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Abstract: Recent advances have showcased the opportunity of leveraging the1

broad semantic understanding learned by vision-language models (VLMs) in2

robot learning; however, effectively connecting VLMs to robot control remains3

challenging due to the scarcity of physical robot data compared to internet-scale4

training data. We propose STEER, a system that learns flexible, low-level ma-5

nipulation skills, allowing for modulation and adaptation to new situations. By6

training low-level policies on structured, dense re-annotations of existing robot7

datasets, we create an intuitive interface for humans or VLMs to guide robots in8

unfamiliar scenarios and perform new tasks using common-sense reasoning. Our9

results demonstrate that skills learned through STEER can be synthesized to ac-10

complish held-out tasks without additional training. (Videos1)11

1 Introduction12

Low level 
policy

Sounds good, I can help with that! I will 
carefully grasp the pink cup, tilt it over so that 
the contents fall out, and then place the cup 
back on the table upright. Here are the steps I 
will take:

1. **Grasp cup:** I will grasp the pink cup from 
the side. 
    * **State change:** The robot arm will move 
to the pink cup and grasp it from the side with 
its gripper oriented horizontally.
2. **Lift cup:** I will lift the pink cup up.
    * **State change:** The pink cup will be lifted 
up, off of the table.
3. **Reorient cup:** I will reorient the cup so 
that the opening is facing down.
    * **State change:** The robot arm will rotate 
its gripper so that it is oriented vertically. The 
pink cup will be rotated so that its opening is 
facing the table.
4. **Pour contents:** I will move the cup over 
the table and shake it until the contents fall out.
    * **State change:** The contents of the pink 
cup will be emptied onto the table.
5. **Reorient cup:** I will reorient the cup so the 
opening is facing up.
    * **State change:** The robot arm will rotate 
its gripper so that it is oriented horizontally. The 
pink cup will be rotated so that its opening is 
facing up.
6. **Place cup:** I will place the cup back on 
the table.
    * **State change:** The robot arm will move 
the pink cup back down to the table and release 
it. The pink cup will be upright on the table.

```python
robot_api.grasp_object(object_name='pink cup', 
grasp_approach='from the side')
robot_api.lift_object(object_name='pink cup')
robot_api.reorient(desired_gripper_orientation='
vertical')
# Since there is no shake function in the API, 
we can try to achieve the desired outcome by 
reorienting the gripper back and forth.
robot_api.reorient(desired_gripper_orientation='
horizontal')
robot_api.reorient(desired_gripper_orientation='
vertical')
robot_api.reorient(desired_gripper_orientation='
horizontal') 
robot_api.place_object(object_name='pink cup', 
location='here') 

## Reasoning\n\nThe robot needs to grasp the 
flower pot from the side, as a top-down grasp 
would crush the plant. Once the pot is 
grasped, the robot can lift it up.\n\n## 
Steps:\n\n1. **Grasp the pot:** The robot will 
reach for the orange flower pot and grasp it 
from the side. After this step, the robot will be 
holding the flower pot with its gripper oriented 
horizontally.\n    ```python\n    
robot_api.grasp_object(object_name=\"orange 
flower pot\", grasp_approach=\"from the 
side\")\n    ```\n\n2. **Lift the pot:** The robot 
will lift the flower pot upwards while 
maintaining its grasp. After this step, the robot 
will be holding the pot in the air.\n    
```python\n    
robot_api.lift_object(object_name=\"orange 
flower pot\")\n    ```\n\n## Full 
Code:\n```python\nrobot_api.grasp_object(obj
ect_name=\"orange flower pot\", 
grasp_approach=\"from the 
side\")\nrobot_api.lift_object(object_name=\"or
ange flower pot\")\n```

parts {
  text: "this is a picture of the scene. lease pick up the orange without disturbing the other objectsP"
}
role: "user"
, parts {
  text: "The orange is in an advantageous position to be grasped from the top. I will grasp the orange 
from the top and lift it up.\n\nHere are the steps I will take:\n\n1. **Grasp orange:** I will grasp the 
orange from the top. The gripper orientation will be vertical.\n   - **Expected state:** The robot arm 
will be extended and the gripper will be grasping the orange. The orange will be lifted slightly off the 
table.\n\n2. **Lift orange:** I will lift the orange up.\n   - **Expected state:** The robot arm will be 
raised higher and the orange will be lifted higher off the table.\n\n3. **Place orange:** I will place 
the orange back down at the \"here\" location.\n   - **Expected state:** The robot arm will be lowered 
and the orange will be back in its original position on the 
table.\n\n```python\nrobot_api.grasp_object(object_name=\"orange\", 
grasp_approach=\"top-down\")\nrobot_api.lift_object(object_name=\"orange\")\nrobot_api.place_object(obje
ct_name=\"orange\", location=\"here\")\n```"
}
role: "model"
, parts {
  text: "Why did you choose that grasp strategy?"
}
role: "user"
, parts {
  text: "I chose the \"top-down\" grasp strategy for the orange because it was the most straightforward 
and least likely to disturb the other objects on the table. \n\nHere\'s why:\n\n* **Clearance:** The 
orange had plenty of open space above it, allowing for a clean top-down approach without the risk of 
hitting the other objects.\n* **Object Shape:** Oranges are relatively round and easy to grasp from the 
top. \n* **Stability:** A top-down grasp on a round object like an orange provides a stable grip, 
minimizing the chance of it slipping during the lift and place actions. \n\nOther grasp approaches like 
\"from the side\" or \"diagonally\" would have introduced unnecessary complexity and increased the risk 
of bumping into the nearby pear, bowl, or grapes. \n"
}
role: "model"
]

