
Explainable Pathfinding for Inscrutable Planners with Inductive Logic
Programming

Forest Agostinelli,1 Rojina Panta, 1 Vedant Khandelwal 1, Biplav Srivastava 1, Bharath Muppasani
1, Kausik Lakkaraju1, Dezhi Wu 2,

1 AI Institute, University of South Carolina, Columbia, South Carolina, USA
2 Department of Integrated Information Technology, University of South Carolina, Columbia, South Carolina, USA

foresta@cse.sc.edu, rpanta@email.sc.edu, vedant@mailbox.sc.edu, biplav.s@sc.edu, bharath@email.sc.edu,
kausik@email.sc.edu, dezhiwu@cec.sc.edu

Abstract

The complexity of the solutions that artificial intelli-
gence can learn to solve problems currently surpasses
its ability to explain these solutions. In many domains,
explainable solutions are a necessary condition while
optimality is not. Therefore, we seek to constrain solu-
tions to the space of solutions that can be explained to
a human. To do this, we build on inductive logic pro-
gramming (ILP) techniques that allow us to define ro-
bust background knowledge and inductive biases. By
combining ILP with a given inscrutable planner, we are
able to construct an explainable graph representing so-
lutions to all states in the state space. This graph can
then be summarized using a variety of methods such as
hierarchical representations and simple if/else rules. We
test our approach on Towers of Hanoi and discuss future
work for applications to the Rubik’s cube.

Introduction
As artificial intelligence (AI) continues to solve problems
that humans struggle to solve, there is an emerging need for
humans to understand these solutions so that we can trust AI,
create new educational opportunities, and even discover new
knowledge. Many of these problems are pathfinding prob-
lems. That is, the problem is to find a sequence of actions
(a path) to go from any given state to a goal state. Examples
of AI being successfully applied to pathfinding problems in-
clude puzzles (McAleer et al. 2019; Agostinelli et al. 2019),
quantum compiling (Zhang et al. 2020), chemical synthesis
(Chen et al. 2020), theorem proving (Bansal et al. 2019), and
program synthesis (Ellis et al. 2021). Many explainable AI
(XAI) approaches for explaining how to solve pathfinding
problems and other sequential decision making problems fo-
cus on explaining a plan to solve a single instance of a prob-
lem (Sreedharan et al. 2022). However, we focus on finding
an explanation for solving all possible instances of a prob-
lem.

Depending on the application, the simplicity of an expla-
nation can matter more than the efficiency of a solution.
However, modern AI techniques, such as deep reinforce-
ment learning, often find very complicated strategies. For

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

example, AI agents can play Go at a super human level (Sil-
ver et al. 2017) and can often solve the Rubik’s cube in the
most efficient way possible (Agostinelli et al. 2019). Expla-
nations for these strategies may not be of use to most people.
Therefore, we seek to constrain the space of explanations
to human-understandable explanations. While the underly-
ing planner may have a complicated and efficient plan, such
plans will only be incorporated if they can be explained. Fur-
thermore, we naturally incorporate compositionality in our
approach by representing an explanation as a directed graph,
allowing explanations to be re-used. Therefore, if a plan for
solving a given state is too difficult to explain, we can then
find plans to reach intermediate points in the graph that may
be easier to explain, thus favoring comprehensability over
optimality.

In our approach, explanations for how to solve all in-
stances of a problem will be derived from a directed acyclic
graph whose nodes are first-order logic programs represent-
ing sets of states and whose edges represent macro actions.
All nodes in this graph will have a path to the goal node.
A path to the goal node can be obtained from a given node
by applying any macro-action associated with the outgoing
macro-actions of that node. Intuitively, each node can be
thought of as a precondition for applying one of its outgoing
macro-actions. The preconditions will be induced from ob-
served solutions using inductive logic programming (ILP)
techniques (Cropper et al. 2022). Given enough observa-
tions, the union of the preconditions for each node should
cover the entire state space. Therefore, one can then solve
any given state by finding a node that entails that state and
applying any sequence of macro-actions that leads to the
goal node. We refer to this as an explainable pathfinding
graph, or e-graph.

