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Abstract
Diffusion models have shown remarkable perfor-
mance in modeling data distributions and synthe-
sizing data. The vanilla diffusion model typically
requires complete or fully observed training data,
while incomplete data is a common issue in vari-
ous real-world applications, particularly in tabular
data. This work presents a unified and principled
diffusion-based framework for learning from data
with missing values under various missing mech-
anisms. We first observe that the widely adopted
“impute-then-generate” pipeline may lead to a bi-
ased learning objective. Then we propose to mask
the regression loss of Denoising Score Matching
in the training phase. We show that the proposed
method is consistent in learning the score of data
distributions, and the training objective serves as
an upper bound for the negative likelihood in cer-
tain cases. The proposed framework is evaluated
on multiple tabular datasets using realistic and
efficacious metrics. It is demonstrated to outper-
form several baseline methods by a large margin.

1. Introduction
Diffusion models have emerged as an effective tool for mod-
eling data distributions and synthesizing various types of
data, including images (Ho et al., 2020; Song et al., 2021b;
Dhariwal & Nichol, 2021; Rombach et al., 2021), videos
(Ho et al., 2022), point clouds (Luo & Hu, 2021), and tab-
ular data (Kim et al., 2023; Kotelnikov et al., 2022). It is
known that such machine learning models typically rely on
high-quality training data, which are usually expected to be
free of missing values. In reality, it is often challenging to
obtain complete data, particularly in healthcare, finance, rec-
ommendation systems, and social networks, due to privacy
concerns, high sampling cost, etc (Yoon et al., 2018a;b).
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In this work, we focus on learning a generative model from
training data containing a significant amount of missing
values, a problem that has been largely overlooked in the lit-
erature despite its widespread practical applications. Deep
generative models, particularly diffusion models, can be
used to augment training data and enhance the performance
of image classification tasks (Azizi et al., 2023; You et al.,
2023) and adversarial robustness (Gowal et al., 2021; Se-
hwag et al., 2022; Ouyang et al., 2022). Following this idea,
we can achieve better performance for downstream tasks by
utilizing the generative model learned on incomplete data
for synthetic data generation. We will primarily take tabular
data as examples, as tabular data is a commonly encoun-
tered data type and frequently contains missing values in
various applications (Yoon et al., 2017; Alaa et al., 2016).
Moreover, the mixed-type property of tabular data will also
be considered in the numerical experiments.

To deal with missing values in the training data, numerous
studies propose to use various imputation methods and then
train the model on the imputed data. Taking tabular data
as an example, some approaches simply delete instances
(rows) with missing data or replace missing values with
mean imputation. Other methods employ machine learn-
ing approaches (van Buuren & Groothuis-Oudshoorn, 2011;
Bertsimas et al., 2017) or deep generative models for im-
putation tasks (Yoon et al., 2018a; Biessmann et al., 2019;
Wang et al., 2020; Ipsen et al., 2020a; Muzellec et al., 2020).
It has been shown that imputation may reduce the diversity
of the training data and thus lead to biased downstream
performances (Bertsimas et al., 2021; Ipsen et al., 2020a).

In addition to imputation or simple deletion methods, pre-
vious work also studied learning from data with missing
values and synthesizing complete data using GAN or VAE
architectures (Li et al., 2019; Li & Marlin, 2020; Neves et al.,
2022). Compared with our proposed framework, these meth-
ods involve training additional networks and impose certain
assumptions on the missing mechanisms, and the unique
challenges associated with tabular data are less investigated.

In this work, we propose a diffusion-based framework,
which we call MissDiff, for generative model training from
data with missing values. We present the theoretical justifi-
cations of MissDiff on recovering the oracle score function
and upper bounding the negative likelihood on the data un-
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der mild assumptions on the missing mechanisms. To the
best of our knowledge, this is the first work that learns a
generative model from mixed-type data containing missing
values, and the missing values are used directly in the train-
ing process without prior imputations. Finally, we conduct
a suite of numerical experiments on mixed-type tabular data,
comprising both continuous and categorical variables, un-
der various missing mechanisms. Evaluated under several
realistic and efficacious metrics, MissDiff consistently out-
performs other baseline methods by a considerable margin.

2. Method
2.1. Problem Setup: Training with Missing Data

We aim to learn a diffusion-based generative model from
training data that may contain a certain proportion of miss-
ing values. Following the settings in (Little & Rubin, 1988;
Li et al., 2019; Ipsen et al., 2020a), we denote the underlying
complete d-dimensional data as x = (x1, . . . , xd) ∈ X and
assume it is sampled from the unknown true data-generating
distribution p0(x). Here, each variable xi, i ∈ [d], can be
either categorical or continuous.

For each data point x, suppose there is a binary mask m =
(m1, . . . ,md) ∈ {0, 1}d indicating the missing entries in x,
i.e., mi = 1 if xi is observed, and mi = 0 if xi is missing.
Then, the observed data xobs = x⊙m+na⊙(1−m), where
na indicates the missing value1, ⊙ denotes element-wise
multiplication, and 1 is the all-one vector.

Suppose we have n complete (unobservable) training data
points x1, . . . ,xn

iid∼ p0(x) and simultaneously n corre-
sponding masks m1, . . . ,mn generated from a specific
missing data mechanism detailed in the Appendix D.1.
Then the observed data values are Sobs = {xobs

i }ni=1 with
xobs
i = xi ⊙mi + na⊙ (1−mi).

Our objective is to train a generative model pϕ, parametrized
by the neural network parameters ϕ, using the observed data
Sobs, such that pϕ is close to the true distribution p0(x) and
we can efficiently generate synthetic data from pϕ. In the
following, we mainly consider the score-based generative
model as pϕ.

2.2. Preliminaries: Score-Based Generative Model

In this work, we adopt the diffusion model as the prototype
for our proposed method. We first briefly review the key
components of score-based generative models (Ho et al.,
2020; Song et al., 2021b). Following the notation in (Song
et al., 2021b), the score-based generative models are based
on a forward stochastic differential equation (SDE), x(t)

1The implementation details for na can be found in Section 2.

with t ∈ [0, T ], defined as

dx(t) = f(x(t), t)dt+ g(t)dw, (1)

where w is the standard Wiener process (Brownian motion),
f(·, t) : Rd → Rd is a vector-valued function called the drift
coefficient of x(t), and g(·) : R → R is a scalar function
known as the diffusion coefficient of x(t). The solution
of a stochastic differential equation is a continuous trajec-
tory of random variables {x(t)}t∈[0,T ]. Let p(x) denote
the path measure for the trajectory x on [0, T ], pt(x) de-
note the marginal probability density function of x(t), and
p(x(t)|x(s)) denote the conditional probability density of
x(t) conditioned on x(s), where s < t is a previous time
point. When constructing the SDE, we let p0(x) be the true
data distribution, and after perturbing the data according to
the SDE, the data distribution becomes pT (x) which is close
to a tractable noise distribution, usually set as the standard
Gaussian distribution.

