

000 001 002 003 004 005 MODEL-GUIDED MICROSTIMULATION STEERS PRI- 006 MATE VISUAL BEHAVIOR 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Brain stimulation is a powerful tool for understanding cortical function and holds promise for therapeutic interventions in neuropsychiatric disorders. Initial visual prosthetics apply electric microstimulation to early visual cortex which can evoke percepts of simple symbols such as letters. However, these approaches are fundamentally limited by hardware constraints and the low-level representational properties of this cortical region. In contrast, higher-level visual areas encode more complex object representations and therefore constitute a promising target for stimulation — but determining representational targets that reliably evoke object-level percepts constitutes a major challenge. We here introduce a computational framework to causally model and guide stimulation of high-level cortex, comprising three key components: (1) a perturbation module that translates microstimulation parameters into spatial changes to neural activity; (2) topographic models that capture the spatial organization of cortical neurons and thus enable prototyping of stimulation experiments; and (3) a mapping procedure that links model-optimized stimulation sites back to primate cortex. Applying this framework in two macaque monkeys performing a visual recognition task, model-predicted stimulation experiments produced significant in-vivo changes in perceptual choices. Per-site model predictions and monkey behavior were strongly correlated, underscoring the promise of model-guided stimulation. Image generation further revealed a qualitative similarity between in-silico stimulation of face-selective sites and a patient’s report of facephenes. This proof-of-principle establishes a foundation for model-guided microstimulation and points toward next-generation visual prosthetics capable of inducing more complex visual experiences.

1 INTRODUCTION

Vision is fundamental to human experience, enabling navigation, object recognition, and social interaction. For individuals with visual impairments, restoring even basic visual function could dramatically improve quality of life. Visual prosthetic devices represent a promising approach to bypass damaged tissue along the visual processing hierarchy (e.g. retina, optic nerve, lateral geniculate nucleus) and directly stimulate the visual cortex to shape or evoke visual percepts.

Current visual prosthetic approaches are in a prototypical development stage, but have already achieved remarkable successes: microstimulation of primate early visual areas can reliably evoke percepts of simple geometric shapes and even letters (Chen et al., 2020b; Beauchamp et al., 2020; Fernandez et al., 2021). These approaches to visual prosthetics rely on the spatial arrangement of neurons in early visual cortex, which mirrors the layout of the visual field: nearby points in the visual field and thus on the retina correspond to nearby points on cortex, a principle referred to as retinotopy (Hubel & Wiesel, 1962; 1968; Engel et al., 1997).

However, these approaches are fundamentally limited by the number of electrodes that can be implanted in early visual cortex, and by the representational properties of early visual areas: neurons in primary and secondary visual cortex (V1, V2) encode simple local features such as location or orientation of bars and simple combinations thereof (Hubel & Wiesel, 1962; 1965; 1968; Hegdé & Van Essen, 2000; Anzai et al., 2007). Stimulation of these regions elicits elementary percepts such as phosphenes or simple shapes, and is currently not capable of evoking complex object-level representations required to restore rich visual experience. For individuals with profound visual im-

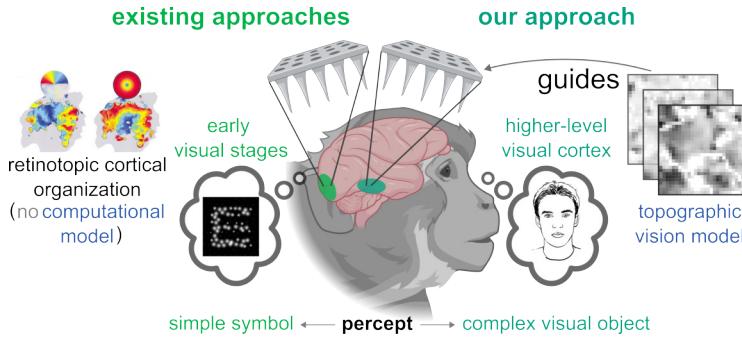


Figure 1: Overview of approach. Existing approaches to visual prosthetics microstimulate early cortical areas or even earlier parts of the visual processing hierarchy, do not use computational models for the selection of stimulation sites, and instead rely on retinotopic organization where nearby locations in the visual field are represented in nearby locations in the early visual system. These approaches have successfully been shown to elicit percepts of simple visual symbols such as letters, but are limited by the low-level representational properties of early visual regions. We propose a model-guided approach that targets higher-level visual cortex via computational simulations with the goal of eliciting percepts of complex visual objects.

pairments, the ability to perceive and recognize objects such as faces, tools, or scenes would open the possibility of richer and possibly more useful visual perception. Achieving this level of perceptual complexity might therefore require targeting cortical regions that explicitly encode complex visual objects — but effective stimulation of such high-level and complex representations remains an unsolved challenge.

