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ABSTRACT

Inspired by the success of general-purpose models in NLP, recent studies attempt to
unify different vision tasks in the same sequence format and employ autoregressive
Transformers for sequence prediction. They apply uni-directional attention to
capture sequential dependencies and generate task sequences recursively. However,
such autoregressive Transformers may not fit vision tasks well, as vision task
sequences usually lack the sequential dependencies typically observed in natural
languages. In this work, we design Masked AutoDecoder (MAD), an effective
multi-task vision generalist. MAD consists of two core designs. First, we develop
a parallel decoding framework that introduces bi-directional attention to capture
contextual dependencies comprehensively and decode vision task sequences in
parallel. Second, we design a masked sequence modeling approach that learns rich
task contexts by masking and reconstructing task sequences. In this way, MAD
handles all the tasks by a single network branch and a simple cross-entropy loss
with minimal task-specific designs. Extensive experiments demonstrate the great
potential of MAD as a new paradigm for unifying various vision tasks. MAD
achieves superior performance and inference efficiency compared to autoregressive
counterparts while obtaining competitive accuracy with task-specific models.

1 INTRODUCTION

Computer vision covers various concepts, such as localization, classification, and description, lead-
ing to a wide variety of highly structured outputs in different vision tasks, i.e., object detection,
instance segmentation, keypoint detection, image captioning, etc. Following natural language process-
ing (NLP), recent methods (Lu et al.,2022; (Chen et al., 2022a; |Wang et al., 2023}; 2022} |Kolesnikov:
et al.| [2022) attempt to unify different vision tasks in an autoregressive sequence-to-sequence frame-
work as illustrated in the upper part of Fig.[I] They first model different vision tasks in the same
sequence format, such as a sequence of coordinate and class label tokens for object detection, a
sequence of contour coordinate tokens for image segmentation, or a sequence of descriptive sen-
tences for image captioning. Additionally, the autoregressive Transformers (Brown et al.l [2020;
Radford et al., [2018;2019), with its specially designed uni-directional attention to capture sequential
dependencies, are employed to recursively predict these vision task sequences.

Despite the success, the autoregressive approach often struggles on vision tasks due to two major
factors: (1) The discrepancy between vision and language. Language task sequences (Brown et al.,
2020; [Touvron et al., [2023) heavily follow sequential dependencies while vision task sequences may
not, e.g., the next word prediction in a sentence highly depends on its preceding texts, while the
pixel prediction in segmentation tasks largely depends on its neighboring content instead of merely
previous ones. The autoregressive approach, with uni-directional attention, can well capture sequential
dependencies for language tasks but may not fit well with vision tasks. (2) Computation Efficiency.
The autoregressive approach predicts tokens in a sequence recursively, which is computation-intensive.
The two factors might limit the model performance and efficiency, hindering the application of the
autoregressive approach to vision tasks.

One possible solution for mitigating the above two issues is to explore bi-directional attention and
parallel prediction for sequence modeling. This design leads to a customized Transformer that is
capable of capturing more comprehensive dependencies and decodes the task sequence from scratch
in parallel. However, such decoding process from scratch may struggle while modeling task contexts
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Figure 1: Unified Sequence-to-sequence Modeling of Vision Tasks. The traditional Autoregressive
Decoder adopts a multi-step recursive process for prediction. It generates task sequences token by
token and utilizes uni-directional attention where each token can only attend to its previous ones. The
generation step is repeated N times depending on the length of sequences. Our proposed Masked
AutoDecoder (MAD) adopts parallel decoding where each token can perceive all other tokens in the
sequence. In addition, by masking and reconstructing task sequences, MAD is capable of capturing
rich task contexts for multi-task learning. Tokens in blue indicate task prompts, and Task Sequences
are simplified with details to be described in the ensuing sections.

as sequences from different tasks highly vary in patterns, lengths, token vocabularies, etc., which will
impede network convergence and result in inferior performance for multi-task learning.

Driven by the above analysis, we present Masked Decoder (MAD), an effective sequence-based
generalist for vision tasks. As illustrated in the bottom-left part of Fig. [I, MAD masks tokens
randomly from the task sequences and reconstructs the masked tokens based on the unmasked ones
and image features, which provides rich task contexts for modeling disparate task sequences. In
addition, it adopts an encoder-decoder Transformer architecture with bi-directional attention that
leverages comprehensive dependencies in vision tasks to effectively decode task sequences in parallel.
These designs enable a more efficient and effective multi-task learning framework that performs
multiple vision tasks in a single architecture. Our experiments with four tasks (object detection,
instance segmentation. key-point detection, and image captioning) on the COCO dataset demonstrate
that a simple MAD can achieve competitive accuracy and efficiency compared to both task-customized
approaches and existing generalist models.