The data generation process is performed via the reverse
SDE, i.e., first sampling data xT from pT (x) and then gen-
erate x0 through the reverse of (1). For any SDE in (1), the
corresponding backward/reverse process is

dx(t) =
[
f(x(t), t)− g(t)2∇x log pt(x)

]
dt+ g(t)dw,

(2)
where w is a standard Wiener process when time flows
backwards from T to 0.

We can generate new data by running backward the reverse-
time SDE (2) when the score of each marginal distribution,
∇x log pt(x), is known. Score Matching (Hyvärinen, 2005;
Vincent, 2011; Song et al., 2019) can be used for train-
ing a score-based model sθ(x(t), t) to estimate the true
score, with consistenty guarantees (Hyvärinen, 2005; Vin-
cent, 2011; Song et al., 2019).

2.3. Proposed Method: MissDiff

In general, one common approach to learning a generative
model from incomplete data is to construct a complete train-
ing data set first and then learn a generative model on the
complete data. We can either delete instances with missing
data or adopt “inpute-then-generative” paradigm, i.e., we
complete the data by imputation methods (van Buuren &
Groothuis-Oudshoorn, 2011; Bertsimas et al., 2017; Vin-
cent et al., 2008; Yoon et al., 2018a; Biessmann et al., 2019;
Wang et al., 2020; Ipsen et al., 2020a; Muzellec et al., 2020).
It is noted that such pipeline may bring bias to the training
objective, as commented in the following remark 2.1.
Remark 2.1 (Challenges with “inpute-then-generative”
paradigm). Following the analysis of “inpute-then-regress”
(Bertsimas et al., 2021; Ipsen et al., 2020a) for the pre-
diction task, we can study a similar framework for the
generation task. The generative model pϕ represents the
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probability distribution of the synthetic data x. When data
has missing values, the “impute-then-generate” approach
will first impute the observed data xobs using an imputa-
tion model fφ. Then, the generative model is trained on
imputed data, i.e., (xobs,xmiss := fφ(x

obs)) and with the
special case of fφ being the mean imputation, it becomes
(xobs,Epϕ(xmiss|xobs)[x

miss]). Such pipeline is typically bi-
ased because with single imputation, the conditional distri-
bution over the missing data is discarded, and the optimal
single imputation can no longer capture the data variability,
i.e., the distribution of the imputed data is different from the
true data distribution.

Motivated by the above observation, we intend to train the
model parameters ϕ by maximizing the data likelihood di-
rectly without imputation as the first step. Therefore, we
propose MissDiff, a diffusion-based framework for learning
on missing data. This approach incorporates the uncertainty
of missing data directly into the learning process.

We propose the following Denoising Score Matching
method for data with missing values. In MissDiff, the score
model sθ(x(t), t) is learned as solution to

θ∗=argmin
θ

JDSM (θ)

:=
T

2
Et

{
λ(t)Ep(xobs(0),m)Ep(xobs(t)|xobs(0))∥∥(sθ(xobs(t), t)−∇xobs(t) log p(x

obs(t)|xobs(0))
)
⊙m

∥∥2
2

}
,

(3)

where λ(t) is a positive weighting function, m =
1{xobs(0) = na} indicates the missing entries in xobs(0)
and p(xobs(t)|xobs(0)) = N (xobs(t);xobs(0), βtI) is the
Gaussian transition kernel. To make p(xobs(t)|xobs(0)) and
∇xobs(t) log p(x

obs(t)|xobs(0)) well defined for the mixed-
type data, we use 0 to replace na for continuous variables
and a new category to represent na for discrete variables,
which is the same operation as (Nazábal et al., 2018; Ma
et al., 2020). One-hot embedding is applied to discrete
variables. More implementation details can be found in
Appendix D.2.

We mainly adopt the Variance Preserving (VP) SDE in this
paper although Variance Exploding (VE) SDE (Song et al.,
2021b) is also applicable. Algorithm 1 and Algorithm 2
in Appendix C demonstrate the Denoising Score Matching
objective on missing data and the sampling procedure.

2.4. Theoretical Results

We examine the effectiveness of MissDiff by theoretically
characterizing the Score Matching objective under mild
conditions on the missing mechanisms and build a further
connection between Score Matching and maximizing like-
lihood objective for training the diffusion model. In the

following theorem, we state our first theoretical result that
verifies that Denoising Score Matching on missing data can
learn the oracle score, i.e, the score on complete data.

Theorem 2.2. Denote ρi, i ∈ {1, 2, ..., d} as the percentage
of missing samples for the i-th entry in the training data.
Suppose maxi=1,...,d ρi < 1. Let θ∗ be the solution to the
training objective of MissDiff defined in Eq (3). Then under
mild conditions, we have

sθ∗(x(t), t) = ∇x(t) log pt(x(t)).

Theorem 2.2 states that the global optimal solution of De-
noising Score Matching on missing data obtained by Miss-
Diff is the same as the oracle score. Detailed assumptions
and the proof sketch can be found in Appendix E.1.

It is known that with careful design of the weighting function
λt, Denoising Score Matching can upper bound the nega-
tive log-likelihood of the diffusion model on the complete
data (Song et al., 2021a). Therefore, it is straightforward
to extend such a connection to incomplete data scenarios,
which is detailed in the following theorem. These results
provide insightful connections between the training objec-
tive of MissDiff and the maximum likelihood objective of
the generative model on observed data.

Theorem 2.3. The objective function of Denoising Score
Matching on missing data is an upper bound for the negative
likelihood of the generative model on observed data xobs up
to a constant, that is, if λt = βt and ρi defined in Theorem
2.2, under mild regularity conditions detailed in Appendix
E.2, we have

−Ep(xobs) [log pθ(x)] ≤
1

1− ρmax
JDSM (θ) + C1,

where C1 is a constant and ρmax = maxi∈[d] ρi.

The proof sketch can be found in Appendix E.2.

