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ABSTRACT

Existing message-passing graph neural networks often rely on carefully designed
information propagation methods to perform reasonably in graph-related mining
tasks. However, this invokes the problem of whether the dimensions of learnable
matrices and the depths of the networks are properly estimated. While this chal-
lenge has been attempted by others, it remains an open problem. Using the princi-
ple of maximum entropy and Shannon’s theorem, we demonstrate that message-
passing graph neural networks function similarly to noisy communication chan-
nels. The optimal information transmission state of graph neural networks can be
reached when Shannon’s theorem is satisfied, which is determined by their entropy
and channel capacity. In addition, we illustrate that the widths of trainable matri-
ces should be sufficiently large to avoid the shrinkage of model channel capacity
and the increase of the channel capacity diminishes as the depth of the networks
increases. The proposed approach is empirically verified through extensive exper-
iments on five public semi-supervised node classification datasets.

1 INTRODUCTION

The message-passing graph Neural Networks (GNNs) have been favored choices in various graph-
based tasks, which arises from their powerful ability to exploit the connectivity information and
node attribute features to realize effective information propagation over the graphs. For instance,
GCN (Kipf & Welling, 2017) defines the information propagation operation based on the first-order
approximation of the spectral filter on graphs, GAT (Veličković et al., 2018) extends this operation
by adaptively assigning edge weights through the multi-head graph attention, and GDC (Gasteiger
et al., 2019) further relaxes this by redefining adjacency matrices with kernel functions (e.g., heat
kernel (Chung, 2007) and Personalized PageRank (Wang et al., 2020)). Sharing the core idea of
propagating graph features with adjacency information, many powerful GNNs have been proposed
such as APPNP (Gasteiger et al., 2018), SGC (Wu et al., 2019), GATv2 (Brody et al., 2022), etc.
Nonetheless, the depths and widths of most message-passing GNNs are selected based on heuristical
guidelines and non-trivial engineering knowledge (Cai et al., 2021; Xu et al., 2023).

Though the connectivity information plays a crucial part in information exchange over graphs, the
dimensionalities of learnable matrices and the depth of the network are inescapable aspects to be
considered (Chen et al., 2020b; Zeng et al., 2021). Several studies (Liu et al., 2020; Li et al., 2021)
show that deep GNNs can benefit from larger receptive fields, while others (Wu et al., 2019; Elia-
sof et al., 2021) debate that shallow GNNs can avoid critical problems like over-smoothing in deep
GNNs. From the view of signal processing, learnable matrices can be seen as the encoders of latent
domains, of which their dimensionalities explicitly determine the transformation of graph signals
between domains. Hence, some studies have explored the potential effects of GNN’s depths and
widths. For instance, GraphGym (You et al., 2020) provides a general search framework for se-
lecting the best GNN from a pre-defined search space for a specific downstream task. It comprises
multiple aspects of constructing GNNs, such as the network depth, the widths of trainable matri-
ces, the aggregation method, and the activation function. This work facilitates the development of
GNNs for various graph-mining tasks from an empirical aspect. Despite comprehensive empirical
guidelines being concluded based on extensive experiments, mechanisms behind certain configura-
tions of depths and widths are not yet demystified. While Loukas (2020) argues that existing GNNs
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often fail in effectively passing information over the graph unless certain products of their depths
and widths exceed a polynomial of graphs. This work illustrates that the expressive ability of GNNs
depends on their model capacity, which is directly determined by the widths and depths of the net-
works. More recently, another work, MGEDE (Yang et al., 2023) has attempted to bridge this gap
by introducing the minimum entropy principle to learn a highly informative yet low-dimensional
representation. First, it defines the entropy of a graph by a direct summation of its structural entropy
and node attribute entropy. Subsequently, it relates the layer widths to the graph entropy based on
the distributional hypothesis (Sahlgren, 2008) with several numerical approximations. Eventually,
the layer widths are determined by zeroing out the graph entropy according to the minimum entropy
principle. Nonetheless, MGEDE neither provides justifications nor explanations about the chosen
depths for message-passing. More importantly, the minimum entropy principle, or Prigogine’s theo-
rem (Prigogine, 1978) is narrowly valid in certain near-equilibrium linear systems, which might not
be suitable for nonlinear systems like GNNs.

In the face of properly estimating the depths and widths of GNNs in advance, we propose a novel
theoretical approach termed Channel Capacity Constrained Estimation (C3E). First, we define the
entropy and the channel capacity for GNNs. Then, unlike conventional ways to select the widths and
depths based on empirical knowledge and grid search, C3E obtains feasible widths and depths of a
GNN by solving a nonlinear mathematical programming problem given the input graph. Eventually,
based on the feasible solutions, we empirically demonstrate that GNNs are governed by their entropy
and channel capacity.

2 OTHER RELATED WORK

2.1 INFORMATION THEORY IN DEEP LEARNING

Information theory (Shannon, 1948; Jaynes, 1957; Kullback, 1997) has long been a powerful tool
for analyzing complex nonlinear systems like neural networks. For instance, some studies (Chan
et al., 2022; Roberts et al., 2022) endeavor to establish statistical relationships between latent rep-
resentation and neural networks. The information bottleneck theory is broadly adopted in neural
networks to learn minimal effective representations that maximize the mutual information between
the learned representation and the output (Tishby et al., 2000; Wu et al., 2020). Similarly, another
work (Yu et al., 2020) proposes learning more discriminative and diverse representations via maxi-
mal coding rate reduction. In the meantime, Saxe et al. (2019) have explored the entropy distribution
and the information flow of deep neural networks. Furthermore, Sun et al. (2021) and Shen et al.
(2023) have attempted to utilize the principle of maximum entropy to link latent feature maps to the
distinctive behaviors of neural networks.

2.2 EXPLORATION IN NEURAL NETWORK ARCHITECTURE

Early works (e.g., Wang & Zhu, 2021; Cai et al., 2021; Zhou et al., 2022) adopt computationally in-
tensive methods like automated machine learning and network architecture search to generate neural
networks. The research focus has then shifted towards principled theoretical analysis of the behav-
iors governing neural networks. For example, DeepMAD (Shen et al., 2023) established the statisti-
cal relationship between architectures of convolutional neural networks (CNNs) and Shannon’s en-
tropy; Di Giovanni et al. (2023) have investigated the potential impacts of GNNs’ depths and widths
from over-squashing and over-smoothing; GCNII (Chen et al., 2020a) empirically demonstrates
that skip connections and identity mapping can improve GNNs’ performance and stack deeper, and
AERO-GNN (Lee et al., 2023) realizes deeper attention-based GNNs by modifying the attention
mechanism and introducing weighted skip connections.

