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ABSTRACT

Generative modeling of single-cell RNA-seq data has proven instrumental for tasks
like trajectory inference, batch effect removal, and gene expression generation.
However, the most recent deep generative models simulating synthetic single cells
from noise operate on pre-processed continuous gene expression approximations,
overlooking the discrete nature of single-cell data, which limits their effectiveness
and hinders the incorporation of robust noise models. Additionally, aspects like con-
trollable multi-modal and multi-label generation of cellular data are underexplored.
This work introduces Cell Flow for Generation (CFGen), a flow-based conditional
generative model that accounts for the discrete nature of single-cell data. CFGen
generates whole-genome multimodal single-cell counts reliably, improving the
recovery of crucial biological data characteristics while tackling relevant generative
tasks such as rare cell type augmentation and batch correction. We also introduce a
novel framework for compositional data generation using Flow Matching. By show-
casing CFGen on a diverse set of biological datasets and settings, we provide evi-
dence of its value to the fields of computational biology and deep generative models.

1 INTRODUCTION

Single-cell transcriptomics has revolutionized the exploration of cellular heterogeneity, revealing
critical biological processes and cellular states (Hwang et al., 2018; Rozenblatt-Rosen et al., 2017).
Advances in single-cell RNA-seq (scRNA-seq) enable parallel gene expression profiling in millions
of cells, resulting in large datasets that investigate cellular differentiation (Gulati et al., 2020), disease
progression (Zeng & Dai, 2019), and responses to drug perturbation (Ji et al., 2021). Aware of the
multi-faceted complexity of the molecular state of a cell, modern studies often complement the
quantification of single-cell gene expression with additional measurements, such as information
on the accessibility state of DNA regions encoding for molecular functions like gene expression and
regulation (Lowe et al., 2019; Baysoy et al., 2023). Accessibility is measured using the Transposase-
Accessible Chromatin assay (ATAC-seq) (Grandi et al., 2022), with open regions termed peaks.
Recently, multi-modal single-cell datasets have emerged, providing a more comprehensive view
of the biological states of cellular populations. Yet, technical bias and high experimental costs still
hinder the homogeneous profiling of all possible cell states within the inspected biological process.
In light of this, generative modeling offers a promising avenue to highlight underexplored biological
states, drive scientific hypotheses, and enhance downstream applications (Lopez et al., 2018).

Generative models for single-cell data, in particular Variational Autoencoders (VAEs), have been
extensively employed in representation learning (Lopez et al., 2018; Palma et al., 2023), perturbation
prediction (Lotfollahi et al., 2019; 2023; Hetzel et al., 2022) and trajectory inference (Gayoso et al.,
2023; Chen et al., 2022; Farrell et al., 2023). Recently, more complex approaches leveraging diffusion-
based models (Luo et al., 2024) or Generative Adversarial Networks (GAN) (Marouf et al., 2020)
have paved the way for the task of synthetic data generation, demonstrating promising performance
on realistic single-cell data modeling. Single-cell data is inherently discrete, as gene expression is
collected as the number of transcribed gene copies found experimentally. Due to the incompatibility
of discrete data with continuous models such as Gaussian diffusion (Yang et al., 2023a), most
approaches generate data that has been pre-processed through normalization and scaling. This limits
their flexibility to support downstream tasks centered around raw counts, such as batch correction
(Lopez et al., 2018) and analyses where the total number of transcripts per cell is important (Gulati
et al., 2020). Additionally, technical and biological effects in single-cell counts have been formalized
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Figure 1: The CFGen generative model. Gaussian noise from a prior p0 is converted into a latent variable z1
sampled from a target density p1 by a compositional flow conditioned on multiple biological and technical
attributes. Decoders for gene expression and DNA accessibility map z1 to the parameters of negative binomial and
Bernoulli likelihood models from which single-cell gene expression and DNA accessibility peaks are sampled.

under effective discrete noise models (Hafemeister & Satija, 2019), which should be incorporated into
generative models for single-cell data to approximate the underlying data generation process better.

In this work, we present Cell Flow for Generation (CFGen) (Fig. 1), a conditional flow-based
generative model designed to reproduce multi-modal single-cell discrete counts realistically.
Our approach combines the expressiveness of recent Flow Matching techniques (Albergo &
Vanden-Eijnden, 2022; Liu et al., 2022b; Lipman et al., 2023; Dao et al., 2023; Tong et al., 2024)
with modeling the statistical properties of single-cell data across multiple modalities, each following
a distinct discrete likelihood model. Moreover, we extend the current literature on Flow Matching
by introducing the concept of compositionality, enabling the generation of cells conditioned on single
attributes or combinations thereof in a controlled setting.

We demonstrate the value of our approach in terms of generative performance improvement and the
enhancement of downstream tasks. In summary, we propose the following contributions:

• We introduce CFGen, a generative model for discrete multi-modal single-cell counts, which
explicitly accounts for key statistical properties of single-cell data under a specified noise model.

• We extend the Flow Matching framework to incorporate guidance for compositional generation
under multiple attributes.

• We demonstrate that our model’s full-genome generative performance consistently outper-
forms existing single-cell generative models qualitatively and quantitatively on a diverse set of
biological datasets.

• We showcase the application of CFGen in enhancing downstream tasks, including robust data
augmentation for improved classification of rare cell types and batch correction.

2 RELATED WORK

The synthetic generation of single-cell datasets is a well-established research direction pioneered
by models using standard probabilistic methods to estimate gene-wise parameters in a single
modality (Zappia et al., 2017; Li & Li, 2019) or multiple modality setting (Song et al., 2024). With
the advent of deep generative models, VAE-based approaches have demonstrated an extremely
flexible performance, offering popular tools for batch correction (Lopez et al., 2018), modality
integration (Gayoso et al., 2021), trajectory inference (Gayoso et al., 2023) and perturbation
prediction (Lotfollahi et al., 2019; 2023; Hetzel et al., 2022). Despite their relevance, most of the
mentioned approaches orient towards learning meaningful cellular representations or counterfactual
predictions rather than generating synthetic datasets from noise. Such a task has instead been
extensively explored by other works leveraging the expressive potential of diffusion models (Luo
et al., 2024), Generative Adversarial Networks (GANs) (Marouf et al., 2020) and Large Language
Models (LLMs) (Levine et al., 2023) to produce realistic cells approximating the observed data
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distribution. Our technical contribution builds upon Flow Matching (Albergo & Vanden-Eijnden,
2022; Liu et al., 2022b; Lipman et al., 2023), an efficient formulation of continuous normalizing flows
for generative modeling. Since its release, Flow Matching has been successfully applied to optimal
transport (Tong et al., 2024; Eyring et al., 2023; Pooladian et al., 2023), protein generation (Jing et al.,
2024; Yim et al., 2023), interpolation on general geometries (Chen & Lipman, 2023; Kapusniak
et al., 2024) and guided conditional generation (Zheng et al., 2023). Finally, Flow Matching showed
promising performance in tasks involving scRNA-seq, such as learning cellular evolution across
time (Tong et al., 2024; Kapusniak et al., 2024) and responses to drugs (Klein et al., 2023).

3 BACKGROUND

3.1 DEEP GENERATIVE MODELING OF SINGLE-CELL DATA

Single cells are represented as high-dimensional vectors of discrete counts, where each feature corre-
sponds to a gene and its measurement reflects the number of transcripts detected in a cell. Technical
bias and biological variation lead to unique statistical characteristics in cells, including sparsity and
over-dispersion. Sparsity arises from genes not being expressed in specific cellular states (biological
cause) or measurement dropouts in scRNA-seq (technical cause). Over-dispersion occurs when the
gene-wise variance exceeds the mean. Over-dispersed counts are typically modeled using a Negative
Binomial (NB) distribution, parameterized by a mean µ and an inverse dispersion parameter θ.

Formally, given a nonnegative count expression matrix X ∈ NN×G
0 with N cells and G genes, entries

xng of the expression matrix are assumed to follow the negative binomial model:

xng ∼ NB(µng, θg) , (1)

where µng ∈ R≥0 is a cell-gene-specific mean and θg ∈ R≥0 is the gene-specific inverse dispersion.
Thus, we assume each cell has an individual mean, while over-dispersion is modeled gene-wise.

When scRNA-seq is coupled with information on DNA accessibility, transcription measurements are
complemented by a binary matrix B ∈ {0, 1}N×P , where P is the number of DNA regions profiled
for accessibility. Here, each dimension independently follows the Bernoulli model bnp ∼ Bern(πnp),
with πnp indicating a cell-gene-specific success probability.

In most single-cell representation learning settings, a deep latent variable model is trained to map a la-
tent space Z to the parameter spaceH of the noise model via a decoder maximizing the log-likelihood
of the data. Given a latent cell state z, the likelihood parameters of each modality are inferred as

µ = lρ , ρ = softmax(hψ(z)) , π = sigmoid(hϕ(z)) , (2)

where hψ and hϕ are modality-specific decoders and l is the size factor, defined as the total number
of counts of the generated cell. The vector ρ represents gene expression proportions. One can
interpret the parameterization of the scRNA-seq likelihood based on the connection between the
negative binomial and Poisson-gamma distributions (see Appendix A.1).

3.2 CONTINUOUS NORMALIZING FLOWS AND FLOW MATCHING

Continuous Normalizing Flows (CNF). Chen et al. (2018) introduced CNFs as a generative
model to approximate complex data distributions. Given data in a continuous domain Z ⊂ Rd,
one can define a time-dependent probability path p : [0, 1]× Rd → R≥0, transforming a tractable
prior density p0 into a more complex one p1, where we indicate the probability path at time t
as pt : Rd → R≥0 such that

∫
pt(z) dz = 1. The probability path is formally generated by a

time-dependent vector field, ut : Rd → Rd with t ∈ [0, 1] satisfying dp
dt = −∇ · (ptut). The field

ut is the time-derivative of an invertible flow ϕt : Rd → Rd following the Ordinary Differential
Equation (ODE) d

dtϕt(z) = ut(ϕt(z)), where ϕ0(z) = z. Learning a CNF means defining a
push-forward operator pt = [ϕt]∗p0, transforming the prior p0 into the data density p1. In other
words, learning the target vector field ut generating pt allows transporting samples from the prior
distribution to realistic data samples by simulating the ODE in time.
Flow Matching (Lipman et al., 2023). Assume the goal is to model a complex data distri-
bution q by learning the target vector field. One can marginalize the probability path pt as
pt(z) =

∫
pt(z|z1)q(z1)dz1, where z1 indicates a sample from the data distribution q and
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pt(·|z1) is the conditional probability path transporting noise to z1 under the boundary conditions
p0(z|z1) = p0(z) and p1(z|z1) ≈ δ(z − z1). Here, δ represents a delta probability with mass
concentrated at the point z1. Note that, at t = 1, the marginal distribution p1 approximates the data
distribution q. Moreover, pt(z) is generated by a marginal velocity field ut(z) satisfying

ut(z) =

∫
ut(z|z1)

pt(z|z1)q(z1)
pt(z)

dz1, (3)

where ut(z|z1) is called conditional vector field. While directly regressing ut(z) is intractable,
Lipman et al. (2023) show that minimizing the Flow Matching objective

LFM = Et∼U [0,1],q(z1),pt(z|z1)

[
||vt,ξ(z)− ut(z|z1)||2

]
(4)

corresponds to learning to approximate the marginal vector field ut(z) with the time-conditioned
neural network vt,ξ. Defining pt(z|z1) = N (αtz1, σ

2
t I) with the functions αt, σt controlling the

noise schedule, ut(z|z1) has a closed form, and Eq. (4) is tractable (see Appendix A.2 for more
details). We define such a formulation Gaussian marginal paths.
Classifier-free guidance (Zheng et al., 2023). One can guide data generation on a condition
y by learning the conditional marginal field ut(z|y) via a neural network vt,ξ(z|y). Given a
guidance strength hyperparameter ω ∈ R, Zheng et al. (2023) show that generating data points
following the vector field ũt(·|y) = (1 − ω)ut(·) + ωut(·|y) approximates sampling from the
distribution q̃(z|y) ∝ q(z)1−ωq(z|y)ω, where q(z) and q(z|y) are, respectively, the unconditional
and conditional data distributions. Guidance can thus be achieved by combining conditional and
unconditional vector fields learned simultaneously during training.

