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ABSTRACT

Brain stimulation is a powerful tool for understanding cortical function and holds
promise for therapeutic interventions in neuropsychiatric disorders. Initial visual
prosthetics apply electric microstimulation to early visual cortex which can evoke
percepts of simple symbols such as letters. However, these approaches are funda-
mentally limited by hardware constraints and the low-level representational prop-
erties of this cortical region. In contrast, higher-level visual areas encode more
complex object representations and therefore constitute a promising target for
stimulation — but determining representational targets that reliably evoke object-
level percepts constitutes a major challenge. We here introduce a computational
framework to causally model and guide stimulation of high-level cortex, compris-
ing three key components: (1) a perturbation module that translates microstimula-
tion parameters into spatial changes to neural activity; (2) topographic models that
capture the spatial organization of cortical neurons and thus enable prototyping of
stimulation experiments; and (3) a mapping procedure that links model-optimized
stimulation sites back to primate cortex. Applying this framework in two macaque
monkeys performing a visual recognition task, model-predicted stimulation ex-
periments produced significant in-vivo changes in perceptual choices. Per-site
model predictions and monkey behavior were strongly correlated, underscoring
the promise of model-guided stimulation. Image generation further revealed a
qualitative similarity between in-silico stimulation of face-selective sites and a
patient’s report of facephenes. This proof-of-principle establishes a foundation
for model-guided microstimulation and points toward next-generation visual pros-
thetics capable of inducing more complex visual experiences.

1 INTRODUCTION

Vision is fundamental to human experience, enabling navigation, object recognition, and social
interaction. For individuals with visual impairments, restoring even basic visual function could dra-
matically improve quality of life. Visual prosthetic devices represent a promising approach to bypass
damaged tissue along the visual processing hierarchy (e.g. retina, optic nerve, lateral geniculate nu-
cleus) and directly stimulate the visual cortex to shape or evoke visual percepts.

Current visual prosthetic approaches are in a prototypical development stage, but have already
achieved remarkable successes: microstimulation of primate early visual areas can reliably evoke
percepts of simple geometric shapes and even letters (Chen et al., 2020b; Beauchamp et al., 2020;
Fernandez et al., 2021). These approaches to visual prosthetics rely on the spatial arrangement of
neurons in early visual cortex, which mirrors the layout of the visual field: nearby points in the
visual field and thus on the retina correspond to nearby points on cortex, a principle referred to as
retinotopy (Hubel & Wiesel, 1962; 1968; Engel et al., 1997).

However, these approaches are fundamentally limited by the number of electrodes that can be im-
planted in early visual cortex, and by the representational properties of early visual areas: neurons
in primary and secondary visual cortex (V1, V2) encode simple local features such as location or
orientation of bars and simple combinations thereof (Hubel & Wiesel, 1962; 1965; 1968; Hegdé
& Van Essen, 2000; Anzai et al., 2007). Stimulation of these regions elicits elementary percepts
such as phosphenes or simple shapes, and is currently not capable of evoking complex object-level
representations required to restore rich visual experience. For individuals with profound visual im-
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Figure 1: Overview of approach. Existing approaches to visual prosthetics microstimulate early
cortical areas or even earlier parts of the visual processing hierarchy, do not use computational mod-
els for the selection of stimulation sites, and instead rely on retinotopic organization where nearby
locations in the visual field are represented in nearby locations in the early visual system. These
approaches have successfully been shown to elicit percepts of simple visual symbols such as letters,
but are limited by the low-level representational properties of early visual regions. We propose a
model-guided approach that targets higher-level visual cortex via computational simulations with
the goal of eliciting percepts of complex visual objects.

pairments, the ability to perceive and recognize objects such as faces, tools, or scenes would open
the possibility of richer and possibly more useful visual perception. Achieving this level of per-
ceptual complexity might therefore require targeting cortical regions that explicitly encode complex
visual objects — but effective stimulation of such high-level and complex representations remains
an unsolved challenge.

Here, we propose to use computational models to guide microstimulation directly targeting higher-
level visual cortex. Higher visual regions are known to underlie the representations of complex
visual objects such as faces and scenes. However, the influence of retinotopy on object representa-
tion decreases strongly from early to higher-level visual regions (Issa & DiCarlo, 2012; Silson et al.,
2015; Yue et al., 2020; Poltoratski et al., 2021). Thus, in higher-level visual regions, retinotopy is
much less useful as a guiding principle for causal intervention techniques. Rather, the organization
of higher-level regions is shaped by more complex visual and semantic features such as animacy vs.
inanimacy and high-level category selectivity (Kriegeskorte et al., 2008; Kanwisher, 2017). These
more abstract principles alone do not give clear guidance with respect to eliciting more complex
visual percepts.

To address this challenge, we develop a model-guided approach to microstimulation in higher-visual
cortex (Fig. 1). We present early successes of applying model predictions experimentally to two
macaque monkeys. Specifically, we show that optimizing the combination of visual stimuli and
stimulation parameters via simulations in brain-mapped topographic networks allows for predicting
monkey visual behavioral responses in a complex object recognition task. Model-predicted changes
to behavior are strongly correlated with actual experimentally observed changes in monkey behavior,
although the model tends to overestimate the behavioral effect. Model-predicted experiments also
lead to a substantial shift in monkey behavior along a target direction. To qualitatively interpret the
effect of stimulation in-silico, we employ image generation on the simulated neural activity patterns
during microstimulation and observe the emergence and enlargement of faces and face-features
when stimulating in face-selective regions.

2 BACKGROUND & RELATED WORK

Visual Cortex Stimulation. A common implant for intracortical recording and stimulation in pri-
mates is the Utah array: a 96- or 64-channel microelectrode grid that allows simultaneous multi-site
recordings and the application of electrical pulse trains to focal patches of cortex. In early visual
cortex, site selection and interpretation of stimulation are guided by retinotopy - a roughly point-
to-point mapping from visual field locations to cortical locations, so that stimulating an electrode
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tends to evoke a phosphene at the receptive-field position represented beneath that electrode (Hubel
& Wiesel, 1962; 1968).

Using retinotopy as orientation principle, existing prototypes of visual prostheses target sets of elec-
trodes whose receptive fields tile desired visual-field positions and then induce static or dynamic
stimulation patterns to elicit percepts of simple shapes or letters (Chen et al., 2020b; Beauchamp
et al., 2020; Fernandez et al., 2021). Behavioral outcomes are typically quantified with forced-
choice tasks that probe detection, localization, or identification, yielding psychometric functions
over current amplitude, pulse rate, or stimulus strength and associated summary statistics such as
thresholds or changes in area under the curve. While effective for low-level percepts, this retinotopy-
based strategy is inherently constrained by electrode count and by the representational granularity of
early areas, which primarily encode local features. As such, it does not naturally extend to evoking
object-level percepts which are more closely associated with higher-level visual cortex.