2 RELATED WORKS

Vision Generalist Models Learning a vision generalist model capable of handling multiple vision
tasks using a shared architecture has long been a goal in computer vision. Inspired by the success of
unified sequence-to-sequence based transformer framework (Devlin et al., 2018} [Radford et al.| [2018];
2019) in natural language processing (NLP), recent works (Alayrac et al.,[2022; /Wang et al.| [2022;
Reed et al.,[2022; |Chen et al.,[2022b) extend this framework to the field of computer vision and model
various vision tasks in a unified sequence-to-sequence autoregressive paradigm. The pioneering
works (Cho et al.| 2021} |Li et al., [2022} [Zhu et al.,|2022) mainly focus on high-level semantic tasks,
such as image captioning, visual question answering, image-text matching, and etc., considering
their intrinsic correlation with language. In pursuit of unifying more vision tasks, especially for
those involving dense predictions, Pix2seq (Chen et al.,2021; 2022a)) and UniTab (Yang et al., [2022)
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discrete object positions as a series of coordinate tokens to enable the localization capability for
generalist models. Unified-IO (Lu et al., 2022) and UViM (Kolesnikov et al., 2022} encode the
per-pixel targets into semantic tokens for vision tasks that require outputs as images, such as depth
estimation or panoptic segmentation. Uni-PercieverV2 (Li et al., 2023 equips an additional region
proposal network to generate sequence predictions for object detection and instance segmentation.
VisionLLM (Wang et al.,[2023) leverages LLM to enable flexible task output formats. Different from
these methods which focus on customizing and extending more vision tasks in a sequence-based
autoregressive framework, we demonstrate that such a framework may not fit well for vision tasks.
Our masked Auto-decoding pursues a conceptually different direction and learns diverse task contexts
in parallel via masked sequence modeling, leading to a more efficient and effective vision generalist.

Masked Signal Modeling The paradigm of learning rich representations via masking and reconstruct-
ing has been widely explored in both fields of NLP and computer vision. In NLP, through masking
and recovering language sentences, models like BERT (Devlin et al.l [2018)) and its variants (Liu
et al., 2019; Lan et al.| 2019)) successfully pre-train models capable of generalizing to a broad range
of NLP tasks. In computer vision, such a paradigm also leads to multiple masked image model-
ing (MIM) (Gao et al.l [2022; Dong et al.| [2022) and masked video modeling (MVM) techniques. For
example, BEIT (Bao et al., 2021) explores MIM by recovering the masked image into visual tokens
from discrete VAE (Ramesh et al.,[2021). SimMIM (Xie et al.| 2022)), MaskFeat (Wei et al.| 2022)),
and MAE (He et al.| [2022)) incorporate low-level visual signals, such as RGB pixel value or the feature
descriptor HOG (Dalal & Triggs, [2005), as the reconstruction targets. VideoMAE (Feichtenhofer
et al.| |2022) encodes the corrupted video and learns to recover both spatial and temporal signals.
The above methods employ masked signal modeling as a self-supervised task, aiming to learn to
auto-encode rich representations for downstream tasks. Different from them, we propose masked
auto-decoder (MAD), exploring masked sequence modeling for decoding task sequences from its
masked variants. Our approach is close to non-autoregressive translation (Ghazvininejad et al.,[2019;
Gu et al.,|2017) in NLP, but it has very different intrinsic objectives - non-autoregressive translation
exploits parallel decoding to improve translation efficiency, while MAD aims to model diverse task
contexts for learning multi-task vision generalists.

3 METHODS

Our proposed unified generalist framework consists of three key components: (1) Unified tokenization
of diverse input and output sequences for different tasks; (2) Masked auto-decoding framework for
modeling task contexts; (3) An architecture that decodes desired task sequences based on image
features. We introduce these components in the following sections.