parts {
  text: "this is a picture of the 
scene. Please pick up the orange 
flower pot without disturbing the 
plant"
}
role: "user"
, parts {
  text: "The robot should grasp the 
pot from the sides and lift it 
up.\n\nHere are the steps:\n\n1. 
**Grasp the pot:** The robot will 
grasp the orange flower pot from 
the sides. The pot will be held 
with the fingers oriented 
horizontally pointing to the left 
(i.e. 9pm on a clock).\n    * 
**Expected state:** The robot is 
now grasping the orange flower pot 
from the sides.\n2. **Lift the 
pot:** The robot will lift the pot 
vertically upwards.\n    * 
**Expected state:** The robot is 
now holding the orange flower pot 
in the 
air.\n\n```python\nrobot_api.grasp_
object(object_name=\'orange flower 
pot\', grasp_approach=\'from the 
side\')\nrobot_api.lift_object(obje
ct_name=\'orange flower 
pot\')\n```"
}
role: "model"
, parts {
  text: "Can you explain the 
reasoning behind your grasp 
selection?"
}
role: "user"
, parts {
  text: "I chose to grasp the pot 
\"from the side\" because this 
approach allows the robot to 
securely grip the pot without 
touching the delicate plant. 
Grasping from the top would likely 
damage the plant, and a diagonal 
grasp might not provide a stable 
grip. \n"
}
role: "model"
]

Please pick up the orange 
flower pot without 
disturbing the plant.

Reasoning: The robot needs to grasp 
the flower pot from the side, as a 
top-down grasp would crush the plant. 
Once the pot is grasped, the robot can 
lift it up.
Steps:

1.  Grasp the pot: The robot will 
reach for the orange flower pot 
and grasp it from the side. After 
this step, the robot will be holding 
the flower pot with its gripper 
oriented horizontally. ```python\n    
robot_api.grasp_object(object_na
me=\"orange flower pot\", 
grasp_approach=\"from the 
side\")```

2. Lift the pot: The robot will lift the 
flower pot upwards while 
maintaining its grasp. After this 
step, the robot will be holding the 
pot in the air.  ```python\n    
robot_api.lift_object(object_name
=\"orange flower pot\")\n    ```\n\n