4 CFGEN

Our objective is to define a latent Flow-Matching-based generative model for discrete single-cell data,
where each cell is measured through gene expression and DNA accessibility. Our model, CFGen,
is flexible: It can handle single and multiple modalities. Moreover, it supports guiding generation
conditioned on single or combinations of attributes without needing to train a different model for each.
In what follows, we present the assumptions and generative process formulation in the uni-modal
and multi-modal settings. We additionally illustrate our novel approach to compositional guidance.

4.1 UNI-MODAL AND SINGLE-ATTRIBUTE GENERATION

Let X ∈ NN×G
0 be a single-cell matrix where an observed single-cell vector is x ∈ NG0 , with G being

the number of genes. Additionally, let y ∈ NN0 be a categorical attribute (for example, cell type) asso-
ciated with each observation. We also define l =

∑G
g=1 xg as the size factor of an individual cell x.

The generative process. When the technical bias is negligible, we define the standard CFGen setting
as the following generative model:

p(x, z, l, y) = p(x|z, l)p(z|y, l)p(l)p(y) , (5)

where z is a continuous latent variable modeling the cell state, and we assumed that (1) x is
independent of y conditionally on z and l, and (2) l is independent of y. Crucially, Eq. (5) provides
a standard formulation for the generative process, but the factorization choice is flexible and can
be adjusted based on the properties of the data. Although partially related to existing VAE-based
single-cell generative models, our proposed factorization is novel. We detail the relationship between
Eq. (5) and existing generative models in Appendix A.5.
Modeling the distributions in Eq. (5). Each factor of Eq. (5) is modeled separately: p(y) is a
categorical distribution Cat(Ny,πy) where Ny is the number of categories and πy a vector of Ny

class probabilities, and p(l) = LogNormal(µl, σ
2
l ). The parameters of p(y) and p(l) can be learned as

maximum likelihood estimates over the dataset (see Appendix B.4). Given an attribute class y and size
factor l sampled from the respective distributions, p(z|y, l) is given by a conditional normalizing flow
ϕt(· |y, l) learned via Flow Matching with Gaussian marginal paths (see Section 3.2, Appendix A.2
and Appendix B.2 for the architecture details) transporting samples from z0 ∼ N (0, I) to latent cell
representations z = z1 = ϕ1(z0|y, l). Finally, given a latent variable z and a size factor l, p(x|z, l)
is a negative binomial distribution with mean parameterized by a decoder hψ as in Eq. (2) and inverse
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dispersion modeled by a global parameter θ. In practice, hψ and θ are optimized before training the
flow, together with an encoder fη that maps the data to a latent space (more details in Appendix B.1).
We outline the reasons for training the encoder and the flow separately in Appendix B.5.
Sampling in practice. To generate a cell using CFGen as illustrated in Eq. (5), we first sample a
size factor l and a condition y (the latter to specify a class). We then integrate the parameterized
vector field vt,ξ(zt|y, l) with t ∈ [0, 1], starting from z0 ∼ N (0, I). Here, we imply zt = ϕt(z0|y, l),
where ϕt is a flow as described in Section 3.2. We then take the simulated z1 = ϕ1(z0|y, l) at t = 1
as our latent z in Eq. (5). Finally, we sample x ∼ NB(l softmax(hψ(z1)),θ).
Size factor as a technical effect. When l is influenced by technical effect under a categorical covariate
c ∈ {1, . . . , C}, we reformulate Eq. (5) as p(x, z, l, y) = 1

C

∑
c p(x|z, l)p(z|y, l)p(l|c)p(y)p(c),

where we assume that z is independent of c given l (i.e., l contains all necessary technical effect
information to guide the flow), and y is independent of c. The last assumption derives from our
choice of y as an attribute encoding biological identity preserved across technical batches.

4.2 MULTI-MODAL AND SINGLE-ATTRIBUTE GENERATION

Let X and y be defined as in Section 4.1. In the multi-modal setting, we have additional access to
a binary matrix B ∈ {0, 1}N×P representing DNA region accessibility, with P being the number
of measured peaks. Each sample is, therefore, a tuple (x, b, y), where x and b are realizations of
different discrete noise models (negative binomial and Bernoulli). Following Eq. (2), both parameters
of the negative binomial and Bernoulli likelihoods are functions of the same latent variable z, encoding
a continuous cell state shared across modalities. We write the likelihood term in Eq. (5) as

p(x,b|z, l) (1)
= p(x|z, l)p(b|z, l) (2)

= p(x|z, l)p(b|z) , (6)

where in (1) we use the fact that the likelihood of x and b are optimized disjointedly given z, and
in (2) that b is independent of the size factor l (see Eq. (2)). In simple terms, all the modalities
are encoded to the same latent space Z used to train the conditional flow approximating p(z|y, l)
in Eq. (5) (more details in Appendix B.1). During generation, separate decoders hψ and hϕ map a
sampled latent state z to the parameter spaces of the negative binomial and Bernoulli distributions,
representing expression counts and binary DNA accessibility information, respectively (Fig. 1).

4.3 GUIDED COMPOSITIONAL GENERATION WITH MULTIPLE ATTRIBUTES

We extend classifier-free guidance (CFG) for Flow Matching (Zheng et al., 2023) to handle multiple
attributes, enhancing control over the generative process in targeted data regions. This is especially
relevant in scRNA-seq, where datasets are defined by several biological and technical covariates.
Here, Y ∈ NN×K

0 represents a matrix of K categorical attributes. Instead of training a conditional
flow model for every attribute combination, we propose a flexible approach that generates cells by
composing multiple flow models, each conditioned on a single attribute.
Let q(z|y) be the conditional data distribution, with y = (y1, . . . , yK) being a collection of observed
categorical attributes. In analogy with CFG in diffusion models (Ho & Salimans, 2022), we aim to im-

plement a generative model to sample from q̃(z|y) ∝ q(z)
∏K
i=1

[
q(z|yi)
q(z)

]ωi

, where ωi is the guidance
strength for attribute i (see Appendix A.4). Diffusion models generate data by learning to approximate
the score of the time-dependent distribution, ∇z log pt(z|y), with a neural network and using it to
simulate a reverse diffusion Stochastic Differential Equation (SDE) transporting noise samples to
generated data observations (Song et al., 2021). Importantly, the reverse diffusion SDE corresponds to
a deterministic probability flow ODE with the same time-marginal distributions (Yang et al., 2023b).
Based on the relation between score-based diffusion and energy models, Liu et al. (2022a) demon-
strated that compositional classifier-free guidance is achievable through expressing the drift of the
generating reverse SDE with the compositional score:

∇z log p̃t(z|y) = ∇z log pt(z) +
∑K

i=1
ωi[∇z log pt(z|yi)−∇z log pt(z)] . (7)

Following the direct relationship between Flow Matching and CFG provided in Ho & Salimans
(2022), we build the Flow Matching counterpart to Eq. (7).

Provided that we have access to Flow Matching models for the unconditional marginal vector field
ut(z) and the single-attribute conditional fields {ut(z|yi)}Ki=0, the following holds:
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Table 1: Quantitative performance comparison between conditional and unconditional single-cell generative
models. Evaluation is performed based on distribution matching metrics (RBF-kernel MMD and 2-Wasserstein
distance) and the generated cell type classification F1 score achieved by a kNN classifier trained on real data.
Results are averaged across generations performed using three different seeds.

PBMC3K Dentate T. Muris HLCA
MMD (↓) WD (↓) KNNc (↑) MMD (↓) WD (↓) KNNc (↑) MMD (↓) WD (↓) KNNc (↑) MMD (↓) WD (↓) KNNc (↑)

Cond.
c-CFGen 0.85 ± 0.05 16.94 ± 0.44 0.36 ± 0.15 1.12 ± 0.04 21.55 ± 0.17 0.21 ± 0.03 0.19 ± 0.02 7.39 ± 0.20 0.15 ± 0.03 0.54 ± 0.02 10.72 ± 0.08 0.18 ± 0.02
scDiff. 1.27 ± 0.20 22.41 ± 1.21 0.23 ± 0.06 1.22 ± 0.05 22.56 ± 0.10 0.22 ± 0.03 0.24 ± 0.04 7.89 ± 0.45 0.12 ± 0.01 0.96 ± 0.04 15.82 ± 0.45 0.08 ± 0.01

scVI 0.94 ± 0.05 17.66 ± 0.29 0.43 ± 0.15 1.15 ± 0.04 22.61 ± 0.23 0.19 ± 0.03 0.26 ± 0.02 9.76 ± 0.53 0.10 ± 0.02 0.58 ± 0.02 11.78 ± 0.19 0.09 ± 0.01

Uncond.
u-CFGen 0.44 ± 0.01 16.81 ± 0.06 - 0.42 ± 0.01 21.20 ± 0.02 - 0.08 ± 0.00 8.54 ± 0.06 - 0.15 ± 0.01 10.63 ± 0.01 -
scGAN 0.36 ± 0.01 15.54 ± 0.06 - 0.42 ± 0.01 22.52 ± 0.03 - 0.25 ± 0.00 12.85 ± 0.04 - 0.18 ± 0.01 10.81 ± 0.01 -

Proposition 1 If the attributes y1, ..., yK are conditionally independent given z, the vector field

ũt(z|y) = ut(z) +
∑K

i=1
ωi[ut(z|yi)− ut(z)] (8)

coincides with the velocity of the probability-flow ODE associated with the generative SDE of a
diffusion model with a compositional score as in Eq. (7).

We provide a proof for Proposition 1 in Appendix A.4. In other words, the reversed diffusion SDE
from compositional CFG admits a deterministic probability flow ODE with velocity as in Eq. (8).
Consequently, classifier-free sampling from compositions of attributes is achievable by simulating the

probability path p̃t(z|y) ∝ pt(z)
∏K
i=1

[
pt(z|yi)
pt(z)

]ωi

from a prior Gaussian density p0 integrating the

parameterized field ṽt,ξ(z|y) = vt,ξ(z) +
∑K
i=1 ωi[vt,ξ(z|yi)− vt,ξ(z)]. Note that both conditional

and unconditional fields are parameterized by the same model, which is learned by providing single-
attribute conditioning with a certain probability during training (see Algorithms 1 and 2).

5 EXPERIMENTS

In this section, we compare CFGen with existing models in uni-modal (Section 5.1) and multi-modal
(Section 5.2) generation across five datasets. We evaluate quantitatively by measuring distributional
proximity between real and generated cells, and qualitatively by assessing how well models capture
real data properties. In Section 5.3, we show the effectiveness of multi-attribute generation in guiding
synthetic samples toward specific biological labels and donors. Lastly, in Sections 5.4 and 5.5, we
demonstrate that CFGen enhances rare cell type classification through targeted data augmentation
and performs batch correction on par with widely used VAE-based models.