3 PRELIMINARY

Entropy of Random Variable. We can define the entropy of a matrix Z ∈ Rα×β by regarding it as
a matrix-valued continuous random variable Z = {Zi,j | i ≤ α, j ≤ β},

H(Z) = −
∫

p(z) log (p(z))dz. (1)
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Furthermore, this real-valued random variable reaches its maximum entropy by the corresponding
Gaussian distribution N (µ(Z), σ2(Z)),

H(Z) ≤ 1

2
log (2πeσ2(Z)). (2)

The proof is provided in the Appendix A.1. However, its probability distribution p(z) is often
unknown in many real-world applications. In practice, we can adopt its discrete form as a direct
approximation,

H(Z) = −
∑
z∈Z

P (Z = z) log (P (Z = z)). (3)

Entropy of Graphs. The graph entropy provides a quantitative measure of its structural complexity
and information content. Though definitions of graph entropy vary across different areas of research,
they share the same underlying principle of quantifying potential states of nodes in the discrete form.
The graph entropy can be generalized as the following form (Dehmer & Mowshowitz, 2011)[Def.
2.12],

H(G) = −
n∑

i=1

g(vi)∑n
i=1 g(vi)

log
g(vi)∑n
i=1 g(vi)

. (4)

Here, g(·) denotes the information extraction function, G denotes an arbitrary finite graph, vi denotes
i-th vertex, and n denotes the number of nodes. The calculation of the probability distribution takes a
similar form to Boltzmann distribution (Gibbs, 1902; Boltzmann, 2015), thereby Hmax(G) = log n.

Channel Capacity. According to Shannon (1948), the channel capacity of a noisy communication
channel is expressed as,

ϕ = max
pQ(q)

I(Q;Q′). (5)

Here, I(Q;Q′) denotes the mutual information between the input Q and the output Q′, and pQ(q)
denotes the corresponding marginal distribution. In terms of information theory (Shannon, 1948;
Jaynes, 1957; Gallager, 1968), channel capacity is defined as the theoretical maximum rate at which
information can be reliably transmitted over a noisy communication channel with an arbitrarily small
error rate. Concretely, Shannon’s theorem (Shannon, 1948) states that given a noisy channel with
channel capacity ϕ and information rate H , there exists a coding scheme that allows the probability
of error at the receiver to be made arbitrarily small when,

ϕ ≥ H. (6)

4 ENTROPY OF GRAPH NEURAL NETWORK

Suppose a GNN with L message-passing layers (denoted as ΩL) performing a semi-supervised node
classification task on an arbitrary finite graph characterized by a node feature matrix X ∈ Rn×m

and an adjacency matrix A ∈ Rn×n. Then, its layer propagation rule can be recursively expressed
as,

Hl = γ(C̃lHl−1Wl). (7)
Here, Hl ∈ Rn×wl denotes the latent node representation, Wl ∈ Rwl−1×wl denotes the trainable
weight matrix, C̃l ∈ Rn×n denotes any generalized form of adjacency matrix by either functions or
neural networks, and γ(·) denotes the activation function. Let’s consider the most common scenario
C̃l = C̃l−1 = · · · = C̃1 = Ã = D− 1

2AD− 1
2 , where D ∈ Rn×n denotes the node degree matrix,

and d ∈ R+ denotes the average (node) degree.

On the one hand, from a statistical physics view, the principle of maximum entropy suggests that the
equilibrium state of a closed system should be taken in the state where the entropy of the system is at
its maximum under the given constraints (Callen, 1991). On the other hand, from a signal-processing
perspective, the principle of maximum entropy states that given a set of known constraints, the
probability distribution that best represents the current state of knowledge about an unknown system
is the one with the maximum entropy (Jaynes, 1957). If such a maximum entropy state of a physical
system corresponds to the optimal transmission state in an information processing system (Jaynes,
1957; Von Neumann, 2018), then the entropy of such an information processing system in this state
corresponds to the upper bound of its entropy.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

In real-world applications, the node representation has finite dimensions, and its distribution is un-
known in advance. Its maximum entropy can be approximated in the discrete form. In the meantime,
γ(·) is applied element-wise, which does not influence dimensionalities of Hl (i.e., whatever the ac-
tivation function is, n and wl do not change). Accordingly, the maximum entropy of Hl remains
unchanged, and note that though its maximum entropy is unchanged, its entropy is changed due to
the distribution shifts incurred by the activation function. Therefore, Eq. (7) can be further simplified
as,

Hl = UlWl

= (ÃHl−1)Wl

= Ã
(
Ã
(
· · ·
(
Ã
(
ÃH0W1

)
W2

)
· · ·
)
Wl−1

)
Wl. (8)

As mentioned previously, the principle of maximum entropy states that the probability distribution
that best represents the current state of a system is the one with the largest entropy. This leads us to
the following Theorem,
Theorem 1. Assume Wl ∼ N (0, 1), H0 ∼ N (0, 1), then the mathematical expectation of Hl is
expressed as,

E(Hl) = wl−1E(Wl)E(Ul) = 0. (9)
and the variance of Hl is expressed as,

σ2(Hl) =

l−1∏
o=0

nwoσ
2(Ã) ≈

l−1∏
o=0

wo

d
. (10)

Since the ideal GNN is not observable in advance, the GNN with the maximum entropy should be the
choice. Therefore, the GNN in its optimal transmission state is reached by maximizing its entropy,
which is defined by,

H(ΩL) =
1

2
log (2πe) +

1

2

L−1∑
l=0

log (wl) +
1

2

L−1∑
l=0

log (nσ2(Ãl))

≈ 1

2
log (2πe) +

1

2
log (wL) +

L−1∑
l=0

1

2
log (

wl

d
). (11)

The derivations are provided in the Appendix A.2. We can conclude the following two points based
on the above Theorem and empirical results. First, if the latent node representation is properly
regularized or normalized, then E(Hl) approaches zero, which implies no significant bias terms
present. Second, σ2(Hl) =

∏l−1
o=0 nwoσ

2(Ã) ≈
∏l−1

o=0
wo

d , this term explicitly captures the essence
of the expressiveness of GNNs or the diversity of latent node representation. If Ãl is invariant and wl

is not sufficiently large compared to d, then σ2(Hl) approaches zero as the network stacks deeper.
This can result in a negative entropy of the GNN, which suggests a high degree of concentration and
a small spread out in the distribution it represents. In other words, the values of latent features cluster
around a certain point, making the feature patterns overly similar and highly biased. While this paper
originally intends to present a principled theoretical framework to understand the different behaviors
of GNNs, it offers a viewpoint on the inherent drawbacks of GNNs such as over-smoothing.

5 CHANNEL CAPACITY OF GRAPH NEURAL NETWORK

However, maximizing Eq. (11) does not guarantee either the performance or the convergence of the
GNN. The number of learnable parameters is at least

∑L
l=1 wlwl−1, which can result in an overly

deep and complex neural network when multiple layers are stacked. The deep and complex neural
networks typically lead to exploding or vanishing gradients, causing weight updates to be drastic
and diverge in training. Although not concentrating on GNNs, previous works (Roberts et al., 2022;
Shen et al., 2023) introduce a metric termed aspect ratio ρ to control the information propagated in
deep neural networks,

ρ =
L

w̄
, w̄ = (

L∏
l=1

wl)
1
L . (12)

4
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According to Roberts et al. (2022), the neural networks, on the one hand, become simple linear
models if ρ −→ 0. On the other hand, the neural networks perform like chaos systems if ρ −→ ∞.
Nonetheless, the determination method of this metric for specific neural networks is not provided
while Shen et al. (2023) treats it as a tunable hyperparameter.