Since logic programming is often used for XAI tech-
niques due to its symbolic structure, given well-design pred-
icates and inductive biases, each node can be explained to a
human. In this work, we focus on finding the simplest ex-
planations possible. We discuss a variety of ways one can
quantify simplicity and how it can be achieved. We seek to
describe the entire e-graph to a human in a clear and concise
manner, thereby explaining how to solve all instances of the
problem. In this work, we investigate how we can do this by
learning hierarchical structures of the graph as well as using
the graph to learn simple if/else rules.



Related Work
The need for explanation in planning was articulated initially
in (Fox, Long, and Magazzeni 2017; Hoffmann and Maga-
zzeni 2019) and this lead to introduction of a number of ap-
proaches. A recent review summarizes the progress and on-
going challenges (Chakraborti, Sreedharan, and Kambham-
pati 2021). In brief, here the automated explanation method
attempts to explain in a situation (state), why the planner
chose an action, why the planner did not choose an action,
why the planner decisions are better, why things asked (e.g.,
goals) can not be done, why one needs to replan, and why
one does not have to replan.

Defining solutions to sequential decision making prob-
lems as programs has been proposed to create explainable
agents. Using a given policy as an oracle, search can be done
in a program space to match this oracle as close as possible
(Verma et al. 2018). A drawback to this method is that the or-
acle’s policy may be very complex, causing the learned pro-
gram to be hard to understand. A program can be embedded
in a latent space and a search can then be done in this latent
space to find a program that solves a given problem (Trivedi
et al. 2021). One can model constructing a program itself as
a reinforcement learning task where each function call is an
action (Ellis et al. 2021). This approach allows one to grow
a library of functions to augment its action space to solve in-
creasingly complex problems. Though programs have a dis-
crete structure, one can optimize this a relaxed continuous
structure instead (Liu, Simonyan, and Yang 2018). This re-
laxed structure has been used to allow the learning of nested
if/then/else programs for solving mazes (Qiu and Zhu 2021).

The e-graph is similar to the planning graph created as
part of the Graphplan planner (Blum and Furst 1997) but
has notable differences. In Graphplan, the planner first cre-
ates a graph, alternating in states and actions levels, starting
with the initial state and representing actions that become
applicable and states that could be reached, and so on. In
Graphplan, the graph is used to search for a plans to solve a
particular instance of a problem. In our work, we construct
the e-graph that can solve all instances of a problem.

Background
Towers of Hanoi (ToH)
The game of Towers of Hanoi is one player game with three
pegs and a varying number of disks. The disks are of dif-
ferent sizes and are arranged in ascending order of size. To
solve the problem all the disks must be moved to the last peg.
This is done by moving one disk at a time so that the disk
can be directly kept on a peg or over a larger disk only. The
action space we use allows one to move any disk to any peg
(in format (disk, to-peg)) resulting in nine actions in total.
While a typical action space would also require specifying
the peg that the disk is moving from, we use this action set
as it allows us to learn a smaller graph. Invalid actions result
in no change.

Problem Definition
The pathfinding problem is represented as a Markov deci-
sion process (MDP) (Puterman 2014). The MDP can be de-

fined as a set of states S, set of actions A, state-transition
probability function T , and expected reward function r. The
state-transition probability function returns the probability
of transitioning from some state s to another states s′ using
action a, T (s, a, s′). We limit the scope of this work to de-
terministic environments, therefore, we can replace T with
a function A that returns the resulting state s′ when taking
action a in state s,A(s, a). The reward function r returns the
expected reward when taking action a in state s and transi-
tioning to state s′, r(s, a, s′). In the context of pathfinding,
this is the negative transition cost.

The objective of pathfinding is to find a path from any
given state s to a goal state g, where g is in the set of goal
states which is a subset of S. Given any planner that is used
to solve a pathfinding problem (i.e. based on search, dy-
namic programming (Bellman 1957), or a combination of
the two (Chen and Wei 2011; Agostinelli et al. 2019)), we
seek to use this planner to find an explanation of how to find
a path from any given state to a goal state. While it is often
desirable to find a shortest path, we instead seek to find an
explanation that is easiest for humans to understand. In the
following section, we will describe how we formally quan-
tify the simplicity of an explanation.