3.1 TASK TOKENIZATION

In this work, we consider four vision-related tasks, including object detection, instance segmentation,
keypoint detection, and image captioning. These tasks require the model’s ability from classification
to localization, from vision to language, and from image-level to pixel-level recognition. Therefore, A
comprehensive vocabulary is essential for dealing with such sophisticated problems. Our vocabulary
comprises five parts, including prompt tokens to distinguish tasks, coordinate tokens for localization,
category tokens for classification, task-related special tokens, and word tokens for captioning, more
detail to be elaborated in the ensuing subsections.

For object detection, following Pix2Seq (Chen et al.) 2021), we convert bounding boxes
into a sequence of tokens consisting of discrete coordinates and categories by the order of
[Tmins Ymin, Tmazs Ymaz, class]. As described in Fig. [2] we construct a sequence consisting of
N noise objects, and then randomly replace and inject the ground truth object in the sequence. The
< Detection > prompt tokens are added before the sequence to identify the task. We set NV at 100
by default.

For instance segmentation, we directly predict the pixel mask following Mask R-CNN (He et al.|
2017). The bit masks of the size M x M are flattened and transformed into sequences consisting
of < Foreground > tokens and < Background > tokens. We concatenate the prompt sequence
consisting of task token < Segmentation >, bounding box coordinate tokens, and a class token to
identify different instances.
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Figure 2: Four vision tasks are tokenized into a unified sequence format. Sequences for object
detection consist of coordinate tokens and class tokens. For instance segmentation, we adopt two
customized tokens to represent foreground pixels (pixel=1) and background pixels (pixel=0). Keypoint
detection shares the same coordinate tokens to object detection, with two additional tokens for visible
and invisible keypoints. We adopt sentence-piece model (Kudo & Richardson, [2018)) to tokenize
captioning sentences into subword token sequences, but show words for simplicity.

For keypoint detection, we predict the coordinates and visibility for each keypoint of the person
instance. It can thus be represented as a sequence of [z, y, visibility, x, y, visibility, ...|. We adopt
two tokens < Visible > and < Inwvisible > to depict the visibility. The keypoints are arranged
by the default order as in COCO dataset 2014). For the occluded keypoints, we replace
their coordinate tokens with random coordinates within the bounding box. We utilize the sequence
[< Keypoint >, Tmin, Ymins Tmaz, Ymaz, PETSON] to prompt keypoint detection task, where the
coordinates in the prompt indicate the bounding box of the corresponding person.

For captioning, we adopt a pre-trained sentence-piece model (SPM) (Kudo & Richardson| [2018)) to
convert a caption into a sequence of discrete tokens. We randomly replace one of the tokens in the
transferred sequence with a random word token for sequence augmentation. All the sequences are
padded or truncated to a length of 20 tokens. The < C'aption > token is adopted as the prompt.

3.2 MASKED AUTODECODING

Masked Training We propose Masked Auto-Decoding for multi-task sequence modeling. We
randomly sample a subset of target tokens and mask the remaining ones. The sampling follows a
uniform distribution. The masked tokens are replaced by special < Mask > tokens, which are
shared among all tasks. During training, we adopt two kinds of sequences for each task, a fully
masked sequence and a partly masked sequence.

The reconstruction of fully masked sequences establishes a basis to train a unified decoder, which is,
learning to decode multi-task sequences with only the prompts. Therefore, all the tokens, except those
in the prompt sequences, are replaced with < Mask > before being fed into the decoder. The training
objective is to reconstruct the desired task sequences based on task prompts. However, different
from the autoregressive approach where each task sequence is specified by its corresponding input
sequence, a fully masked sequence in auto-decoding might match multiple similar task sequences,
such as differently arranged objects for object detection or similar captioning sentences per image for
image captioning. Randomly choosing the reconstruction target each time might hinder convergence.
Hence, we adopt Hungarian Matching to construct the task sequences for object
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Figure 3: The proposed MAD architecture. MAD consists of three major parts, a Backbone +
Encoder to extract the representation of the input images, a Decoder that processes masked sequences
for prediction, and a Vocabulary Tokenizer that transfers between token sequences and embeddings.
We randomly mask Task Sequences for Masked Sequences during training, and take fully Masked
Sequences as input for inference.

detection and image captioning. For instance segmentation and keypoint detection, the original
unmasked sequences are adopted as targets since their prompt sequences with object locations and
categories are able to specify the unambiguous task sequences.

However, when all the tokens are masked, it is difficult for the model to distinguish different task
sequences based on only a few prompt tokens. We thus leverage partly masked sequences to alleviate
this issue. The unmasked tokens provide rich cues for the pattern of different task sequences,
which help the decoder capture diverse task contexts. During training, both fully and partly masked
sequences are concatenated together and decoded in parallel.