5.1 COMPARISON WITH EXISTING METHODS

Baselines. We choose scVI (Gayoso et al., 2021) and scDiffusion (Luo et al., 2024) as conditional
models and scGAN (Marouf et al., 2020) as unconditional baseline. The scVI model is based on
a VAE architecture with a negative binomial decoder and performs generation by decoding low-
dimensional Gaussian noise into parameters of the likelihood model. Conversely, scDiffusion and
scGAN operate on a continuous-space domain, performing generation using standard latent diffusion
(Rombach et al., 2022) and GAN (Goodfellow et al., 2020) models. Thus, we train them using
normalized counts (more in Appendix D).
Datasets. We assess model performance on four datasets of varying size: (i) PBMC3K1 (2,700 cells
from a healthy donor, clustering into 8 cell types), (ii) Dentate gyrus (La Manno et al., 2018) (18,213
cells from a developing mouse hippocampus), (iii) Tabula Muris (tab, 2018) (245,389 cells from
mouse hippocampus across multiple tissues), and (iv) Human Lung Cell Atlas (HLCA) (Sikkema
et al., 2023) (584,944 cells from a size-controlled version of 2.4 million cells from 486 individuals
across 49 datasets). Conditioning is performed on cell type for all datasets except Tabula Muris, where
we use the tissue label. Dataset descriptions and pre-processing details are in Appendix F and Table 4.
Quantitative evaluation. As evaluation metrics, we use distribution distances (RBF-kernel
MMD (Borgwardt et al., 2006) and Wasserstein-2 distance) computed between the Principal Compo-
nent (PC) projections of real and generated data in 30 dimensions. The generated data is embedded

1https://satijalab.org/seurat/articles/pbmc3k_tutorial.html
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using the PC loadings of the real data for comparability. For conditional models, we additionally
evaluate the cell-type classification F1 score of a k-Nearest-Neighbors (kNN) classifier trained on
real data and evaluated on generated cells. All evaluations are performed on a held-out set of cells,
considering the whole genome, with a filtering step for low expression genes (see Appendix F).
Quantitative results. In Table 1, we evaluate the generative performance of CFGen conditionally
(c-CFGen) and unconditionally (u-CFGen) against three baselines on the scRNA-seq generation task.
CFGen always reaches either the top or second-best performance on the conditional generation task
and overcomes scGAN on three out of four datasets.

a b

Figure 2: (a) Comparison between the gene-wise empirical mean-variance trend in real data and samples from
generative models. (b) Frequency of the number of zeroes per cell in real and generated data.

Qualitative evaluation. Evaluating realistic data generation in biology requires more than distribution
matching metrics. CFGen surpasses diffusion and GAN-based single-cell generators by explicitly
modeling the probabilistic properties of the data. By learning a rigorous likelihood-based model for
discrete data (Eq. (5)), our generated cells align closely with real observations in key aspects: (1)
Sparsity: caused by technical biases in gene transcript detection or gene inactivity in specific contexts.
(2) Over-dispersion: scRNA-seq data exhibits a nonlinear mean-variance relationship, modeled
through the inverse dispersion parameter of a negative binomial distribution. (3) Discreteness and
skewness: scRNA-seq data is discrete and highly skewed toward zero.
Qualitative results. In Fig. 2, we provide qualitative evidence that CFGen is more effective in
recovering properties (1) and (2) compared to scDiffusion and scGAN, which assume a continuous
data space. Property (3) naturally follows when modeling discrete counts with CFGen. Specifically,
Fig. 2a shows that explicitly modeling counts with gene-specific inverse dispersion leads to better
alignment of the generated gene-wise mean-variance relationship with real data. Additionally, Fig. 2b
demonstrates near-perfect recovery of the actual distribution of zero counts per cell. In contrast,
scDiffusion often shifts towards actively expressed genes, while scGAN tends to either under or
overestimate data sparsity. Furthermore, CFGen is the only conditional model capable of generating
plausible synthetic cells in terms of overlap with the real data distribution for large datasets such
as the HLCA and Tabula Muris (see Appendix H.4, Appendix H.2 and Fig. A7).

5.2 MULTI-MODAL GENERATION

We evaluate the qualitative and quantitative performance of CFGen at generating multi-modal data
comprising gene expression and binary DNA-region accessibility.
Baselines. We compare CFGen with a VAE-based multi-modal generative model (MultiVI) (Ashuach
et al., 2023). For completeness, we include as baselines two single-modality generative models:
PeakVI (Ashuach et al., 2022) (DNA accessibility) and scVI (Lopez et al., 2018) (gene expression).
Furthermore, we consider scDiffusion as a baseline for scRNA-seq generation.
Datasets. We use the multiome PBMC10K dataset, made available by 10X Genomics 2. Here, each
cell is measured both in gene expression and peak accessibility. The dataset consists of 10,000 cells

2https://www.10xgenomics.com/support/single-cell-multiome-atac-plus-gen
e-expression
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across 25,604 genes and 40,086 peaks and was annotated with 15 cell types, with their respective
marker peaks (enriched in accessible or inaccessible points) and genes.

Table 2: Comparison between CFGen, scDiffusion and
VAE-based models on generating multiple single-cell
modalities. We report distribution distance performance
(RBF-kernel MMD and Wasserstein-2 distance) between
real and generated cells across three seeds. Underlined
values indicate the second-best performance.

RNA ATAC
MMD (↓) WD (↓) MMD (↓) WD (↓)

CFGen multi. 0.89± 0.02 13.90 ± 0.07 0.92 ± 0.02 18.86 ± 0.37
CFGen RNA 0.86 ± 0.02 14.30 ± 0.08 - -

scDiff. 1.02 ± 0.02 14.82 ± 0.11 - -
MultiVI 0.86 ± 0.03 15.92 ± 0.25 0.96 ± 0.03 21.09 ± 0.34

PeakVI - - 1.49 ± 0.02 20.84 ± 0.45

scVI 0.96 ± 0.03 14.38 ± 0.11 - -

Evaluation. We use the RBF-kernel MMD
and Wasserstein-2 distances in the same setting
described in Section 5.1. Before comparison,
we normalize both real and generated binary
measurements of DNA accessibility via TF-IDF
(Aizawa, 2003) (in analogy to text mining). The
metrics are computed in a 30-dimensional PC
projection of the data. RNA counts are treated
as in Section 5.1. In Appendix H.5 we compare
CFGen and MultiVI more biologically. Specif-
ically, we assess how well they approximate
per-cell-type marker peak accessibility and gene
expression (see Appendix G.5). For each cell type, we compute the accessibility fraction and mean
expression of literature-derived marker peaks and genes in both real and generated cells and report
their correlation per cell type in Fig. A8b.
Results. CFGen outperforms both MultiVI and PeakVI in modeling accessibility data based on
distribution matching metrics (see Table 2). When considering the RNA modality, our model
surpasses scVI and scDiffusion in all metrics and MultiVI in terms of Wasserstein-2 distance.
Qualitatively, Fig. A8a shows substantial overlap between real and generated modalities. Finally,
Fig. A8b demonstrates that CFGen better approximates average marker peak accessibility and gene
expression, outperforming MultiVI across all cell type categories.

5.3 MULTI-ATTRIBUTE GENERATION AND GUIDANCE

We qualitatively assess our approach to compositional guidance, as outlined in Section 4.3.
Datasets. We showcase guidance on datasets with extensive technical variation, as one could
combine different levels of biological and technical annotations to either augment rare cell type
and batch combinations or control for the amount of technical effect added in simulation settings.
Specifically, we consider (i) The NeurIPS 2021 dataset (Luecken et al., 2021a) - 90,261 bone marrow
cells from 12 healthy human donors. We use donor as a batch attribute and cell type as a biological
covariate. We also consider (ii) the Tabular Muris dataset described in Section 5.1, using tissue and
Mouse ID as covariates.
Evaluation. The power of our guidance model is to generate data conditionally on an arbitrary subset
of attributes—including unconditional generation—using a single trained model. For each pair of
covariates (yi, yj), we evaluate generation on 500 generated cells varying the parameter ωj , keeping
ωi fixed. The expected result is conditional generation on ωi when ωj = 0 and generation from the
intersection between the two attributes as ωj increases. We additionally test the unconditional model,
given by ωi = ωj = 0, expected to recover the whole single-cell dataset. In the unconditional case,
we generate as many cells as there are in the dataset to better evaluate the coverage.
Results. Visual guidance results are shown in Fig. 3, with examples of double-attribute guidance
between CD14+ monocytes and donor 1 for the NeurIPS 2021 dataset and tongue and mouse
18-M-52 for Tabula Muris. Unconditional generation recreates the original data (left-hand side)
for both datasets. Setting guidance weights to zero for mouse ID and donor attributes leads to
single-attribute conditional generation. Increasing the guidance weight steers the generation to the
intersection of the two attributes. In Section 5.5, we show how multi-attribute guidance applies to
batch correction. Quantitative results on attribute intersection generation quality are in Appendix H.8.

5.4 APPLICATION: DATA AUGMENTATION TO IMPROVE CLASSIFICATION OF RARE CELL TYPES

We propose using CFGen to improve cell-type classifier generalization by augmenting rare cell types
in datasets. Previous work has shown that large auxiliary datasets enhance performance (Richter
et al., 2024). Here, we use scGPT (Cui et al., 2024), a transformer pre-trained on 33 million cells.
Datasets. We leverage two large datasets: (i) PBMC COVID (Yoshida et al., 2022) - 422,220 blood
cells from 93 patients ranging across paediatric and adult. (ii) The HLCA dataset described in
Section 5.1. Both datasets are processed by selecting 2000 highly variable features and holding out
cells from 20% of the donors.
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Real donor 1Real CD14+ Mono

NeurIPS dataset - cell type and donorAdd donor effect
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Figure 3: Qualitative evaluation of guidance performance on attribute pairs in the NeurIPS 2021 and Tabula
Muris datasets. Left: unconditional performance with guidance weights at 0. Moving right: simulate 500 cells,
progressively increasing the guidance strength of one attribute while keeping the counterpart unchanged.

Figure 4: Cell-type classification difference as a function
of cell type frequency before and after augmentation on
PBMC COVID and HLCA datasets. A 10-neighbor kNN
classifier is trained on the scGPT model’s feature space.
The held-out set includes cells from 20% of donors.

Evaluation. We train CFGen on the PBMC
COVID and HLCA training sets and succes-
sively augment both to 800,000 samples by up-
sampling rare cell types. For each cell type, we
compute 1

Nct
, where Nct is the total number of

cells from a cell type ct. We then generate ob-
servations to fill the gap between the dataset size
and 800,000 cells, sampling cells proportional
to the inverse of their cell type frequency. This
process yields significantly more observations
for rare cell types. However, we still do not
reach uniformity, as class imbalance may be bi-
ologically meaningful. Following the original
publication, we train kNN cell-type classifiers
on scGPT’s embeddings from the original and
augmented training sets, evaluating generalization performance on held-out donors. For each cell type,
we assess if performance increases upon augmentation as a function of its frequency in the dataset.
Results. Our results are displayed in Fig. 4 for the two datasets. Remarkably, most cell types in the
held-out dataset are better classified after augmentation, suggesting that CFGen not only generates
reliable cell samples but can be a valuable supplement to relevant downstream tasks. Moreover,
the performance difference between before and after augmentation is inversely proportional to the
frequency of the cell type in the dataset. Therefore, the improvement in generalization is more
accentuated for rare cell types. Additionally, Fig. A11 in the Appendix shows that augmentation
via CFGen outperforms the competing methods at improving the generalization performance on
rare cell types in unseen donors (raw cell type accuracies are in Table 9 and Table 10).