Approach
Graph Semantics and Structure
The explainable pathfinding graph, or e-graph, is a graph,
G, whose nodes represent sets of states with first-order logic
programs and whose edges represent macro-actions, where
macro-actions are a sequence of atomic actions. We refer to
the first-order logic programs as preconditions, since they
must be satisfied in order for the macro-action to be appli-
cable. The graph is directed and acyclic. Every node in the
graph has at least one child node except the single termi-
nal node which represents the goal. The graph first starts
out with only the goal node. Every node added must have a
child node that is already in the graph. Therefore, the graph
should be complete, meaning there is a path to the goal from
any goal node. Furthermore, given enough observations, the
graph should also be sound, meaning it should not be possi-
ble to come up with an invalid plan.

The preconditions at each node are constructed from user-
defined predicates. When these predicates are learned, the
hypothesis space is constrained by a user-defined induc-
tive bias. Given predicates that a user can understand and
an inductive bias that prunes complicated programs, every
learned precondition should be explainable. The overall ex-
planation is then any method that summarizes the entire
graph. This includes a hierarchical representation, a repre-
sentation that groups similar macro-actions together, or a set
of examples whose solutions match the preconditions of ev-
ery node.

In this work, we concern ourselves only with finding ex-
planations that are easy to understand. To measure this, we
define a cost for the e-graph, c(G). This cost can take into
consideration the number of predicates, number of nodes,
and number of macro actions. Furthermore, it could even
be based on the compactness of the final explanation used to



summarize the graph, such as one obtained from natural lan-
guage generation techniques. In our work, we simply seek to
minimize the sum of the cost of the edges in the graph where
the cost of an edge is determined by the number of macro ac-
tions. Therefore, compositionality will be needed to achieve
this. For example, one could have a node with an edge to
the goal with a cost of one and another node with an edge
to the goal with a cost of two, resulting in a graph with a
cost of three. However, if one can compose these nodes us-
ing shorter edges, then we can get a graph of a lower cost.
A figure illustrating this is shown in Figure 1. We take a
greedy approach to this optimization process. However, in
future work, we aim to use other optimization approaches
and as well as other metrics of cost to get the most human-
understandable explanations.

G

1
2

G

1

1

Figure 1: Left: A graph with a cost of three. A graph with a
cost of two.

Learning the Graph
The graph is initialized with a single goal node that repre-
sents the set of all solved states. We then initialize a set of
states that will be used to generate macro actions. This set of
states is obtained by randomly generating states and using a
pathfinding algorithm, ρ, to find a path from all generated
states to a goal state. We then seek to add nodes to the graph
until every state in this set is entailed by a node in the graph.

Each node added to the graph must have as its child an ex-
isting node in the graph. The edge connecting the two nodes
must represent a macro action that can transform any state
entailed by the parent’s precondition to a state entailed by
the child’s precondition. To achieve this, we maintain a pri-
ority queue that contains tuples of macro-actions and nodes,
where each macro-action has successfully transformed some
state into a state entailed by its corresponding node. Since
we are taking a greedy approach, this priority queue is sorted
according to the macro action length. When there is a tie, the
closest ancestor of the goal node is given priority.

To obtain these tuples of macro actions and nodes, for a
given node, ρ is used to find a path from all unsolved states
to a state entailed by that node. The first node for which this
is done is for the goal node. However, since the nodes repre-
sent sets of states in first order logic, the processes of finding
a path to a set of states must be addressed. In our work, we
use an underlying Prolog representation to use the first-order
logic program as a query and get all states in the set. We then
can use a heuristic function to estimate which state is closest
and find a path to that state. For every successful path, the
macro action and corresponding node are added to the prior-
ity queue. However, this approach will not scale as the size

of the set grows. In the discussion section, we will consider
other approaches.