Full Code: 
```python\nrobot_api.grasp_object(obje
ct_name=\"orange flower pot\", 
grasp_approach=\"from the 
side\")\nrobot_api.lift_object(object_na
me=\"orange flower pot\")```

Handle a new 
scenariocluster and relabel

RT-1 training

grasp <object> 
in a top-down manner

grasp <object> 
from the side

Synthesize a new 
behavior

Please pick up the orange 
flower pot without 
disturbing the plant.

## Plan:
1. Grasp the pink cup from the side.
2. Lift the cup up.
3. Tilt the cup over to pour out its 
contents.
4. Tilt the cup back upright.
5. Place the cup back on the table.

## Python code:
```python
robot_api.grasp_object(object_name='p
ink cup', grasp_approach='from the 
side') # Cup is grasped from the 
side, fingers oriented horizontally.
robot_api.lift_object(object_name='pi
nk cup') # Cup is now held in the 
air.
robot_api.reorient(desired_gripper_or
ientation='vertical') # Cup is now 
tilted, contents poured out.
robot_api.reorient(desired_gripper_or
ientation='horizontal') # Cup is now 
upright again.
robot_api.place_object(object_name='p
ink cup', location='here') # Cup is 
placed back on the table.
```

While a "top-down" grasp might seem 
intuitive for picking up a cup, it 
would require more complex 
manipulations to achieve the desired 
pouring angle, potentially increasing 
the risk of spilling or dropping the 
cup. 

Plan:
1. Grasp the pink cup from the side.
2. Lift the cup up.
3. Tilt the cup over to pour out its 
contents.
4. Tilt the cup back upright.
5. Place the cup back on the table.

While a "top-down" grasp might seem 
intuitive for picking up a cup, it would 
require more complex manipulations to 
achieve the desired pouring angle, 
potentially increasing the risk of spilling 
or dropping the cup. 
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Figure 1: In STEER, we train on a dataset of di-
verse robot behaviors that is re-annotated to describe
the primitive skills used to manipulate objects, with a
focus on how the robot performed that skill. At in-
ference time, a high-level system (VLM or human) re-
ceives a complex language instruction and determines
the low-level skills to employ in the given context. Fo-
cusing on the “how” enables better contextual behavior.

Designing robots that can handle diverse and13

nuanced tasks posed by the real world is chal-14

lenging, as it requires adaptability to complex,15

dynamic environments. Imitation learning (IL)16

is a widely-used, data-driven approach that dis-17

tills expert demonstrations into learned poli-18

cies, enabling precise manipulation of high-19

dimensional robot systems in real-world envi-20

ronments [1, 2] and at scale [3, 4, 5, 6, 7, 8, 9].21

Despite these advances, robot systems trained22

with IL remain largely limited to scenarios en-23

countered during training, which are fundamen-24

tally narrow as collecting real-world embodied data is costly and constrained by physical limitations.25

Humans, on the other hand, can adapt to complex, unfamiliar situations with ease, thanks to "com-26

mon sense" generalization. Humans effortlessly understand high-level concepts like object affor-27

dances, intuitive physics, and compositionality—referred to as ’System 2’ processing [10], which28

involves deliberate, analytical thinking. This contrasts with ’System 1’ behaviors, which are reactive29

and particularly useful in contact-rich manipulation. Natural language serves as a key medium for30

studying System 2 reasoning, not only as a means through which humans understand and describe31

the world, but also as the primary input-output modality for vision-language models (VLMs) that32

demonstrate complex, human-like reasoning capabilities [11, 12, 13]. Connecting high-level Sys-33

tem 2 plans to low-level System 1 behaviors, however, is not straightforward. Several methods have34

been proposed to bridge this gap: some enable System 2 reasoning systems to operate in modali-35

ties more easily transferable to robotic policies, such as code or semantic keypoints [14, 15], while36

others account for the lack of System 2 physical grounding by considering robot affordances dur-37

ing planning [16] or jointly training on both internet and embodied data [6, 5]. These approaches38

typically view System 1 processing as inflexible, seeking to improve System 2 reasoning outputs to39

better control a fixed System 1 policy. Instead of augmenting System 2 reasoning outputs, we ask:40

can we improve the System 1 policy to be more flexible and steerable by System 2 processes? Can41

this combination enable generalizable, end-to-end control?42

1https://steer-anon.github.io
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We introduce STEER: Structured Training for EmbodiEd Reasoning, a framework for training low-43

level reactive policies that can be flexibly guided by higher-level reasoning systems like humans or44

VLMs. The key insight of STEER is the use of dense language annotations on robot data, allowing45

us to train conditional policies based on detailed language instructions. These policies can be con-46

ditioned on each step of a plan generated by a high-level model (e.g., VLM or LLM), effectively47

combining System 1 and System 2 capabilities. This enables the robot to adapt to new situations by48

synthesizing behaviors not explicitly demonstrated during training. We implement this system using49

real-world datasets and propose an automated labeling pipeline based on proprioceptive observa-50

tions to extract basic, object-centric manipulation skills, which are distilled into a low-level policy.51

Additionally, we present a strategy for using a VLM to generate language-based instructions for this52

low-level policy. Crucially, our approach enables the repurposing of robot skills in a semantically53

meaningful way at test time, allowing robots to autonomously handle novel situations.54

2 Related Work55

Imitation learning (IL) has become the dominant paradigm for training robotic manipulation poli-56

cies [3, 2, 17]. However, deploying these models in unstructured environments remains challeng-57

ing, as robot policies trained on human-collected data struggle in "out-of-distribution" scenarios58

where demonstrations are sparse [18]. This limitation arises from the high cost of collecting large-59

scale robot data compared to web-scale datasets used for training foundation models [19, 11, 13].60

To improve generalization, researchers have leveraged text and vision foundation models to uti-61

lize existing datasets. This includes enhancing IL policies for open-world object grasping through62

open-vocabulary object detection [20] and relabeling episode-level instructions with models like63

CLIP [21, 22, 23]. Our work aligns with these dataset relabeling approaches, aiming to expand64

robot capabilities by relabeling behavior modes in existing heterogeneous demonstration datasets.65

Previous research has also investigated expressive modalities for policy conditioning, such as goal66

target poses [24], images [25, 26], trajectories [27, 28], and code [14]. However, natural language67

remains the primary modality for complex planning in state-of-the-art LLMs and VLMs, motivat-68

ing STEER to improve language-conditioned action prediction. Additionally, many works explore69

learned skills to accelerate new task learning with temporally extended, semantically meaningful ac-70

tion sequences [29, 30, 31, 32, 33]. These approaches often employ hierarchical policies that learn71

to compose skills through RL [34, 35, 36]. While EXTRACT [33] uses VLMs to label skills for72

new tasks, our method leverages VLMs’ common-sense reasoning to select appropriate skills with-73

out training a separate policy. By reasoning about how humans approach tasks from visual inputs,74

our framework enables robots to plan longer-horizon tasks and manage novel object configurations.75

This contrasts with prior work on affordances, which typically relies on keypoint representations76

in pixel space [37, 38]. Our approach instead reasons about affordances through natural language,77

allowing for more nuanced interactions with off-the-shelf VLMs or human operators.78

3 System Design79

Low level 
policy

Sounds good, I can help with that! I will 
carefully grasp the pink cup, tilt it over so that 
the contents fall out, and then place the cup 
back on the table upright. Here are the steps I 
will take:

1. **Grasp cup:** I will grasp the pink cup from 
the side. 
    * **State change:** The robot arm will move 
to the pink cup and grasp it from the side with 
its gripper oriented horizontally.
2. **Lift cup:** I will lift the pink cup up.
    * **State change:** The pink cup will be lifted 
up, off of the table.
3. **Reorient cup:** I will reorient the cup so 
that the opening is facing down.
    * **State change:** The robot arm will rotate 
its gripper so that it is oriented vertically. The 
pink cup will be rotated so that its opening is 
facing the table.
4. **Pour contents:** I will move the cup over 
the table and shake it until the contents fall out.
    * **State change:** The contents of the pink 
cup will be emptied onto the table.
5. **Reorient cup:** I will reorient the cup so the 
opening is facing up.
    * **State change:** The robot arm will rotate 
its gripper so that it is oriented horizontally. The 
pink cup will be rotated so that its opening is 
facing up.
6. **Place cup:** I will place the cup back on 
the table.
    * **State change:** The robot arm will move 
the pink cup back down to the table and release 
it. The pink cup will be upright on the table.