Models of the Brain. Over the past decade, artificial neural networks (ANNs) have emerged as
powerful system-level models of the visual brain that explain substantial variance in neural and
behavioral responses (Yamins et al., 2014; Khaligh-Razavi & Kriegeskorte, 2014; Schrimpf et al.,
2018; Mehrer et al., 2021; Gokce & Schrimpf, 2025). Recently, these models have been endowed
with explicit cortical topography: topographic ANNs place units on a 2D sheet and are trained with
spatial regularizers, yielding smoothly organized maps across layers (Lee et al., 2020; Keller et al.,
2021; Lu et al., 2023; Margalit et al., 2024; Deb et al., 2025; Rathi et al., 2025). In deeper layers, they
exhibit category-selective patches (Margalit et al., 2024) reminiscent of the functional organization
of high-level visual cortex (Kanwisher, 2017; Tsao et al., 2003; 2006; Freiwald et al., 2009).

Because their representations are spatially embedded, topographic models can simulate the focal
neural effects of currents applied via causal intervention techniques: localized perturbations can be
applied to model tissue and the model can predict how the induced neural activation changes propa-
gate across the simulated cortical sheet to predict downstream behavioral consequences. Prior work
has evaluated such perturbation modules offline, showing that topographic models can anticipate the
behavioral effects of different causal intervention techniques including microstimulation (Schrimpf
et al., 2024). Building on this foundation, we move from offline evaluation to prospective model-in-
the-loop use: we optimize stimulation sites and stimuli in-silico and, to our knowledge for the first
time, test these model predictions in-vivo to run visual cortex stimulation experiments.

Visualization of visual representations. Recent work links deep image synthesis to the neural code
in high-level vision. Bashivan et al. (2019) used a discriminative deep network (AlexNet) in a gener-
ative way to synthesize images that maximally drive or selectively control V4 population responses,
and Ponce et al. (2019) used closed-loop optimization in the latent space of deep generators (DeeP-
Sim, BigGAN) to evolve images that strongly excite IT neurons. Building on GANs, Dado et al.
(2024) and Papale et al. (2024) learned linear mappings between neural activity and GAN latents to
reconstruct and optimize category-selective stimuli, while Shahbazi et al. (2024) introduced “per-
ceptograms”: GAN-generated images that animals behaviorally confuse with the state of being op-
togenetically stimulated in IT. We follow a similar strategy, but visualize model IT representations:
simulated microstimulation perturbs topographic model IT activity, which we then map into GAN
and diffusion latent spaces to illustrate the predicted perceptual consequences of stimulation. Our
approach may thus provide intuitions about model IT representations.

3 METHODS

We combine electrophysiological recordings, model-guided microstimulation, and primate behav-
ioral testing in a 3-stage process that closes the loop between computational models and primate
experiments (Fig. 2). The experimental setup involves 2 macaque monkeys performing a two-
alternative forced choice (2AFC) visual recognition task, with Utah electrode arrays implanted in
their inferior temporal cortex (for details, see Appendix Sec. A.2.1). The goal of the stimulation is
to bias monkey behavior towards one of the two choice targets.

To model this experiment, we first align topographic models to subject-specific passive-viewing
electrophysiological recordings. Second, we prototype microstimulation experiments in the model
to identify the most promising experimental setting. And third, we experimentally test whether
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Figure 2: Model-guided microstimulation. 1. Model–brain mapping. To align model tissue
and monkey brain recordings, we use passive-viewing responses of 4,000 images recorded 2–4 days
before each experimental session. We then simulate various positionings of an electrode grid on
the topographic tissue of model candidates, selecting the model grid position and orientation that
maximizes correlations between model and monkey recording sites. This yields a fixed one-to-one
mapping between sites in the model and brain-implanted electrode grid. 2. Prototype experiments
in model. For each candidate site we generate sequences of seven images varying smoothly along
GAN latent space, rank them by a selectivity score (slope-to-noise), and test the effect of microstim-
ulation on model-predicted 2AFC behavioral choices. Deepest-layer representations are converted
to two-alternatives-forced-choice responses via similarity comparisons. 3. Test model-selected pa-
rameters in primate. We select the top site–sequence predictions, mapping model neural sites back
to the corresponding IT electrodes, and deploy the monkey experiment in a 2AFC recognition task.
Biphasic trains of electric stimulation are delivered on designated trials, interleaved with sham. Full
details in Appendix Sec. A.2.1.

the model-optimized combination of visual stimuli and stimulation sites yields predicted behavioral
shifts when testing them in-vivo.

3.1 MODEL-BRAIN MAPPING

Topographic models. For modeling the effects of microstimulation and behavior we first train
topographic deep artificial neural networks (TDANNs) based on the ResNet18 architecture (He et al.,
2015) using an approach from Margalit et al. (2024) to incorporate spatial organization principles
observed in biological vision. Before training the units of a given layer are assigned to a unique lo-
cation on a 2D-plane that serves as the model cortical sheet. This spatial arrangement of model units
allows us during training to compute a spatial loss (details below) and during inference to represent
the neural changes induced by simulated microstimulation (Schrimpf et al., 2024).

We optimized TDANNs using a combined self-supervision (Ltask; SimCLR, Chen et al. 2020a) and
spatial loss (SL)

TDANN Loss = Ltask +
∑

k ∈ layers

αk SLk, αk = 0.25.

For each layer k and batch, we sample local cortical neighborhoods on the layer’s 2D sheet and,
within each sampled neighborhood, we sample unit pairs (i, j). For each selected pair we compute
1) a response similarity rij as the Pearson correlation between the units’ activation vectors across
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stimuli, and 2) an inverse-distance weight Dij = 1/(dij + 1), where dij is the Euclidean distance
between their fixed cortical coordinates. By repeating this procedure for all sampled pairs, we obtain
vectors r and D. Following Margalit et al. (2024), we instantiate the spatial term as the relative
spatial loss (SLk):

SLk = 1− Corr(r,D),

which encourages nearby units to have more correlated responses, yielding smoothly varying maps
across layers. For example, model early visual regions show orientation preference maps form-
ing ’pinwheels’ - where the preferred orientation of neurons rotates smoothly along all possible
orientations from 0 to 180 degrees – that are known to exist in early visual areas across species
(Kaschube et al., 2010). Additionally, model higher-level visual regions in the deepest layer show
category-selective regions similar to higher-level visual cortex in humans and non-human primates
(Kanwisher, 2017; Tsao et al., 2003; 2006; Freiwald et al., 2009).

We trained candidate topographic models on combinations of image datasets including ecoset
(Mehrer et al., 2021), ImageNet (Russakovsky et al., 2015), Labeled Faces in the Wild (LFW, Huang
et al. 2008), and VGGFaces2 (Cao et al. 2018; for details, see Appendix Table 1). For all model
training, we used the same set of hyperparameters as Margalit et al. (2024): 200 epochs, initial
learning rate: 0.6 (cosine decay), momentum: 0.9, batch size: 512. Weights are frozen after training
such that the models’ neural activity only depends on visual and stimulation input.