When a macro-action and corresponding node is removed
from the priority queue, we apply the macro-action to all
unsolved states. Unsolved states that the macro-action trans-
forms into states that are entailed the corresponding node’s
precondition are used as positive examples while the other
states are used as negative examples. Furthermore, all solved
states (that is, states entailed by a node that is already in the
graph) are also used as negative examples. We then seek to
learn a first-order logic program that perfectly separates the
positive and negative examples. Learning may not always
be successful. For our purposes, this is desirable because we
only want to add a node to the graph if it can be explained to
a human. We use the Popper (Cropper and Morel 2021) in-
ductive logic programming software to learn preconditions.
Popper’s flexible approach to specifying inductive biases al-
lows us to constrain the hypothesis space for both speed and
for comprehensibility. For example, in Towers of Hanoi, in-
cluding simple constrains, such as specifying that disks can
only have one size and that a disk cannot be on more than
one peg, result in much faster learning times. Also, includ-
ing constraints for comprehensibility, such as specifying that
the predicate to say a disk is not on a peg can only be used
once per clause, results in programs that are much easier to
understand.

The overall algorithm is showed in Algorithm 1 and the
process to obtain tuples of macro-actions and nodes is shown
in Algorithm 2.

Explanation Generation
Given an e-graph, we explore different approaches for ob-
taining an explanation. The first is a simple template-based
natural language generation approach that explains the pre-
conditions for each node. We can even print the entire graph
as a nested structure where ancestors are nested within their
descendants. In the future, we plan to utilize language mod-
els based on transformers (Vaswani et al. 2017) to convert
first-order logic sentences into everyday language.

The next approach is obtaining a hierarchical structure.
One can obtain learn hierarchical nodes by first obtaining all
states associated with a given node and all states associated
with its descendants. Then, one can learn a logic program
that entails all of the aforementioned states and none of the
states entailed by any other nodes in the graph. We explore
this approach by first trying to learn programs for nodes for
the greatest number of descendants. If the program is suc-
cessful, we then remove the node from the descendants of
all other nodes. We then repeat this processes until all nodes
are in a hierarchical node, even if the hierarchical node just
contains a single node. We can also do the same thing for the
ancestors of nodes.

The final approach is to group nodes together if their out-
going edge has the same macro-action. Then, we can learn a
logic program that entails all states entailed by these nodes
and none of the states entailed by the other nodes. The intu-
ition is that we can find a simple if/then structure for when
to apply macro-actions. If there are not many macro-actions,



Algorithm 1: e-graph Construction
Input:

Su: Set of unsolved states
P : Goal precondition
B: Background knowledge
ρ: Pathfinding strategy

Output:
g: Goal node of e-graph

g = Node(P )
Ss = {} //Set of solved states
Remove states entailed by P from Su and add to Ss

q = [] //Priority queue of macro actions and nodes
add macros(Su, g, q, ρ)
while len(Su)> 0 do

m,n = q.pop() //macro action and target node
E+ = [] //positive examples
E− = Ss //negative examples
for s ∈ S do

Apply m to s to obtain s′
// check if result is entailed by node
if n.P (s′) is True then

append s to E+

else
append s to E−

P = learn precondtion(E+, E−, B)
if P learned successfully then

n = Node(P )
Remove states entailed by P from Su and add
to Ss

add macros(Su, n, q, ρ)

Return g

then someone can read through each one to understand the
explanation.

Results
The background knowledge we are using for Towers of
Hanoi contains predicates that describe a disk being on a
peg, a disk not being on a peg, a disk being above another
disk, a disk’s top or bottom being clear, and a peg being
clear. Since we are only considering the three disk scenario,
we use breadth-first search (BFS) for finding macro actions.
BFS is one of the simplest path finding algorithm in which
the shallowest nodes are given priority. The algorithm is op-
timal assuming the transition costs between each node is
one. Towers of Hanoi has a state space with 27 states.