Recall that the channel capacity is defined as the theoretical maximum of the mutual information
between the input and the output of the channel. Therefore, we can alter the channel capacity of an
information processing system to control the effective information transmitted throughout. Ideally,
if there exists a GNN that learns the exact mapping between input graph G and output graph G′,
then,

H(G′|ΩL(G)) = H(ΩL(G)|G′) = 0. (13)
Based on Eq. (5) and Eq. (13), the channel capacity of an L-layer GNN is defined by,

ϕ(ΩL) = H(ΩL(G)) = H(HL). (14)

However, an observer can not know or precisely estimate G′ prior, otherwise neural networks are
not required to learn the latent mapping relationship. Fortunately, Shannon’s Theorem still holds if
the channel capacity of a GNN is not less than the maximum entropy of G′,

ϕ(ΩL) ≥ Hmax(G
′
). (15)

In general, if a GNN achieves the optimal information transmission state, its lower bound should be
no less than the maximum entropy of G′, which can be summarized as the following Theorem.

Theorem 2. If the lower bound ϕ0 satisfies ϕ(ΩL) ≥ ϕ0 ≥ Hmax(G
′
), then ϕ(ΩL) ≥ Hmax(G

′
) ≥

H(G′
). Consequently, the information transmission with an arbitrarily small error rate between G

and G′ can be reached, such that ϕ0 =
∑L

l=1
1
l log (

wl−1wl

wl−1+wl
).

In fact, real-world communication channels suffer from internal interference and signal attenuation,
significantly reducing available channel capacity. These could correspond to analogous phenomena
that occur in neural networks, such as gradient interference (Xu et al., 2022) and vanishing gra-
dients and exploding gradients (He et al., 2016), leading to a considerable reduction in effectively
propagating information. Hence, an enforced lower bound of ϕ(ΩL) is essential to guarantee the
requirements in Eq. (15), which is expressed as,

ϕ(ΩL) ≥ H(HL)−H(H0)

≥
L∑

l=1

H(Hl)−H(Hl−1)

H(Hl−1)
H(Hl−1)

≥
L∑

l=1

H(Hl)−H(Hl−1)

H(Hl−1)
I(Hl;Hl−1)

≥
L∑

l=1

1

l
log (

wl−1wl

wl−1 + wl
). (16)

The derivations are provided in the Appendix A.3. This lower bound shows that the channel capacity
of each layer is dependent on the harmonic mean of two adjacent layers, scaled by the inverse of
its depth. It indicates that the increase of the channel capacity decreases drastically when solely
increasing the depth, such that its negative effects always surpass its merits (typically reflected as
model performance degradation).

6 CONSTRAINED NONLINEAR PROGRAMMING PROBLEM

According to Theorem 1 and Theorem 2, estimating the widths and depth of an L-layer GNN can be
then transformed into solving a nonlinear constrained mathematical programming problem. Previ-
ous works (He et al., 2016; Huang et al., 2017; Li et al., 2021) suggest that a neural network refines
and compresses information as depth increases. Hence, we can have the following relationship based
on Eq. (3),

w1 ≥ w2 · · · ≥ wL−1 ≥ wL. (17)

5
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Table 1: Semi-supervised node classification results (mean of 10 runs). Best performance is high-
lighted in bold, while the underlined values denote a statistically significant improvement over other
alternatives (Kruskall-Wallis test with Dunn’s post-hoc: p < 0.05)

Model Cora Citeseer Pubmed AmazonPhoto AmazonComputers

Plain-GCN 0.8087 0.7016 0.7852 0.8997 0.8038
Deep-GCN 0.7762 0.6707 0.7519 0.8912 0.7966
C3E-GCN 0.8385 0.7263 0.7982 0.9177 0.8366
Plain-GAT 0.8264 0.7119 0.7858 0.9036 0.8077
Deep-GAT 0.8043 0.7076 0.7607 0.9022 0.8092
C3E-GAT 0.8304 0.7201 0.7899 0.9152 0.8307
Plain-GDC 0.8275 0.7164 0.7956 0.8967 0.8096
Deep-GDC 0.7991 0.6917 0.7679 0.9093 0.8265
C3E-GDC 0.8229 0.7268 0.7890 0.9158 0.8447

Ultimately, the nonlinear programming problem becomes,

max
w(L)

∑
L=2

1

2
log (2πe) +

1

2
log (wL) +

L−1∑
l=0

1

2
log (

wl

d
), (18)

s.t.
L∑

l=1

1

l
log (

wl−1wl

wl−1 + wl
) ≥ log n,

w1 ≥ w2 · · · ≥ wL−1 ≥ wL.

Here, w(L) = {w1, w2, . . . , wL}. The feasible solutions can be obtained by off-the-shelf solvers for
constrained nonlinear programming (with inequation constraint available), such as SLSQP (Kraft,
1988). This solving process terminates when

∑L
l=1

1
l log (

wl−1wl

wl−1+wl
)− log n > ζ log n.

7 EXPERIMENTS

In this work, three mainstream backbone models (GCN (Kipf & Welling, 2017), GAT (Veličković
et al., 2018), and GDC (Gasteiger et al., 2019)) on semi-supervised node classification are selected
to avoid biased results, as most message-passing GNNs are generally variants of the three models.
Here, Plain-XXX refers to the plain backbone model, C3E-XXX refers to the variant generated by
C3E, and Deep-XXX refers to the variant with the same width as the original backbone model and
the same other configuration as C3E variants. Detailed model configurations and dataset information
are provided in Appendix E and C. The code is anonymized and is available at here.

7.1 PERFORMANCE EVALUATION

Table .1 presents the semi-supervised node classification results of backbone models and their vari-
ants. From Table .1, we can observe that C3E variants generally outperform other models, though
they underperform Plain-GDC in Pubmed and Cora. Meanwhile, we observe that the Deep variants
underperform the plain backbone models and C3E variants in most cases. Furthermore, C3E-GCN
has an average performance improvement of 2.34% over Plain-GCN, C3E-GAT has an average
performance improvement of 0.64% over Plain-GAT, and C3E-GDC has an average performance
improvement of 0.56% over Plain-GDC. These suggest that except for considering the information
propagation mechanism, simply stacking more layers without properly estimating layer width often
leads to severe performance degradation.

7.2 NOISY COMMUNICATION CHANNEL

From Fig. 1, we can observe that H(ΩL) monotonically increases as ϕ0 increases. Meanwhile, the
model with higher entropy tends to perform better given a certain channel capacity. The accuracy

6
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Figure 1: The x-axis denotes ϕ0 − log n, left y-axis denotes classification accuracy, and right y-axis
denotes H(ΩL). The blue lines denote ϕ0− log n versus accuracy, the green lines denote ϕ0− log n
versus H(ΩL), the intervals formed by the red vertical lines represent [ϕ0− log n, ϕ0−2 log n], and
each point represents a C3E model with different combinations of width and depth.

curves exhibit continuous U-shaped and V-shaped patterns over the figures. This somehow coincides
with a phenomenon that the model performance displays consistent U-shaped curves as the number
of model parameters grows (Hoffmann et al., 2022).