The MAD task is greatly inspired by the self-supervised masked auto-encoding approach in both
language and vision domains, which learns and encodes informative representation by reconstructing
masked content. We expand this idea of masked modeling to decode multi-task sequences in computer
vision. This simple method, by modeling corrected sequences and predicting missing tokens, enables
MAD to learn distinct task contexts and inter-sequence dependencies for vision tasks.

Masked Inference During inference, we conduct multi-stage masked decoding to refine the prediction.
With the initial prediction recovered from the fully masked sequence, we sample part of the sequences
and replace them with mask tokens again. The corrupting sequences are then fed to the decoder for
reconstruction. We directly ensemble predictions from masked tokens to their original tokens to
obtain more accurate predictions.

3.3 ARCHITECTURE

Our goal is to build a single model that is capable of handling different vision-related tasks within a
unified sequence paradigm with little task-customized designs. Hence, we adopt a simple encoder-
decoder transformer architecture, which has been proven successful in handling sequences with
variable lengths in both natural language processing and computer vision tasks. As shown in Fig. 3]
the overall architecture of MAD consists of three main components, a backbone network with the
encoder to extract image features, a decoder to reconstruct the masked sequences, and a vocabulary
tokenizer that transforms between token sequences and embedding.
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Backbone and Transformer Encoder. Given an input image I € R>W>3 3 backbone network is
adopted to generate a low-resolution image feature with a stride of 32. The encoder then takes the
image feature, adds 2D positional encodings, and processes the feature via a series of encoder layers
consisting of a self-attention module and feed-forward network (FFN). The image feature is then
injected into the decoder as a condition to decode task sequences.

Vocabulary Tokenizer. We leverage vocabulary tokenizer to transform between token sequences
and sequence embeddings. It maintains a vocabulary of embeddings with a dimension of D, which
corresponds to all tokens as described in Sec. Before being fed into the decoder, the discrete
Masked Sequences of alength L are converted into Masked Sequence Embeddings E € R¥*P by
directly indexing the vocabulary. After being recovered by the decoder, we adopt cosine similarity to
transform the Reconstructed Sequence Embeddings back to the Predicted Sequences.

Transformer Decoder. The decoder follows standard architecture, reconstructing Masked Sequence
Embeddings through self-attention, cross-attention, and FFN layers. To address the sequence order,
we introduce learned Sequence Positional Encoding and add them to the input embeddings before
each attention layer in the decoder. The Sequence Positional Encodings are shared among all the tasks
and are truncated according to the length of different task sequences. Unlike existing autoregressive
methods (Chen et al., [2022a; [Lu et al., [2022)) that adopt uni-directional masks in self-attention layers
and generate only one token at a time, our model decodes all the sequence embeddings in parallel
with bi-directional attention, leading to more efficient and effective predictions.

3.4 MULTI-TASK TRAINING

Loss Function. We adopt a softmax cross-entropy loss to maximize the likelihood of masked
sequence conditioned on the image feature:

1
L=) Wig— > logP(jilr.y) (1)
t

mieM

where y and ¢ are masked and decoded sequences, W is loss weights for different tasks, M means
the set of masked tokens, and NV,,, denotes the number of masked tokens. Only the loss of masked
tokens is counted. Following previous practice (Carion et al., 2020; Al-Rfou et al.| [2019), we adopt
auxiliary losses for the predictions after each decoder layer. For each task, we filter the target token
vocabulary so that losses are only calculated on its involved vocabulary to improve training efficiency.
Considering tokens of the whole vocabulary leads to intensive computation and memory usage since
image captioning involves plenteous text tokens that are not involved in other tasks.