Topographic mapping procedure. Using passive-viewing responses of 4,000 images randomly
sampled from a GAN latent space, recorded 2–4 days before each stimulation session, from Utah
arrays in monkey inferior temporal cortex, we map neural sites in the model to neural sites in the
brain implants. To do so, we first computed a linear predictivity score from the TDANN’s deepest
layer to each Utah array in IT. Concretely, for each model instance and each array, we extracted
model activations to the 4,000 GAN images and fit a 10-fold cross-validated ridge regression. We
quantified predictivity using the explained variance (R2) across folds and retained those model–ar-
ray pairs with the highest R2 averaged across folds for subsequent topographic alignment. Impor-
tantly, linear predictivity (R2) showed a large range across combinations of models and monkey
arrays (monkey 1: [-0.06, 0.27], monkey 2: [0.05, 0.19]), indicating that the model and monkey
array selection through this mapping procedure is indeed important. In a control analysis with an
otherwise-matched non-topographic ResNet-18 trained without spatial loss (αk = 0), we observed
comparable IT predictivity in monkey 1 (February session: R2 = 0.27, June session: R2 = 0.19 on
the same IT array), indicating that introducing topography does not substantially change the linear
model–brain alignment in this dataset.

We then aligned simulated arrays and arrays used in-vivo by comparing their responses to a subset
of the same 4,000 reference images. Specifically, we presented the images to both the monkey and
the model, and for each candidate placement of a simulated Utah array on the model’s cortical sheet
we correlated responses site by site with the monkey array. We averaged these correlations across
all 64 electrodes and selected the placement and orientation that yielded the highest overall match,
thereby fixing a one-to-one correspondence between model and monkey electrodes.

3.2 PROTOTYPING EXPERIMENTS IN-SILICO

Our goal was to select, for each monkey, a specific electrode in inferior temporal cortex and a
specific image sequence that together produce the strongest stimulation-induced behavioral outcome
in a complex visual recognition task. To this end, we optimized experimental parameters in model
space before mapping them back to the animal (Fig. 2). For more detailed implementation details,
see Appendix Sec. A.1.

Perturbation modules. Recent evidence shows that topographic deep artificial neural networks
can predict the behavioral outcomes of causal intervention techniques such as microstimulation
(Schrimpf et al., 2024). We adapt this approach in stimulation modules that simulate the effects
of microstimulation on nearby neural tissue. These modules operate by applying localized activity
changes to model units, simulating the magnitude and spatial spread of electrical microstimulation
as observed in experimental studies. We parameterized the perturbation modules based on em-
pirical data from prior microstimulation experiments in primate inferior temporal cortex (Stoney
et al., 1968; Histed et al., 2009; Majaj et al., 2015; Kumaravelu et al., 2022). The magnitude of in-
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Figure 3: Model predictions correlate with stimulation-evoked behavioral shifts. A) Model-
predicted behavioral shifts (∆AUC) correlate with stimulation-evoked shifts in the monkeys’ be-
havioral responses (∆AUC), both when combining across the two subjects (Pearson r = 0.53,
p = 0.0012). B) Example psychometric functions from two stimulation sites (gray symbols in A).

duced activity changes followed established current-distance relationships, with stimulation effects
decreasing as a function of distance from the stimulation site.

Formally, following Schrimpf et al. (2024), the perturbation of a unit at cortical distance d from the
stimulation electrode is defined as

∆r(d) = min
(

rbase + γ · fpulse, rmax

)

· exp

(

−
d

λ(I)

)

, (1)

where rbase denotes the baseline firing rate (set to 30,Hz, consistent with primate IT recordings),
fpulse is the stimulation pulse frequency (Hz), and γ a gain factor linking pulse frequency to fir-
ing rate increase under a linear assumption. To prevent unrealistically high activity (Ponce et al.,
2019), firing rates are clipped at rmax = 200Hz. The distance-dependent decay is captured by d, the
cortical distance (mm) from the electrode, and λ(I), a spatial decay constant (mm) that increases
with stimulation current I (µA), reflecting the broader spread of activity at higher currents. Thus,
stimulation increases activity proportionally to the pulse rate at the electrode, saturates at a maxi-
mum firing rate, and falls off exponentially with cortical distance, consistent with current–distance
relations from empirical studies.

Stimulus generation. We adopted the stimulus generation method of Papale et al. (2024) based
on a StyleGAN-XL (Sauer et al., 2022), which links neural activity patterns in inferotemporal (IT)
cortex to a generative adversarial network (GAN) latent space. Specifically, a linear mapping be-
tween multi-unit activity (MUA) from inferior temporal cortex recordings and the GAN’s latent
vectors (512 dimensions) was estimated from 4,000 reference images. This mapping enabled recon-
struction of seen stimuli and, critically, of systematic perturbation of neural activity at individual
cortical sites. By linearly adding or subtracting up to five standard deviations of the response at a
targeted site to the 4,000 reference images, while keeping activity at other sites fixed, we gener-
ated naturalistic seven-image sequences in GAN image space. Each sequence thus corresponded
to a parametric modulation of the targeted site’s response, reflecting its neural tuning dimension.
These GAN-derived image sequences then served as candidate stimuli for both in-silico and in-vivo
microstimulation experiments, where they allowed us to test whether stimulation could bias neural
activity and perceptual choices along the dimension to which the targeted site was tuned.

Procedure. For each candidate site, we 1) generate sequences of seven images to systematically
modulate a site’s activity; 2) rank sequences by a simple selectivity score (slope-to-noise), favoring
monotonic, site-specific modulation, and 3) run in-silico perturbation experiments via the micros-
timulation module. To predict behavioral outcomes, we convert penultimate layer representations to
2AFC responses via similarity comparisons between the sample image and the two alternatives of a
given trial (for details of the experimental design in model and monkey, see Appendix Fig. 7). To
approximate trial variability in otherwise deterministic models, we aggregate across 30 top-ranked
sequences per site to obtain smooth psychometric curves and summarize stimulation strength by
∆AUC (perturbed − unperturbed trials).
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3.3 TESTING MODEL PREDICTIONS IN-VIVO

The final step is to test model predictions experimentally. To do so, we select the top site–sequence
pairs predicted by the model to evoke the highest behavioral change and map the neural sites back
to monkey electrodes via the model-brain mapping established in step 1. Following Papale et al.
(2024) monkeys performed a two-alternatives-forced-choice visual recognition task. During each
trial we first present a target stimulus (one of the possible seven images of a sequence) followed by
the simultaneous presentation of two alternative images (always two images at the two ends of the
given sequence). To indicate which of the two alternative images the animal perceived as more sim-
ilar to the target image, they are trained to make a saccade to where the selected alternative image
was presented. We applied biphasic microstimulation trains using chronically implanted Utah arrays
(for details, see Appendix Fig. 7).

Stimulation and sham trials were randomly interleaved (50% / 50%) and choices were read out from
the alternatives used in model prototyping (sequence extremes). We quantified stimulation-evoked
shifts in choice probability between unperturbed and perturbed trials and report effects as ∆AUC.
Due to degrading signal quality (Appendix Fig. 9) the implants are now explanted from both ani-
mals, thus no additional experimental runs can be performed using our setup.