In addition, we observe that C3E variants reach their peak performance within [ϕ0 − log n, ϕ0 −
2 log n], after and before which the optimal performance cannot be achieved. On the one hand, we
observe that the model performance consistently fluctuates before ϕ0− log n without a clear trend of
either increasing or decreasing. This suggests that GNNs act like band-limited communication chan-
nels, where the information transmitted over them is incomplete and noisy. On the other hand, we
can observe that when the channel capacity exceeds certain thresholds, the performance of models
can degrade drastically. This implies that, unlike real communication channels, GNNs might suffer
from severe over-fitting due to extra available channel capacity. In terms of information propaga-
tion mechanisms, C3E-GCN, C3E-GAT, and C3E-GDC achieve their maximum performance with
dissimilar channel capacities. Moreover, C3E-GDC can reach its peak performance earlier or later
than C3E-GCN and C3E-GAT due to its unique mechanism. Unlike the graph attention mechanism
adaptively weighs the given edges, the adjacency matrices are transformed and sparsified in GDC
models (e.g., unify d to 64 or 128, or zero out entries below certain thresholds), such that the origi-
nal graphs are reshaped into new graphs. This further results in inconsistent behaviors of C3E-GDC
across the datasets, i.e., the rewired graph changes its intrinsic information according to Eq. (10).

7.3 ENTROPY TRANSITION OF NODE REPRESENTATION

As demonstrated in Fig. 2, the node representation of GNNs experiences an entropy increase-to-
decrease process. The entropy increase indicates that GNNs gradually learn more complex and infor-
mative features, while the significant entropy reduction in the last two layers suggests those learned
latent features are then converged into more deterministic ones for classification tasks. Moreover,
different information propagation mechanisms lead to distinguishable entropy change curves, e.g.,
GAT-based models are more stable than GCN-based models and GDC-based models. The massive
entropy reduction occurs relatively early in most Deep models, implying diverse features are col-
lapsed into centralized or biased features. Unlike other models, C3E variants exhibit a clear entropy
transition process with smaller variances. Concretely, C3E variants experience a considerable en-
tropy increase at the first layer, gradually increasing to their maximums in the following layers, and
decreasing substantially at the last two layers. Yet, these characteristics do not necessarily guarantee
better performance in the downstream tasks as shown in Table .1.
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Figure 2: The transitions of H(Hl) of C3E variants, the Deep variants, and plain backbone models.
The shaded area represents the corresponding variance. The entropy of node representation gener-
ally exhibits a massive increase in shallow layers and then converges to certain smaller values at the
last linear reshaping layer.
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Figure 3: The layer-wise changes of E(Hl) of C3E variants, the Deep variants, and plain backbone
models. Among the experimented models, E(Hl) of C3E variants is much closer to zero than other
models, and C3E-GAT has the most stable E(Hl) retaining almost zero.

7.4 MEAN & VARIANCE OF NODE REPRESENTATION

To verify the proposed theorems, we provide the layer-wise E(Hl) and σ2(Hl) in Fig. 3 and Fig. 4.
Since E(Hl) and σ2(Hl) have a close relationship with H(Hl), we can gain some insights into the
internal dynamics of GNNs. Recall that,

E(Hl) = wl−1E(Wl)E(Ul) = 0, σ2(Hl) =

l−1∏
o=0

nwoσ
2(Ã) ≈

l−1∏
o=0

w0

d
. (19)

Based on Fig. 3, in general, E(Hl) of C3E models and the Deep models are approximately zero
except on a few datasets in the last two layers. Furthermore, we can observe that among the exper-
iment models, C3E variants demonstrate the most stable transitions in terms of E(Hl) across five
datasets, while E(Hl) of Deep models exhibit more versatile patterns. This suggests that simply
stacking multiple layers or adopting shallow models cannot guarantee alleviating the biased terms
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Figure 4: The layer-wise changes of σ2(Hl) of C3E variants, the Deep variants, and plain backbone
models. σ2(Hl) increases substantially at the last layer (linear-reshaping layer) due to wLσ

2(HL).
More detailed transitions can be found in Fig. 7 of Appendix. D.

in the learned node representation. Notably, the graph attention mechanism indeed helps models
to avoid learning biased node representation, as E(Hl) of all graph attention models are smaller
than others. Regarding σ2(Hl), from Fig. 4, we can observe that it increases gradually as the layer
goes deeper. Moreover, the magnitudes and shapes of σ2(Hl) curves can vary considerably to the
input graph and information propagation methods. This implies that besides the widths and depth,
graph properties such as n and σ2(Ã) pose significant impacts on the model. In addition, we pro-
vide layer-wise mean and variance of node feature vectors Hi

l in Appendix D to further verify our
proposed theory.

8 DISCUSSION

GNNs learn meaningful representations from graph structures and attribute features by propagating
various graph signals across the graphs. Nevertheless, many studies often neglect the significance of
learnable matrices’ dimensionalities and network depth. In this paper, we show that besides intricate
information propagation mechanisms, the learning abilities of GNNs are highly dependent on their
widths and depths.

Empirically, we demonstrate that GNNs perform similarly to noisy communication channels, reach-
ing their optimal information transmission states when Shannon’s theorem is satisfied and degener-
ating into band-limited channels when not. The required widths and depths of the network to achieve
this critical phase transition are related to various properties of input graphs, even graphs with the
same number of nodes or edges can vary considerably. Furthermore, reaching the optimal informa-
tion transmission state does not necessarily guarantee improvements in model performance. This
is illustrated in the Appendix F that C3E variants might still suffer from some inevitable problems
of GNNs. Additionally, we provide theoretical analysis and explanations of favored operations in
GNNs such as residual connection (Appendix B.1) and graph rewiring (Appendix B.2) based on our
proposed theory.

Despite these promising results and theories, this work has several limitations. First, we consider the
maximum entropy state of GNNs, such that the consideration of activation functions is bypassed.
Nonetheless, activation functions have crucial impacts on the distribution of latent node representa-
tion, which can be observed in Fig. 3 and Fig. 4 that E(Hl) is close to zero but not exactly zero and
the magnitude of σ2(Hl) is relatively smaller. Second, in an attempt to avoid biased results, other
GNNs that do not take the form of Eq. (7) and other aggregation methods are not included. It is of
interest to complete the formal theories, making it possible to generalize C3E to the broader family
of GNNs.
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A APPENDIX

A.1 PRECONDITIONS

Given a real-valued unknown distribution supported on (−∞,∞), its maximum entropy is reached
by its corresponding Gaussian distribution with mean µ and variance σ2. Therefore, we can assume
independence between variables under the principle of maximum entropy.
Lemma 1. Given a real-valued random variable S, its entropy H(S) is bounded by the entropy of
the corresponding Gaussian distribution N (µ, σ2),