The learned e-graph is shown in Figure 2a. We use a
nested structure to represent the graph which has 15 nodes.
A template-based approach was used to generate a natural
language description of each node. A total of seven unique
macro actions are used in the solution and are omitted in the
figure for brevity. In this case, the all macro-actions are one
of the nine atomic actions. To simplify this explanation, we
look at how we can obtain hierarchies. The first approach
to create a hierarchical representation is to learn programs

Algorithm 2: Add Macro Actions
Input:

S: Set of states
n: Node
q: Priority queue
ρ: Pathfinding strategy

M = {} //set of macro actions
for s ∈ S do

//m is macro action that takes s to a state entailed
by the precondition of n.
m = ρ(s, g)
if m found successfully then

add m to M
for m ∈ M do

add (m,n) to q with first priority len(m) and
second priority being the depth of n

to differentiate a node and all its descendants from all other
nodes. The results of this approach are shown in Figure 2b.
This results in a graph with 12 nodes. We then create a hi-
erarchical by learning programs to differentiate a node and
all its ancestors from all other nodes. The results of this ap-
proach are shown in Figure 2c. The results show a very sim-
ple representation that says that the largest disk goes to peg3
from either peg1 or peg2.

Finally, we investigate learning an if/else structure by
grouping nodes with the same macro-action together. Since
there are seven macro-actions used, we should have seven
if/else statements. While the ILP system was not able to
learn a program for moving disk1 to peg1 or moving disk1
to peg2, it successfully learned a precondition for the other
five macro actions. The result is shown in Figure 2d.

Discussion
Applications to the Rubik’s Cube
We are currently extending this work to the Rubik’s cube.
The Rubik’s cube poses unique challenges for any XAI ap-
proach due to its symmetries. Furthermore, the fact that so-
lutions to the Rubik’s cube can be explained to young chil-
dren sets a standard that current XAI approaches based on
modern AI techniques, such as deep learning, cannot match.
In our preliminary work, we using an example based expla-
nation approach that uses landmarks for clarity. That is, af-
ter the graph is constructed, we find a set of example states
where each node entails at least one state in the union of
states in the solution paths. We identify specific landmarks
based on the number and length of incoming edges to a node.
We then ensure we explicitly explain these landmarks. On
the other hand, we implicitly explain other nodes that only
have one parent or whose incoming edges are short. This
way, we can try to avoid obvious explanations while focus-
ing on more difficult aspects of the problem.

For finding macro-actions using a search strategy ρ, we
extend the DeepCubeA algorithm (Agostinelli et al. 2019).
In this domain, however, the preconditions for nodes often
only contain a subset of the stickers on the Rubik’s cube.



state is goal
disk2 is above disk3, disk2 is on peg3, disk2's top is clear

disk3's top is clear, disk3 is on peg3, disk1's bottom is clear
disk2's bottom is clear, disk2 is on peg1, peg2 is clear

disk3's top is clear, disk3 is on peg2, peg3 is clear
disk2 is on peg1, disk2's top is clear, disk3 is on peg2

disk3 is on peg2, disk2's top is clear, peg1 is clear
disk2 is above disk3, disk2 is on peg2, peg3 is clear
disk2 is on peg3, disk3 is on peg2, disk3's top is clear

disk2 is on peg2, disk2's bottom is clear, peg1 is clear
disk3's top is clear, disk3 is on peg1, peg3 is clear

disk2 is on peg2, disk2's top is clear, disk3 is on peg1
disk2's top is clear, disk3 is on peg1, peg2 is clear

disk3 is on peg1, disk2 is on peg1, peg3 is clear
disk3 is on peg1, disk3's top is clear, disk2 is on peg3

(a) A visualization of the learned graph. There are a total of 15 nodes.
state is goal

disk3 is on peg3, disk1's bottom is clear
disk2 is on peg2, disk2's bottom is clear, peg1 is clear

disk2 is on peg2, disk3 is on peg1
disk2's top is clear, disk3 is on peg1, peg2 is clear

disk3 is on peg1, disk3's top is clear, disk2 is on peg3
disk3 is on peg1, disk2 is on peg1, peg3 is clear

disk2's bottom is clear, disk2 is on peg1, peg2 is clear
disk2 is on peg1, disk3 is on peg2

disk3 is on peg2, disk2's top is clear, peg1 is clear
disk2 is on peg3, disk3 is on peg2, disk3's top is clear
disk2 is above disk3, disk2 is on peg2, peg3 is clear

(b) The hierarchical graph obtained by creating hierarchical nodes using node descendants. There are a total of 12 nodes.
disk3 is on peg3

disk3 is on peg2
disk3 is on peg1

(c) The hierarchical graph obtained by creating hierarchical nodes using node ancestors. There are a total of 3 nodes. This recovers a natural
hierarchical structure associated with Towers of Hanoi.