3. Experiments
In this section, we demonstrate the effectiveness of the
proposed method MissDiff using simulations and two real-
world tabular datasets. We compare the proposed method
with several baseline methods for synthetic data generation
training on data with missing values. The baseline methods
are described as follows, and the training details can be
found in Appendix D.1.

1. Diff-delete: Learn a vanilla diffusion model after delet-
ing rows containing missing values.

2. Diff-mean: Learn a vanilla diffusion model after imput-
ing missing values using the mean value in that column.
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3. STaSy (Kim et al., 2023) with the above two data com-
pletion methods. STaSy is the state-of-the-art diffusion
model on tabular data, which outperforms MedGAN
(Choi et al., 2017), VEEGAN (Srivastava et al., 2017),
CTGAN (Xu et al., 2019), TVAE (Xu et al., 2019), Table-
GAN (Park et al., 2018), OCTGAN (Kim et al., 2021),
RNODE (Finlay et al., 2020) by a large margin.

Evaluation Criterion Following (Xu et al., 2019; Kim
et al., 2023; Kotelnikov et al., 2022), we use two types of
criterion, fidelity and utility, to evaluate the quality of the
synthetic data generated. To evaluate the fidelity of synthetic
data, we adopt a model-agnostic library, SDMetrics (Dat,
2023). To evaluate the utility, we follow the same pipeline
of (Kim et al., 2023), i.e., training various models, including
Decision Tree, AdaBoost, Logistic Regression, MLP classi-
fier/regressor, RandomForest, and XGBoost, on synthetic
data, and validate the model on original training data, and
test them with real test data. For classification tasks, we
mainly use classification accuracy and also report AUROC,
F1, and Weighted-F1 in Appendix D.3. For regression tasks,
we mainly use the Root Mean Squared Error (RMSE) and
also report R2 in the Appendix D.3. All the experiment
results are obtained from 3 repetitions.

Experiment Results: Simulation Study Figure 1 sum-
marizes the SDMetrics score on the simulated Bayesian
Network dataset example. With the same diffusion model
architecture and the same training hyperparameter, MissDiff
achieves consistently better results against the vanilla diffu-
sion model deleting the incomplete row or using the mean
value for imputation when the missing ratio varies from 0.1
to 0.9. These results align with the observation in Remark
2.1 that the learning objective of impute-then-generate may
be biased. Directly learning on the missing data can signif-
icantly enhance the performance of the learned generative
model. The detailed explanations of missing mechanisms,
e.g., “Row Missing”, “Column Missing”, and “Indep (Inde-
pendent) Missing” can be found in appendix D.1.

Experiment Results: Real Tabular Datasets Table 1 and
2 demonstrate the effectiveness of MissDiff on the Census
dataset under Missing Completely At Random (MCAR)2.
More details about the Census dataset can be found in ap-
pendix D.1. MissDiff performs better than STaSy when
learning on incomplete data, and we believe the perfor-
mance of MissDiff can be further improved by adopting the
self-paced learning technique and the fine-tuning strategy,
which is left as future work. Moreover, the results of STaSy-
delete and STaSy-mean in Tables 1 and 2 are obtained by
training diffusion model for 1000 epochs, compared with

2More detailed explanation about the missing mechanisms
MCAR, MAR, and NMAR can be found in Appendix B and D.1.

250 epochs of MissDiff, Diff-delete, and Diff-mean. If we
reduce the training epochs of STaSy-delete and STaSy-mean
to 250 epochs, the performance will degrade significantly,
which can be found in Appendix D.3.3. Compared with
the state-of-the-art performance of STaSy for tabular data
generation, its relatively worse performance here indicates
that STaSy could be susceptible to missing data.

Table 3 and 4 show the performance of MissDiff on the
MIMIC4ED dataset under MCAR. On this large dataset
with dozens of continuous and discrete variables, MissDiff
yields consistently better performance with the same train-
ing epochs (250 epochs).

Table 1. Fidelity evaluation of MissDiff on Census dataset. “-”
denotes the corresponding method cannot applied since no data xi

will be left after deleting the incomplete data. The larger the score,
the better the overall quality of synthetic data is.

MissDiff Diff-delete Diff-mean STaSy-delete STaSy-mean

Row Missing 80.59% - 76.92% - 56.75%
Column Missing 82.70% 75.03% 76.17% 56.90% 51.54%

Independent Missing 83.16% 74.94% 76.60% 56.07% 57.06%

Table 2. Utility (classification accuracy) evaluation of MissDiff on
Census dataset. The larger the accuracy, the better the perfor-
mance.

MissDiff Diff-delete Diff-mean STaSy-delete STaSy-mean

Row Missing 79.48% - 78.45% - 70.79%
Column Missing 71.68% 72.89% 79.60% 68.96% 74.47%

Independent Missing 79.49% 75.39% 75.96% 78.36% 77.34%

Table 3. Fidelity evaluation of MissDiff on MIMIC4ED dataset.
MissDiff Diff-delete Diff-mean STaSy-delete STaSy-mean

Row Missing 84.45% - 75.22% - 82.94%
Column Missing 79.24% - 76.57% - 79.03%

Independent Missing 78.01% - 76.16% - 77.21%

Table 4. Utility (RMSE) evaluation of MissDiff on MIMIC4ED
dataset. The lower the RMSE, the better the performance.

MissDiff Diff-delete Diff-mean STaSy-delete STaSy-mean

Row Missing 1.826 - 2.166 - 1.894
Rolumn Missing 1.834 - 2.011 - 1.935

Independent Missing 1.852 - 2.483 - 1.972

Ablation Study Table 5 and 6 demonstrate the effective-
ness of MissDiff on the Census dataset beyond MCAR. The
results show the great potential of learning directly on the
missing data when the missing mechanism is not MCAR,
which has not been fully studied in previous methods (Li
et al., 2019; Ipsen et al., 2020a; Yoon et al., 2018a; Li &
Marlin, 2020).

Furthermore, we validate the performance of the pro-
pose MissDiff on imputation tasks for the Census dataset.
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Row Missing Column Missing Indep Missing

Figure 1. Fidelity evaluation of MissDiff on data simulated from a pre-specified Bayesian Network under different missing ratios. We
shade the area between mean ± std.

Table 5. Fidelity evaluation of MissDiff on Census dataset under
MAR, NMAR with missing ratio 0.2.