H(S) ≤ −
∫ ∞

−∞

1√
2πσ2

e−
(s−µ)2

2σ2 log

(
1√
2µσ2

e−
(s−µ)2

2σ2

)
ds

≤ −
∫ ∞

−∞

1

σ
√
2π

e−
(s−µ)2

2σ2

(
log

(
1

σ
√
2π

)
+ log

(
e−

(s−µ)2

2σ2

))
ds

≤ −
∫ ∞

−∞

1

σ
√
2π

e−
(s−µ)2

2σ2

(
− log (σ)− 1

2
log (2π)− (s− µ)2

2σ2

)
ds

≤
∫ ∞

−∞

1

σ
√
2π

e−
(s−µ)2

2σ2

(
log (σ) +

1

2
log (2π) +

(s− µ)2

2σ2

)
ds

≤ log (σ)

∫ ∞

−∞

1

σ
√
2π

e−
(s−µ)2

2σ2 ds+
1

2
log (2π)

∫ ∞

−∞

1

σ
√
2π

e−
(s−µ)2

2σ2 ds

+
1

2σ2

∫ ∞

−∞

(s− µ)2

σ
√
2π

e−
(s−µ)2

2σ2 ds

≤ log (σ) · 1 + 1

2
log (2π) · 1 + 1

2σ2
· σ2 · 1

≤ 1

2
log (2πeσ2) (20)

From a statistical physics perspective, the principle of maximum entropy suggests that the equilib-
rium state of a system should be taken in the state of distribution where the entropy of the system is
at its maximum (Feynman, 2018). Assuming the equilibrium state of a physical system corresponds
to the optimal state in an information system, the entropy of the optimal state can be expressed as
the upper bound of the entropy value (Jaynes, 2003). Consequently, H(S) is defined by its maxima
under such circumstance,

H(S) ≜
1

2
log (2πeσ2) (21)

Lemma 2. For a set of random variables {S1,S2, . . .}, their mathematical expectation and variance
have following relationships,

E(
∑
i=1

Si) =
∑
i=1

E(Si), σ
2(
∑
i=1

Si) =
∑
i=1

σ2(Si) (22)

The laws of expectation and variance of the product of the set of random variables are

E(
∏
i=1

Si) =
∏
i=1

E(Si), (23)

σ2(SiSj) = σ2(Si)σ
2(Sj) + σ2(Si)E2(Sj) + E2(Si)σ

2(Sj). (24)

A.2 ENTROPY OF GRAPH NEURAL NETWORKS

Directly measuring the entropy of the neural network is neither feasible nor desirable due to the
massive interactions within the network, especially given that there are no widely established meth-
ods or theories for measuring the entropy of a neural network as a whole. Prior studies (Kingma,
2013; Rezende et al., 2014) point out that latent variables or learned representations should ideally
follow a specific distribution Θ, which implies that Hl ∼ Θ. Fortunately, we can approximate the
entropy of a neural network by its generated latent representation (Chan et al., 2022; Shen et al.,
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2023), which is essentially a probability distribution reflecting the channel capacity of the network.
In an ideally well-trained neural network, the output is the result of transforming the initial features
through a series of nonlinear functions. If the latent representation has higher entropy, it suggests
that the network has retained or introduced more information, and vice versa (Alemi et al., 2022).
In other words, this indicates the uncertainty of the network or the spread of information encoded
by the entire system. Hence, the entropy of a GNN is approximated by the entropy of its generated
latent node representation in this work.

We have the following relationship based on the principle of maximum entropy as stated previously,

Hl = UlWl

= (ÃHl−1)Wl

= Ã
(
Ã
(
· · ·
(
Ã
(
ÃH0W1

)
W2

)
· · ·
)
Wl−1

)
Wl. (25)

Then, assume Wl ∼ N (0, 1) and H0 ∼ N (0, 1), the mathematical expectation of Hl is defined by
the following based on Eq. (22), Eq. (23), Eq.(24) and Eq. (25),

E(Hl) = E(Hi,j
l )

= E(
wl−1∑
o=1

W o,j
l U i,o

l )

=

wl−1∑
j=1

E(W o,j
l U i,o

l )

=

wl−1∑
j=1

0 · E(U i,o
l )

= 0. (26)

Similarly, the variance of Hi,j is defined by,

σ2(Hl) = σ2(Hi,j
l )

= σ2(

wl−1∑
o=1

W o,j
l U i,o

l )

=

wl−1∑
o=1

σ2(W o,j
l )σ2(U i,o

l ) + σ2(U i,o
l )E2(W o,j

l ) + E2(U i,o
l )σ2(W o,j

l )

=

wl−1∑
o=1

σ2(W o,j
l )σ2(U i,o

l ) + E2(U i,o
l )

=

wl−1∑
o=1

σ2(U i,o
l )

= wl−1σ
2(U i,o

l )

=

l−1∏
o=0

nwoσ
2(Ão) · 12. (27)

Based on Eq. (20) and Eq. (21), the entropy of HL is defined by,

H(HL) =
1

2
log (2πe) +

1

2

L−1∑
l=0

log (wl) +
1

2

L−1∑
l=0

log (nσ2(Ãl)). (28)

Assume Dii ≈ d, n ≫ d, and Ãl = Ã = D− 1
2AD− 1

2 . Then, σ2(Ãl) becomes,

σ2(Ãl) ≈ σ2(
A√
dd

) =
1

d2
σ2(A). (29)
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Then, substituting Eq. (29) into Eq. (28), H(HL) becomes,

H(HL) ≈
1

2
log (2πe) +

1

2

L−1∑
l=0

log (wl) +
1

2

L−1∑
l=0

log (
n

d2
σ2(A)). (30)

Following previous studies (You et al., 2020), a linear layer as post-processing produces better re-
sults. Therefore, the entropy of an L-layer GNN ultimately becomes,

H(ΩL) =
1

2
log (2πewLσ

2(Hl))

=
1

2
log (2πe) +

1

2
log (wL) +

1

2

L−1∑
l=0

log (wl) +
1

2

L−1∑
l=0

log (
n

d2
σ2(A)). (31)

Nonetheless, real-world graphs exhibit various properties in terms of graph structures. For simplicity
and unbiased estimation, Erdős–Rényi–Gilbert random graph (Erdos et al., 1960) can be adopted to
approximate σ2(A) as a null model. Hence, H(ΩL) can be further expressed as,

H(ΩL) ≈
1

2
log (2πe) +

1

2
log (wL) +

1

2

L−1∑
l=0

log (wl) +
1

2

L−1∑
l=0

log (
n

d2
d

n
(1− d

n
))

≈ 1

2
log (2πe) +

1

2
log (wL) +

L−1∑
l=0

1

2
log (

wl

d
). (32)

A.3 CHANNEL CAPACITY OF GRAPH NEURAL NETWORKS

Theoretically, an ideal GNN learns the exact latent mapping between G′ and G. Consequently, we
have H(G′|ΩL(G)) = H(ΩL(G)|G′) = 0. Hence, ϕ(ΩL) can be rewritten as,

ϕ(ΩL) = H(ΩL(G))−H(ΩL(G)|G′) = H(HL). (33)

Furthermore, the following inequation holds if H(H0) ≥ 0,

ϕ(ΩL) ≥ ϕ(ΩL)−H(H0)

≥
L∑

l=1

H(Hl)−H(Hl−1)

≥
L∑

l=1

H(Hl)−H(Hl−1)

H(Hl−1)
H(Hl−1)