```python
robot_api.grasp_object(object_name='pink cup', 
grasp_approach='from the side')
robot_api.lift_object(object_name='pink cup')
robot_api.reorient(desired_gripper_orientation='
vertical')
# Since there is no shake function in the API, 
we can try to achieve the desired outcome by 
reorienting the gripper back and forth.
robot_api.reorient(desired_gripper_orientation='
horizontal')
robot_api.reorient(desired_gripper_orientation='
vertical')
robot_api.reorient(desired_gripper_orientation='
horizontal') 
robot_api.place_object(object_name='pink cup', 
location='here') 

## Reasoning\n\nThe robot needs to grasp the 
flower pot from the side, as a top-down grasp 
would crush the plant. Once the pot is 
grasped, the robot can lift it up.\n\n## 
Steps:\n\n1. **Grasp the pot:** The robot will 
reach for the orange flower pot and grasp it 
from the side. After this step, the robot will be 
holding the flower pot with its gripper oriented 
horizontally.\n    ```python\n    
robot_api.grasp_object(object_name=\"orange 
flower pot\", grasp_approach=\"from the 
side\")\n    ```\n\n2. **Lift the pot:** The robot 
will lift the flower pot upwards while 
maintaining its grasp. After this step, the robot 
will be holding the pot in the air.\n    
```python\n    
robot_api.lift_object(object_name=\"orange 
flower pot\")\n    ```\n\n## Full 
Code:\n```python\nrobot_api.grasp_object(obj
ect_name=\"orange flower pot\", 
grasp_approach=\"from the 
side\")\nrobot_api.lift_object(object_name=\"or
ange flower pot\")\n```

parts {
  text: "this is a picture of the scene. lease pick up the orange without disturbing the other objectsP"
}
role: "user"
, parts {
  text: "The orange is in an advantageous position to be grasped from the top. I will grasp the orange 
from the top and lift it up.\n\nHere are the steps I will take:\n\n1. **Grasp orange:** I will grasp the 
orange from the top. The gripper orientation will be vertical.\n   - **Expected state:** The robot arm 
will be extended and the gripper will be grasping the orange. The orange will be lifted slightly off the 
table.\n\n2. **Lift orange:** I will lift the orange up.\n   - **Expected state:** The robot arm will be 
raised higher and the orange will be lifted higher off the table.\n\n3. **Place orange:** I will place 
the orange back down at the \"here\" location.\n   - **Expected state:** The robot arm will be lowered 
and the orange will be back in its original position on the 
table.\n\n```python\nrobot_api.grasp_object(object_name=\"orange\", 
grasp_approach=\"top-down\")\nrobot_api.lift_object(object_name=\"orange\")\nrobot_api.place_object(obje
ct_name=\"orange\", location=\"here\")\n```"
}
role: "model"
, parts {
  text: "Why did you choose that grasp strategy?"
}
role: "user"
, parts {
  text: "I chose the \"top-down\" grasp strategy for the orange because it was the most straightforward 
and least likely to disturb the other objects on the table. \n\nHere\'s why:\n\n* **Clearance:** The 
orange had plenty of open space above it, allowing for a clean top-down approach without the risk of 
hitting the other objects.\n* **Object Shape:** Oranges are relatively round and easy to grasp from the 
top. \n* **Stability:** A top-down grasp on a round object like an orange provides a stable grip, 
minimizing the chance of it slipping during the lift and place actions. \n\nOther grasp approaches like 
\"from the side\" or \"diagonally\" would have introduced unnecessary complexity and increased the risk 
of bumping into the nearby pear, bowl, or grapes. \n"
}
role: "model"
]

parts {
  text: "this is a picture of the 
scene. Please pick up the orange 
flower pot without disturbing the 
plant"
}
role: "user"
, parts {
  text: "The robot should grasp the 
pot from the sides and lift it 
up.\n\nHere are the steps:\n\n1. 
**Grasp the pot:** The robot will 
grasp the orange flower pot from 
the sides. The pot will be held 
with the fingers oriented 
horizontally pointing to the left 
(i.e. 9pm on a clock).\n    * 
**Expected state:** The robot is 
now grasping the orange flower pot 
from the sides.\n2. **Lift the 
pot:** The robot will lift the pot 
vertically upwards.\n    * 
**Expected state:** The robot is 
now holding the orange flower pot 
in the 
air.\n\n```python\nrobot_api.grasp_
object(object_name=\'orange flower 
pot\', grasp_approach=\'from the 
side\')\nrobot_api.lift_object(obje
ct_name=\'orange flower 
pot\')\n```"
}
role: "model"
, parts {
  text: "Can you explain the 
reasoning behind your grasp 
selection?"
}
role: "user"
, parts {
  text: "I chose to grasp the pot 
\"from the side\" because this 
approach allows the robot to 
securely grip the pot without 
touching the delicate plant. 
Grasping from the top would likely 
damage the plant, and a diagonal 
grasp might not provide a stable 
grip. \n"
}
role: "model"
]

Please pick up the orange 
flower pot without 
disturbing the plant.

Reasoning: The robot needs to grasp 
the flower pot from the side, as a 
top-down grasp would crush the plant. 
Once the pot is grasped, the robot can 
lift it up.
Steps:

1.  Grasp the pot: The robot will 
reach for the orange flower pot 
and grasp it from the side. After 
this step, the robot will be holding 
the flower pot with its gripper 
oriented horizontally. ```python\n    
robot_api.grasp_object(object_na
me=\"orange flower pot\", 
grasp_approach=\"from the 
side\")```

2. Lift the pot: The robot will lift the 
flower pot upwards while 
maintaining its grasp. After this 
step, the robot will be holding the 
pot in the air.  ```python\n    
robot_api.lift_object(object_name
=\"orange flower pot\")\n    ```\n\n

Full Code: 
```python\nrobot_api.grasp_object(obje
ct_name=\"orange flower pot\", 
grasp_approach=\"from the 
side\")\nrobot_api.lift_object(object_na
me=\"orange flower pot\")```

Handle a new 
scenariocluster and relabel

RT-1 training

grasp <object> 
in a top-down manner

grasp <object> 
from the side

Synthesize a new 
behavior

Please pick up the orange 
flower pot without 
disturbing the plant.

## Plan:
1. Grasp the pink cup from the side.
2. Lift the cup up.
3. Tilt the cup over to pour out its 
contents.
4. Tilt the cup back upright.
5. Place the cup back on the table.