3.4 VISUALIZATIONS

We visualize the perceptual consequences of model-guided microstimulation using two comple-
mentary generative pipelines (see Appendix A.3). First, we adapt the Brain2GAN framework (Dado
et al., 2024) to our setting by replacing neural recordings with the deepest-layer activations of a
topographic vision model, and by pairing these activations with images generated by a pretrained
StyleGAN-XL (Sauer et al., 2022) in its feature-disentangled w-space. We learn a ridge regres-
sion on topographic activations to w-latents using only unperturbed activity, and then synthesize
images from model states with and without simulated microstimulation. Because the GAN and
ridge regression are fixed, differences between unperturbed and perturbed reconstructions directly
reflect the changes in the model’s internal representation induced by stimulation at specific cortical
locations and simulated current levels.

Second, we use a diffusion-based pipeline built on Stable Diffusion v1.5 with IP-Adapter (Rombach
et al., 2022; Ye et al., 2023), which conditions the denoising process on both a text prompt and a
CLIP (Radford et al., 2021) vision embedding. We generate a train/test image set from prompts
based on the ecoset category structure (Mehrer et al., 2021), and fit a ridge regression from deepest-
layer topographic features to CLIP vision embeddings. At test time, we hold the text prompt, noise
latent, and diffusion hyperparameters fixed and vary only the simulated microstimulation in the
model, decoding the resulting perturbed activations into CLIP space and re-running the diffusion
process. In both the GAN and diffusion pipelines, we additionally perform a shuffled-perturbation
control: the targeted perturbation at a maximally face-selective site is randomly permuted across
feature dimensions before decoding. This control preserves the overall perturbation magnitude but
destroys its topographic structure, allowing us to test whether the emergence or amplification of
face-like content in the generated images specifically depends on spatially structured stimulation of
face-selective regions rather than on non-specific global modulation.

4 RESULTS

We evaluated two complementary measures of stimulation effectiveness. First, we asked whether the
magnitude of stimulation-evoked behavioral shifts in the monkey was predicted by the magnitude of
shifts in our model (model–monkey Pearson-r correlation). Second, we asked whether stimulation in
the monkey induced a consistent behavioral shift away from baseline (monkey ∆AUC significantly
greater than zero).

We performed two experiments with the same experimental setup but that differ slightly in the way
we pre-selected the monkey stimulation sites (Appendix Sec. A.1). Electrode implants were rela-
tively stable for monkey 1 where we could perform both experiments, but the absolute number of
tested sites still decreased from experiment 1 (13) to experiment 2 (9 sites). Decreasing neural signal
quality (Appendix Fig. 9) only allowed us to perform one experiment in monkey 2. The two experi-
ments only differ in the spatial constraint applied to select candidate electrodes of a given Utah-array.
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Figure 4: Model-guided stimulation biases monkey behavior. A) In experiment 2, model-guided
stimulation induced a significant behavioral shift in monkey 1 (Wilcoxon signed rank test: p =
0.043; Cohen’s d = 0.67). Due to declining signal quality, experiment 2 could not be conducted
with monkey 2. B) Three example GAN-generated image sequences used for stimulation (images
1, 4, and 7 shown from each seven-image sequence; corresponding sites highlighted in A).

Specifically, in experiment 1 we used a Manhattan distance between candidate stimulation sites of
1.6mm, whereas we reduced this limit to 1.2mm in experiment 2 to allow for a larger number of
candidate stimulation sites. In other words, the spatial constraint was loosened in experiment 2 to
allow for a higher percentage of stim sites to be tested.

4.1 PREDICTING STIMULATION-EVOKED BEHAVIORAL SHIFTS (EXPERIMENT 1)

We found that model-predicted behavioral shifts were positively associated with stimulation-evoked
shifts measured in both monkeys in experiment 1 (Fig. 3). Specifically, the model predictions
(in ∆AUC, x-axis) versus monkey behavior (in ∆AUC, y-axis) revealed robust correlations in
both animals (monkey 1: Pearson r = 0.58, p = 0.024, r2 = 0.34, monkey 2: Pearson r = 0.53,
p = 0.019, r2 = 0.28). Bootstrap resampling yielded confidence intervals confirming that the es-
timated effect is reliably above zero in both animals while their range reflects the small sample
size (monkey 1: 95% CI: r ∈ [0.20, 0.89], R2 ∈ [0.04, 0.79]; monkey 2: 95% CI: r ∈ [0.16, 0.85],
R2 ∈ [0.03, 0.73]). To quantify how much of these effects could arise by chance, we shuffled be-
havioral labels and recomputed R2 1,000 times. This yielded null distribution with medians close
to 0 (monkey 1: median R2 = 0.034; 95% CI [6.8× 10−5, 0.32]; monkey 2: median R2 = 0.029;
95% CI [1.3× 10−4, 0.24]). For both animals, the observed R2 exceeded nearly all null samples
(monkey 1: permutation p = 0.019; monkey 2: p = 0.017) This indicates that combinations of stim-
ulation site and GAN image sequence predicted by our model to yield stronger behavioral effects,
tended to have a stronger behavioral effect in the monkey. However, the monkey behavioral re-
sponses were not significantly greater than zero (Wilcoxon signed rank test, p > 0.05) in this first
experiment.

4.2 INDUCING BEHAVIORAL BIAS ALONG A TARGETED DIRECTION (EXPERIMENT 2)

Due to degrading signal quality of the implanted neural recording devices in monkey 2 ( Appendix
Fig. 9), we were only able to perform experiment 2 with more candidate stimulation sites in monkey
1. In this experiment, monkey behavioral responses were significantly shifted above a null baseline
(Wilcoxon signed-rank test; p = 0.043, effect size Cohen’s d = 0.671), indicating that parameters
predicted by the model indeed yielded a reliable behavioral effect in-vivo (Fig. 4). However, the
larger number of candidate stimulation sites available in this experimental setting no longer yielded
evidence for per-site and per-image-sequence predictive behavioral power of our model (p > 0.05).
We believe this reduced effect is mainly due to degraded signal quality (Appendix Fig. 9).

For both experiment 1 and 2 we cannot fully exclude contributions from global state changes, but
several aspects of our design make explanations mainly based on attention/arousal effects unlikely.
Stimulation and non-stimulation trials were randomly interleaved at 50% / 50%, minimizing ex-
pectation-driven state changes. What is more, we are not aware of evidence that inferior temporal
microstimulation induces non-specific attentional or arousal effects that would be able to steer be-
havior in a targeted way.
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GAN diffusion

current level: 0 500 1000
simulated

500 1000current level: 0
simulatedA B

Figure 5: Visualizing perceptual effects of microstimulation. We visualize the effects of stimula-
tion using a GAN-based approach (A), and a diffusion-based approach (B) and show two examples
for each. Simulated current amplitude increases from left (0µA) to right (1000µA) in both panels.
A) In the first row, stimulation transforms a cat’s tail into an additional face, while in the second row
it enlarges the face of a bear. B) The first row shows how stimulation transforms a bug-like creature
into a face, while in the second row a fruit is transformed into a human face.