MissDiff Diff-delete Diff-mean

MAR 77.45% 73.78% 76.08%
NMAR 77.88% 75.72% 76.97%

Table 6. Utility (classification accuracy) evaluation of MissDiff on
Census dataset under MAR, NMAR.

MissDiff Diff-delete Diff-mean

MAR 79.95% 69.475% 77.425%
NMAR 80.95% 66.5% 80.025%

We compare MissDiff with state-of-the-art imputation ap-
proaches in Table 7. The result shows that although de-
signed for generation tasks, MissDiff also performs well for
imputation tasks.

Table 7. Imputation result comparisons on the Census dataset. The
lower the RMSE, the better the performance.

Method RMSE

Mean /Mode 0.120
MICE(linear)(van Buuren & Groothuis-Oudshoorn, 2011) 0.101

MissForest (Stekhoven, 2015) 0.112
GAIN(Yoon et al., 2018a) 0.123

CSDI T (Zheng & Charoenphakdee, 2022) 0.099
MissDiff 0.087

4. Conclusion and Discussion
We propose a diffusion-based generative framework, called
MissDiff, for synthetic data generation trained on data with
missing values directly. MissDiff offers a promising alter-
native that directly handles missing data without the need
for imputation or deletion. For future directions, we may
refine the theoretical justifications for MissDiff and com-
pare it with more baselines. We may also further study the
downstream task performances with MissDiff.
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A. More on Related Work
One line of research focuses on different types of generative models trained directly on data with missing values. These
studies carefully modify the architecture and training objectives of Generative Adversarial Network (GAN) or Variational
Autoencoder (VAE) to learn from incomplete data (Li et al., 2019; Li & Marlin, 2020; Ipsen et al., 2020a).

Another research direction explores learning generative models for imputing missing values in observed data (Yoon et al.,
2018a; Neves et al., 2022; Ipsen et al., 2020b; Muzellec et al., 2020; Tashiro et al., 2021; Nazábal et al., 2018; Ma et al.,
2020; Mattei & Frellsen, 2019; Valera et al., 2017). For example, (Tashiro et al., 2021) proposes the conditional score-based
generative model for time series imputation. Moreover, (Zheng & Charoenphakdee, 2022) adapt the conditional score-based
diffusion model proposed in (Tashiro et al., 2021) for imputing tabular data. Imputation methods cannot easily used for
generating new complete data, which is the main difference with the first line of works.

Tabular data, as a mixed-type data that typically contains both categorical and continuous variables, has attracted significant
attention in the field of machine learning. Tabular data synthesis has been a long-standing research topic in this area. The
presence of mixed variable types and class imbalance for discrete variables make it a challenging task to model tabular
data. Recently, several deep learning-based models have been proposed for generating tabular data (Xu et al., 2019; Choi
et al., 2017; Srivastava et al., 2017; Park et al., 2018; Kim et al., 2021; Finlay et al., 2020; Kim et al., 2023; Kotelnikov
et al., 2022). Among these methods, (Kotelnikov et al., 2022) employs Gaussian transitions for continuous variables and
multinomial transitions for discrete random variables, while (Kim et al., 2023) proposes a self-paced learning technique and
a fine-tuning strategy for score-based models and achieves state-of-the-art performance in tabular data generation. Moreover,
the discrete Score Matching methods proposed in (Meng et al., 2022) and (Sun et al., 2023) can also be employed to handle
discrete variables in tabular data.

B. Missing Mechanism Examples
The missing mechanisms can be categorized based on the relationships between the mask m and the complete data x (Little
& Rubin, 1988):

• Missing Completely At Random (MCAR): mask m is independent with the completed data x.

• Missing At Random (MAR): mask m only depends on the observed value xobs.

• Not Missing At Random (NMAR): m depends on the observed value xobs and missing value.

Unlike (Li et al., 2019; Ipsen et al., 2020a; Yoon et al., 2018a; Li & Marlin, 2020), which develop their algorithms and
theoretical foundations under the MCAR assumption and leave the results beyond the MCAR for future work, our method
and theoretical guarantees aim to provide a general framework for learning on incomplete data and generate complete data.

C. Algorithm Details

Algorithm 1 MissDiff: Denoising Score Matching on Data with Missing Values
Require: Diffusion process hyperparameter βt, denote αt = 1− βt and ᾱt =

∏t
s=1 αs.

1: repeat
2: Sample xobs

0 according to the data distribution and missing mechanism;
3: Infer mask m = 1[xobs(0) = na];
4: t ∼ Uniform({1, . . . , T});
5: ϵ ∼ N (0, I);
6: Take gradient descent step on

∇θ

∥∥∥(ϵ− sθ(
√
ᾱtx

obs
0 +

√
1− ᾱtϵ, t))⊙m

∥∥∥2

.

7: until converged.

We mainly adopt the Variance Preserving (VP) SDE in this work. The forward diffusion process of the VP-SDE is defined as

dx = −1

2
β(t)xdt+

√
β(t)dw,
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Algorithm 2 Variance Preserving Sampling of MissDiff
Require: Diffusion process hyperparameter βt, denote αt = 1− βt and ᾱt =

∏t
s=1 αs.

1: Sample xT ∼ N (0, I);
2: t = T ;
3: while t ̸= 1 do
4: Sample ϵt ∼ N (0, I);
5: xt−1 = 1√

αt
(xt − 1−αt√

1−ᾱt

sθ(xt, t)) +
√
βtϵt;

6: t = t− 1;
7: end while
8: Return x0.

where {βt ∈ (0, 1)}t∈(0,T ) is the increasing sequence denoting the variance schedule.

Algorithm 1 and Algorithm 2 demonstrate the Denoising Score Matching objective on missing data and sampling procedure
of MissDiff. We write x(t) as xt in the algorithm box for simplicity.

D. Experiments Details
D.1. Experimental Setup

Datasets We present a suite of numerical evaluations of the proposed MissDiff approach on a simulated Bayesian Network
data, a real Census tabular dataset (Kohavi & Becker, 1996), and the MIMIC4ED tabular dataset (Xie et al., 2022), all with
missing values. Each record in Census dataset contains the information(age, marital status, education level, and income) of a
person from the 1994 US census database. MIMIC4ED datasets contains a vast amount of Electronic Health records (EHR)
for patient data. The primary goal is to compare the effectiveness in synthetic data generation of the proposed MissDiff with
the alternative baselines detailed later in this subsection.