## Python code:
```python
robot_api.grasp_object(object_name='p
ink cup', grasp_approach='from the 
side') # Cup is grasped from the 
side, fingers oriented horizontally.
robot_api.lift_object(object_name='pi
nk cup') # Cup is now held in the 
air.
robot_api.reorient(desired_gripper_or
ientation='vertical') # Cup is now 
tilted, contents poured out.
robot_api.reorient(desired_gripper_or
ientation='horizontal') # Cup is now 
upright again.
robot_api.place_object(object_name='p
ink cup', location='here') # Cup is 
placed back on the table.
```

While a "top-down" grasp might seem 
intuitive for picking up a cup, it 
would require more complex 
manipulations to achieve the desired 
pouring angle, potentially increasing 
the risk of spilling or dropping the 
cup. 

Plan:
1. Grasp the pink cup from the side.
2. Lift the cup up.
3. Tilt the cup over to pour out its 
contents.
4. Tilt the cup back upright.
5. Place the cup back on the table.

While a "top-down" grasp might seem 
intuitive for picking up a cup, it would 
require more complex manipulations to 
achieve the desired pouring angle, 
potentially increasing the risk of spilling 
or dropping the cup. 
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Figure 2: Anchor vectors and
their semantic labels. Purple,
green, and pink vectors represent
side, top-down, and diagonal.

Our goal is to extract language-indexed, object-centric skills that80

facilitate task execution via foundation models. We achieve this81

by annotating existing datasets and training a language-conditioned82

RT-1 policy [4] using segmented and relabeled instructions. We83

extract semantically identifiable categories linked to language de-84

scriptions, focusing on shared, object-relational skills like grasping,85

lifting, placing, and rotating, originally demonstrated through tem-86

plates like pick <object>, move <object1> near <object2>, knock <object>, place87

<object> upright, can be executed with varying strategies. Key factors include:88

Grasp Angle. Objects can be grasped in multiple stable positions, and the particular way indeed89

impacts the ability to perform downstream tasks. However, grasp positions are rarely labeled apriori,90

as they are often implicit. We use a simple approach to label the grasp approach by manually labeling91

a relatively small set of ‘anchor’ grasp poses. We then label an arbitrary grasp with the label of its92

nearest neighbor ‘anchor’ pose as measured by cosine similarity. We represent a grasp pose as a 3D93



unit vector, and we identify the time of a grasp where the gripper changed from fully open to fully94

closed. To define and label the anchor poses, we took 3D unit vectors that are linear combinations95

of the elementary 3D basis vectors and visually inspected clusters in order to label them. In the96

grasp data, we identify three distinct modes via inspecting the grasp images: top-down grasps, side97

grasps, and diagonal grasps (visualized in Figure 2). The sub-trajectory is relabeled to grasp the98

<object> in a <grasp approach>, where <object> is from the original instruction and <grasp99

approach> is from the anchor’s label.100

Reorientation. Another mode of behavior identified in the dataset is of reorienting objects. In101

order to identify and label these reorientations, we first label the wrist orientation for every timestep102

where the gripper is fully closed. Then if the gripper orientation switches between two of the modes103

(as labeled in Grasp Angle), we label the sub-trajectory preceding it as reorient the <object>104

<direction>, where <object> again is from the original instruction and <direction> indicates105

whether the object is rotated from upright to horizontal or vice versa.106

Lifting/Placing. Complementing grasping, we label whether the object was lifted or placed at the107

end of completing the original task. If the object is still held at the end of the episode and the gripper108

moves vertically upward, we label the final sub-trajectory as hold and lift the <object>. If109

not, similar to identifying grasps, we identify the time of placing using the gripper state and label110

this sub-trajectory as place the <object>.111

Orchestrating Learned Skills A key capability of the System 2 component is being able to reason112

about the visual observation of the scene, the task description, and the robot’s low-level capabili-113

ties to effectively choose and sequence appropriate skills for the task at hand. To implement an114

automated System 2 component as a code-writing VLM agent in order to autonomously execute the115

verbalized plans without additional modules or human effort. To facilitate this, we define an API116

for the action primitives accessible by the VLM to interface with the System 1, reactive low-level117

RT-1 policy skills as described in Section 3. The API is based on translating the language com-118

mands into a simple API that the VLM agent can access. This breakdown is based on what the119

robot should do and how to do it. Each primitive skill (i.e. grasping, rotating, lifting, placing) is120

represented by a function with a keyword argument modifying how that primitive is accomplished121

(i.e. grasp(object, "top-down"). Internally, the API translates this code into the corresponding122

natural language the RT-1 policy was trained on. We use a system prompt to tell the VLM to control123

its physical embodiment through code, then provide the robot’s visual observation of the scene and124

a description of the high-level task. The exact system prompt we use in all experiments and example125

outputs and explanations produced by the model can be found on our project website1.126

4 Experiments127

We evaluate STEER by testing its ability to improve grasping in unseen scenarios and perform novel128

behaviors that require complex reasoning and motor control. We focus on three main questions:129

(1) Does learning multiple modes of behavior improve adaptability in new situations? (2) Can130

combining extracted skills from heterogeneous human demos enable entirely new tasks? (3) To131

what degree can a state-of-the-art VLM plan orchestrate these skills autonomously?132

We use a 7 DoF arm, a two-fingered gripper, and a mobile base, as used in RT-1 [4] in a tabletop133

environment. The experiment involves 70K demonstrations from RT-1’s multi-task dataset and 15K134

grasping demos from MOO [20]. We choose RT-1 [4] for our System 1 component and Gemini 1.5135

Pro [39] as our learned System 2 component for those experiments (sample videos1).136