5.5 APPLICATION: BATCH CORRECTION

We apply multi-attribute CFGen to batch correction (see Fig. 5), a common use case for generative
models in scRNA-seq (Tran et al., 2020; Luecken et al., 2021b). Given a dataset with batch labels,
we choose a reference batch yrefbatch. For a latent cell zj with attributes y(j)batch and y

(j)
cell type, we invert

the generative flow to remove the attribute structure. Next, we simulate the forward flow from the
obtained representations while fixing the cell type and assigning yrefbatch to all observations. Guidance
weights regulate the preservation of biological versus batch labels.
Datasets. We evaluate CFGen as a batch correction method on two datasets: (i) The NeurIPS dataset
described in Section 4.3, using cell type as a biological variable to preserve and acquisition site as
batch variable. (ii) The C. Elegans molecular atlas (Packer et al., 2019), which profiles 89,701 cells
across 7 sources (batches). Similarly to (i), we use cell type as a biological annotation.

9
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Figure 5: To perform batch correction, the scRNA-seq data distribution is mapped to the prior distribution by
inverting the flow model. The resulting points are then transported back to the data domain based on a common
reference batch label and the original cell type label to preserve the biological structure.

Table 3: Average batch correction and bio-
logical conservation metrics from the scIB
package comparing CFGen with VAE-based
batch correction models in a 50-dimensional
representation space. PC projections of the
data are used to evaluate the uncorrected data.

NeurIPS C. Elegans
Batch (↑) Bio (↑) Batch (↑) Bio (↑)

CFGen 0.61 0.64 0.68 0.63
scPoli 0.52 0.64 0.61 0.56
scanVI 0.48 0.68 0.61 0.59
scVI 0.44 0.63 0.58 0.55

Uncorrected 0.33 0.62 0.40 0.53

Evaluation. We compare our model with established
VAE-based integration methods: scanVI (Xu et al., 2021),
scVI (Lopez et al., 2018), and scPoli (De Donno et al.,
2023). Using scIB metrics (Luecken et al., 2022), we as-
sess batch correction and biological conservation based
on neighborhood composition in the embedding space
(see Appendix G.8). All methods are evaluated on a 50-
dimensional latent space, with scores from the PC rep-
resentation of uncorrected data included for comparison.
We find that setting ωbatch = 1 and ωcell type = 2 for
C.Elegans and ωbatch = 2 and ωcell type = 1 for NeurIPS
preserves cell type variation while correcting for technical variation (see Appendix G.8 for more
details on the selection).
Results. The conceptualization of our technical effect correction approach together with qualitative
results are shown in Fig. 5, highlighting batch mixing performance on the two datasets. In Table 3,
we compare CFGen with baseline models for batch correction. Our model outperforms the others,
achieving 9% and 6% overall improvements over the second-best models on the two datasets. Addi-
tionally, the biological conservation score is on par with scVI and scPoli. Despite failing to properly
correct batch effects in the NeurIPS dataset, scanVI reaches a higher cell type preservation across
datasets since it incorporates explicit cell type label information via a latent classifier (Appendix D.2)

6 CONCLUSION

We presented CFGen, a conditional latent flow-based generative model for single-cell discrete data
that combines state-of-the-art generative models with rigorous probabilistic considerations. CFGen
incorporates established noise models to sample realistic gene expression and DNA accessibility
states, with promising applications in data augmentation and batch correction tasks. Furthermore,
our model demonstrates improved performance over existing generative frameworks, reproducing
data more faithfully across modalities. Our core machine learning contribution extends classifier-free
guidance in Flow Matching with compositional generation of multiple attributes. Overall, CFGen
represents a significant advancement in the simulation and augmentation of single-cell data, offering
the research community powerful tools to support biological analysis.
Limitations. Our framework relies on multiple assumptions, including independence in the data,
which may not hold in all biological contexts. Thus, exploring data characteristics is essential before
using CFGen for generation. Furthermore, we currently train the autoencoder-based representation
framework separately from the generative flow, which can be inefficient and memory-intensive.
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7 ETHICS STATEMENT

This work explores the core features of scRNA-seq data and examines how capturing complex,
high-dimensional cellular information can assist in answering biological questions. We aim to release
CFGen as a user-friendly, open-source tool to facilitate its adoption in single-cell analysis. Given
its application in biological research, CFGen may be utilized in sensitive environments that involve
clinical data and patient information.

8 REPRODUCIBILITY STATEMENT

Reproduction details are reported in the Appendix and main text. The proof for Proposition 1 is
extensively described in Appendix A.4, while prior knowledge on Flow Matching and classifier-free
guidance is provided in Appendix A.2 and Appendix A.3. Algorithms for training and sampling
with CFGen are reported in Appendix A.6. We introduce a thorough model description of both
autoencoder and flow components together with modeling choices in Appendix B. Baselines and
their characteristics are reported in Appendix D. All datasets are publicly available and their source
publications are referenced in the main text. We additionally synthesize dataset characteristics
in Table 4. Metrics and experimental setups are detailed in Appendix G. Finally, we report our
computational infrastructures in Appendix E.
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A THEORETICAL SUPPLEMENT

A.1 POISSON-GAMMA AND NEGATIVE BINOMIAL DISTRIBUTION

A possible parameterization of the negative binomial distribution is via a mean µ and an inverse
dispersion parameter θ following the Probability Mass Function (PMF):

pNB(x | µ, θ) =
γ(θ + x)

x!γ(θ)

( θ

θ + µ

)θ( µ

θ + µ

)x
. (9)

One can show that the negative binomial distribution is obtained by a continuous mixture of Poisson
distributions with gamma-distributed rate. More formally, define a Poisson model x ∼ Poisson(λ)
with λ ≥ 0. The parameter λ represents both the mean and the variance of the distribution. Since
the mean and the variance of the distribution are equal, a Poisson model is not suited for modeling
over-dispersed counts (i.e., where the variance exceeds the mean). A way around such a shortcoming
is to model the rate of a Poisson distribution as a random variable following a gamma distribution.

x ∼ Poisson(λ) , (10)

λ ∼ gamma
(
θ,

µ

θ

)
, (11)

where θ ≥ 0 is the shape parameter and µ ≥ 0 the scale parameter. Marginalizing out λ in the PMF
of the Poisson distribution, one retrieves the PMF of a negative binomial with mean µ and inverse
dispersion θ. Notably, the variance of such a negative binomial parameterization is µ+ µ2

θ . As one
can see, the variance always exceeds the mean as long as θ is finite, making the negative binomial
distribution a suitable tool to model over-dispersed counts.

A.2 FLOW MATCHING WITH GAUSSIAN PATHS

Flow Matching (Lipman et al., 2023) learns a time-dependent vector field ut(z), with t ∈ [0, 1],
generating the probability path pt(z), such that p0 = N (0, I) is a standard Gaussian prior and p1 is a
complex distribution. A common way to formulate the marginal pt is via the mixture

pt(z) =

∫
pt(z|z1)q(z1)dz1,

where q is the target data distribution. The following marginal vector field generates such a mixture
of paths (Lipman et al., 2023):

ut(z) =

∫
ut(z|z1)

p(z|z1)q(z1)
pt(z)

dz1 .

While ut is intractable, the conditional field ut(z|z1) has a closed-form expression given an observed
data point z1 and a pre-defined choice of the probability path pt(z|z1) satisfying the boundary
conditions p0(·|z1) = p0 and p1(·|z1) = δ(z− z1). Notably, ut(z|z1) admits the same minimizer
as ut(z) and can be used as a regression target during training. Following Lipman et al. (2023),
one can assume Gaussian probability paths pt(z|z1) = N (z|αtz1, σ2

t I), where the tuple (αt, σt) is
called scheduler and satisfies α0 = 0 = σ1 and α1 = 1 = σ0. In this work, we use standard linear
scheduling, where α = t and σ = 1− t.

A.3 THE RELATIONSHIP BETWEEN FLOW MATCHING AND CLASSIFIER-FREE GUIDANCE

Zheng et al. (2023) draw a relationship between classifier-free guidance in score-based models (Ho
& Salimans, 2022) and the Flow Matching vector field ut. Specifically, the authors show that the
following relationship between the score∇z log pt(z|y) and the marginal vector field ut(z|y) holds:

ut(z|y) = atz+ bt∇z log pt(z|y) , (12)

both in the conditional case and when y = ∅, with at =
α̇t

αt
and bt = (α̇tσt − αtσ̇t)

σt

αt
.

Let the equation

∇z log p̃t(z|y) = (1− ω)∇z log pt(z) + ω∇z log pt(z|y)
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be the classifier-free guidance score as formulated by Ho & Salimans (2022) with guidance strength
ω. Zheng et al. (2023) define the vector field of classifier-free Flow Matching as

ũt(z|y) = (1− ω)ut(z) + ω ut(z|y) (13)

which is related to the classifier-free guidance score by

ũt(z|y) = atz+ bt∇z log p̃t(z|y) ,
derived by substituting Eq. (12) into Eq. (13).

A.4 PROOF OF PROPOSITION 1

Proposition 1 If the attributes y1, ..., yK are conditionally independent given z, the vector field

ũt(z|y) = ut(z) +

K∑
i=1

ωi[ut(z|yi)− ut(z)]

coincides with the velocity of the probability-flow ODE associated with the generative SDE of a
diffusion model with the compositional score as in Eq. (7).

Proof. (Proposition 1) We first justify the conditional independence assumption and successfully
show the described equality.

Conditional independence assumption. Given a variable z and a set of attributes y = y1, ..., yK ,
our aim is to sample conditionally from the marginal distribution pt(z|y1, ..., yK). To obtain the
compositional score formulation in Eq. (7), one must first assume that the attributes are conditionally
independent given z. Then:

pt(z|y1, ..., yK) ∝ pt(z, y1, ..., yK) = pt(z)

K∏
i=1

pt(yi|z) ∝ pt(z)

K∏
i=1

pt(z|yi)
pt(z)

. (14)

Taking the logarithm and then the gradient with respect to z on both sides in Eq. (14), we obtain:

∇z log pt(z|y1, ..., yK) = ∇z log pt(z) +

K∑
i=1

[∇z log pt(z|yi)−∇z log pt(z)] . (15)

Additionally, if the goal is to sample with attribute-specific guidance strengths {ωi}Ki=1 according to
a modified conditional distribution

p̃(z|y1, ..., yK) ∝ p(z)

K∏
i=1

[
p(z|yi)
p(z)

]ωi

, (16)

the score in Eq. (15) becomes:

∇z log p̃t(z|y1, ..., yK) = ∇z log pt(z) +

K∑
i=1

ωi [∇z log pt(z|yi)−∇z log pt(z)] . (17)

The formulation in Eq. (17) is used to parameterize the drift of the reverse-time SDE that generates
data points conditionally on the attributes y1, ..., yK with guidance strengths {ωi}Ki=1.

Proof of equality. Following the standard theory of score-based models (Yang et al., 2023b) and
their compositional version (Liu et al., 2022a), we first note that one can use the compositional
classifier-free guidance score

∇z log p̃t(z|y) = ∇z log pt(z) +

K∑
i=1

ωi [∇z log pt(z|yi)−∇z log pt(z)]

to simulate the probability-flow ODE

ż = ftz−
1

2
g2t∇z log p̃t(z|y) . (18)
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Given a scheduling pair (αt, σt), Kingma et al. (2021) show that

ft =
d logαt

dt
, g2t =

dσ2
t

dt
− 2

d logαt
dt

σt , (19)

which yield

d logαt
dt

=
α̇

αt
= at, −1

2

dσ2
t

dt
+

d logαt
dt

σt = (α̇σt − αtσ̇t)
σt
αt

= bt . (20)

Hence, the probability-flow ODE is written as

ż = atz+ bt∇z log p̃t(z|y) . (21)

Given the score in Eq. (8), we first use results from (Zheng et al., 2023) explained in Appendix A.3
to justify the following equalities:

ut(z) = atz+ bt∇z log pt(z) (22)
ut(z|yi) = atz+ bt∇z log pt(z|yi) (23)

Plugging Eq. (23) and Eq. (22) into Eq. (8) yields:

ũt(z|y) = atz+ bt

[
∇z log pt(z) +

K∑
i=1

ωi(∇z log pt(z|yi)−∇z log pt(z))

]
(24)

= atz+ bt∇z log p̃t(z|y) . (25)

completing the proof.