The detailed description of the dataset can be found in Table 8, which specifies the number of training data (#Train), the
number of testing data (#Test), the number of categorical (discrete) variables in the tabular dataset (#Categorical), and the
number of continuous variables (#Continuous). Moreover, the last column shows the evaluation task we adopted as detailed
later.

Table 8. Synethetic and Real-World Datasets Used in Experiments.

Dataset #Train #Test #Categorical #Continuous Utility

Bayesian Network 2000 20000 3 2 Multi-class classification
Census (Kohavi & Becker, 1996) 16000 4000 9 6 Binary classification
MIMIC4ED (Xie et al., 2022) 353150 88287 46 27 Regression

The details of the data generated from a Bayesian Network are as follows. Figure 2 demonstrates the Bayesian Network
for generating the tabular data. It contains two continuous variables C1, C2, and three discrete random variables D1, D2,
and D3. The distribution of these variables is set as follows. The marginal distribution of C1 is N (25, 2), the conditional
distribition of C2 given C1 is C2|C1 ∼ N (0.1 · C1 + 50, 5), and the marginal distribution of D1 is Bernoulli(0.3), where
Bernoulli(ξ) stands for the Bernoulli distribution with mean equal to ξ. The conditional distribution of D2, given C1, C2
and D1, is set as

D2|C1,C2,D1 ∼



Ca(0.3, 0.6, 0.1) C1 > 26,C2 > 55,D1 = 1;

Ca(0.2, 0.3, 0.5) C1 > 26,C2 ≤ 55,D1 = 1;

Ca(0.7, 0.1, 0.2) C1 ≤ 26,C2 > 55,D1 = 1;

Ca(0.1, 0.2, 0.7) C1 ≤ 26,C2 ≤ 55,D1 = 1;

Ca(0.05, 0.05, 0.9) D1 = 0,

where Ca(p1, p2, 1 − p1 − p2) denotes the categorical (discrete) distribution for three pre-specified categories. The
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C2 C1

D1 D3

D2

Figure 2. The demonstration of the Bayesian Network for generating the tabular data. “C1” and “C2” denote the continuous variables and
“D1”, “D2”, “D3” denotes the discrete random variables. The marginal/conditional distributions for each node are detailed in Section ??.

conditional distribution of D3 given D2 is

D3|D2 ∼


Bernoulli(0.2) D2 = 0;

Bernoulli(0.4) D2 = 1;

Bernoulli(0.8) D2 = 2.

Choice of Masks under Different Missing Mechanisms To evaluate the performance of MissDiff on different missing
mechanisms, we give a detailed explanation of the practical implementation of MCAR (Li et al., 2019; Ipsen et al., 2020a;
Yoon et al., 2018a; Li & Marlin, 2020), MAR, and NMAR (Muzellec et al., 2020).

• MCAR: there are three types of missing mechanisms in MCAR.

– Row Missing. For a given missing ratio α ∈ (0, 1), we have the number of elements missing in each row (i.e., for
each sample xi) is ⌊dα⌋, where ⌊z⌋ is the greatest integer less than z, and the location/index of the missing entries is
randomly chosen according to the uniform distribution.

– Column Missing. For a given missing ratio α, we have the number of elements missing in each column (for
each feature) is ⌊nα⌋, and the location/index of the missing entries is randomly chosen according to the uniform
distribution.

– Independent Missing. Each entry in the table is masked as missing according to the realization of a Bernoulli random
variable with the parameter α.

• MAR: a fixed subset of variables that cannot have missing values is first sampled. Then, the remaining variables will
have missing values according to a logistic model with random weights, which takes the non-missing variables as inputs.
The outcome of this logistic model is re-scaled to attain a given missing ratio α.

• NMAR: the same pipeline as MAR with the inputs of the logistic model are masked by the MCAR mechanism. We refer
to (Muzellec et al., 2020) for more detailed explanations.

Remark D.1. Under the three missing mechanisms in MCAR, with the missing ratio parameter set as 0 < α < 1, the
condition in Theorem 2.2 can be satisfied with probability at least 1 − δ, where δ = max{(αd−1

d )nd, α, αnd} can be
sufficiently small when α is small and n is sufficiently large.

Remark D.1 gives the guarantee that MissDiff can recover the oracle score under MCAR with high probability. In all tables
in Sections 3, we adopt the missing ratio α = 0.2 and XGBoost for the downstream tasks with no specific clarification.
More experimental results can be found in Appendix D.3.

D.2. Implementation Details

We use the variance-preserving SDE with the time duration T = 100 for Bayesian Network and Census dataset and T = 150
for MIMIC4ED dataset. We use the standard pre/post-processing of tabular data to deal with mixed-type data (Kim et al.,
2023; Kotelnikov et al., 2022; Zheng & Charoenphakdee, 2022). i.e., we use the min-max normalization for the continuous
variables and reverse its scaler when generation. We use one-hot embedding for the discrete variables and use the rounding
function after the softmax function when generation. We train the diffusion model for 250 epochs with batch size 64.
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We adopt four layers residual network as the backbone of the diffusion model. The dimension of the diffusion embedding is
128 with channels as 64. We set the minimum noise level β1 = 0.0001 and the maximum noise level βT = 0.5 in Algorithm
1 and Algorithm 2 with quadratic schedule

βt =

(
T − t

T − 1

√
β1 +

t− 1

T − 1

√
βT

)2

.

We mainly follow the hyperparameter in the previous works that train the diffusion model on tabular data (Tashiro et al.,
2021; Zheng & Charoenphakdee, 2022). We use the Adam optimizer with MultiStepLR with 0.1 decay at 25%, 50%, 75%,
and 90% of the total epochs and with an initial learning rate as 0.0005.

With regard to the baselines of STaSy, we adopt the same setting of its open resource implementation 3, i.e., Varaince
Exploding SDE with six layers ConcatSquash network as the backbone of the diffusion model and Fourier embedding, the
adam optimizer with learning rate as 2e-03, training with batch size 64 and 250 epochs/1000 epochs with additional 50
finetuning epochs.

For the downstream classifier/regressor, we adopt the same base hyperparameters in [(Kim et al., 2023), Table 26].

D.3. Additional Experiental Results

D.3.1. ADDITIONAL RESULTS FOR OTHER CRITERIA FOR Utility EVALUATION

Table 9, 10, and 11 provide the additional experimental results for other criteria under Utility evaluation for Table 2, 4, and 6
in the main paper, i.e., the F1, Weighted-F1, AUROC for the classification task and R2 for the regression task. A detailed
explanation of the above-mentioned criteria can be found in (Kim et al., 2023). To make our paper self-contained, we briefly
restate it here.

