 0.005 0.817 ± 0.006
VA-Transformer (depth 6) 1.5 0.731 ± 0.007 0.816 ± 0.004

Table 9: Remaining length-of-stay regression performance on the Dev. set

Model Data dim. Remaining LOS at 48hrs
MSE R2

FFNN raw values (mean) 1 v 158.9 ± 3.7 0.106 ± 0.021
FFNN quants (mean, one-hot) 1 v 131.2 ± 1.0 0.262 ± 0.006
FFNN quants (mean, integer) 1 v 131.1 ± 1.3 0.262 ± 0.007
Transformer (depth 4) 1 h 130.1 ± 1.2 0.268 ± 0.007
Transformer (depth 6) 1 h 129.6 ± 1.0 0.271 ± 0.006
VA-Transformer (depth 4) 1.5 124.3 ± 1.9 0.300 ± 0.011
VA-Transformer (depth 6) 1.5 123.3 ± 2.2 0.306 ± 0.012
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D TEMPORAL EMBEDDINGS

Each of the events in our experiments come with a timestamp. The natural way to utilise this
timestamp with a (value-aware) transformer is for the positional embedding to be a function of
time. There are now a number of variations on the absolute positional embeddings introduced in
Vaswani et al. (2017), with two prominent variations being relative positional embeddings and rotary
embeddings (see Wang (2021) for implementations of these, and more). The simplest approach is to
use the version of absolute positional embedding detailed in Horn et al. (2020). To add the temporal
embedding indicating time t ∈ [0, T ] to a vector v ∈ Rd, we first the vector τ ∈ Rd with components

τ2i = sin(t/T 2i/d)

τ2i+1 = cos(t/T 2i/d)

for indices satisfying 0 ≤ 2i, 2i+1 ≤ d−1 and where T is the maximum time relevant for the prob-
lem at hand. This vector is then added component-wise to each concatenated token-value embed-
ding, before being fed into the attentional section of the model. While we extracted this information
during preprocessing, using it in the experiments would give further advantage to the transformer
and value-aware transformers over the non-sequential models, and we wanted this comparison to be
as fair as possible.

E STRONG-COUPLING EXPERIMENT

For the value-aware transformer we chose to use a loose-coupling method to input the 1.5D data
using an embed-concatenate-embed input structure. This scales favourably: with the number of
variable tokens T and the number of value tokens V , loose-coupling requires a vocabulary of T +V
distinct input tokens, while strong-coupling requires a vocabulary of TV . For large T and V this is
important - especially on smaller datasets consisting of sparse data, where fine quantilisation would
result in considerable token sparsity issues. For our experimental set-up with V = 8 and T = 755,
strong-coupling does in fact provided a competitive inductive bias, performing worse than loose-
coupling on LOS (Table 11), comparably on Mortality ≤ 3 days (Table 12), but better on Mortality
> 7 days (Table 13). This could be due to V being small in our experiment, so that loose-coupling
does not have the advantage it would were V of a larger size.

Table 10: Pre-training performance: a transformer using the 1.5D data with strong-coupling on
Dev. set. L[TOK-VAL] indicates the cross-entropy loss, and p[TOK-VAL] the corresponding average
probability of correct next-token prediction.

Model Input form L[TOK-VAL] p[TOK-VAL]

Random – – 0.0002
Transformer (depth 4) [TOK-VAL] 2.252 0.1052
Transformer (depth 6) [TOK-VAL] 2.198 0.1110
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Table 11: Comparison with strong-coupling [TOK-VAL] of 1.5D form: remaining length-of-stay
on the Test set

Model Data dim. Input form Remaining LOS at 48hrs
MSE R2

Dev. set
Transformer (depth 4) 1.5 [TOK-VAL] 127.6 ± 1.2 0.281 ± 0.007
Transformer (depth 6) 1.5 [TOK-VAL] 125.7 ± 1.6 0.292 ± 0.009
VA-Transformer (depth 4) 1.5 ([TOK], [VAL]) 124.3 ± 1.9 0.300 ± 0.011
VA-Transformer (depth 6) 1.5 ([VAL], [VAL]) 123.3 ± 2.2 0.306 ± 0.012

Test set
Transformer (depth 4) 1.5 [TOK-VAL] 128.8 ± 0.9 0.261 ± 0.005
Transformer (depth 6) 1.5 [TOK-VAL] 128.4 ± 2.8 0.264 ± 0.016
VA-Transformer (depth 4) 1.5 ([TOK], [VAL]) 126.9 ± 1.4 0.273 ± 0.008
VA-Transformer (depth 6) 1.5 ([VAL], [VAL]) 125.2 ± 3.0 0.282 ± 0.017

Table 12: Comparison with strong-coupling [TOK-VAL] of 1.5D form: in-hospital mortality ≤ 3
days

Model Data dim. Input form Mortality ≤ 3 days
Balanced-accuracy AUROC

Dev. set
Transformer (depth 4) 1.5 [TOK-VAL] 0.767 ± 0.019 0.839 ± 0.006
Transformer (depth 6) 1.5 [TOK-VAL] 0.737 ± 0.049 0.842 ± 0.015
VA-Transformer (depth 4) 1.5 ([TOK], [VAL]) 0.737 ± 0.049 0.845 ± 0.019
VA-Transformer (depth 6) 1.5 ([TOK], [VAL]) 0.726 ± 0.020 0.831 ± 0.014

Test set
Transformer (depth 4) 1.5 [TOK-VAL] 0.749 ± 0.041 0.841 ± 0.019
Transformer (depth 6) 1.5 [TOK-VAL] 0.734 ± 0.030 0.831 ± 0.016
VA-Transformer (depth 4) 1.5 ([TOK], [VAL]) 0.725 ± 0.039 0.825 ± 0.020
VA-Transformer (depth 6) 1.5 ([TOK], [VAL]) 0.716 ± 0.025 0.813 ± 0.012

Table 13: Comparison with strong-coupling [TOK-VAL] of 1.5D form: in-hospital mortality > 7
days

Model Data dim. Input form Mortality > 7 days
Balanced-accuracy AUROC

Dev. set
Transformer (depth 4) 1.5 [TOK-VAL] 0.734 ± 0.006 0.820 ± 0.004
Transformer (depth 6) 1.5 [TOK-VAL] 0.729 ± 0.006 0.819 ± 0.003
VA-Transformer (depth 4) 1.5 ([TOK], [VAL]) 0.727 ± 0.005 0.817 ± 0.006
VA-Transformer (depth 6) 1.5 ([TOK], [VAL]) 0.731 ± 0.007 0.816 ± 0.004

Test set
Transformer (depth 4) 1.5 [TOK-VAL] 0.723 ± 0.010 0.816 ± 0.006
Transformer (depth 6) 1.5 [TOK-VAL] 0.727 ± 0.007 0.807 ± 0.003
VA-Transformer (depth 4) 1.5 ([TOK], [VAL]) 0.723 ± 0.016 0.808 ± 0.003
VA-Transformer (depth 6) 1.5 ([TOK], [VAL]) 0.724 ± 0.005 0.810 ± 0.003
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