Improving Test-Time Adaptability We present three challenging, unseen grasping scenarios: a137

kettle, a potted plant, and grasping in clutter. We compare STEER with the baseline RT-1 [4] (trained138

on original instructions) and OpenVLA [8], which fine-tunes a VLM on robot data from Open139

X-Embodiment [40]. We report the success rates in Figure 3a. RT-1 occasionally succeeds, but140

exhibits different strategies and we observe that failures are often caused by a sub-optimal approach.141

OpenVLA performed similarly to RT-1, demonstrating that additional web data does not lead to142

sufficiently strong embodied reasoning about how to grasp in a new scenario where a particular143

approach is evidently necessary. For example, we find that OpenVLA often picks the potted plant144

up, but does not respect the language instruction of picking up the flower pot without disturbing145



(a) Grasping results. Full successes are in
solid colors. Partial successes are in light col-
ors. We do 20 trials of Kettle, 10 of Potted
Plant, and 15 of Fruit in Clutter.

(b) New task results. We run each method
10 times, comparing the low-level capabilities
afforded by each model to perform the task
usin human guidance.

(c) We compare a VLM to a human in wield-
ing the learned policies. The VLM can effec-
tively recover most of the performance.

Figure 3: Results on grasping in unseen scenarios and performing a new task, with human or VLM guidance.
We find that by having access to and being able to reason about extracted low-level strategies enables higher
success in OOD scenarios than the baseline RT-1 model and a state-of-the-art VLA.
the plant and grasps from above around the plant leaves. Decomposing the grasp strategies and146

exploiting the most suitable one as we do in STEER reduces this failure mode.147

Performing Novel Behaviors We study whether we can engineer behavior for a new everyday task148

without collecting new demonstrations or additional fine-tuning. Pouring is out of the distribution149

of demonstrated tasks but should be achievable with the motions that exist in the data. We compare150

against the best-case version of each of 4 baselines and comparisons: baseline RT-1 [4], Language151

motions from RT-H [41], defined by narrating end-effector movement to give language like move152

arm left and rotate arm right, a goal-image conditioned variant of RT-1, which tests whether153

language is a better abstraction layer than goal images, and OpenVLA [8]. As seen in Figure 3b,154

human orchestration with a STEER policy achieves a 90% success rate on pouring as compared to155

70% with a policy trained with language motions from RT-H (whose orchestration is significantly156

more cumbersome as it requires tight closed-loop guidance). In comparison, baseline RT-1 cannot157

complete the task because it is not trained to reorient objects. The goal image conditioned baseline,158

despite having demonstration sub goal images from the same starting positions, fails and appears to159

mimic the exact arm positions in the subgoals rather than manipulate the object state as prescribed160

by the goal image. OpenVLA, despite having access to the same underlying demo data, does not161

generalize to the new motion by stitching together the appropriate motions.162

VLM Orchestration Now, we test whether a VLM can effectively select or sequence appropriate163

skills afforded by STEER by reasoning about the context, in the visual observation and task descrip-164

tion, as well as the skills exposed through the API without any examples (i.e. 0-shot). For these165

experiments, we compare the VLM to human orchestration of the same low-level policy to serve as166

an upper bound on performance. Exact inputs and outputs can be found on the project website1.167

Seen task, new scenarios. We see that the VLM successfully produces the same high-level plans168

as the human expert very reliably for the grasping tasks. However, as shown in Figure 3c we see169

that there is a degradation in end-to-end task performance compared to human orchestration when170

executing the code produced by the VLM, and we analyze these failures. For the kettle picking171

task, we note that the low-level policy appears to be sensitive to the specific naming of objects.172

That is, the VLM often produced code to grasp the ‘black and white kettle‘ from the top instead of173

grasping the ‘black and white object‘ from the top, and with further analysis find that this instruction174

has a noticeable degradation across all low-level language-conditioned policies. So, while the VLM175

reasonably commands the policy to grasp from above, the low-level policy is less reliable. We expect176

this to be improved with denser annotation or augmentation on the entity-level, whereas STEER is177

concerned with the motion-level. For the Fruit in Clutter grasping task, the VLM did not always178

command the appropriate action and we suspect that similar object naming references (‘red apple’179

instead of ‘apple’) impact the low-level policy performance.180

Seen objects, new task. Without any examples, the VLM correctly identifies that in order to pour181

from the cup, the robot ought to grasp it from the side as if a human were performing the task. It182

then recognizes that it must reorient it, then reorient it back in order to place it back upright on the183

table. The VLM succeeded in 6 out of 10 trials for zero-shot synthesizing of pouring behavior.184



References185

[1] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn. Learning fine-grained bimanual manipulation186

with low-cost hardware. Robotics: Science and Systems (RSS), 2023.187

[2] C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du, B. Burchfiel, R. Tedrake, and S. Song. Diffusion188

policy: Visuomotor policy learning via action diffusion. The International Journal of Robotics189

Research, 2024.190

[3] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn. BC-z:191

Zero-shot task generalization with robotic imitation learning. In 5th Annual Conference on192

Robot Learning, 2021. URL https://openreview.net/forum?id=8kbp23tSGYv.193

[4] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-194

man, A. Herzog, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, T. Jackson, S. Jesmonth, N. Joshi, R. Ju-195

lian, D. Kalashnikov, Y. Kuang, I. Leal, K.-H. Lee, S. Levine, Y. Lu, U. Malla, D. Manjunath,196