Task Mixed Sampling. For learning a single model for multiple tasks, we employ a task mixed
sampling strategy where each image in the dataset is sampled with its annotations mixed from all
tasks. The sampled images are processed by the backbone and encoder only once for encoding image
features shared by all tasks. Only the decoding process is repeated for different tasks, considering
that they hold different sequence lengths and are hard to process in parallel. Such a strategy is
conceptually simple and effective compared with the batch mixing strategy from existing work (Chen
et al.} 2022a; L1 et al.,|2023)) where each batch only samples image-sequence pairs for a single task.
Considering that each image might involve multiple vision tasks, batch mixing requires encoding the
same image multiple times for different tasks. As a comparison, task mixing provides a more flexible
framework to add more data from more tasks, while also sharing most model components among
tasks, resulting in better efficiency.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Dataset and Tasks. Following previous practive (Chen et al., [2022aj; Wang et al., [2023), we evaluate
MAD on MS-COCO dataset (Lin et al., 2014)) which contains 118k training images and 5k validation
images with annotations for all four tasks we considered. For object detection, we take N = 100
instances per image for training, resulting in a sequence of length 500. The coordinates of bounding
boxes are discretized into 500 bins. For instance segmentation, we randomly sample ten instances and
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Table 1: Comparisons for object detection (AP), instance segmentation (AP), keypoint detec-
tion (AP), and image captioning (BLEU @4 (Papineni et al., 2002))) on COCO validation set.

Backbone Param. Det. Seg. Kpt. Cap.
Task-specific Models
Faster R-CNN (Ren et al., 2015) R101-FPN 42M 42.0 - - -
DETR (Carion et al.,[2020) R101-DC5 60M 449 - - -
Pix2Seq (Chen et al.| [2021) R101-DC5 5TM 45.0 - - -
Mask R-CNN (He et al.;|2017) X101-FPN 107M 429 38.6 - -
Keypoint R-CNN (Wu et al.,[2019) R50-FPN 59M - - 65.5 -
Transformer (Sharma et al., |[2018) Encoder - - - - 34.0
Generalist Models
VisionLLM (Wang et al., 2023) R50+Alpaca-7B  40M+7B 446 25.1 - 31.0
Pix2SeqV2 (Chen et al.| [2022a) VIT-B 132M 46.5 382 648 349
MAD (Ours) Swin-B 107M 49.7 406 646 322

transform their segmentation masks into bit masks with a size of 16 x 16. For keypoint detection, we
train MAD on ten person instances per image and only predict keypoints for detected humans (based
object detection results) during inference. We pad blank instances for the above three tasks if there
are not enough instances existing in the image. For image captioning, we adopt sentence piece
model (SPM) from TS5 (Raffel et al.| 2020) for tokenization, and abbreviate its vocabulary based on
COCO dataset, resulting in 11421 remaining tokens. We use loss weights of [1.5, 2.7, 0.5, 0.3] for
object detection, instance segmentation, keypoint detection, and image captioning respectively.

At inference time, we first predict task sequences for object detection as they will serve as the prompt
for the subsequent tasks. The detection sequences are decoded into detection results, represented by
five tokens including four coordinate tokens and one class token, while the probability of the class
token is adopted as the detection score. For instance segmentation, we directly convert predicted
sequences into bit masks based on probabilities of < Foreground > tokens. For keypoint detection,
the predicted sequences are dequantized into tuples of keypoint coordinates with probabilities of
< Visible > showing their visibility. For image captioning, the sequence is truncated by the first
padding token and directly mapped back to text by SPM. We conduct masked inference on keypoint
detection and image captioinng tasks with mask ratios of 0.7, and 0.8, 0.6, 0.4 respectively.

Implementation Details. We implement MAD with two different backbones, Swin-Base for com-
parison to state-of-the-art methods, and Resnet-50 for ablations. Both the encoder and decoder in
Transformer consist of 6 layers with a main dimension of 256 and 8§ attention heads, and the width of
FFN is set to 2048. For sequence modeling, we adopt learned positional encodings with a length of
506 to cover all task sequences.

We use the AdamW optimizer with an initial transformer’s learning rate of le-4 and backbone of
le-5. The batch size is set to 16. For comparisons with state-of-the-art methods, we train the model
with Swin-Base (Liu et al., 2021) backbone for 300 epochs with learning rate drop after 200 epochs.
For our ablation experiments with the ResNet-50 backbone, we use a shorter training schedule of 50
epochs. We use the same data augmentation strategy consisting of image flipping, randomly resizing,
and cropping for all tasks. The input images are re-scaled so that its shortest side is between 480 and
800 pixels while the longest is at most 1333. During inference, the shortest side of the image will be
resized to 800 pixels. The inference speeds of all experiments are the total time for inferring on four
tasks, tested on a single A100 with a batch size of one image.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Tab. [I| shows comparisons with the state-of-the-art (SOTA). We compare MAD with two types of
SOTA models: (1) typical task-specific models which leverage task-specific designs and are trained
on a single task; (2) generalist models which employ a shared single architecture to handle multiple
vision tasks without task-specific designs such as region proposal network (RPN) or ROI Pooling.
Compared with the task-specific models, we can see that MAD can achieve competitive and even
better accuracy without customized architecture for a single task. On top of that, the sequence-based
framework in MAD provides significant scalability and flexibility to new tasks or data formats than
these models. In addition, MAD also outperforms existing generalist models with fewer parameters,
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Figure 4: Convergence curves for Autoregressive Decoding, Parallel Decoding, and the proposed
MAD in Tab. 2} MAD achieves much faster convergence for vision-centric tasks and greatly narrows
the gap with Autoregressive Decoding compared with Parallel Decoding for image captioning.