4.3 VISUALIZATION OF IN-SILICO PERCEPTUAL EFFECTS OF PERTURBATION

Beyond shifts in behavioral choices, a key question is how neural stimulation alters the percep-
tual content of visual experience. For instance, Schalk et al. (2017) examined a 26-year-old patient
with intractable epilepsy who was implanted with 188 subdural electrodes also covering higher-level
visual cortex to localize seizure foci. During stimulation, electrodes over a face-selective cortical re-
gion evoked illusory faces (“facephenes”) that appeared superimposed on any object the patient was
viewing, whereas stimulation of color-selective sites produced illusory “rainbows”. These observa-
tions provide causal evidence, based on a subjective report, that stimulation of category-selective
cortex can induce highly specific perceptual changes.

Inspired by this approach, we aimed to visualize the perceptual consequences of stimulation in our
model-based framework. Papale et al. (2024) recently introduced a method for reconstructing per-
ceived images by projecting neural activity patterns into the latent space of a generative adversarial
network (GAN). Here we adapted this technique to examine the effects of perturbations in face-
selective regions of our topographic model.

Mapping model states to image space. We trained a linear mapping from the deepest layer of
the topographic model (model inferior temporal cortex, 25,088 units) into the latent space of the
GAN used for stimulus generation (512 dimensions). This mapping was calibrated on 30,000 GAN-
generated images, enabling us to project topographic model activity states into image space (for
details, see Appendix Fig. 8). Reconstructions of unperturbed responses (simulated stimulation
current= 0µA) closely matched the original stimuli (ground truth), confirming that the mapping
preserved key visual content (see two leftmost columns ’ground truth’ vs. ’simulated stimulation
current = 0µA’ in Appendix Figs. 11,12,14).

Qualitative stimulation effects. We then perturbed model sites with high face-selectivity as defined
by a functional face localizer from neuroscience (Stigliani et al., 2015) while presenting objects in
an independent set of 5,000 images not used to establish the linear mapping between the topographic
model and the GAN. In several cases, the reconstructions revealed face-like features superimposed
on the original object, resembling the “facephenes” reported in human stimulation studies (Schalk
et al., 2017). For example, stimulating a site at the center of a face-selective region in model inferior
temporal cortex with a simulated current level of 1000µA added an illusory second face to an image
of a cat or increased the area of an image occupied by a bear’s face (Fig. 5). Similar effects were
observed for other objects, whereas stimulation at control sites with low face-selectivity did not reli-
ably introduce such face-like structure. To provide an overview, we present exhaustive combinations
of stimulation site coordinates corresponding to varying levels of face-selectivity of the underlying
simulated cortical sheet and simulated current levels in the appendix (Appendix Figs. 11,12,??).

Interpretation. These visualizations provide an interpretable window into the otherwise inaccessi-
ble perceptual consequences of microstimulation. They suggest that activating face-selective regions
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can bias representations of unrelated objects toward the preferred category, echoing the patient re-
ports of ”facephenes”.

5 DISCUSSION

We introduce a model-guided framework that links topographic deep networks, in-silico perturba-
tions, and an explicit model-to-monkey electrode mapping to steer primate visual behavior via mi-
crostimulation in inferior temporal (IT) cortex. Across two animals, model-derived combinations of
stimulation site and image sequence yield positive correlations between model and monkey behavior
in experiment 1, and lead to a stimulation-driven in-vivo behavioral shift in experiment 2. Together,
these findings establish a proof-of-principle: topographic models with perturbation modules can
guide causal interventions that bias in-vivo behavior in response to complex visual objects.

Limitations. The main limitation of this study is the degrading signal that prevents more thorough
testing to support our claim that model-guidance can steer primate behavior. With a stable signal
quality we could have performed additional experiments in both animals to test whether further im-
provements on our model-guided microstimulation framework result in larger effect sizes than those
we describe. Without additional experiments our results are split between two experimental ses-
sions, where either the monkey behavioral effect is not significantly different from zero (experiment
1), or where there is no clear correlation between model and monkey behavior (experiment 2).

Next steps. Additional experiments would allow for further baselines, e.g. testing whether a random
selection of both stimulation site and image sequence does indeed not result in the same behavioral
changes we observed. Future experiments could further investigate alternative topographic models
(Lu et al., 2023; Deb et al., 2025), including the relevance of topography in the first place, how to best
perform model-brain mapping, and details of the perturbation module (additive vs. multiplicative
modulation, optimal current level, single- vs. multi-site stimulation).

Toward clinical impact. By shifting the target from early retinotopic codes to higher-level object
codes and using models to plan interventions, our framework outlines a computational backbone for
next-generation visual prosthetics aimed at restoring percepts of complex visual objects. In other
words, we believe it is possible that IT representations are not only necessary, but sufficient to rep-
resent complex visual objects such as faces and scenes. If so, the effect of inducing activity patterns
in IT would not be limited to changes at a categorical level, but could capture a more fine-grain level
allowing for e.g. the modulation of single face-features by stimulating face-feature-selective regions
(Issa & DiCarlo, 2012). Whether this holds true or whether simultaneous stimulation of earlier vi-
sual areas is required to elicit percepts of complex visual objects on a detailed level, is in our eyes
an empirical question. More broadly, model-guided stimulation may be applicable beyond vision –
for example, selecting input stimuli and stimulation patterns for a range of causal intervention tech-
niques such as microstimulation, but also transcranial magnetic stimulation, or focused ultrasound
to diagnose and treat other neuropsychiatric disorders.

6 CONCLUSION

By aligning topographic models to higher-level visual cortex, optimizing stimulation sites and stim-
uli in-silico, and testing the model-predicted experimental parameters in-vivo, we establish a practi-
cal model-in-the-loop framework for guiding causal interventions in vision. Model predictions were
associated with stimulation-evoked shifts in behavioral responses, and with a bias along a targeted
perceptual dimension. Image reconstructions from perturbed model activity further illustrated per-
ceptual consequences, with stimulation at face-selective sites biasing representations toward faces.
Together, these results define a pipeline in which topographic models with perturbation modules
inform experimental design and predict behavioral outcomes. Our approach might extend to more
advanced protocols such as multi-site stimulation, and to other causal intervention techniques. By
targeting higher-level visual regions rather than early visual cortex, our framework offers a compu-
tational foundation for prosthetic strategies aimed at eliciting richer, object-level visual experiences
and supports closed-loop optimization with translational promise.
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A APPENDIX

ImageNet ecoset LFW VGGFaces2 # of instances

✓ 5

✓ ✓ 10

✓ ✓ 3

✓ 10

✓ ✓ 10

✓ ✓ 5

Table 1: Training data of candidate models. Before model selection (see Sec. A.1) models are
trained on different combinations of image sets. We refer to two models with the same architecture
trained with the same hyperparameters and on the same sets of images and only differing in their set
of initial weights as two model instances.

A.1 OPTIMIZING MICROSTIMULATION IN MONKEYS THROUGH SIMULATIONS OF

EXPERIMENTS IN MODELS

Passive viewing data recording. Two days prior to stimulation experiments we conducted passive
viewing sessions to calibrate the models. Each monkey passively viewed 4,000 reference images
randomly sampled from GAN latent space while we recorded activity from all available IT electrodes
in each animal.