A.5 RELATIONSHIP WITH EXISTING SINGLE-CELL GENERATIVE MODELS

Although likelihood models are standard in the single-cell literature, CFGen leverages a novel
factorization scheme as depicted in Eq. (5). We delineate the difference between our approach and
standard single-cell VAEs:

• In scVI (Lopez et al., 2018) the conditioning does not happen at the level of the prior on the
latent variable p(z) but in the decoding phase. Conversely, CFGen performs conditioning
ahead of drawing the latent variable z, so it can perform sampling from multiple modes.
Generating from noise leads to a more informative cell state than scVI. Thus, given a
conditioner y, CFGen models a conditional prior p(z|y).

• As a result, the likelihood component p(x|z, l) is also not the same as in most single-cell
VAEs, since in our case it is represented by an unconditional decoder, as the conditioning of
y is already incorporated in the flow-based generation of z, while conditional VAE models
need to feed the label both to the encoder and the decoder.

• VAEs considering a conditional prior exist (Xu et al., 2021). However, they are usually
employed as representation learning rather than generation frameworks. As a result, they
tend to under-regularize the latent space to the prior distribution to favor structure and
reconstruction. Conversely, setting a strong conditional flow-based prior onto a latent cell
representation, CFGen is not compromised by the KL-likelihood trade-off, and can thus
generate arbitrarily well on unregularized latent representations.

• While other work may have explored defining a distribution on the library size, our way of
using it to distinctively condition the generative process is unique, and so is our factorization
in Eq. (5). The library size is normally used just for the likelihood optimization process
multiplied by the post-softmax output of the decoder. We, instead, employ it to inform
the conditional generation from the flow-based conditional prior. We do this in a formally
sound manner by first defining it as a conditioning attribute and then factorizing our latent
variable model to generate z from p(z|y, l). To the best of our knowledge, this formulation
was previously unexplored but it significantly boosts the generation of single-cell counts.
Generating from noise in single-cell VAEs has no notion of cell size and may be incompatible
with settings where such information is biologically relevant.
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A.6 GUIDANCE ALGORITHM

Algorithm 1 and Algorithm 2 depict our training strategies. In what follows, for notational simplicity,
we indicate ϕt(z) with zt, with t ∈ [0, 1].

Algorithm 1 Train CFGen with multiple attributes on scRNA-seq

Require: Probability of unconditional generation puncond, trained encoder fη , scheduling (αt, σt).
1: Initialize vt,ξ
2: while not converged do
3: Sample (x1, y1, ..., yK) from the data
4: z1 ← fη(x1)
5: Sample t from U [0, 1]
6: l← Sum of entries of x1

7: Sample b from Bernoulli(puncond)
8: if b = 1 then
9: y ← ∅

10: else
11: y ← random sample among y1, ..., yK
12: end if
13: z0 ∼ p(z0) {sample noise}
14: zt ← αtz1 + σtz0 {noisy data point}
15: żt ← α̇tz1 + σ̇tz0
16: Take gradient step on ∇ξ||vt,ξ(zt|y, l)− żt||2
17: end while
Output: vt,ξ

Algorithm 2 Sampling from multi-attribute guided CFGen for scRNA-seq

Require: Trained velocity field vt,ξ, conditions y1, ..., yK , guidance parameters ω1, ..., ωK ,
size factor distribution parameters (µl, σl), number of ODE steps node,
trained decoder hψ , trained inverse dispersion parameter θ.

1: Sample size factor l from LogNormal(µl, σl)
2: z0 ∼ p(z0) {sample noise}
3: n← 1/node {step size}
4: ũt(·)← vt,ξ(·|∅, l) +

∑K
i=1 ωi [vt,ξ(·|yi, l)− vt,ξ(·|∅, l)] {guided velocity}

5: for t = 0, n, . . . , 1− n do
6: zt+n ← ODEStep(ũt, zt) {ODE solver step}
7: end for
8: x1 ← Sample from NB(l softmax(hψ(z1)),θ)

Output: x1

B MODEL DETAILS

The CFGen model is implemented in PyTorch (Paszke et al., 2017), version 2.1.2.

B.1 THE CFGEN AUTOENCODER

Before training the flow generating noise from data, we embed the data with an autoencoder model
trained with maximum likelihood optimization.

Encoder. The encoder is a multi-layer perceptron (MLP) with two hidden layers of dimension
[512, 256]. The last layer maps to a latent space of variable size. In our experiment, we use
50 latent dimensions for all datasets excluding the Human Lung Cell Atlas (HLCA) and the Tabula
Muris datasets, where we set the latent dimension to 100 for higher expressivity. In the multi-modal
setting, the different modalities are embedded into the same latent space. Both RNA and ATAC
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inputs initially pass through a modality-specific MLP encoder. For ATAC, we fix the dimension
of the hidden layers to [1024, 512] due to its higher dimensionality. The outputs of the two
modality-specific encoders are then concatenated and further encoded by a shared encoder layer,
mapping to a 100-dimensional latent space.

Decoder. The decoder maps the latent space to the parameter space of a likelihood model. When
dealing with multi-modal data, one decoder per modality is used to sample from the noise model
corresponding to the specific modality.

• For scRNA-seq, we map the latent representation to the mean of the Negative Binomial
likelihood, µ, with one dimension per gene. Following (Lopez et al., 2018), we compute the
softmax transformation of the output across the gene dimension. The resulting probabili-
ties are multiplied by the size factor, which is the total number of transcripts per cell. The
inverse dispersion is a learned model parameter implemented via torch.nn.Parameter.
Crucially, we offer the option to model the inverse dispersion per gene and attribute, in case
this reflects the properties of the datasets.

• When the DNA accessibility modality is present, the decoder is used to map the latent
space to continuous logit values. These are processed with a sigmoid function for each
dimension, with no need for a size factor.

Additional training details. We train the encoder and decoder networks jointly via likelihood
optimization. Therefore, the weights of the networks are tweaked (together with the inverse dispersion
parameter) to produce the parameters that maximize the likelihood of the data under a pre-defined
noise model. For scRNA-seq, we employ the negative binomial distribution. For ATAC, we use
Bernoulli likelihood. The losses from different modalities are summed before applying backpropaga-
tion. Notice that scRNA-seq data are provided by the encoder in their log-transformed version for
training stability. Intuitively, the loss is evaluated on the original counts.

For all settings, we keep the learning rate to 0.001, while all couples of layers are interleaved with 1-
dimensional batch normalization layers. We use a standard AdamW optimizer and the ELU activation
function as a non-linearity.

B.2 THE FLOW MODEL

The flow architecture. The flow model inputs the latent representation computed by the encoder
and produces a vector field used to simulate paths generating data from noise. The architecture is
essentially a deep dimensionality-preserving ResNet (He et al., 2016). The flow architecture is made
of the following modules:

• A linear projection layer from the input dimension to the hidden dimension of the flow
model.

• Three middle ResNet blocks stacked on top of each other performing representation learning
and conditioning.

• An output layer with one level of non-linearity, given by a SiLU activation function.
• A time embedder, inputting sinusoidal multi-dimensional encoding (Vaswani et al., 2017) of

the time with 1e4 frequency value. It is represented by an MLP with two layers and SiLU
non-linearity.

• A size factor embedder, inputting a sinusoidal embedding (Vaswani et al., 2017) of the
size factor to approximately guide generation to a pre-defined number of transcripts. This
is used only if the size factor is a conditioner for the model, that is, we do not assume
p(z|y, l) = p(z|y). Before being passed through sinusoidal embeddings, the log size factor
is normalized to a value lying approximately between 0 and 1 using the maximum and
minimum log size factors from the dataset.

• A covariate embeddings for all different conditioning attributes.

Additional technical details. During training the covariate embeddings are elementwise summed
to the time embedding and the size factor embedding (if applicable). Hence, all embeddings are
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either designed to share the same size or are transformed to a common dimensionality. The sum of
such covariate representations is passed to the ResNet middle blocks as a single vector.

The summed conditioning embedding and the down-projected input are provided to the ResNet
blocks. The ResNet blocks consist of:

• A non-linear input transformation of the state embedding.
• A linear encoder for the covariate embedding.
• A non-linear output transformation.
• A skip connection.

The results of the non-linear input transformation and the covariate encoder are summed and passed
to the output transformation. The result is summed to the input of the ResNet via the skip connection
as in traditional residual blocks (He et al., 2016). All non-linear transformations are simple [siLU,
Linear] stacks.

In the standard setting, we train the flow for 1, 000 epochs, using AdamW as an optimizer, a learning
rate of 0.001 and batch size 256.

B.3 COVARIATE EMBEDDINGS

Covariate embeddings are trainable torch.nn.Embdding layers of pre-defined size. In our
experiments, we use size 100 in most of the settings.

B.4 SAMPLING FROM NOISE

To generate discrete observations from noise, we first draw a covariate from the associated categorical
distribution with proportions obtained from the observed data and a size factor from the LogNormal
distribution (with mean and standard deviation as the Maximum Likelihood Estimates (MLE) from
the whole dataset or conditional on a technical effect covariate). Then, we sample Gaussian noise.
We simulate a latent observation from the real datasets conditionally by integrating the vector field
computed by the neural network in Appendix B.2 starting from Gaussian noise and using the dopri5
solver with adjoint sensitivity and 1e-5 tolerance from the torchdyn (Poli et al.) package in
Python3 (Van Rossum & Drake, 2009). We integrate over the (0, 1) time interval. The generated latent
vector is decoded to the parameter space of the data likelihood (negative binomial for scRNA-seq or
Bernoulli for ATAC-seq) and single cells are sampled from the parameterized noise model.

B.5 SEPARATE TRAINING

In CFGen we train the encoder fη separately from the flow model. Initially, when modeling the
AE and the flow jointly, we found that training the flow was unstable. Specifically, Flow Matching
performs better on a fixed state space. Alternating AE and flow updates causes continuous changes in
data representation since the AE evolves with the flow, hindering accurate velocity field estimation,
especially during the VAE’s early updates. One could initially train the AE with a higher learning rate
than the flow, periodically decreasing the former and increasing the latter. However, this approach is
similar to training them separately, which we ultimately adopted to avoid retraining the AE repeatedly.

C SCHEDULING

We use linear scheduling, following the original formulation advanced by Lipman et al. (2023). For
more details, we refer to Appendix A.2.

D BASELINE DESCRIPTION

D.1 SCVI, MULTIVI, PEAKVI

scVI (Lopez et al., 2018), MultiVI (Ashuach et al., 2023) and PeakVI (Ashuach et al., 2022) are all
VAE-based generative models for single-cell discrete data. Following the standard VAE setting, such

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

models learn a Gaussian latent space which is decoded to the parameters of the discrete likelihood
models describing different single-cell modalities. While PeakVI and scVI generate single modalities
(respectively, ATAC and scRNA-seq data), MultiVI learns a common latent space between modalities,
while sampling from different discrete decoders.