Nonetheless, this is the behavior of ideal neural networks. Considering real-world neural networks
can never reach this critical point (i.e., H(Hl−1) ≥ I(Hl;Hl−1) ≥ 0),

ϕ(ΩL) ≥
L∑

l=1

H(Hl)−H(Hl−1)

H(Hl−1)
I(Hl;Hl−1)

≥
L∑

l=1

H(Hl)−H(Hl−1)

H(Hl−1)
(H(Hl−1) +H(Hl)−H(Hl,Hl−1))

Assume wo = 2 + ϵ ≥ 2 and wk = 2 + δ ≥ 2, we have the following relationship,

ϵ+ δ + δϵ ≥ 0,

4 + 2ϵ+ 2δ + δϵ ≥ 4 + ϵ+ δ

(2 + ϵ)(2 + δ) ≥ 2 + ϵ+ 2 + δ

wowk ≥ wo + wk

wlwl−1 ≥ wl + wl−1

log (wl) + log (wl−1) ≥ log (wl + wl−1) (34)
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Previous works (He et al., 2016; Huang et al., 2017; Li et al., 2021) suggest that the neural network
refines and compresses the information as depth increases with decreasing width,

w1 ≥ w2 · · · ≥ wL−1 ≥ wL. (35)

According to Eq. (28), Eq. (30), Eq. (34), and Eq. (35) the inequation becomes,

ϕ(ΩL) ≥
L∑

l=1

H(Hl)−H(Hl−1)

H(Hl−1)
(log (wl) + log (wl−1)− log (wl + wl−1))

≥
L∑

l=1

H(Hl)−H(Hl−1)

H(Hl−1)
log

(
wl−1wl

wl−1 + wl

)

≥
L∑

l=1

log
(∏l−1

o=0
nwo

d2 σ2(A)
)
− log

(∏l−2
o=0

nwo

d2 σ2(A)
)

log
(∏l−2

o=0
nwo

d2 σ2(A)
)
+ log (2πe)

log

(
wl−1wl

wl−1 + wl

)

≥
L∑

l=1

log
(nwl−1

d2 σ2(A)
)

log (2πe) +
∑l−2

o=0 log
(
nwo

d2 σ2(A)
) log( wl−1wl

wl−1 + wl

)

≥
L∑

l=1

log
(wl−1

d

)
log (2πe) +

∑l−2
o=0 log

(
wo

d

) log( wl−1wl

wl−1 + wl

)

≥
L∑

l=1

1

logwl−1
d

(2πe) +
∑l−2

o=0 logwl−1
d

(
wo

d

) log( wl−1wl

wl−1 + wl

)

≥
L∑

l=1

1

logwl−1
d

(2πe) +
∑l−2

o=0 1
log

(
wl−1wl

wl−1 + wl

)
(36)

In practice, the average degrees of many real-world graphs are not too large. For example, dCora ≈
3.9, dCiteseer ≈ 2.7, and dPubmed ≈ 4.5. The feasible solutions of wl typically range from 2× 102 to
5×103 and 2πe ≈ 17.0795, such that logwl−1

d
(2πe) ≤ 1. Then, we have the following relationship,

ϕ(ΩL) ≥
L∑

l=1

1

l
log (

wl−1wl

wl−1 + wl
). (37)

B PRACTICAL OPERATIONS IN GRAPH NEURAL NETWORKS

B.1 RESIDUAL CONNECTION IN GRAPH NEURAL NETWORK

Residual connection is another favored technique used in deep learning, which is generally defined
as,

Hl = f(Hl−1) +Hl−1 (38)

Here, f(·) denotes the corresponding layer update function. Consequently, E(Hl) becomes,

E(Hl) = E(Hi,j
l−1 +

wl−1∑
o=1

W o,j
l U i,o

l )

= E(Hl−1) +

wl−1∑
j=1

E(W o,j
l U i,o

l )

= 0 +

wl−1∑
j=1

0 · E(U i,o
l )

= 0. (39)
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Meanwhile, σ2(Hl) becomes,

σ2(Hl) = σ2(Hi,j
l−1 +

wl−1∑
o=1

W o,j
l U i,o

l )

= σ2(Hl−1) + σ2(

wl−1∑
o=1

W o,j
l U i,o

l ) + 2Cov(Hi,j
l−1,

wl−1∑
o=1

W o,j
l U i,o

l )

=

l−2∏
o=0

nwoσ
2(Ão) +

l−1∏
o=0

nwoσ
2(Ão) + 2Cov(Hi,j

l−1,

wl−1∑
o=1

W o,j
l U i,o

l )

=

l−2∏
o=0

nwoσ
2(Ão) +

l−1∏
o=0

nwoσ
2(Ão)− 2E(Hi,j

l−1 ·
wl−1∑
o=1

W o,j
l U i,o

l )

=

l−2∏
o=0

nwoσ
2(Ão) +

l−1∏
o=0

nwoσ
2(Ão)− 2E(

wl−1∑
o=1

W o,j
l U i,o

l Hi,j
l−1)

=

l−2∏
o=0

nwoσ
2(Ão) +

l−1∏
o=0

nwoσ
2(Ão)− 2

wl−1∑
o=1

E(W o,j
l U i,o

l Hi,j
l−1)

=

l−2∏
o=0

nwoσ
2(Ão) +

l−1∏
o=0

nwoσ
2(Ão)− 2

wl−1∑
o=1

0 · E(U i,o
l Hi,j

l−1)

=

l−2∏
o=0

nwoσ
2(Ão) +

l−1∏
o=0

nwoσ
2(Ão). (40)

According to Eq. (32), Eq. (37), Eq. (39), and Eq. (40), adopting residual connection results in in-
creasing model entropy and model channel capacity. Thus, residual connection offers great potential
in augmenting the model performance of relatively deep GNNs. If Eq. (38) becomes the following
form,

Hl = f(Hl−1) + T (Hl−1), (41)

where T (·) is a linear transform without nonlinear activation, then Eq. (39) and Eq. (40) still hold.
According to Eq. (39) and Eq. (40), H(ΩL) becomes,

H(ΩL) =
1

2
log (2πewLσ

2(Hl))

=
1

2
log (2πe) +

1

2
log (wL) +

1

2

L−1∑
l=0

log (wl) +
1

2

L−1∑
l=0

log (
n

d2
σ2(A))

+
1

2

L−2∑
l=0

log (wl) +
1

2

L−2∑
l=0

log (
n

d2
σ2(A))

≈ 1

2
log (2πe) +

1

2
log (wL) +

L−1∑
l=0

1

2
log (

wl

d
) +

L−2∑
l=0

1

2
log (

wl

d
). (42)

Then, the lower bound of ϕ(ΩL) becomes,

ϕ(ΩL) ≥
L∑

l=1

H(Hl)−H(Hl−1)

H(Hl−1)
log (

wl−1wl

wl−1 + wl
)

≥
L∑

l=1

log (
∏l−1

o=0
wo

d )− log(
∏l−3

o=0
wo

d )

log (
∏l−2

o=0
wo

d ) + log (
∏l−3

o=0
wo

d ) + log (2πe)
log (

wl−1wl

wl−1 + wl
)