Stimulation site pre-selection in monkey array. We selected electrodes in monkey arrays based on
signal quality (split-half reliability across 4,000 reference images) and a spatial constraint avoiding
tissue damage (minimum spacing of 1.6mm (experiment 1) or 1.2mm (experiment 2) Manhattan
distance between any two electrodes used in experiments).

Selection of model, and of monkey array. For each model instance, we computed cross-validated
linear predictivity from model inferior temporal cortex to monkey arrays using the 4,000 reference
images. We then selected the best combinations of monkey array and model with regard to the
expected behavioral outcome.

Stimulus generation. We used a generative-adversarial-network-based approach pioneered by Pa-
pale et al. 2024 to generate sequences of 7 images optimized to modulate neural activation level at
a targeted stimulation site in monkey inferior temporal cortex.

Placing a simulated Utah array on the model cortical sheet. We identified the simulated Utah
array location and orientation on the model equivalent of inferior temporal cortex that best correlate
with a monkey array of interest using a subset of the responses to the 4000 reference images.

Ranking image sequences by a selectivity index. We sorted stimulation site-specific image se-
quences by a selectivity index reflecting its ability to modulate neural activation levels at the targeted
site in a monotonically increasing or decreasing way. By favoring monotonic changes, we attempt to
bring the neural changes resulting from visual stimulation as close as possible to the neural changes
resulting from the stimuation.

In-silico perturbation experiment and behavioral readout. We performed the experiment in
the model using the selected combination of image sequence and stimulation site in model IT. We
considered the model behavioral response (∆AUC of psychometric curves: perturbed − unperturbed
trials) as the prediction of the monkey behavioral response.

Mapping from model to monkey stimulation device. We projected model stimulation sites yield-
ing strongest behavioral model responses to the monkey cortex using the 1:1 mapping between
simulated model and monkey electrodes used for placing the simulated Utah array (see above).

Model-guided microstimulation in monkeys. Monkeys performed the delayed-match-to-sample-
task using the model-selected stimulation sites and image sequences.
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Figure 6: Simulating and optimizing monkey behavioral responses via topographic models For
details, please see list in main text.

A.2 EXPERIMENTAL PARADIGM

A.2.1 MONKEY SETUP

The experimental design follows the experimental paradigm established by Papale et al. (2024),
with modifications to integrate model-guidance for stimulation site and stimulus selection (Fig. 7A).
For all information on animal care and housing, surgeries for implanting stimulation devices, elec-
trophysiology including multi-unit-activity pre-processing, intracortical microstimulation, stimulus
presentation, and ethical approval for animal testing we refer to (Papale et al., 2024).

Two male macaque monkeys were implanted with Utah arrays in posterior inferior temporal cortex
and trained to perform a delayed match-to-sample task. On each trial, the monkey fixated a central
point before a sample stimulus was presented for 200ms, followed by a 100ms gray screen. The
sample stimulus was one of a sequence of 7 images optimized to drive the response profile of the
stimulation site in the direction of the vector induced by stimulation. After this delay of 100ms, two
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choice images appeared on opposite sides of the screen, corresponding to the extremes of the GAN-
generated image sequence. After 400ms, the fixation point disappeared, cueing the animal to make a
saccade to the image judged most similar to the sample stimulus presented before. Correct responses
were rewarded with juice. When the central reference image of the associated GAN sequence of 7
images serves as the sample stimulus, rewards are delivered randomly on 50% of trials to avoid bias
in either direction.

To assess the influence of microstimulation on visual behavior, electrical microstimulation was ap-
plied in 50% of trials via one IT electrode (200ms, 50µA, 300Hz biphasic pulses) during and shortly
after the sample presentation window (75–275ms after stimulus onset). Trials without stimulation
served as a baseline conditions (sham), allowing direct comparison of behavioral choices with and
without stimulation.

Figure 7: Experimental setup in monkey and model. A) Monkeys were trained to perform a
visual delayed match-to-sample-task. The animals had to select which of two alternative images they
perceive as more similar to a single stimulus shown at the beginning of a trial. Correct responses
were rewarded with juice. We computed a psychometric function based on the responses across
multiple stimuli. Monkey experimental design including stimulus generation as in (Papale et al.,
2024). B) Model simulation of monkey experiment. We used topographic model to simulate the
experimental design shown in A as follows. We extracted model activations in response to the two
alternative images and the sample stimulus. If the similarity between alternative 1 and the sample
stimulus was higher than the similarity between alternative 2 and the sample stimulus, this was
scored as a behavioral response towards alternative 1 and vice versa. The psychometric response
function across multiple stimuli was computed in the same way as in the monkey experiment.

A.2.2 TOPOGRAPHIC MODEL SETUP

To simulate the perturbation experiment in-silico, we employed topographic vision models with an
explicit perturbation module (Fig. 7B). As there is no notion of time in our feed-forward models,
a trial was simulated by presenting the stimulus of interest — one of the seven images constituting
a GAN-derived sequence — together with the first and the last image of that sequence. We then
extracted the activations from the deepest layer and computed the similarity between the stimulus
representation and each of the two extremes. The model’s behavioral choice was defined by the
extreme with higher similarity: if the stimulus was more similar to the last image than to the first,
the model was scored as having chosen the last image, whereas if the reverse was true it was scored
as having chosen the first.

Trials without activating the perturbation module provided the baseline condition, corresponding
to trials without microstimulation in the monkey experiment. For stimulation trials, we applied
a local perturbation to the model units corresponding to the targeted cortical site during stimulus
presentation, thereby simulating the effect of electrical microstimulation. We compared the resulting

18



972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

Under review as a conference paper at ICLR 2026

choice probabilities between baseline and stimulation conditions following the same analysis as in
the monkey experimental setup.

A key difference to in-vivo experiments is how we treat variability across trials in our models. In
the monkey experiment, each trial is a repeated event in time: the same stimulus can yield different
choices due to biological variability such as varying levels of attention, fatigue, or other forms
of noise. In contrast, our models are fully deterministic: the same input image and perturbation
always produce the same output. As a consequence, the psychometric function derived from a
single image sequence is binary in shape consisting entirely of zeros, entirely of ones, or describes
a sharp step function rather than the smooth, graded functions typically observed in behavior or
biological organisms. To approximate biological variability and thus mimic trials, we therefore
consider multiple GAN-generated sequences that are all optimized to modulate activity at the same
monkey stimulation site. Each distinct sequence constitutes an in-silico trial, and averaging across
these sequences provides a model analogue of the across-trial variability observed in the animal.
We introduce variability on purpose on the data side so that any future model can be evaluated on
the same image sequences without requiring model-specific noise mechanisms. If variability would
be introduced by e.g. dropout or noise directly applied to weights or activations, each model would
require its own implementation for it to be tested and compared on our data.

A.3 VISUALIZATION OF PERCEPTUAL EFFECTS OF STIMULATION

We use two complementary generative pipelines to visualize the perceptual consequences of simu-
lated microstimulation in the topographic model: a GAN-based reconstruction approach and a dif-
fusion-based approach based on Stable Diffusion with IP-Adapter. In both cases, the core idea is to
learn a linear decoder from topographic model activity into the conditioning space of a pretrained
generator, and then compare images synthesized from unperturbed versus perturbed model states.