Table 2: Ablation studies of MAD. The “(single task)” indicates that the model is separately trained
for each single task. The inference time counts the total time of processing all four tasks.

Methods Infer. Time (ms) Det. Seg. Kpt. Cap.
Autoregressive Decoding 3953 279 123 334 341
Parallel Decoding (single task) - 384 312 551 206
Parallel Decoding 137 359 298 515 182
+Masked training 137 389 323 546 186
+Masked Inference (MAD) 173 389 323 547 29.6

especially on vision-centric tasks, demonstrating these tasks greatly benefit from bi-directional
attention and masked sequence modeling designs. For image captioning, the autoregressive paradigm
in existing methods excels us in modeling language sequential context. We will investigate how to
combine the advantages of both in the future for enabling a more versatile generalist model.

4.3 ABLATION STUDIES

Main Components Ablation. We first gradually ablate our main designs as shown in Tab. [2] We
convert MAD into an autoregressive variant with the same architecture for comparison (Details can
be found in the supplementary material). It can be seen that Autoregressive Decoding performs worst
in terms of both inference time and accuracy on vision tasks except image captioning. This result
is consistent with our analysis that the autoregressive approach might not fit well for vision-centric
tasks and struggles with extremely slow predictions. By employing bi-directional attention and
parallel decoding (i.e., Parallel Decoding), the convergence and inference speed of vision tasks are
greatly improved. However, such a simple parallel decoding method suffers from severe performance
degradation compared to its single-task model (i.e., Parallel Decoding (single task)), leading to an
inferior multi-task learning paradigm.

However, we can observe that introducing our masked sequence modeling during training can
significantly mitigate the performance degradation for multi-task learning. As shown in the fourth
row, +Masked training performs especially better for object detection, instance segmentation, and
keypoint detection, thanks to the task context modeled through masking and reconstruction. Moreover,
by further introducing masked inference (i.e., +Masked Inference (MAD)), the accuracy is constantly
improved with competitive image caption accuracy to the autoregressive counterpart. In addition, we
observe that MAD has different effects on vision-centric tasks and language tasks in training and
inference. We speculate that MAD in training could model rich task contexts, such as the relationship
among task prompts, vocabulary, and sequence patterns, which are crucial for modeling multi-task
sequences. On the contrary, during inference, MAD mainly focuses on dependencies among sequence
tokens, which are generally rich in language but lacking in visual sequences.

Convergence Curves for Vision Tasks. Fig. | compares the detailed training curves between methods
in Tab. 2] for different tasks. With bi-directional attention, both MAD and parallel decoding converge
much faster than autoregressive decoding which adopts uni-directional attention. In addition, the
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Table 3: Ablation on masked sequence modeling during training. (a) For “random ratio”, we used a
random mask ratio lying between 0.6 and 0.8. For “multiple ratios”, the task sequences are trained
with two masking ratios (i.e., 0.6 and 0.8). The “single ratio” indicates that a single mask ratio is
adopted. (b) different masking ratios are evaluated under the “single ratio” strategy.

(a) Masking ratio strategies. (b) Different mask ratios in training.
Methods Det. Seg. Kpt. Cap. Mask Ratio  Det.  Seg. Kpt. Cap.
randomratio  38.6 319 543 294 0.4 384 31.8 544 292
multiple ratios  38.6 32.0 542 29.7 0.6 385 319 542 297
single ratio 38.9 323 547 29.6 0.7 389 323 547 296
0.8 387 321 549 284

Table 4: Ablations on parameters for individual tasks.