≥
L∑

l=1

log wl−1

d + log wl−2

d

log (2πe) + log
(∏l−2

o=0
wo

d

)
+ log

(∏l−3
o=0

wo

d

) log

(
wl−1wl

wl−1 + wl

)
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≥
L∑

l=1

1

logwl−1wl−2

d2

(
2πew0

d

)
+
∑l−2

o=1 logwl−1wl−2

d2

(wowo−1

d2

) log( wl−1wl

wl−1 + wl

)

≥
L∑

l=1

1

logwl−1wl−2

d2
(2πe) + logwl−1wl−2

d2

(
w0

d

)
+
∑l−2

o=1 1
log

(
wl−1wl

wl−1 + wl

)

≥
L∑

l=1

1

l
log

(
wl−1wl

wl−1 + wl

)
. (43)

Accordingly, we can observe that H(ΩL) increases as H(Hl) increases and the first two terms in
the denominator are smaller than in Eq. (36), which leads to an increase of ϕ(ΩL). Besides this, the
lower bound of ϕ(ΩL) remains unchanged, ensuring Shannon’s theorem is satisfied.

B.2 ADJACENCY INFORMATION IN GRAPH NEURAL NETWORK

Nowadays, graph rewiring has been a common and popular technique to enhance the performance of
GNNs, which commonly includes dropping edge (Rong et al., 2020), graph rewiring (Barbero et al.,
2024), etc. According to Eq. (28), Eq. (32), and Eq. (37), altering the adjacency matrix can pose
significant impacts on the model entropy and the model channel capacity. Given a defined GNN
model and the fixed number of nodes, we can obtain the partial derivate ∂H(ΩL)

∂σ2(A) based on Eq. (31),

∂H(ΩL)

∂σ2(A)
=

L−1∑
l=0

∂

∂σ2(A)

1

2
log
( n

d2
σ2(A)

)
=

1

2

L−1∑
l=0

1
n
d2σ2(A)

· n

d2

=
1

2

L−1∑
l=0

1

σ2(A)

=
L

2σ2(A)
. (44)

The partial derivate ∂H(ΩL)
∂d is obtained by,

∂H(ΩL)

∂d
=

1

2

L−1∑
l=0

∂

∂d
log
( n

d2
σ2(A)

)
=

1

2

L−1∑
l=0

(
−2

d
· 1

n
d2σ2(A)

)

= −1

d

L−1∑
l=0

1

σ2(A)

= −L

d
. (45)

Given a defined GNN model and the fixed number of nodes, the partial derivative ∂ϕ0(ΩL)
∂σ2(A) is obtained

by,

∂ϕ0(ΩL)

∂σ2(A)
=

L∑
l=1

∂

∂σ2(A)

 1

log nwl−1

d2
σ2(A)

(2πe) +
∑l−2

o=0 1
log

(
wl−1wl

wl−1 + wl

)
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=

L∑
l=1


log (2πe) log

(
wl−1wl

wl+wl−1
)
)
d2 · nwl−1

d2 · ∂
∂σ2(A)σ

2(A)

nwl−1σ2(A)

 log(2πe)

log

(
nwl−1σ2(A)

d2

) + l − 1

2

log2
(

nwl−1σ2(A)
d2

)


=

L∑
l=1

log (2πe) log
(

wl−1wl

wl+wl−1

)
σ2(A)

 log(2πe)

log

(
nwl−1σ2(A)

d2

) + l − 1

2

log2
(

nwl−1σ2(A)
d2

)

=

L∑
l=1

log (2πe) log
(

wl−1wl

wl+wl−1

)
σ2(A)

(
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+ log (2πe)

)2 (46)

Similarly, the partial derivative ∂ϕ0(ΩL)
∂d is obtained by,

∂ϕ0(ΩL)

∂d
=

L∑
l=1

∂

∂d

 1

logwl−1
d

(2πe) +
∑l−2

o=0 1
log

(
wl−1wl

wl−1 + wl

)
=

L∑
l=1

− 1(
logwl−1

d
(2πe) +

∑l−2
o=0 1

)2 · − log(2πe)

d log2
(wl−1

d

) · log( wl−1wl

wl−1 + wl

)
= −

L∑
l=1

log
(

wl−1wl

wl−1+wl

)
· log(2πe)

d log2(
wl−1

d )(
logwl−1

d
(2πe) +

∑l−2
o=0 1

)2
= −

L∑
l=1

log (2πe) · log ( wl−1wl

wl−1+wl
)

d
(
(l − 1) log (wl−1

d ) + log (2πe)
)2 . (47)

We can observe that the model performance generally improves as the model entropy and the model
channel capacity grow based on previous results. Consequently, approaches like graph rewiring (Jin
et al., 2020; Barbero et al., 2024) and utilizing attention mechanisms can substantially enhance the
performance of GNN models. Thus, performing graph rewiring and adopting attention-based mech-
anisms provides the opportunity to reduce d or increase σ2(A) during the information propagation
process.

C DATASETS INFORMATION

Table 2: Citation networks including Cora, Citeseer, and Pubmed are sliced with public splits. Co-
purchase graphs consisting of AmazonPhoto and AmazonComputers are sliced with random splits.

Dataset #Node #Edges # Features #Classes #Avg. Degree Label Rate

Cora 2708 5429 1433 7 3.9 0.0517
Citeseer 3312 4732 3703 6 7.0 0.0362
Pubmed 19717 44338 500 3 4.5 0.0030
AmazonPhoto 7650 119081 745 8 31.1 0.0209
AmazonComputers 13752 245861 767 10 35.8 0.0145
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Figure 5: Mean of latent node feature vector by layer on Cora.
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Figure 6: Variance of latent node feature vector by layer on Cora.

D MEAN & VARIANCE OF NODES

Here, we present the mean and variance of latent node feature vectors in each layer of C3E variants,
deep backbone models, and backbone models on Cora. From Fig. 5 and Fig. 6, we can observe that
latent node feature vectors of C3E variants have the most stable and similar statistical properties in
the message-passing layers as opposed to the deep backbone models, and backbone models. The
mean and variance of latent node feature vectors of deep backbone models are even more versatile
across layers, they can be centralized within a certain interval or dispersed to various intervals.
These observations empirically validate our proposed theories and the finding of previous studies
that latent variables or learned representations should ideally follow a specific distribution Θ, i.e.,
Hl ∼ Θ. Besides, we provide more detailed transition plots of variance of latent node representation
in Fig. 7.

E HYPERPARAMETER CONFIGURATION

We list the model configurations used in this work, no extra tricks or operations are implemented in
this work.
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Figure 7: Detailed variance of latent node representation of Fig. 4.

E.1 OBJECTIVE FUNCTION

The cross-entropy is selected as the objective function for performing the semi-supervised node
classification task.

E.2 OPTIMIZER SETTINGS

In this work, we use Adam/AdamW as the optimizer. The weight decay factors of backbone models
and deep backbone models are set to the same values as the original works. The weight decay factors
of C3E variants are set to 5 × 10−4. The learning rates of backbone models and deep backbone
models are set to the same values as the original works. The learning rates of C3E variants are
searched from the interval [0.9× 10−4, 10−3].