I. Mordatch, O. Nachum, C. Parada, J. Peralta, E. Perez, K. Pertsch, J. Quiambao, K. Rao,197

M. Ryoo, G. Salazar, P. Sanketi, K. Sayed, J. Singh, S. Sontakke, A. Stone, C. Tan, H. Tran,198

V. Vanhoucke, S. Vega, Q. Vuong, F. Xia, T. Xiao, P. Xu, S. Xu, T. Yu, and B. Zitkovich. Rt-199

1: Robotics transformer for real-world control at scale. In arXiv preprint arXiv:2212.06817,200

2022.201

[5] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choromanski, T. Ding, D. Driess,202

A. Dubey, C. Finn, et al. Rt-2: Vision-language-action models transfer web knowledge to203

robotic control. arXiv preprint arXiv:2307.15818, 2023.204

[6] D. Driess, F. Xia, M. S. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tompson,205

Q. Vuong, T. Yu, et al. Palm-e: An embodied multimodal language model. arXiv preprint206

arXiv:2303.03378, 2023.207

[7] Octo Model Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees, S. Dasari, J. Hejna,208

C. Xu, J. Luo, T. Kreiman, Y. Tan, L. Y. Chen, P. Sanketi, Q. Vuong, T. Xiao, D. Sadigh,209

C. Finn, and S. Levine. Octo: An open-source generalist robot policy. In Proceedings of210

Robotics: Science and Systems, Delft, Netherlands, 2024.211

[8] M. Kim, K. Pertsch, S. Karamcheti, T. Xiao, A. Balakrishna, S. Nair, R. Rafailov, E. Foster,212

G. Lam, P. Sanketi, Q. Vuong, T. Kollar, B. Burchfiel, R. Tedrake, D. Sadigh, S. Levine,213

P. Liang, and C. Finn. Openvla: An open-source vision-language-action model. arXiv preprint214

arXiv:2406.09246, 2024.215

[9] R. Doshi, H. Walke, O. Mees, S. Dasari, and S. Levine. Scaling cross-embodied learn-216

ing: One policy for manipulation, navigation, locomotion and aviation. arXiv preprint217

arXiv:2408.11812, 2024.218

[10] D. Kahneman. Thinking, fast and slow. Farrar, Straus and Giroux, New York,219

2011. ISBN 9780374275631 0374275637. URL https://www.amazon.de/220

Thinking-Fast-Slow-Daniel-Kahneman/dp/0374275637/ref=wl_it_dp_o_pdT1_221

nS_nC?ie=UTF8&colid=151193SNGKJT9&coliid=I3OCESLZCVDFL7.222

[11] OpenAI et al. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.223

[12] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. Le, and D. Zhou.224

Chain-of-thought prompting elicits reasoning in large language models, 2023. URL https:225

//arxiv.org/abs/2201.11903.226

[13] G. Team et al. Gemini: A family of highly capable multimodal models, 2024. URL https:227

//arxiv.org/abs/2312.11805.228

https://openreview.net/forum?id=8kbp23tSGYv
https://www.amazon.de/Thinking-Fast-Slow-Daniel-Kahneman/dp/0374275637/ref=wl_it_dp_o_pdT1_nS_nC?ie=UTF8&colid=151193SNGKJT9&coliid=I3OCESLZCVDFL7
https://www.amazon.de/Thinking-Fast-Slow-Daniel-Kahneman/dp/0374275637/ref=wl_it_dp_o_pdT1_nS_nC?ie=UTF8&colid=151193SNGKJT9&coliid=I3OCESLZCVDFL7
https://www.amazon.de/Thinking-Fast-Slow-Daniel-Kahneman/dp/0374275637/ref=wl_it_dp_o_pdT1_nS_nC?ie=UTF8&colid=151193SNGKJT9&coliid=I3OCESLZCVDFL7
https://www.amazon.de/Thinking-Fast-Slow-Daniel-Kahneman/dp/0374275637/ref=wl_it_dp_o_pdT1_nS_nC?ie=UTF8&colid=151193SNGKJT9&coliid=I3OCESLZCVDFL7
https://www.amazon.de/Thinking-Fast-Slow-Daniel-Kahneman/dp/0374275637/ref=wl_it_dp_o_pdT1_nS_nC?ie=UTF8&colid=151193SNGKJT9&coliid=I3OCESLZCVDFL7
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805


[14] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, and A. Zeng. Code229

as policies: Language model programs for embodied control. In 2023 IEEE International230

Conference on Robotics and Automation (ICRA), pages 9493–9500. IEEE, 2023.231

[15] N. Di Palo and E. Johns. Keypoint action tokens enable in-context imitation learning in232

robotics. arXiv preprint arXiv:2403.19578, 2024.233

[16] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakr-234

ishnan, K. Hausman, et al. Do as i can, not as i say: Grounding language in robotic affordances.235

In 6th Annual Conference on Robot Learning, 2022.236

[17] S. Lee, Y. Wang, H. Etukuru, H. J. Kim, N. M. M. Shafiullah, and L. Pinto. Behavior generation237

with latent actions, 2024. URL https://arxiv.org/abs/2403.03181.238

[18] O. Mees, L. Hermann, and W. Burgard. What matters in language conditioned robotic imitation239

learning over unstructured data. IEEE Robotics and Automation Letters (RA-L), 7(4):11205–240

11212, 2022.241

[19] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,242

P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. C. Ferrer, M. Chen, G. Cucurull, D. Esiobu,243

J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini,244

R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann, A. Korenev, P. S. Koura,245

M.-A. Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov,246

P. Mishra, I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi, A. Schelten,247

R. Silva, E. M. Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor, A. Williams, J. X. Kuan,248

P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic,249

S. Edunov, and T. Scialom. Llama 2: Open foundation and fine-tuned chat models, 2023. URL250

https://arxiv.org/abs/2307.09288.251

[20] A. Stone, T. Xiao, Y. Lu, K. Gopalakrishnan, K.-H. Lee, Q. Vuong, P. Wohlhart, S. Kirmani,252