(a) Number of quantization bins (b) Size of bit mask for image seg- (c) Inference mask ratios for im-

for coordinates. mentation. age captioning.
Number of Bins. Det. Kpt. Mask Size Det. Seg. Mask Ratio BLUE@4
300 385 542 12 38.4 315 w/o masked inference 18.6
500 38.9 54.7 14 38.8 32.0 {0.7} 25.8
800 38.6 54.5 16 38.9 323 {0.7,0.3} 27.0
1000 38.5 544 20 38.8 324 {0.8,0.6,0.4} 29.6

masked sequence modeling strategy in MAD can further capture rich task contexts and largely
improve performances, especially for image captioning. These results further demonstrate the
non-trivial design of MAD.

Masked Training. We examine how varying masking strategies and masking ratios affects the
training of MAD. As Tab.[3al shows, the simplest strategy with a single masking ratio could achieve
the highest performance. As for specific masking ratios in training (under the single ratio strategy),
MAD performs the best with a moderate value of 0.7, while a smaller masking ratio results in an
over-simplified task, and a larger masking ratio leaves insufficient tokens for modeling task contexts.

Coordinate Quantization. We evaluate the effect of the number of the coordinate bins. As Tab.#a]
shows, MAD performs robustly under different numbers of bins. We thus adopt 500 as default, while
each bin corresponds to approximately 2 pixels for an image with size between 800 to 1333 pixels,
resulting in negligible quantization error.

Mask Size. In Tab. we study the size of the segmentation mask. It can be seen that MAD does
not benefit much from larger mask sizes, since we do not adopt task-specific operations like ROI
Align (He et al., 2017) or interpolation to align mask pixels and image pixels. Considering that larger
mask sizes lead to longer task sequences, we set the mask size at 16 for good efficiency.

Inference Mask Ratio for Captioning. We examine different inference mask ratios for image
captioning. Results in Tab. dc| demonstrate that a combination of gradually decreasing masking
ratios ({0.8, 0.6, 0.4}) performs the best.

5 CONCLUSION

In this work, we propose Masked AutoDecoder (MAD), a sequence-to-sequence multi-task vision
generalist that employs masked sequence modeling and parallel decoding. MAD performs multiple
vision tasks with a unified task sequence format, and learns to reconstruct the masked task sequences
for modeling diverse task contexts. In addition, we employ bidirectional attention and parallel
decoding in Transformer, achieving significant speedup in both convergence and inference compared
to autoregressive counterparts for vision tasks. Experiments on COCO demonstrate the effectiveness
and superiority of MAD as compared with both well-established task-specific models and existing
vision generalist models.
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A APPENDIX

A.1 AUTOREGRESSIVE DECODING

We convert MAD into an autoregressive variant for comparison. It follows the same architecture
as well as training settings as MAD with a few modifications on tokenization of task sequences
and decoding process. We adopt same approach of MAD to construct task sequences for instance
segmentation, keypoint detection and image captioning, while following pix2seq (Chen et al.,2021) to
build detection sequences to match the sequential decoding mechanism of autoregressive approaches.
During training, we add < start > tokens before the task sequences and feed them to the decoder,
and then supplement the < end > tokens after the task sequence as the target sequence to calculate
the loss. The self-attention layer in decoder is modified with uni-directional attention to capture
sequential dependencies.

At inference time, the task sequences are recursively generated, starting as the < start > token, and
going up to the maximum length corresponding to each task (instead of stopping at the < end >
token). We adopt argmax sampling strategy and cache the k-v features in self-attention layer for
acceleration. Although some other complex sampling strategies, i.e., beam searching or nucleus
sampling (Holtzman et al.l|2019) may improve performance, these strategies would further deteriorate
currently slow inference speed of autoregressive decoding.

A.2 TASK WEIGHTING
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Figure 5: Performance with different loss weights by gradually adding new tasks to the existing tasks.

In Fig. 5] we search for the appropriate loss weight for each task. We first evaluate object detection
performance and obtain the optimal weight of 1.5, and then introduce the instance segmentation task.
As Fig. [5alshows, both tasks perform well over a wide range of weights, with only small fluctuations.
We thus simply take a weight of 2.7 for instance segmentation. For keypoint detection, it seems
to conflict with the existing tasks, and increasing its weight would hinder other tasks. According
to the trade-off of performance, the keypoint detection task is weighted by a factor of 0.5. Finally,
we add image captioning task, where we find that a weight of 0.3 to be appropriate for preserving
performances of existing vision tasks.
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