E.3 RESIDUAL CONNECTION

For a fair comparison, only deep backbone models and C3E variants have residual connections in
the form of Eq. (41). According to Eq. (43), to avoid being divided by zero, i.e., the layer index
should satisfy l ≥ 2, the residual connections are applied in all message-passing layers except for
the first message-passing layers.

E.4 DEPTH & WIDTHS

• Cora:
– Plain-GCN({1433, 16, 7}),
– Plain-GAT({1433, 64, 7}), head=8,
– Plain-GDC({1433, 64, 7}),

kernel=PPR, α = 0.05, k = 128,
– Deep-GCN({1433, 16, 16, 16, 16, 16, 7}),
– Deep-GAT({1433, 64, 64, 64, 64, 64, 7}), head=8,
– Deep-GDC({1433, 64, 64, 64, 7}),

kernel=PPR, α = 0.05, k = 128,
– C3E-GCN({1433, 1982, 1298, 1094, 986, 722, 7}),
– C3E-GAT({1433, 1982, 1290, 1064, 933, 720, 7}), head=2,
– C3E-GDC({1433, 1488, 972, 688, 7}),

kernel=PPR, α = 0.05, k = 128.
• Citeseer:
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– Plain-GCN({3703, 16, 6}),
– Plain-GAT({3703, 64, 6}), head=8,
– Plain-GDC({3703, 64, 6}),

kernel=PPR, α = 0.1, ϵ = 9× 10−4,
– Deep-GCN({3703, 16, 16, 16, 16, 6}),
– Deep-GAT({3703, 64, 64, 64, 64, 6}), head=8,
– Deep-GDC({3703, 64, 64, 64, 64, 6}),

kernel=PPR, α = 0.1, ϵ = 9× 10−4,
– C3E-GCN({3703, 5270, 3430, 2861, 2124, 6}),
– C3E-GAT({3703, 5270, 3432, 2862, 2126, 6}), head=2,
– C3E-GDC({3703, 3988, 2598, 2164, 1610, 6}),

kernel=PPR, α = 0.1, ϵ = 9× 10−4.

• Pubmed:

– Plain-GCN({500, 16, 3}),
– Plain-GAT({500, 64, 3}), head=8,
– Plain-GDC({500, 64, 3}),

kernel=PPR, α = 0.1, k = 64,
– Deep-GCN({500, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 3}),
– Deep-GAT({500, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 3}), head=8,
– Deep-GDC({500, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 3}),

kernel=PPR, α = 0.1, k = 64,
– C3E-GCN({500, 682, 450, 370, 328, 300, 282, 266, 254, 248, 180, 3}),
– C3E-GAT({500, 682, 450, 370, 328, 300, 282, 266, 254, 248, 180, 3}), head=2,
– C3E-GDC({500, 534, 356, 298, 266, 244, 228, 216, 204, 194, 160, 3}),

kernel=PPR, α = 0.1, k = 64.

• AmazonPhoto:

– Plain-GCN({745, 16, 8}),
– Plain-GAT({745, 64, 8}), head=8,
– Plain-GDC({745, 64, 8}),

kernel=PPR, α = 0.15, k = 64

– Deep-GCN({745, 16, 16, 16, 16, 16, 16, 16, 8}),
– Deep-GAT({745, 64, 64, 64, 64, 64, 64, 8}), head=8,
– Deep-GDC({745, 64, 64, 64, 64, 64, 8}),

kernel=PPR, α = 0.15, k = 64

– C3E-GCN({745, 830, 538, 446, 400, 370, 350, 274, 8}),
– C3E-GAT({745, 830, 546, 458, 412, 384, 298, 8}), head=2,
– C3E-GDC({745, 796, 532, 444, 392, 308, 8}),

kernel=PPR, α = 0.15, k = 64.

• AmazonComputers:

– Plain-GCN({767, 16, 10}),
– Plain-GAT({767, 64, 10}), head=8,
– Plain-GDC({767, 64, 10}),

kernel=PPR, α = 0.1, k = 64,
– Deep-GCN({767, 16, 16, 16, 16, 16, 16, 16, 10}),
– Deep-GAT({767, 64, 64, 64, 64, 64, 64, 64, 10}), head=8,
– Deep-GDC({767, 64, 64, 64, 64, 64, 64, 10}),

kernel=PPR, α = 0.1, k = 64,
– C3E-GCN({767, 846, 554, 464, 416, 386, 366, 292, 10}),
– C3E-GAT({767, 846, 554, 464, 416, 386, 366, 292, 10}), head=2,
– C3E-GDC({767, 818, 546, 456, 407, 369, 293, 10}),

kernel=PPR, α = 0.1, k = 64.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

E.5 OTHER CONFIGURATIONS

According to Eq. 16, the dropout probability of C3E models is calculated by,

pl = 1− wl−1

wl−1 + wl
. (48)

The dropout probability of other models is 0.5 or 0.6 as their original works. Self-loop is enabled
for all datasets. Empirically, we select PReLU(·) as the activation function (You et al., 2020) and
only apply it after the first message-passing layer. Furthermore, we find that adding the nonlinear
activation function to every layer hinders GNNs from effectively learning meaningful representation
and degrades their performance. Based on experimental results, we propose a regularization term
wl

wl−1
≤ d

1
d to Eq. (18), and ζ = 1.3.

F DIRICHLET ENERGY ANALYSIS
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Figure 8: The transition of layer-wise normalized Dirichlet energy of node representation.

The Dirichlet energy is widely adopted in graph theory and graph signal processing to measure the
smoothness of features. In this work, we use normalized Dirichlet Energy to quantify the changes
in node representation regarding the corresponding initial node features. The normalized Dirichlet
Energy is defined by,

E(Hl) =
tr(Hl

TLHl)

tr(XTLX)
, (49)

where tr(·) denotes the trace and L = D −A denotes the graph laplacian matrix. From Fig. 8, we
can observe that compared to the backbone models, the Dirichlet energy of Deep models and C3E
variants reduces in the subsequent few layers, which might indicate the presence of over-smoothing.
The Dirichlet energy of C3E models gradually decreases to a minimum value, then continuously
increases to a certain value, and converges to a smaller value eventually. Although the Deep models
sometimes show similar characteristics, they often diverge at deeper layers.

According to Zhou et al. (2021), the layer-wise Dirichlet energy should be constrained within cer-
tain lower bound and upper bound to avoid over-smoothing and over-separating. It points out that
GNNs can stack more layers by constraining the Dirichlet energy of latent node representations,
such that the Dirichlet energy rapidly decreases in the shallow layers, then consistently increases in
the subsequent layers, and converges to a stable status (i.e., the Dirichlet energy almost remains the
same) in deeper layers.

Based on these observations and previous results, we can conclude that having a small Dirichlet
energy does not always mean poor model performance based on Fig. 8 and Table .1. In other words,
if the benefit of reaching or approaching the optimal information transmission state is smaller than
the inescapable negative effects (like over-smoothing or over-separating) of increasing the width and
depth, then model performance is not guaranteed, and vice versa.
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