IF disk2 is above disk3, disk1 is not on peg3 THEN move disk1 to peg3
IF disk3 is on peg3, disk3's top is clear, disk1's bottom is clear THEN move disk2 to peg3
IF disk3's top is clear, peg3 is clear THEN move disk3 to peg3
IF disk2's top is clear, disk3 is not on peg3, peg1 is clear THEN move disk2 to peg1
IF disk3 is not on peg3, disk2's top is clear, peg2 is clear THEN move disk2 to peg2

(d) An if/else structure obtained by grouping nodes with the same macro-action together. There were a total of seven macro actions. The
learning was successful for all macro-actions except two.

Figure 2: Four different explanation methods. Actions used to connect edges have been omitted for brevity.

Therefore, there are many elements of the state that are not
specified. To allow the neural network to find paths to par-
tially specified states, we use hindsight experience replay
(Andrychowicz et al. 2017) and a special color for non-
specified stickers, to learn a cost-to-go function that esti-
mates the distance between any pair of partially specified
states.

Searching in the Space of States vs Sets of States
Currently, we are finding macro-actions that can transform a
state to another state entailed by the precondition of a node
by generating states with Prolog and finding paths in the
state space. However, this process will become unsustain-
able as the number of states entailed by each node grows.
One way to try to address this is by using subgoals where
states are only partially specified. The state space of a par-
tially specified subgoal can be much smaller than the overall
state space. Such an approach is often seen when describing
solutions to the Rubik’s cube. If this is not possible, then one

will have to be able to search in the space of sets of states in-
stead of the space of states. One possible approach to accom-
plish this is to use hindsight experience replay (Andrychow-
icz et al. 2017) to learn a cost-to-go function that takes as
input a given state and a logic program. The cost-to-go func-
tion should estimate the distance between a given state and
the closest state entailed by the logic program. One could
generate training examples by first generating a goal state in
the state space and then creating a first-order logic program
that entails that goal state.

Abstraction While Learning the Graph
Our current explanation methods are able to build abstrac-
tions by learning a hierarchical graph after the e-graph has
been learned. However, abstraction may be needed during
the learning process, itself. For example, learning to transi-
tion to a specific node may be too cumbersome for the ILP
system, especially if many variables are involved due to in-
terdependence. Instead, one could relax the exact transition



that should take place by allowing it to transition to a set of
nodes.

Explanation Aware Search
Part of the ease of an explanation involves how easy it is
to describe the macro action. For example, there a longer
macro-action composed of only one atomic action may be
easier to understand than a shorter macro-action composed
of many atomic actions. Furthermore, atomic-actions can be
represented as a predicate with arguments. For example, in
Towers of Hanoi, the disk and destination peg can be the
arguments to the action predicate. In this formulation, the
precondition and macro-action can share variables and cre-
ate more compact descriptions of macro-actions. It is pos-
sible that this work could be combined with methods based
on learning with deep neural networks, such as Dreamcoder
(Ellis et al. 2021) or DeepCubeA (Agostinelli et al. 2019) to
exploit this relationship.

Acknowledgments
This work was funded by the University of South Carolina
ASPIRE-II program.