A.3.1 GAN-BASED VISUALIZATIONS

Our GAN-based visualization procedure closely follows the Brain2GAN framework (Dado et al.,
2024), with the primary difference being the source of the encoding features: we use the deepest
layer of a topographic vision model as the encoder, whereas Brain2GAN uses neural recordings. As
in Brain2GAN, we work in the feature-disentangled w-latent space of a pretrained StyleGAN-XL
generator (Sauer et al., 2022), rather than its original z-space.

Dataset construction. We first generated a synthetic image dataset using a pretrained StyleGAN-
XL generator. We sampled latent codes z from the StyleGAN-XL prior and mapped them through
the StyleGAN-XL mapping network to obtain corresponding w-latents. For each sampled latent,
we an image and recorded:

• the StyleGAN-XL w-latent wi ∈ R
dw , and

• the deepest-layer activation vector of the topographic vision encoder fi ∈ R
df ,

where dw = 512 and df = 25,088. In total, we generated 30,000 training images and 6,000 test
images. All decoders are trained exclusively on unperturbed encoder activations.

Linear mapping from topographic model to w-space. To map topographic model states into the
StyleGAN-XL latent space, we fit a ridge regression from deepest-layer activations to w-latents.
For a training set {(fi,wi)}

N
i=1, we learn a weight matrix W ∈ R

dw×df by minimizing

L(W ) =

N
∑

i=1

∥

∥

wi −Wfi
∥

∥

2

2
+ α ∥W∥2F , (2)

where α > 0 is the ridge regularization parameter and ∥ · ∥F denotes the Frobenius norm.

The regularization parameter α is selected via leave-one-out cross-validation on the 30,000-image
training set. After selecting α, we keep this linear map fixed for all subsequent visualizations.

Given a new encoder state f , the corresponding predicted StyleGAN-XL w-latent is

ŵ = Wf. (3)
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Figure 8: GAN-based visualization procedure. Neural activity patterns from the deepest layer of
the topographic model are linearly mapped into the latent space of a generative adversarial network
(GAN). This mapping enables reconstruction of unperturbed responses as well as visualization of
the perceptual consequences of simulated microstimulation by comparing GAN reconstructions with
and without perturbation.

Baseline reconstructions. To assess the quality of the decoder, we reconstruct test images from
unperturbed encoder activations. For each test image x with deepest-layer feature vector funpert(x),
we compute

ŵunpert(x) = Wfunpert(x), (4)

and pass ŵunpert(x) through the StyleGAN-XL synthesis network to obtain a reconstructed im-
age x̂unpert. These reconstructions (current level 0µA) serve as the baseline for the perturbation
visualizations shown in the appendix.

Perturbation conditions. To visualize the perceptual effects of microstimulation, we apply the
perturbation module to the topographic model at different stimulation sites and current levels. We
focus on positions along the y-axis of the deepest-layer cortical sheet, with

• y = 42 corresponding to a highly face-selective region,

• y = 20 corresponding to a region with low face-selectivity,

and intermediate values (e.g. y = 28, 34) interpolating between these extremes. For each chosen
site (y) and simulated current level I ∈ {0, 100, 500, 1000}µA, we obtain a perturbed deepest-layer
activation

fpert(x; I, y) (5)

by applying the perturbation module to the unperturbed state funpert(x) for image x.

GAN-based visualizations. For each test image x, stimulation site y, and current level I , we com-
pute

ŵpert(x; I, y) = Wfpert(x; I, y), (6)

and synthesize the corresponding image via StyleGAN-XL. Because the generator and decoder are
fixed, any systematic differences between x̂unpert and x̂pert can be attributed to the changes in topo-
graphic model state induced by simulated microstimulation, rather than to changes in the generative
model itself.

Control perturbation ablation. As a control, we test whether the observed effects depend on the
spatial specificity of the perturbation pattern in the topographic model. For each current level I , we
first compute a targeted perturbation at the maximally face-selective location yface = 42. We then
construct a “shuffled” perturbation by randomly permuting the entries of this perturbation vector
across feature dimensions. This preserves the marginal distribution and overall magnitude of the
perturbation but destroys its topographic structure. The shuffled perturbation is then applied to the
unperturbed deepest-layer features and visualized through the same StyleGAN-XL generator. Com-
paring targeted and shuffled perturbations allows us to dissociate effects driven by feature-selective,
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spatially localized stimulation from those that could arise from non-specific global modulation with
matched statistics.

A.3.2 DIFFUSION-BASED VISUALIZATIONS WITH IP-ADAPTER

To complement the GAN-based reconstructions, we also visualize perturbation effects using a text-
to-image diffusion model. Specifically, we use Stable Diffusion v1.5 with IP-Adapter (Rombach
et al., 2022; Ye et al., 2023), which conditions the diffusion process on a CLIP Radford et al. (2021)
vision embedding of an image in addition to a text prompt.

Text prompts and generated dataset. We construct text prompts by sampling ecoset category la-
bels (Mehrer et al., 2021) and enriching them with quality and style modifiers, for example:

“a high-quality photo of a [category], studio lighting, sharp focus”

For each prompt, we run Stable Diffusion v1.5 with IP-Adapter to generate images. During genera-
tion we record, for each image:

• the text prompt pi,

• the initial noise latent ϵi that seeds the diffusion process,

• the resulting synthesized image xi.

As before, we split the resulting dataset into training and test sets.

Linear mapping from topographic model to CLIP vision space. To couple the topographic model
to the diffusion pipeline, we fit a ridge regression from deepest-layer activations to CLIP vision em-
beddings. For a training set {(fi, ci)}

N
i=1 we learn a weight matrix WCLIP ∈ R

dc×df by minimizing

L(WCLIP) =

N
∑

i=1

∥

∥

ci −WCLIPfi
∥

∥

2

2
+ αCLIP ∥WCLIP∥

2
F , (7)

where αCLIP > 0 is selected via cross-validation on the training set. After training, we obtain
predicted CLIP embeddings from topographic states via

ĉ = WCLIPf. (8)

At inference time, ĉ is used as a drop-in replacement for the CLIP vision encoder output in IP-
Adapter.

Controlled diffusion runs. To visualize perturbation effects for a given test image x and its associ-
ated text prompt p and noise latent ϵ, we proceed in two stages.

Baseline (unperturbed) condition.

1. Extract the deepest-layer activation funpert(x) from the topographic model.

2. Compute the corresponding CLIP embedding

ĉunpert(x) = WCLIPfunpert(x). (9)

3. Run Stable Diffusion v1.5 with IP-Adapter using:

• the stored text prompt p,

• the stored noise latent ϵ, and

• ĉunpert(x) as the image-conditioning input.

This yields a baseline image x̃unpert that approximates the original generated image under
our topographic decoder.

Perturbed condition.

1. Apply the perturbation module at a chosen stimulation site y and current level I to obtain
fpert(x; I, y).
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2. Compute the perturbed CLIP embedding

ĉpert(x; I, y) = WCLIPfpert(x; I, y). (10)

3. Run Stable Diffusion with IP-Adapter again, using exactly the same text prompt p and
noise latent ϵ, but replacing the image-conditioning embedding with ĉpert(x; I, y).