1. Binary F1 for binary classification: sklearn.metrics.f1 score with ‘average’=‘binary’.

2. Macro F1 for multi-class classification: sklearn.metrics.f1 score with ‘average’=‘macro’.

3. Weighted-F1: =
∑K

i=0 wisi, where K denotes the number of classes, the weight of i-th class wi is 1−pi

K−1 , pi is the
proportion of i-th class’s cardinality in the whole dataset, and score si is a per-class F1 of i-th class (in a One-vs-Rest
manner).

4. AUROC: sklearn.metrics.roc auc score.

From the results in Table 9, 10, and 11, it can be seen that the proposed MissDiff consistently outperforms the compared
methods in most instances. For the column missing case, MissDiff tends to perform worse, which indicates the potential
limitations of the proposed method for future investigations.

D.3.2. EXPERIMENT RESULTS FOR DIFFERENT CLASSIFIERS/REGRESSORS

As mentioned in section 3, we train various models, including Decision Tree, AdaBoost, Logistic Regression, MLP
classifier/regressor, RandomForest, and XGBoost, on synthetic data. Table 12 to 16 present the corresponding results on
different classifiers/regressors, from which we can see that MissDiff still performs well under most cases.

D.3.3. ADDITIONAL RESULTS FOR STaSy-delete AND STaSy-mean

In section 3, we mentioned if we train STaSy-delete and STaSy-mean as the same training epochs (250 epochs) on the Census
dataset under MCAR as MissDiff, their performance is significantly worse, which are demonstrated in Table 17 and 18. This
observation highlights that the proposed MissDiff requires considerably fewer training epochs compared to STaSy in order
to achieve satisfactory results when handling data with missing values.

D.4. Computational Time

All the experiments are conducted on NVIDIA A100 Tensor Core GPUs. It takes around 30min for each experiment on
Bayesian Network, around 5 hours for each experiment on the Census dataset, and around one day for each experiment on

3https://openreview.net/forum?id=1mNssCWt_v

https://openreview.net/forum?id=1mNssCWt_v
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Table 9. Utility evaluation of MissDiff on Census dataset with other criteria. “-” denotes the corresponding method cannot applied since
no data xi will be left after deleting the incomplete data.

Criterian Missing Mechanism MissDiff Diff-delete Diff-mean STaSy-delete STaSy-mean

Binary F1
Row Missing 0.344 - 0.280 - 0.314

Column Missing 0.141 0.063 0.413 0.509 0.383
Independent Missing 0.291 0.045 0.225 0.274 0.241

Weighted-F1
Row Missing 0.470 - 0.423 - 0.488

Column Missing 0.305 0.249 0.523 0.571 0.490
Independent Missing 0.431 0.237 0.375 0.416 0.389

AUROC
Row Missing 0.772 - 0.685 - 0.731

Column Missing 0.539 0.469 0.757 0.750 0.637
Independent Missing 0.650 0.474 0.655 0.621 0.613

Table 10. Utility evaluation of MissDiff on MIMIC4ED dataset with R2 criterion.

Missing mechanism MissDiff Diff-delete Diff-mean STaSy-delete STaSy-mean

Row Missing 0.088 - 0.057 - 0.067
Rolumn Missing 0.095 - 0.023 - 0.073

Independent Missing 0.156 - 0.062 - 0.142

Table 11. Utility evaluation of MissDiff on Census dataset under MAR, NMAR with other criteria.

Criterian Missing Mechanism MissDiff Diff-delete Diff-mean

Binary F1 MAR 0.346 0.108 0.224
NMAR 0.464 0.233 0.383

Weighted-F1 MAR 0.473 0.276 0.376
NMAR 0.564 0.364 0.501

AUROC MAR 0.833 0.441 0.774
NMAR 0.834 0.499 0.746

the MIMIC4ED dataset.

E. Proof Sketch for Section 4
E.1. Proof Sketch of Theorem 2.2

In order to show Theorem 2.2, we aim to show that the optimal solution θ∗, which minimizes the objective function
JDSM (θ) satisfies sθ∗(x(t), t) = ∇x(t) log pt(x(t)), i.e., the optimal solution to the population loss function can recover
the oracle score function. For the Gaussian transition distribution that we used with the isotropic covariance matrix, the score
on the incomplete data is equivalent to the score on the complete data when performing element-wise multiplication with
mask, i.e., ∇xobs(t) log p(x

obs(t)|xobs(0))⊙m = ∇x(t) log p(x(t)|x(0))⊙m4, where m = 1{xobs(0) = na} indicated the
missing entries in xobs(0). Therefore, under certain conditions, we may first relate the Denosing Score Matching objective
on missing data to the Denosing Score Matching objective on the complete data,

Ep(xobs(0),m)Ep(xobs(t)|xobs(0))[∥(sθ(xobs(t), t)−∇xobs(t) log p(x
obs(t)|xobs(0)))⊙m∥22]

= Ep(x(0),m)Ep(x(t)|x(0))[∥(sθ(x(t), t)−∇x(t) log p(x(t)|x(0)))⊙m∥22].
4Assume p(xobs(t)|xobs(0)) = N (xobs(t);µobs,Σ) and p(x(t)|x(0)) = N (x(t);µ,Σ), with Σ = (1− ᾱt)I and µobs = µ⊙m. It

is not hard to see ∇xobs(t) log p(x
obs(t)|xobs(0))⊙m = −(xobs(t)− µobs)⊙m = −(x(t)− µ)⊙m = ∇x(t) log p(x(t)|x(0))⊙m.
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Table 12. Utility evaluation of MissDiff on Census dataset by Decision Tree.

MissDiff Diff-delete Diff-mean STaSy-delete STaSy-mean

Row Missing 78.08% - 74.55% - 60.74%
Column Missing 62.65% 69.10% 78.88% 65.38% 66.31%

Independent Missing 80.68% 72.68% 67.70% 76.35% 55.99%

Table 13. Utility evaluation of MissDiff on Census dataset by AdaBoost.

MissDiff Diff-delete Diff-mean STaSy-delete STaSy-mean

Row Missing 80.38% - 79.28% - 73.23%
Column Missing 72.18% 76.30% 80.65% 69.60% 42.24%

Independent Missing 78.70% 76.13% 75.96% 76.55% 78.39%

Table 14. Utility evaluation of MissDiff on Census dataset by Logistic Regression.