References
Agostinelli, F.; McAleer, S.; Shmakov, A.; and Baldi, P.
2019. Solving the Rubik’s cube with deep reinforcement
learning and search. Nature Machine Intelligence, 1(8):
356–363.
Andrychowicz, M.; Wolski, F.; Ray, A.; Schneider, J.; Fong,
R.; Welinder, P.; McGrew, B.; Tobin, J.; Abbeel, O. P.; and
Zaremba, W. 2017. Hindsight experience replay. In Ad-
vances in Neural Information Processing Systems, 5048–
5058.
Bansal, K.; Loos, S.; Rabe, M.; Szegedy, C.; and Wilcox,
S. 2019. HOList: An environment for machine learning of
higher order logic theorem proving. In International Con-
ference on Machine Learning, 454–463. PMLR.
Bellman, R. 1957. Dynamic Programming. Princeton Uni-
versity Press.
Blum, A. L.; and Furst, M. L. 1997. Fast planning through
planning graph analysis. Artificial Intelligence, 90(1): 281–
300.
Chakraborti, T.; Sreedharan, S.; and Kambhampati, S. 2021.
The Emerging Landscape of Explainable Automated Plan-
ning and Decision Making. In Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intelli-
gence, IJCAI’20. ISBN 9780999241165.
Chen, B.; Li, C.; Dai, H.; and Song, L. 2020. Retro*: learn-
ing retrosynthetic planning with neural guided A* search.
In International Conference on Machine Learning, 1608–
1616. PMLR.
Chen, H.-C.; and Wei, J.-D. 2011. Using neural networks
for evaluation in heuristic search algorithm. In Twenty-Fifth
AAAI Conference on Artificial Intelligence.
Cropper, A.; Dumančić, S.; Evans, R.; and Muggleton, S. H.
2022. Inductive logic programming at 30. Machine Learn-
ing, 111(1): 147–172.

Cropper, A.; and Morel, R. 2021. Learning programs by
learning from failures. Machine Learning, 110(4): 801–856.
Ellis, K.; Wong, C.; Nye, M.; Sablé-Meyer, M.; Morales,
L.; Hewitt, L.; Cary, L.; Solar-Lezama, A.; and Tenenbaum,
J. B. 2021. Dreamcoder: Bootstrapping inductive program
synthesis with wake-sleep library learning. In Proceedings
of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, 835–
850.
Fox, M.; Long, D.; and Magazzeni, D. 2017. Explainable
Planning. In On Arxiv at https://arxiv.org/abs/1709.10256.
Hoffmann, J.; and Magazzeni, D. 2019. Explainable AI
planning (XAIP): Overview and the case of contrastive ex-
planation. Reasoning Web. Explainable Artificial Intelli-
gence, 277–282.
Liu, H.; Simonyan, K.; and Yang, Y. 2018. Darts: Differen-
tiable architecture search. arXiv preprint arXiv:1806.09055.
McAleer, S.; Agostinelli, F.; Shmakov, A.; and Baldi, P.
2019. Solving the Rubik’s Cube Without Human Knowl-
edge. In International Conference on Learning Representa-
tions.
Puterman, M. L. 2014. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons.
Qiu, W.; and Zhu, H. 2021. Programmatic Reinforcement
Learning without Oracles. In International Conference on
Learning Representations.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; Chen, Y.; Lillicrap, T.; Hui, F.; Sifre, L.; Driessche, G.
v. d.; Graepel, T.; and Hassabis, D. 2017. Mastering the
game of Go without human knowledge. Nature, 550(7676):
354–359.
Sreedharan, S.; Soni, U.; Verma, M.; Srivastava, S.; and
Kambhampati, S. 2022. Bridging the Gap: Providing
Post-Hoc Symbolic Explanations for Sequential Decision-
Making Problems with Inscrutable Representations. In In-
ternational Conference on Learning Representations.
Trivedi, D. K.; Zhang, J.; Sun, S.-H.; and Lim, J. J. 2021.
Learning to Synthesize Programs as Interpretable and Gen-
eralizable Policies. Advances in Neural Information Pro-
cessing Systems, 34.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. Advances in neural information pro-
cessing systems, 30.
Verma, A.; Murali, V.; Singh, R.; Kohli, P.; and Chaud-
huri, S. 2018. Programmatically interpretable reinforcement
learning. In International Conference on Machine Learning,
5045–5054. PMLR.
Zhang, Y.-H.; Zheng, P.-L.; Zhang, Y.; and Deng, D.-L.
2020. Topological Quantum Compiling with Reinforcement
Learning. Physical Review Letters, 125(17): 170501.