D.2 SCANVI AND SCPOLI

In the batch correction experiment described in Section 5.5 we compare CFGen with two additional
VAE-based models: scanVI (Xu et al., 2021) and scPoli (De Donno et al., 2023). scanVI is similar
to scVI, with the addition of a latent cell type classifier to enforce biological preservation in the
representation space and a conditional prior on the latent space. scPoli utilizes continuous embeddings
rather than the one-hot encodings as conditioners to the VAE. Moreover, scPoli differs from scanVI in
that it enforces biological coherence between cell-type-specific representations using latent cell-type
prototypes. In simple terms, the model pulls cellular representations close to the average embedding
vector of their associated cell type.

D.3 SCGAN (MAROUF ET AL., 2020)

The scGAN model is a Generative Adversarial Network (GAN) (Goodfellow et al., 2014) tailored for
realistic scRNA-seq data generation. It minimizes the Wasserstein distance between distributions
of real and generated cells, utilizing a generator network to produce synthetic samples and a critic
network for discrimination. The model employs fully connected layers, incorporates a custom library-
size normalization (LSN) layer for stable training, and extends to conditional scGAN (cscGAN) for
type-specific cell generation. Evaluation involves metrics like t-SNE and marker gene correlation to
gauge generated cell quality. Notably, scGAN has been explored for conditional generation as well.
However, we found the results conditioning the model on cell type to be way worse than when not
providing the label. In the latter case, the model is trained conditionally on data-dependent Leiden
cluster labels. We name such version unconditional as it does not exploit real labels but data-driven
attributes.

D.4 SCDIFFUSION (LUO ET AL., 2024)

The scDiffusion model comprises an autoencoder, a diffusion backbone network, and a conditional
classifier. The autoencoder transforms gene expression profiles into latent space embeddings, the
diffusion backbone network learns the reverse diffusion process, and the conditional classifier guides
cell generation under specific conditions. During training, the autoencoder creates embeddings
from real data, followed by diffusion to generate noisy embeddings for backbone training, while the
classifier predicts labels. During inference, the diffusion backbone denoises embeddings to produce
new ones for gene expression data generation. The autoencoder addresses high-dimensional data and
a non-Gaussian distribution, while the diffusion backbone network utilizes fully connected layers and
a residual structure. In the diffusion process, noise is iteratively added to embeddings, and during
inference, noise is iteratively removed to generate new embeddings for final data generation.

D.5 DISCUSSION: WHAT SEPARATES SCDIFFUSION FROM CFGEN

Data Properties: scDiffusion does not account for key properties of single-cell data, such as sparsity,
overdispersion, and discreteness. Although normalization can ensure continuity, most methods
preserve zeros and introduce non-linear mean-variance trends. Continuous decoders, such as in
scDiffusion, typically require centered and non-sparse input, making its design sub-optimal for
scRNA-seq.

Conditional Sampling: scDiffusion relies on classifier-based guidance, making conditional sampling
dependent on classifier performance for individual labels. This limits its application to rare cell type
generation or attributes that are challenging to classify.

Training Stability: Training SDE-based diffusion models like scDiffusion is empirically complex
and unstable for small datasets, such as PBMC3k.

In contrast, our framework overcomes these limitations by training a latent Flow Matching model
with a discrete likelihood scheme and classifier-free guidance.
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Table 4: List of datasets considered in this work with the associated number of genes, cells and cell types.

Dataset name Number of cells Number of genes Number of cell types
PMBC3K 2,638 8,573 8

Dentate gyrus 18,213 17,002 14
Tabula Muris 245,389 19,734 123

HLCA 584,944 27,997 50
PBMC10k 10,025 25,604 14
NeurIPS 90,261 14,087 45

PBMC COVID 344,820 2,000 29
C.Elegans 89,701 17,747 35 (plus unknown)

CFGen also provides significantly faster sampling—two to three orders of magnitude faster than
scDiffusion—due to:

Efficient Sampling: Flow Matching deterministically maps noise to data via approximately straight
trajectories, requiring far fewer simulation steps (5–10 for CFGen vs. >1000 for scDiffusion) while
achieving superior results.

Lower Dimensionality: CFGen operates in a reduced latent space (50–100 dimensions) compared to
scDiffusion (1000 dimensions).

Guidance Independence: Unlike scDiffusion’s reliance on classifier-based guidance, CFGen uses
classifier-free guidance, avoiding performance dependence on a classifier’s gradient.

These features enable CFGen to address key scRNA-seq challenges while being both computationally
efficient and robust across datasets.

E COMPUTATIONAL RESOURCES

For the implementation of our model, we utilized Python 3.10 (Van Rossum & Drake, 2009) for
the deep learning components. The experiments were executed on a variety of GPU servers, each
possessing unique specifications:

• GPU: 16 Tesla V100 GPUs, each with 32GB of RAM

• GPU: 2 Tesla V100 GPUs, each with 16GB of RAM

• GPU: 8 A100-SXM4 GPUs, each with 40GB of RAM

F DATA PREPROCESSING AND DESCRIPTION

Single cells were pre-processed via the Scanpy (Wolf et al., 2018) software. Count normalization
was applied only to baselines requiring real-valued data. In such settings, cells were normalized to
sum to 1e4 and log-transformed. Since CFGen, MultiVI, PeakVI and scVI work in discrete spaces,
we did not normalize the data to train them. Additionally, we filter out genes that are expressed in
less than 20 cells in all the datasets. In each dataset, we allocate 80% of the observations to training
and 20% to testing.

G EXPERIMENT DESCRIPTION AND EVALUATION METRICS

G.1 WASSERSTEIN-2 DISTANCE AND MMD

We use the Wasserstein-2 distance and the RBF-kernel Mean Maximum Discrepancy (MMD) with
scales {0.01, 0.1, 1, 10, 100} (Gretton et al., 2012) to measure the overlap between real and generated
data. To implement the former we use the Python Optimal Transport (POT) (Flamary et al., 2021)
package. For the linear MMD metric, we resort to the implementation proposed in 3.

3https://github.com/atong01/conditional-flow-matching
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G.2 KNNC

Similarly to (Levine et al., 2023), we train a 10-NN classifier for cell type on the real test data and
evaluate its F1 performance on the generated set. This indicates whether generated cell types are
proximal to the real ones in the real dataset. Notice that a low score is not necessarily a symbol
of poor generation performance, as it may be caused by the F1 scores being low on the real data.
Therefore, such a metric should be considered comparatively.

G.3 DISTRIBUTION METRICS COMPARISONS

To compute the metrics in Table 1, we use all competing models to generate three datasets of the
same size as the original. In the conditional case, distribution metrics are computed per cell type,
namely, each cell type in the real and generated datasets is a subset and used for comparison. In the
unconditional case, we compare batches of 5, 000 cells sampled from the whole data distribution.
The MMD and Wasserstein-2 distances are computed in the Principal Component (PC) projection
of the data onto 30 dimensions. This is done to face the curse of dimensionality, which hinders
the reliability of distances in high dimensions. To make PC embeddings comparable between real
and generated cells, we project generated cells using the PC loadings of the real cells. Crucially,
scDiffusion and scGAN generate normalized data, while CFGen and scVI produce discrete count
data. To make the obtained numbers comparable, we first normalize the output of CFGen and scVI to
ensure that gene counts sum to 1e4, then we log-transform the results of all generative models to
obtain a better range for the distances. The same is performed on the real data. After pre-processing,
all generative models and the real data represent the same quantity. All metric measures are reported
on the test set.

G.4 VARIANCE-MEAN TREND PLOT AND SPARSITY HISTOGRAMS

We select scDiffusion as a continuous baseline for demonstrative purposes. Given generated cells
across datasets (after pre-processing as explained in Appendix G.3), we compute the mean and
variance expression across cells per gene and the frequency of unexpressed genes per cell. These
values are compared to each other. Note that the mean-variance relationship is expected to be
quadratic when considering raw counts (see Appendix A.1). However, after the normalization
and log-transformation needed to compare with scDiffusion, the trend is no longer quadratic.
Nevertheless, the relationship between mean and variance gene expression is still worth investigating,
as it should follow the empirical behavior of real data.

G.5 MULTI-MODAL EVALUATION

We generate multi-modal data and perform an unconditional comparison with the ground truth as
described in Appendix G.3. When dealing with ATAC data, we normalize both real and generated
cells using the TF-IDF algorithm implemented in the MUON package (Bredikhin et al., 2022).

To generate Fig. A8, we perform the following steps:

1. Aggregate average gene expression and peak accessibility (i.e, the fraction of accessible
regions) per cell type per marker gene/peak as described in 4. The result is, for both real
and all generated datasets, a matrix cell_type x marker with, as value, the average
expression or accessibility of such marker in such cell type.

2. We correlate the rows of such matrix between real and generated datasets. A high correlation
signifies that the generative model correctly captures the mean marker expression and
accessibility across markers per cell type.

G.6 GUIDANCE STRENGTH EXPERIMENTS

In Fig. 3, first train CFGen on each dataset following Algorithm 1. Upon successful training, we
show the guidance performance qualitatively by sampling 500 cells for an array of guidance strength

4https://muon-tutorials.readthedocs.io/en/latest/single-cell-rna-atac/
pbmc10k/3-Multimodal-Omics-Data-Integration.html
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combinations between attributes, keeping the guidance weight of an attribute fixed while varying the
other as shown in the figure. For the unconditional generation (hence, with guidance strength equal to
0 for both attributes) we generated as many cells as there are in the dataset to better show the overlap
between real and synthetic cells. When using guidance we train the guided CFGen model using a
probability puncond = 0.2 (see Algorithm 1).

G.7 SCGPT (CUI ET AL., 2024) GENERALIZATION PERFORMANCE ENHANCEMENT

We split the PBMC COVID and HLCA datasets into a training set and a held-out set. To make the
generalization task more challenging, we leave out all cells from 20% of the donors in both datasets.
This makes 80 training and 27 test donors for HLCA and 60 training and 15 test donors for PBMC
COVID. After augmenting the training set (see Section 5.4) we use a pre-trained scGPT model to
embed training and validation sets, for both original and augmented data. Then we fit a cell-type
kNN classifier on the training embeddings and evaluate it on the held-out set. The results displayed in
Fig. 4 show to what extent the held-out classification performance on a cell type varies as a function
of its frequency in the dataset. A performance improvement indicates that a cell type better separates
from the rest in the LLM representation space after the model sees additional synthetic examples.

G.8 BATCH CORRECTION EVALUATION

Correction with CFGen. Batch correction consists of finding a representation of the data where the
technical effect has been removed while preserving the biological variation. In the standard setting,
an observation x is usually associated with a batch label ybatch and a biological annotation ycell type.
We first encode x into a latent variable z. Flow Matching is a generative model mapping observations
from a prior distribution to the data distribution using an invertible flow. The invertibility property
also allows the data distribution to be transported to noise. Note that it is proven that inverting the
flow back to the prior leads to removing the batch information as well as cell type variability from
z (Rombach et al., 2020). Here, we perform flow inversion to strip z from biological and technical
variation. Then we simulate the flow forward again starting from the noisy observation. Given a batch
yrefbatch to equalize all cells to, we simulate the flow forward again conditioned on batch yrefbatch and
the biological label of origin ycell type to be preserved. When applied to the whole dataset, technical
differences are removed by transporting all observations to the same batch.

Remarks. In the context of classifier-free guidance, the weights ωbatch and ωcell type can be adjusted
to tune the level of biological preservation. Note that our correction approach resembles methods
used for style transfer in diffusion models Wang et al. (2023).

Evaluation setup. We train CFGen and the competing models using the same cell type and batch
covariates. For all comparisons, we use a representation space of dimension 50. For uncorrected data,
we use the PC projection of the data as a representation for batch mixing evaluation. All VAE-based
models were trained across 100 epochs with default options. Furthermore, scPoli was pre-trained for
40 steps (see (De Donno et al., 2023) for more details).

