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Abstract

Modern language models predict the next to-
ken in the sequence by considering the past
text through a powerful function. However,
language models have no explicit mechanism
that allows them to spend computation time for
planning long-distance future text, leading to
a suboptimal token prediction. In this paper,
we propose a planner that predicts a latent plan
for many sentences into the future. By sam-
pling multiple plans at once, we condition the
language model on an accurate approximation
of the distribution of text continuations, which
leads to better next token prediction accuracy.
In effect, this allows trading computation time
for prediction accuracy.

1 Introduction

Current LLMs can be considered fast, intuitive rea-
soners (Bengio et al., 2021), analogous to the type
1 reasoning systems found in humans according
to the dual-process theory (Evans, 1984; Kahne-
man, 2011). System 1 allows solving intuitive tasks
such as perception and talking, but it is insufficient
for tasks that require planning, such as writing co-
herent, long stretches of text. For planning tasks,
humans instead invoke a slow, deliberate reason-
ing system 2. Most works that attempt to inte-
grate deliberate planning and reasoning ability into
LLMs pose the problem as a post-training process:
by finetuning on reasoning datasets (Hendrycks
et al., 2021; Havrilla et al., 2024), by learning to
invoke external task-specific planners (Schick et al.,
2023; Nye et al., 2021), or by employing advanced
prompting methods like Chain-of-Thought (Wei
et al., 2022). However, neuroscientific studies have
revealed that predictive coding, the ability to con-
tinuously predict, update and draw on multiple hy-
potheses about future inputs, is central to language
learning and production (Casillas and Frank, 2013;
Ylinen et al., 2017; Shain et al., 2020; Aitchison
and Lengyel, 2017; Kellogg, 2013; Mallahi, 2019).

The working memory plays a critical role by provid-
ing a cognitive scratch pad to store a few relevant
concepts (Cowan, 2001) and continuously update
them based on the ongoing cognitive task (Cashdol-
lar et al., 2017), particularly in the context of lan-
guage production and writing (Casillas and Frank,
2013; Kellogg, 2013; Mallahi, 2019). This sug-
gests that the ability to plan originates, at least in
part, from learning from unlabeled data and should
hence be fostered in LLMs during pre-training.
Cornille et al. (2024) propose a pretraining method
in which language modeling is factorized into 1)
first predicting a high-level latent plan via a sepa-
rate planner module and 2) then conditioning the
language model on generated plans when predict-
ing the next token. However, their method only pre-
dicts a single one-step plan, which predicts merely
one sentence ahead. As such, it neither performs
long-term planning nor allows to draw on multiple
hypotheses through variable compute. In this pa-
per, we propose an extension of the framework by
Cornille et al. (2024) through two crucial changes
(Figure 1): 1) We learn a planner that predicts mul-
tiple steps ahead to enable long-term predictive
coding. 2) We sample a variable amount of hy-
potheses from the planner to condition the language
model on, allowing to trade off computation time
for better prediction accuracy.

2 Method

The key idea of the method is to transform an unla-
beled text corpus into sequences of abstract writing
actions and use these actions to guide the language
model. Our method consists of three steps (cmp.
Figure 1): 1⃝: Inferring action sequences from un-
labeled texts. 2⃝: Training a multi-step planner to
predict the next actions. 3⃝: Sampling multiple
paths from the planner to condition the LM.

1⃝: Following Cornille et al. (2024), we chunk
each text into sentences, embed them, and map
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Figure 1: Overview of our method.

them to the nearest action embedding. Action em-
beddings are obtained via K-means clustering on
the set of embedded sentences from the corpus.

2⃝: Inspired by the MuZero architecture (Schrit-
twieser et al., 2020), we propose a multi-step plan-
ner consisting of three components. The represen-
tation function encodes the current context into a
multi-vector state representation, where each vec-
tor corresponds to one sentence in the input. Given
the current state, the prediction function predicts
a probability distribution over the actions. Finally,
given the current state and the predicted action, the
dynamics function predicts the representation of
the next state.

3⃝: After the planner training is completed, we
condition the language model on planner outputs
as follows. First, we obtain K different paths of
length T by repeatedly sampling from the planner.
Second, we encode each path independently using
a single-layer Transformer encoder and averaging
the output representations into a single vector path
representation. Third, we use another Transformer
encoder to contextualize and aggregate the path
representations, yielding a single vector to repre-
sent all planner predictions. Last, it is merged into
the LM via a LLaMA-adapter (Zhang et al., 2023).

3 Experiments

The purpose of our experiments is to demonstrate
the benefit of our contributions for language mod-
eling: 1) Multi-step planning and 2) conditioning
on multiple sampled plans.

Baselines and metrics Cornille et al. (2024) can
be viewed as a special case of our model with
T = 1,K = 1 and no additional Transform-
ers aggregating across time and paths. It thus
serves as our primary baseline. Following Cornille
et al. (2024), all experiments are performed based
on GPT-2 small (128M parameters) finetuned on
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Figure 2: Performance and relative generation time as a
function of the number of samples K drawn.

285310 articles of English Wikipedia. All models
are evaluated via the perplexity metric.

Results In Figure 2, we show the results of two
models with T = 5, 10 and K = 5, respectively.
We increase the number of sampled paths K at in-
ference time only. This experiment demonstrates
that a) our method improves over the single-step
baseline by Cornille et al. (2024), b) predicting
multiple steps ahead is advantageous, and c) perfor-
mance continues to improve until at least K = 50.
Naturally, this comes at the expense of additional
compute.

4 Discussion & Conclusion

Our consistent improvements in perplexity indicate
that both integrating long-term predictions of the
future writing process and modeling multiple fu-
ture paths provide an LM with information that is
valuable even for making local predictions. Con-
sequently, our model outperforms the single-step
planner by Cornille et al. (2024).

Moreover, a core motivation of our work is to
allow a language model to spend additional test-
time compute to improve its predictions, similar
to how AlphaGo (Silver et al., 2017) uses a lot
of inference-time compute to achieve superhuman
performance in Go. Demonstrating that our model,
too, can trade off compute for better performance,
we take a first step towards enabling this property
for LMs, opening exciting research directions.

Future work will investigate how to learn ac-
tions that are tailored for language modeling, how
to learn when to invoke the planner to minimze
compute overhead, and how to improve the con-
trollability of the language model through planner
finetuning.
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