Because the text prompt, noise latent, and diffusion hyperparameters are held fixed between the un-
perturbed and perturbed runs, any systematic differences between x̃unpert and the perturbed image
x̃pert(I, y) can be attributed to changes in the topographic model state induced by simulated micros-
timulation. As in the GAN-based case, we visualize these effects by varying both the stimulation
site (e.g., along the face-selective axis of model IT) and the simulated current level, yielding image
series that illustrate how perturbations bias the generative model’s outputs.

Control perturbation ablation (diffusion). We perform an analogous shuffled-perturbation control
in the diffusion setting. For each current level I , we reuse the targeted perturbation at the maximally
face-selective location yface = 42, randomly shuffle its entries across feature dimensions, and apply
this shuffled perturbation to the unperturbed deepest-layer features. We then apply the same linear
transformation to obtain a CLIP embedding and run Stable Diffusion with IP-Adapter using the
same prompt p and noise latent ϵ. Comparing targeted and shuffled perturbations in this setting again
controls for non-specific global modulation and tests whether the emergence of face-like structure
depends on the spatially structured perturbation of face-selective regions.
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A.4 PASSIVE VIEWING DATA QUALITY
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Figure 9: Passive viewing data quality. Using the passive viewing dataset from monkey 1, we
quantified the reliability of each electrode following Papale et al. (2024). For each recording site,
reliability was estimated by repeatedly splitting the 20 repetitions of each test image into two halves
and computing the correlation between the resulting split-half response averages. Repeating this pro-
cedure yielded 190 reliability estimates per electrode, whose mean defines the electrode’s reliability.
At the population level (averaging reliability across electrodes), we observed a significant decrease
from experiment 1 (February 2025) to experiment 2 (June 2025; t = 6.84, p = 1.03×10¹¹, Cohen’s d =
–0.30), indicating a decline in overall signal stability. At the single-electrode level, 735 out of 1024
channels (72%) showed a significant reduction in reliability after Benjamini–Hochberg FDR correc-
tion. The mean within-electrode effect size (computed on the 190 split-half estimates per electrode)
was large (Cohen’s d = –1.25), reflecting a robust and widespread degradation of reliability over the
four-month interval.

A.5 USE OF LLMS

We used ChatGPT (GPT-5, OpenAI, 2025) to help polishing the writing of this document. The
authors reviewed, edited, and are fully responsible for the final content.
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Figure 10: Stability of model–brain alignment across months. We quantified how stable the
linear mapping between TDANN IT activations and neural responses remains over the four-month
interval between February (experiment 1) and June (experiment 2) 2025 using the responses to the
same passive viewing stimuli presented to monkey N. For each TDANN variant and seed, we fit a
ridge-regression either on passive viewing data from February 2025 (experiment 1) or from June
2025 (experiment 2) and evaluated its predictions - in both cases - on the June data using 10-fold
cross-validation with image splits shared across time points. The bars show the average variance ex-
plained (R2) across all TDANN models, seeds, and folds when the mapping was trained on February
data and tested on June data (left) versus when it was both trained and tested on June data (right). The
February-trained mapping achieves R2 ≈ 0.186, compared to R2 ≈ 0.182 for the June-trained map-
ping, i.e. about 102% of the variance explained by the within-session paradigm. Despite the decline
in neural reliability documented in Fig. 9, the TDANN–IT mapping remains highly stable across
months, suggesting that a single passive-viewing session can provide a model–brain alignment that
remains usable over extended periods and thus reduces the need for repeated model-mapping ses-
sions before each causal experiment.
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Figure 11: Visualizing model perceptual effects of simulated microstimulation - image #1.
Rows (from top to bottom): Y-coordinate in topographic model inferior temporal cortex (deepest
layer) corresponding to high vs. low face-selectivity. Visualizing Columns: ground truth image ran-
domly sampled from generative-adversarial-network (GAN) latent space, simulated current levels:
0, 100, 500, 1000µA.
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Figure 12: Visualizing model perceptual effects of simulated microstimulation - image #533.
Rows (from top to bottom): Y-coordinate in topographic model inferior temporal cortex (deepest
layer) corresponding to high vs. low face-selectivity. Visualizing Columns: ground truth image ran-
domly sampled from generative-adversarial-network (GAN) latent space, simulated current levels:
0, 100, 500, 1000µA.
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Figure 13: Visualizing model perceptual effects of simulated microstimulation - image #530.
Rows (from top to bottom): Y-coordinate in topographic model inferior temporal cortex (deepest
layer) corresponding to high vs. low face-selectivity. Visualizing Columns: ground truth image ran-
domly sampled from generative-adversarial-network (GAN) latent space, simulated current levels:
0, 100, 500, 1000µA.
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Figure 14: Visualizing model perceptual effects of simulated microstimulation - image #3680.
Rows (from top to bottom): Y-coordinate in topographic model inferior temporal cortex (deepest
layer) corresponding to high vs. low face-selectivity. Visualizing Columns: ground truth image ran-
domly sampled from generative-adversarial-network (GAN) latent space, simulated current levels:
0, 100, 500, 1000µA.

28



1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

Under review as a conference paper at ICLR 2026

current level (μA): 0 100 500 1000ground truth

4
2

simulated

3
4

2
8

s
ti
m

u
la

ti
o

n
 s

it
e

y
-c

o
o

rd
in

a
te

: 
2

0

900

ra
n

d
o

m
 s

e
e

d
 3

ra
n

d
o

m
 s

e
e

d
 2

ra
n

d
o

m
 s

e
e

d
 1

Figure 15: Visualizing model perceptual effects of simulated microstimulation - image #1161.
Rows (from top to bottom): Y-coordinate in topographic model inferior temporal cortex (deepest
layer) corresponding to high vs. low face-selectivity. Visualizing Columns: ground truth image ran-
domly sampled from generative-adversarial-network (GAN) latent space, simulated current levels:
0, 100, 500, 1000µA.
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Figure 16: Visualizing model perceptual effects of simulated microstimulation - image #1894.
Rows (from top to bottom): Y-coordinate in topographic model inferior temporal cortex (deepest
layer) corresponding to high vs. low face-selectivity (top to bottom).The last three rows are random
stimulations of model IT that follow the distribution of multiplicative factors of a standard stimu-
lation whose results are shown in the first 4 rows. Columns: ground truth image randomly sampled
from diffusion model latent space, simulated current levels: 0, 100, 500, 1000µA.
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Figure 17: Visualizing model perceptual effects of simulated microstimulation - image #2339.
Rows (from top to bottom): Y-coordinate in topographic model inferior temporal cortex (deepest
layer) corresponding to high vs. low face-selectivity (top to bottom).The last three rows are random
stimulations of model IT that follow the distribution of multiplicative factors of a standard stimu-
lation whose results are shown in the first 4 rows. Columns: ground truth image randomly sampled
from diffusion model latent space, simulated current levels: 0, 100, 500, 1000µA.
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