Metrics. We evaluate the quality of batch correction and biological conservation using the scIB
package (Luecken et al., 2022). From scIB, we use five distinct metrics for batch correction and as
many metrics for biological conservation. The scores reported in Fig. 5 reflect the average of such
metrics, which is computed by default by the scIB package. The metrics are normalized between 0
and 1, with 1 representing perfect correction/conservation. All metrics build k-nearest-neighborhood
of cells and use batch and cell type labels to evaluate the technical and biological mixing in the data.
Here we provide a brief description of the metrics, however, we refer to (Luecken et al., 2022) for
more details about the scores.

Selection of the guidance weights for batch correction. Appendix H.8 provides an intuition for
the selection process. In batch correction, cells are transported to noise and back to data guided
by biological and batch covariates. The guidance strength parameters ωbio and ωbatch determine
the emphasis on biological conservation and batch correction. Based on the scIB metrics only, one
might select the highest guidance strengths, as these maximize aggregation within cell types and
batches. However, as shown in Fig. A16 and Fig. A17, scIB metrics alone can be misleading and
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should be paired with qualitative evaluation. Excessive guidance collapses variability beyond the
batch and biological annotations, leading to artifacts. Parameters near ωbio, ωbatch ∈ {1, 2} generally
balance signal preservation and correction effectively. For example, Fig. A16 demonstrates that
excessive biological preservation causes unnatural clustering. The extent of batch effect in the data
should also guide parameter selection. For C. Elegans, with mild batch effects, ωbio = 2, ωbatch = 1
performs better than ωbio = 1, ωbatch = 2. Conversely, for NeurIPS, ωbio = 1, ωbatch = 2 avoids
artifacts observed for ωbio > 1 (Fig. A17). In summary, we recommend assessing the batch effect
severity, sweeping over guidance weights, and selecting parameters that optimize scIB metrics without
compromising realistic single-cell representaxtions.

Batch correction.

• Silhouette batch - Represents the Average Silhouette Width (AWS) between batch clusters.
• iLISI - Derived from neighborhood lists for each node in kNN graphs, the Inverse Simpson’s

index is applied to assess how many cells can be sampled from a neighbor list before
encountering the same batch twice.

• KBET - Determines if the label composition of a cell’s k-nearest neighborhood matches the
expected (global) label distribution.

• Graph Connectivity - Evaluates if the kNN graph representation of the (integrated) data
directly links all cells sharing the same label.

• PCR (Principal Component Regression) - Quantifies the amount of variance explained by
the batch label before and after correction.

Biological conservation.

• Isolated labels - Define isolated cell labels as those that appear in the fewest number of
batches during the integration task. Assesses how effectively these isolated labels are
separated from other cell identities. The final score for each metric is the average isolation
score of all isolated labels.

• K-means NMI - Normalized Mutual Information between k-mean and batch clusters.
• K-means ARI - Adjusted Ranmd Index between K-means and batch clusters.
• Silhouette label - represents the Average Silhouette Width (AWS) between cell type clusters.
• cLISI - Computes the cell-type-based version of the iLISI score.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

H ADDITIONAL RESULTS

H.1 ANALYSIS OF THE RUNTIME

In Fig. A1 we empirically evaluate the impact of different hyperparameters on the runtime of
the model. We generate fake data from an untrained CFGen instance initialized with a specific
configuration. Each hyperparameter is evaluated for different latent space sizes. Since CFGen is a
latent Flow Matching model, the size of the latent space of the representation bottleneck is relevant
and is expected to condition generation speed the most. We consider the following hyperparameters:

1. The number of generated genes (default: 20k).
2. The number of generated cells (default: 50k).
3. The dimensions of the denoising model’s bottleneck (default: 128).
4. The number of neural network blocks in the denoising model (default: 3).
5. The size of the embedding for the conditions (default: 128).

When evaluating one hyperparameter, the others are set to their default values.

Figure A1: Analysis of the runtime of the CFGen generation process. Each panel represent a different
hyperparameter setup. Different lines in every plot correspond to the dimensionality of the latent codes (hence,
the dimensionality of the generation space). We test how the generation runtime varies as a function of: the
number of genes, the number of cells, the number of block units in the denoising model, the size of the condition
embedding and the hidden dimension of the denoising model. Results are reported in seconds. When one
hyperparameter is changed dynamically, the others are set to a default value.

In Fig. A1, we notice that the hyperparameters impacting the generation speed the most are the
number of cells and genes, while hyperparameter related to the neural network size are not as
impactful. Expectedly, the number of latent codes significantly influences how fast the model can
sample since it represents the dimensionality of the simulation space.
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We additionally provide training and sampling runtimes for CFGen and competing models across
datasets (see Table 5 and Table 6).

Table 5: Training runtime table. Each entry corresponds to the time in seconds required to train a model on
different datasets. The number of cells and genes composing each dataset are reported at the bottom of the table.
CFGen and scDiffusion are broken down in their different components that should be considered additively for
an overview of the total runtime. For all the models, the batch size is set to 128.

PBMC3K Dentate gyrus Tabula muris HLCA PBMC10K (scRNA-seq)
CFGen FM 1.02 7.13 69.00 192.12 3.23
CFGen AE 1.40 6.31 68.40 253.21 6.30

scVI 0.08 2.11 18.13 65.12 2.15
MultiVI - - - - 22.12

scDiffusion DM 1.03 2.13 18.02 53.62 4.48
scDiffusion AE 0.98 7.14 165.6 329.02 7.39

scDiffusion classifier 0.01 0.71 9.66 26.32 0.39
scGAN 0.98 5.15 20.41 181.12 2.40

No. of cells 2,638 18,21 245,389 584,944 10,025
No. of genes 8,573 17,00 19,734 27,997 25,604

Table 6: Generation runtime table. Each entry corresponds to the time in seconds required for a model to
generate as many cells and genes as in the original dataset. The number of cells and genes composing each
dataset are reported at the bottom of the table.

PBMC3K Dentate gyrus Tabula muris HLCA PBMC10K (scRNA-seq)
CFGen 0.34 0.26 3.68 8.62 0.43

scVI 0.01 0.02 1.26 3.63 0.03
MultiVI - - - - 0.03

scDiffusion 48.79 105.08 1255.41 2004.00 113.41
scGAN 0.70 0.94 4.15 12.39 0.68

No. of cells 2,638 18,21 584,944 10,025
No. of genes 8,573 17,00 19,734 27,997 25,604

H.2 ADDITIONAL COMPARISONS ON SINGLE-CELL PROPERTY GENERATION.

Figure A2: Additional results on modeling the properties of scRNA-seq with CFGen and scVI. Both models
explicitly account for key properties in single-cell data, such as sparsity, discreteness and over-dispersion. The
top row represents the comparison in terms of the mean-variance trend. We subset the x-axis in the results to the
values for which the performance of the models differs the most for demonstrative purposes. In the bottom row,
we compare the real and generated distributions of the number of zeroes per cell.
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Table 7: Table representing the distribution distance between sparsity and mean-variance trend vectors between
real and generated data (the lower, the better). The left part of the table is obtained by computing the vectors
representing the number of zeroes per cell for real and generated data and computing the 1D Wasserstein distance
between them. The same distance is computed between the mean/variance ratio vectors of real and generated
data. Results are reported across three experimental repetitions.

Sparsity distance real-generated (WD (↓)) Mean-variance trend distance real-generated (WD (↓))
PBMC3K Dentate. HLCA T. Muris PBMC3K Dentate. HLCA T. Muris

CFGen 117.01±5.32 27.44±3.27 37.87±0.49 59.63±1.77 0.14±0.01 0.03±0.00 0.39±0.00 0.03±0.00
scDiff. 1740.15±5.51 1533.40±0.93 3215.39±0.35 466.68±0.03 1.02±0.01 0.74±0.01 1.21±0.02 0.65±0.02

scGAN 200.78±2.91 528.34±0.67 1395.82±0.53 537.48±1.66 0.44±0.00 2.73±0.73 0.81±0.00 35.92±27.98

scVI 35.64±3.07 102.03±2.31 106.28±1.06 93.13±1.08 0.04±0.01 0.04±0.00 0.52±0.00 0.07±0.00

H.3 EXAMPLE OF SYNTHETIC GENERATION BY CFGEN

Generation results on PBMC3K 

Real B-cells

CD14+ Mono CD4 T cells CD8 T cells

Unconditional

Figure A3: Uni-modal generation of scRNA-seq by CFGen on the PBMC3K dataset. Real and generated cells
are embedded together and visualized as 2D UMAP coordinates.

Generation results on Dentate gyrus 

Real

GlialProg ImmAstro

CA1-Sub

Granule

Unconditional

Figure A4: Uni-modal generation of scRNA-seq by CFGen on the Dentate gyrus dataset. Real and generated
cells are embedded together and visualized as 2D UMAP coordinates.
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Generation results on Tabula Muris

Real

Kidney

Bladder

Large intestine Skin

Unconditional

Figure A5: Uni-modal generation of scRNA-seq by CFGen on the Tabula Muris dataset. Real and generated
cells are embedded together and visualized as 2D UMAP coordinates.

Generation results on HLCA

Real Unconditional

CD1c+ Myeloid dendritic 

B-cells

Alveolar Macrophage CD4+ Alpha-Beta T cell 

Figure A6: Uni-modal generation of scRNA-seq by CFGen on the HLCA dataset. Real and generated cells are
embedded together and visualized as 2D UMAP coordinates.
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H.4 COMPARISON BETWEEN CFGEN, SCVI AND SCDIFFUSION ON THE HLCA AND TABULA
MURIS DATASETS

CFGen

Figure A7: Qualitative comparison of the generation results of CFGen, scVI and scDiffusion on the HLCA and
Tabula Muris datasets. Comparison is performed by evaluating the similarity of the generated results to real cells.
Real and generated cells for all models are embedded together and visualized as 2D UMAP coordinates.

H.5 ADDITIONAL RESULTS ON MULTIMODAL GENERATION
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Figure A8: (a) 2D UMAP overlap between real and generated cells across modalities on the PBMC10K dataset.
(b) Pearson correlation between average cell-type-specific marker peak accessibility and marker gene expression
between real data and samples from CFGen and MultiVI.
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CFGen

MultiVI

Real

Figure A9: Average marker expression per cell type in real and generated data on the PBMC10k dataset. x-axis -
marker genes. y-axis - cell types.

Real CFGen MultiVI

Figure A10: Average number of cells with accessible marker peaks per cell type in real and generated data on
the PBMC10k dataset. x-axis - marker peaks. y-axis - cell types.
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H.6 COMPARISON WITH BASELINES ON DATA AUGMENTATION FOR RARE CELL TYPES

Table 8: Average accuracy, precision and recall across cell types on held-out patients with and without prior
augmentation. The best (bold) and second-best (underlined) performances are highlighted. CFGen-rare stands
for an instance of CFGen where only rare cell types with less than 5000 instances are augmented to 5000 cells.

PBMC COVID HLCA

Accuracy Precision Recall Accuracy Precision Recall

No Aug. 0.65 0.77 0.65 0.67 0.64 0.73
CFGen 0.69 0.67 0.69 0.74 0.67 0.75

CFGen - rare 0.67 0.73 0.67 0.72 0.68 0.71
scDiffusion 0.66 0.70 0.65 0.67 0.69 0.67

scVI 0.63 0.61 0.63 0.68 0.63 0.68

H
LC
A

PB
M
C

CFGen

Figure A11: Extension of Fig. 4. Comparison of CFGen with scDiffusion and scVI on boosting the scGPT
classifier performance on rare cell types.