MissDiff Diff-delete Diff-mean STaSy-delete STaSy-mean

Row Missing 79.20% - 77.08% - 71.04%
Column Missing 73.50% 76.30% 77.45% 66.91% 69.08%

Independent Missing 76.20% 76.30% 76.25% 77.13% 69.68%

Table 15. Utility evaluation of MissDiff on Census dataset by Multi-layer Perceptron (MLP).

MissDiff Diff-delete Diff-mean STaSy-delete STaSy-mean

Row Missing 77.70% - 75.13% - 49.78%
Column Missing 68.33% 65.75% 75.00% 70.97% 58.83%

Independent Missing 75.33% 72.18% 74.30% 76.81% 37.59%

Table 16. Utility evaluation of MissDiff on Census dataset by Random Forest.

MissDiff Diff-delete Diff-mean STaSy-delete STaSy-mean

Row Missing 80.10% - 77.13% - 72.68%
Column Missing 73.68% 76.33% 79.88% 74.70% 71.58%

Independent Missing 79.33% 76.30% 76.38% 76.31% 76.98%

Table 17. Fidelity evaluation of MissDiff on Census dataset with 250 training epochs.

MissDiff Diff-delete Diff-mean STaSy-delete STaSy-mean

Row Missing 80.59% - 76.92% - 50.08%
Column Missing 82.70% 75.03% 76.17% 52.49% 49.63%

Independent Missing 83.16% 74.94% 76.60% 53.7% 50.11%

Table 18. Utility evaluation of MissDiff on Census dataset with 250 training epochs.

MissDiff Diff-delete Diff-mean STaSy-delete STaSy-mean

Row Missing 79.48% - 78.45% - 60.96%
Column Missing 71.68% 72.89% 79.60% 56.19% 61.46%

Independent Missing 79.49% 75.39% 75.96% 49.78% 70.68%
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Moreover, notice that we have

Ep(x(0),m)Ep(x(t)|x(0))[∥(sθ(x(t), t)−∇x(t) log p(x(t)|x(0)))⊙m∥22]

= Ep(x(0),x(t))∥(sθ(x(t), t)−∇x(t) log pt(x(t)))⊙
√
Ep(m|x(0))[m]∥22],

where
√
z denotes the element-wise operation on vector z. The last equation is because we take the conditional expectation

of the binary mask m and since mi ∈ {0, 1} we have E[m2
i ] = E[mi] for any distribution of m. Assuming that

Ep(m|x(0))[m] ≡ 1 − ρ with ρ = [ρ1, . . . , ρd] and ρi < 1, i ∈ {1, 2, ..., d} being the population percentage of missing
samples for the i-th entry, we have Ep(m|x(0))[m] > 0 and thus we can show the global optimal of Denoising Score
Matching on missing data is the same as the oracle score.

E.2. Proof Sketch of Theorem 2.3

The notations are defined as follows. We let π denote the pre-specified prior distribution (e.g., the standard normal
distribution), C denote all continuous functions, and Ck denote the family of functions with continuous k-th order derivatives.
Consider the MCAR missing mechanism. Denote ρi, i ∈ {1, 2, ..., d} as the population percentage of missing samples for
the i-th entry in the training data. Suppose maxi=1,...,d ρi < 1. In addition, we make the same mild regularity assumptions
as (Song et al., 2021a) in the following.

Assumption E.1. (i) p(x) ∈ C2 and Ex∼p0 [∥x∥22] < ∞.

(ii) π(x) ∈ C2 and Ex∼π[∥x∥22] < ∞.

(iii) ∀t ∈ [0, T ] : f(·, t) ∈ C1,∃C > 0,∀x ∈ Rd, t ∈ [0, T ] : ∥f(x, t)∥2 ≤ C(1 + ∥x∥2).

(iv) ∃C > 0,∀x,y ∈ Rd : ∥f(x, t)− f(y, t)∥2 ≤ C∥x− y∥2.

(v) g ∈ C and ∀t ∈ [0, T ], |g(t)| > 0.

(vi) For any open bounded set O,
∫ T

0

∫
O ∥pt(x)∥22 + dg(t)2∥∇xpt(x)∥22 dxdt < ∞.

(vii) ∃C > 0∀x ∈ Rd, t ∈ [0, T ] : ∥∇x log pt(x)∥2 ≤ C(1 + ∥x∥2).

(viii) ∃C > 0,∀x,y ∈ Rd : ∥∇x log pt(x)−∇y log pt(y)∥2 ≤ C∥x− y∥2.

(ix) ∃C > 0∀x ∈ Rd, t ∈ [0, T ] : ∥sθ(x, t)∥2 ≤ C(1 + ∥x∥2).

(x) ∃C > 0,∀x,y ∈ Rd : ∥sθ(x, t)− sθ(y, t)∥2 ≤ C∥x− y∥2.

(xi) Novikov’s condition: E[exp( 12
∫ T

0
∥∇x log pt(x)− sθ(x, t)∥22 dt)] < ∞.

(xii) ∀t ∈ [0, T ],∃k > 0 : pt(x) = O(e−∥x∥k
2 ) as ∥x∥2 → ∞.

We mainly follow the proof strategy in (Song et al., 2021a). Consider the predefined SDE on the observed data,

dxobs = f(xobs, t)dt+ g(t)dw, (4)

and the SDE parametrized by θ,
dx̂obs

θ = sθ(x̂
obs
θ , t)dt+ g(t)dw. (5)

Let µ and ν denote the path measure of {xobs(t)}t∈[0,T ] and {x̂obs
θ (t)}t∈[0,T ], respectively. Therefore, the distribution of

p0(x) and pθ(x) can be represented by the Markov kernel K({z(t)}t∈[0,T ],y) := δ(z(0) = y) as follow:

p0(x) =

∫
K({xobs(t)}t∈[0,T ],x)dµ({xobs(t)}t∈[0,T ]),

pθ(x) =

∫
K({x̂obs

θ (t)}t∈[0,T ],x)dν({x̂obs
θ (t)}t∈[0,T ]).
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According to the data processing inequality with this Markov kernel, the Kullback–Leibler (KL) divergence between the
distribution of p0(x) and pθ(x) can be upper bounded, i.e.,

DKL(p0∥pθ) =DKL

(∫
K({xobs(t)}t∈[0,T ],x)dµ

∥∥∫ K({x̂obs
θ (t)}t∈[0,T ],x)dν

)
≤ DKL(µ∥ν). (6)