B. Zitkovich, F. Xia, C. Finn, and K. Hausman. Open-world object manipulation using pre-253

trained vision-language models, 2023.254

[21] T. Xiao, H. Chan, P. Sermanet, A. Wahid, A. Brohan, K. Hausman, S. Levine, and J. Tomp-255

son. Robotic skill acquistion via instruction augmentation with vision-language models. In256

Proceedings of Robotics: Science and Systems, 2023.257

[22] V. Myers, B. C. Zheng, O. Mees, S. Levine, and K. Fang. Policy adaptation via language258

optimization: Decomposing tasks for few-shot imitation, 2024. URL https://arxiv.org/259

abs/2408.16228.260

[23] J. Zhang, K. Pertsch, J. Zhang, and J. J. Lim. Sprint: Scalable policy pre-training via language261

instruction relabeling. In 2024 IEEE International Conference on Robotics and Automation262

(ICRA), pages 9168–9175. IEEE, 2024.263

[24] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman. Relay policy learning: Solving264

long horizon tasks via imitation and reinforcement learning. Conference on Robot Learning265

(CoRL), 2019.266

[25] K. Black, M. Nakamoto, P. Atreya, H. Walke, C. Finn, A. Kumar, and S. Levine. Zero-shot267

robotic manipulation with pretrained image-editing diffusion models. ArXiv, abs/2310.10639,268

2023. URL https://api.semanticscholar.org/CorpusID:264172455.269

[26] K. Fang, P. Yin, A. Nair, and S. Levine. Planning to practice: Efficient online fine-tuning270

by composing goals in latent space. 2022 IEEE/RSJ International Conference on Intelligent271

Robots and Systems (IROS), pages 4076–4083, 2022. URL https://api.semanticscholar.272

org/CorpusID:248834175.273

https://arxiv.org/abs/2403.03181
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2408.16228
https://arxiv.org/abs/2408.16228
https://arxiv.org/abs/2408.16228
https://api.semanticscholar.org/CorpusID:264172455
https://api.semanticscholar.org/CorpusID:248834175
https://api.semanticscholar.org/CorpusID:248834175
https://api.semanticscholar.org/CorpusID:248834175


[27] J. Gu, S. Kirmani, P. Wohlhart, Y. Lu, M. G. Arenas, K. Rao, W. Yu, C. Fu, K. Gopalakrishnan,274

Z. Xu, P. Sundaresan, P. Xu, H. Su, K. Hausman, C. Finn, Q. Vuong, and T. Xiao. Rt-trajectory:275

Robotic task generalization via hindsight trajectory sketches. In Robotics: Science and Systems276

(RSS), 2024.277

[28] C. Wen, X. Lin, J. So, K. Chen, Q. Dou, Y. Gao, and P. Abbeel. Any-point trajectory modeling278

for policy learning. Robotics: Science and Systems (RSS), 2024.279

[29] Y. Lee, S.-H. Sun, S. Somasundaram, E. S. Hu, and J. J. Lim. Composing complex skills by280

learning transition policies. In International Conference on Learning Representations, 2019.281

[30] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman. Relay policy learning: Solving282

long-horizon tasks via imitation and reinforcement learning. CoRL, 2019.283

[31] M. Dalal, D. Pathak, and R. R. Salakhutdinov. Accelerating robotic reinforcement learning284

via parameterized action primitives. Neural Information Processing Systems (NeurIPS), 34:285

21847–21859, 2021.286

[32] S. Nasiriany, H. Liu, and Y. Zhu. Augmenting reinforcement learning with behavior primitives287

for diverse manipulation tasks. In IEEE International Conference on Robotics and Automation288

(ICRA), 2022.289

[33] J. Zhang, M. Heo, Z. Liu, E. Biyik, J. J. Lim, Y. Liu, and R. Fakoor. Extract: Efficient290

policy learning by extracting transferrable robot skills from offline data. arXiv preprint291

arXiv:2406.17768, 2024.292

[34] P.-L. Bacon, J. Harb, and D. Precup. The option-critic architecture. In Proceedings of the AAAI293

conference on artificial intelligence, 2017.294

[35] O. Nachum, S. S. Gu, H. Lee, and S. Levine. Data-efficient hierarchical reinforcement learning.295

Neural Information Processing Systems (NeurIPS), 31, 2018.296

[36] X. B. Peng, M. Chang, G. Zhang, P. Abbeel, and S. Levine. Mcp: Learning composable hi-297

erarchical control with multiplicative compositional policies. Advances in Neural Information298

Processing Systems, 32, 2019.299

[37] T. Nagarajan, C. Feichtenhofer, and K. Grauman. Grounded human-object interaction hotspots300

from video. In International Conference on Computer Vision (ICCV), 2019.301

[38] S. Bahl, R. Mendonca, L. Chen, U. Jain, and D. Pathak. Affordances from human videos as a302

versatile representation for robotics. 2023.303

[39] G. Team. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of con-304

text, 2024. URL https://arxiv.org/abs/2403.05530.305

[40] O. X. E. Collaboration et al. Open x-embodiment: Robotic learning datasets and rt-x models :306

Open x-embodiment collaboration0. In 2024 IEEE International Conference on Robotics and307

Automation (ICRA), 2024.308

[41] S. Belkhale, T. Ding, T. Xiao, P. Sermanet, Q. Vuong, J. Tompson, Y. Chebotar, D. Dwibedi,309

and D. Sadigh. Rt-h: Action hierarchies using language. arXiv preprint arXiv:2403.01823,310

2024.311

https://arxiv.org/abs/2403.05530

	Introduction
	Related Work
	System Design
	Experiments