Together with scGPT, in Fig. A12 we investigate if using CFGen to augment individual cell types
improves the performance of a linear classifier like CellTypist (Cippà & Mueller, 2023). We obtain a
similar result as scGPT, with the accuracy performance on real cell types improving after augmentation
(hence a negative correlation between the performance improvement and the cell type frequency).
For a better appreciation of the classification improvement of single cell type categories, we include
Table 9 and Table 10.
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PBMC HLCA

Figure A12: Performance improvement by data augmentation on a linear classifier. The plot displays the
cell-type classification difference as a function of cell type frequency before and after augmentation on PBMC
COVID and HLCA datasets. As a classifier, we use CellTypist (Cippà & Mueller, 2023), which is based on
logistic regression. The held-out set includes cells from 20% of donors for both datasets.

Table 9: Table reporting the cell type classification accuracy of a linear classifier before (Accuracy Base) and
after (Accuracy Aug) augmentation on the PBMC covid dataset. The Relative Frequency (%) column reports
how rare a certain cell type is in the dataset. For each row, we highlight which setting leads to the highest
accuracy.

Cell Type Relative Frequency (%) Accuracy Base Accuracy Aug
naive thymus-derived CD4-positive, alpha-beta ... 25.18 0.87 0.90
classical monocyte 16.61 0.98 0.98
natural killer cell 10.22 0.91 0.90
CD4-positive helper T cell 9.63 0.80 0.75
naive thymus-derived CD8-positive, alpha-beta ... 8.70 0.83 0.79
naive B cell 5.92 0.96 0.98
CD8-positive, alpha-beta cytotoxic T cell 4.98 0.78 0.67
non-classical monocyte 3.73 0.95 0.96
central memory CD8-positive, alpha-beta T cell 2.72 0.45 0.33
regulatory T cell 2.27 0.28 0.32
conventional dendritic cell 1.42 0.79 0.84
CD16-negative, CD56-bright natural killer cell ... 1.21 0.66 0.70
gamma-delta T cell 1.19 0.49 0.63
effector memory CD8-positive, alpha-beta T cell ... 1.17 0.21 0.27
class switched memory B cell 1.04 0.51 0.71
B cell 0.75 0.21 0.39
mucosal invariant T cell 0.73 0.69 0.70
CD4-positive, alpha-beta cytotoxic T cell 0.53 0.06 0.13
effector memory CD8-positive, alpha-beta T cell 0.48 0.10 0.23
plasmacytoid dendritic cell 0.40 1.00 1.00
platelet 0.40 1.00 1.00
plasma cell 0.23 0.97 0.90
hematopoietic precursor cell 0.20 0.97 0.86
mature NK T cell 0.10 0.00 0.16
innate lymphoid cell 0.08 0.21 0.40
erythrocyte 0.08 1.00 1.00
dendritic cell 0.02 0.47 0.80
plasmablast 0.02 0.93 1.00
granulocyte 0.00 1.00 1.00
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Table 10: Table reporting the cell type classification accuracy of a linear classifier before (Accuracy Base) and
after (Accuracy Aug) augmentation on the HLCA dataset. The Relative Frequency (%) column reports how rare
a certain cell type is in the dataset. For each row, we highlight which setting leads to the highest accuracy.

Cell Type Relative Frequency (%) Accuracy Base Accuracy Aug
alveolar macrophage 20.00 0.95 0.95
type II pneumocyte 13.51 0.99 0.99
respiratory basal cell 8.63 0.92 0.90
ciliated columnar cell of tracheobronchial tree 6.67 0.97 0.94
nasal mucosa goblet cell 5.43 0.88 0.89
CD8-positive, alpha-beta T cell 4.93 0.89 0.87
club cell 4.57 0.62 0.53
elicited macrophage 3.77 0.70 0.70
CD4-positive, alpha-beta T cell 3.43 0.59 0.64
vein endothelial cell 3.09 0.93 0.94
capillary endothelial cell 2.77 0.92 0.85
alveolar type 2 fibroblast cell 2.54 0.94 0.90
classical monocyte 2.43 0.87 0.87
CD1c-positive myeloid dendritic cell 1.95 0.73 0.64
pulmonary artery endothelial cell 1.83 0.68 0.75
lung macrophage 1.75 0.36 0.57
type I pneumocyte 1.69 0.94 0.95
non-classical monocyte 1.61 0.55 0.54
natural killer cell 1.51 0.81 0.83
multi-ciliated epithelial cell 1.14 0.55 0.66
endothelial cell of lymphatic vessel 0.97 0.91 0.93
epithelial cell of lower respiratory tract 0.94 0.86 0.88
mast cell 0.65 0.96 0.96
B cell 0.65 0.88 0.90
plasma cell 0.53 0.98 0.98
alveolar type 1 fibroblast cell 0.49 0.82 0.79
bronchus fibroblast of lung 0.39 0.67 0.77
respiratory hillock cell 0.39 0.78 0.82
tracheobronchial smooth muscle cell 0.33 0.78 0.65
epithelial cell of alveolus of lung 0.29 0.18 0.55
bronchial goblet cell 0.23 0.04 0.11
plasmacytoid dendritic cell 0.18 0.87 0.94
acinar cell 0.15 0.67 0.81
lung pericyte 0.10 0.88 0.89
ionocyte 0.09 0.77 0.85
T cell 0.09 0.57 0.55
tracheobronchial serous cell 0.05 0.43 0.64
myofibroblast cell 0.04 0.25 0.69
conventional dendritic cell 0.04 0.58 0.81
mucus secreting cell 0.03 0.61 0.61
dendritic cell 0.02 0.46 0.70
mesothelial cell 0.02 0.91 1.00
smooth muscle cell 0.02 0.09 0.15
lung neuroendocrine cell 0.02 0.97 0.97
brush cell of tracheobronchial tree 0.01 0.21 0.37
stromal cell 0.01 0.35 0.88
fibroblast 0.01 0.30 0.60
hematopoietic stem cell 0.01 0.78 0.89
tracheobronchial goblet cell 0.01 0.00 0.50
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H.7 MISSING GENE IMPUTATION WITH CFGEN

In the scVI model (Lopez et al., 2018), 10% of data entries are masked and set to zero, with the model
trained on this corrupted data. During inference, masked cells are passed through the encoder, and
latent codes z ∼ qψ(·|x) are sampled from the posterior. The VAE, trained to handle noisy inputs,
decodes z to infer masked counts. Similarly, we propose an imputation strategy using CFGen as
follows:

• Train CFGen on noisy data.
• Encode a noisy input x into the latent representation z1 = fψ(x).
• Invert the generative flow to compute z0 = ϕ0(z1), mapping z1 to its standard normal

representation.
• Sample around z0 as z′0 ∼ N (z0, σ

2Id).
• Transport z′0 back to z′1 = ϕ1(z

′
0), then decode to impute gene values for x.

We tested this strategy on four datasets, masking 10% of the counts. Fig. A13 shows that our
predictions correlate with pre-masking data, and Table 11 demonstrates superior imputation accuracy
compared to scVI in three out of four datasets (Pearson correlation, mean absolute distance). Fig. A15
highlights that σ should remain below 0.1 to avoid sampling distant z′0 values, which generate
unrelated cells and disrupt correlations with original gene expressions. These results confirm the
effectiveness of our model for community-oriented applications.

Table 11: Mean distance and correlation between real and imputed genes by scVI and CFGen.

Mean L1 distance real-imputed counts (↓) Pearson correlation real-imputed counts (↑)
PBMC3K Dentate. HLCA T. Muris PBMC3K Dentate. HLCA T. Muris

CFGen 1.21 0.42 3.21 4.81 0.68 0.56 0.83 0.86
scVI 1.47 0.35 4.43 6.08 0.61 0.58 0.75 0.79

HLCA

Figure A13: Scatterplot between imputed and real gene expression values before masking across datasets.
Correlations can be found in Table 11.
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In Fig. A15, we study how the quality of the imputation by CFGen varies as a function of the amount
of noise used to sample around an observation. Notably, a higher noise leads to worse imputation
results, since the generative modeling aspect takes over and samples a completely new cell which
loses the structure of the originally encoded noisy observation.

Dentate 
gyrus

HLCA

PBMC3k

Tabula 
Muris

Figure A14: Correlation between the CFGen-imputed and real gene expression before masking as a function of
the amount of added noise. Rows represent different datasets, columns stand for the standard deviation of the
noise used to sample around the latent representation of the cell. Perfect correlation along the bisector is the best
possible imputation result.
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H.8 ADDITIONAL RESULTS MULTI-LABEL GENERATION

Table 12: Extension to Fig. 3. We train two 3-layer MLP with softmax head on the real data to predict the classes
of the two attributes considered for each dataset. For different levels of the combination of guidance weights, the
classifier is applied to predict the average probability that the generated observations are of a certain guidance
class. When guided on a single attribute it is expected that generated cells are assigned with high probability
only to the class of such an attribute. As guidance strength increases for the counterpart attribute, CFGen models
the intersections between attributes increasingly better and, therefore, enables high classification probability for
both guiding labels.

NeurIPS Tabula Muris
Weights p(CD14 +M.) p(donor 1) Weights p(Tongue) p(18-M-52)

ωdonor = 0
ωcell type = 1

0.98 0.40 ωmouse ID = 0.0
ωTissue = 1

0.98 0.19

ωdonor = 1
ωcell type = 1

0.96 0.87 ωmouse ID = 1
ωTissue = 1

0.98 0.69

ωdonor = 2.5
ωcell type = 1

0.96 1.00 ωmouse ID = 2.5
ωTissue = 1

0.96 0.97

a

b

Figure A15: Performance on the generation of intersection of attributes on the Tabula Muris (top) and NeurIPS
(bottom) datasets based on distributional metrics. On the x-axis, we increase the guidance parameters for both
conditioning attributes.
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H.9 ADDITIONAL RESULTS ON MULTI-ATTRIBUTE GUIDANCE RESULTS

Table 13: The average Batch correction and Bio conservation metrics from the scIB package evaluate at different
levels of guidance strength.

C. Elegans NeurIPS
Guidance weights Batch Correction Bio Conservation Batch Correction Bio Conservation
ωbio = 0 ωbatch =0 0.48 0.55 0.32 0.63
ωbio =1 ωbatch =1 0.67 0.55 0.61 0.64
ωbio =1 ωbatch =2 0.68 0.54 0.64 0.73
ωbio =2 ωbatch =1 0.68 0.63 0.63 0.61
ωbio =2 ωbatch =2 0.68 0.63 0.64 0.71
ωbio =2 ωbatch =3 0.69 0.64 0.65 0.70
ωbio =3 ωbatch =2 0.70 0.67 0.65 0.77
ωbio =3 ωbatch =3 0.70 0.66 0.66 0.75
ωbio =3 ωbatch =4 0.70 0.67 0.66 0.73
ωbio =4 ωbatch =4 0.70 0.69 0.67 0.77

PC1

a

b
PC1

PC
2

PC
2

Figure A16: The PCA plot of generated cells colored by batch for the C.Elegans (a) and NeurIPS (b) datasets.
Each column represent a different guidance strength value.
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b

a Biological over-preservation neurIPS

Biological over-preservation C. Elegans

UMAP1

U
M

A
P2

UMAP1

U
M

A
P2

Figure A17: The UMAP plot of generated cells colored by batch for the NeurIPS (a) and C.Elegans (b) datasets.
We show one example of generation with a reasonable guidance scheme (left columns) and one with a guidance
scheme causing unrealistic cell type distributions (right).

H.10 ADDITIONAL PLOTS

HLCA
Study 1 Study 2 Study 3

Study 4 Study 5 Study 6

Size 
factor

UMAP1

U
M

A
P2

Figure A18: UMAP plots of six studies included in the HLCA dataset colored by size factor.
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