By the chain rule of KL divergences,

DKL(µ∥ν) = DKL(pT ∥π) + Ez∼pT
[DKL(µ(· | xobs(T ) = z)∥ν(· | x̂obs

θ (T ) = z))]. (7)

Under assumptions (i) (iii) (iv) (v) (vi) (vii) (viii), the SDE in Eq (4) has a corresponding reverse-time SDE given by

dxobs = [f(xobs, t)− g(t)2∇xobs log pt(x
obs)]dt+ g(t)dw. (8)

Since Eq (8) is the time reversal of Eq (4), it induces the same path measure µ. As a result, DKL(µ(· | xobs(T ) = z)∥ν(· |
x̂obs
θ (T ) = z)) can be viewed as the KL divergence between the path measures induced by the following two (reverse-time)

SDEs:
dxobs = [f(xobs, t)− g(t)2∇xobs log pt(x

obs)]dt+ g(t)dw, xobs(T ) = xobs,

dx̂obs = [f(x̂obs, t)− g(t)2sθ(x̂
obs, t)]dt+ g(t)dw, x̂obs

θ (T ) = xobs.

Under assumptions (vii) (viii) (ix) (x) (xi), we apply the Girsanov Theorem II [(Øksendal, 1987), Theorem 8.6.6], together
with the martingale property of Itô integrals, which yields

DKL(µ(· | xobs(T ) = z)∥ν(· | x̂obs
θ (T ) = z))

= Eµ[
1

2

∫ T

0

g(t)2∥∇xobs(t) log pt(x
obs(t))− sθ(x

obs(t), t)∥22 dt]

≤ 1

2(1− ρmax)

∫ T

0

Ept(xobs(t))[g(t)
2∥∇xobs(t) log pt(x

obs(t))− sθ(x
obs(t), t)⊙

√
1− ρ∥22]dt

=
1

2(1− ρmax)

∫ T

0

Ept(xobs(t))[g(t)
2∥∇xobs(t) log pt(x

obs(t))− sθ(x
obs(t), t)⊙m∥22]dt =

1

1− ρmax
JSM(θ; g(·)2),

(9)

where ρmax = maxi=1,...,d ρi and 1− ρmax > 0 by assumption. Combining Eqs. (6), (7) and (9), we have DKL(p0∥pθ) ≤
1

1−ρmax
JSM(θ; g(·)2) +DKL(pT ∥π), which further yields −Ep(xobs)[log pθ(x)] ≤ 1

1−ρmax
JDSM(θ; g(·)2) + C1 by Lemma

E.3, where C1 is a constant independent of θ.
Remark E.2 (Interpretation of Theorem 2.3). When there is missing value, we can get the Denoising score matching on
incomplete data still upper bounds the likelihood of the incomplete data up to a constant coefficient 1/(1− ρmax). When
there is no data missing, ρ is all zero vector, then we have 1/(1− ρmax) = 1 and Theorem 2.3 degenerates to the Corollary 1
in (Song et al., 2021a), i.e.,

−Ep(x)[log pθ(x)] ≤ JDSM(θ; g(·)2) + C1,

where the JDSM(θ; g(·)2) is the Denoising Score Matching on complete data.

Lemma E.3. Denosing Score Matching on missing data is equivalent to Score Matching on missing data, i.e.,

Ept(xobs)[∥(sθ(xobs
t , t)−∇xobs log pt(x

obs
t ))⊙m∥22]

= Ep(xobs
0 )Ep(xobs

t |xobs
0 )[∥(sθ(xobs

t , t)−∇xobs
t
log p(xobs

t | xobs
0 ))⊙m∥22] + C,

(10)

where m = 1{xobs
0 = na} indicated the missing entries in xobs and C is a constant that does not depend on θ. We

interchange xobs(t) with xobs
t .

Proof. We begin with the Score Matching on the left-hand side of (10)

LHS = Ept(xobs
t )[∥(sθ(xobs

t , t)−∇xobs
t
log pt(x

obs
t ))⊙m∥22]

= Ept(xobs
t )[∥sθ(xobs

t , t)⊙m∥2]− S(θ) + C2,
(11)
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where C2 = Ept(xobs
t )[∥∇xobs

t
log pt(x

obs
t )⊙m∥2] is a constant that does not depend on θ, and

S(θ) = 2Ept(xobs
t )[⟨sθ(xobs

t , t),∇xobs
t
log pt(x

obs
t )⊙m⟩]

= 2

∫
xobs
t

pt(x
obs
t )⟨sθ(xobs

t , t),∇xobs
t
log pt(x

obs
t )⊙m⟩ dxobs

t

= 2

∫
xobs
t

⟨sθ(xobs
t , t),∇xobs

t
pt(x

obs
t )⊙m⟩ dxobs

t

= 2

∫
xobs
t

⟨sθ(xobs
t , t),

d

dxobs
t

∫
xobs
0

p0(x
obs
0 )p(xobs

t | xobs
0 )⊙m dxobs

0 ⟩ dxobs
t

= 2

∫
xobs
t

∫
xobs
0

p0(x
obs
0 )p(xobs

t | xobs
0 )⟨sθ(xobs

t , t),
d log p(xobs

t | xobs
0 )

dxobs
t

⊙m⟩ dxobs
0 dxobs

t

= 2Ep(xobs
t ,xobs

0 )[⟨sθ(xobs
t , t),

d log p(xobs
t | xobs

0 )

dxobs
t

⊙m⟩].

Substituting this expression for S(θ) into Eq (11) yields

LHS = Ept(xobs
t )[∥sθ(xobs

t , t)⊙m∥2]

− 2Ep(xobs
t ,xobs

0 )[⟨sθ(xobs
t , t),

d log p(xobs
t | xobs

0 )

dxobs
t

⊙m⟩] + C2.
(12)

On the other hand, we also have the Denoising Score Matching objective on the right-hand side of (10) is

RHS = Ept(xobs
t )[∥sθ(xobs

t , t)⊙m∥2]

− 2Ep(xobs
t ,xobs

0 )[⟨sθ(xobs
t , t),

d log pt(x
obs
t | xobs

0 )

dxobs
t

⟩ ⊙m] + C3,
(13)

where C3 = Ep(xobs
t ,xobs

0 )[∥
d log pt(x

obs
t |xobs

0 )

dxobs
t

⊙m∥2] + C is a constant that does not depend on θ.

Comparing equations (12) and (13), we thus show that the two optimization objectives are equivalent up to a constant.