Here, we propose to use computational models to guide microstimulation directly targeting higher-level visual cortex. Higher visual regions are known to underlie the representations of complex visual objects such as faces and scenes. However, the influence of retinotopy on object representation decreases strongly from early to higher-level visual regions (Issa & DiCarlo, 2012; Silson et al., 2015; Yue et al., 2020; Poltoratski et al., 2021). Thus, in higher-level visual regions, retinotopy is much less useful as a guiding principle for causal intervention techniques. Rather, the organization of higher-level regions is shaped by more complex visual and semantic features such as animacy vs. inanimacy and high-level category selectivity (Kriegeskorte et al., 2008; Kanwisher, 2017). These more abstract principles alone do not give clear guidance with respect to eliciting more complex visual percepts.

To address this challenge, we develop a model-guided approach to microstimulation in higher-visual cortex (Fig. 1). We present early successes of applying model predictions experimentally to two macaque monkeys. Specifically, we show that optimizing the combination of visual stimuli and stimulation parameters via simulations in brain-mapped topographic networks allows for predicting monkey visual behavioral responses in a complex object recognition task. Model-predicted changes to behavior are strongly correlated with actual experimentally observed changes in monkey behavior, although the model tends to overestimate the behavioral effect. Model-predicted experiments also lead to a substantial shift in monkey behavior along a target direction. To qualitatively interpret the effect of stimulation in-silico, we employ image generation on the simulated neural activity patterns during microstimulation and observe the emergence and enlargement of faces and face-features when stimulating in face-selective regions.

2 BACKGROUND & RELATED WORK

Visual Cortex Stimulation. A common implant for intracortical recording and stimulation in primates is the *Utah array*: a 96- or 64-channel microelectrode grid that allows simultaneous multi-site recordings and the application of electrical pulse trains to focal patches of cortex. In early visual cortex, site selection and interpretation of stimulation are guided by retinotopy - a roughly point-to-point mapping from visual field locations to cortical locations, so that stimulating an electrode

108 tends to evoke a phosphene at the receptive-field position represented beneath that electrode (Hubel
 109 & Wiesel, 1962; 1968).

110
 111 Using retinotopy as orientation principle, existing prototypes of visual prostheses target sets of elec-
 112 trodes whose receptive fields tile desired visual-field positions and then induce static or dynamic
 113 stimulation patterns to elicit percepts of simple shapes or letters (Chen et al., 2020b; Beauchamp
 114 et al., 2020; Fernandez et al., 2021). Behavioral outcomes are typically quantified with forced-
 115 choice tasks that probe detection, localization, or identification, yielding psychometric functions
 116 over current amplitude, pulse rate, or stimulus strength and associated summary statistics such as
 117 thresholds or changes in area under the curve. While effective for low-level percepts, this retinotopy-
 118 based strategy is inherently constrained by electrode count and by the representational granularity of
 119 early areas, which primarily encode local features. As such, it does not naturally extend to evoking
 120 object-level percepts which are more closely associated with higher-level visual cortex.

121 **Models of the Brain.** Over the past decade, artificial neural networks (ANNs) have emerged as
 122 powerful system-level models of the visual brain that explain substantial variance in neural and
 123 behavioral responses (Yamins et al., 2014; Khaligh-Razavi & Kriegeskorte, 2014; Schrimpf et al.,
 124 2018; Mehrer et al., 2021; Gokce & Schrimpf, 2025). Recently, these models have been endowed
 125 with explicit cortical topography: *topographic* ANNs place units on a 2D sheet and are trained with
 126 spatial regularizers, yielding smoothly organized maps across layers (Lee et al., 2020; Keller et al.,
 127 2021; Lu et al., 2023; Margalit et al., 2024; Deb et al., 2025; Rathi et al., 2025). In deeper layers, they
 128 exhibit category-selective patches (Margalit et al., 2024) reminiscent of the functional organization
 129 of high-level visual cortex (Kanwisher, 2017; Tsao et al., 2003; 2006; Freiwald et al., 2009).

130 Because their representations are spatially embedded, topographic models can simulate the focal
 131 neural effects of currents applied via causal intervention techniques: localized perturbations can be
 132 applied to model tissue and the model can predict how the induced neural activation changes propa-
 133 gate across the simulated cortical sheet to predict downstream behavioral consequences. Prior work
 134 has evaluated such perturbation modules *offline*, showing that topographic models can anticipate the
 135 behavioral effects of different causal intervention techniques including microstimulation (Schrimpf
 136 et al., 2024). Building on this foundation, we move from offline evaluation to prospective *model-in-*
 137 *the-loop* use: we optimize stimulation sites and stimuli *in-silico* and, to our knowledge for the first
 138 time, test these model predictions *in-vivo* to run visual cortex stimulation experiments.

139 **Visualization of visual representations.** Recent work links deep image synthesis to the neural code
 140 in high-level vision. Bashivan et al. (2019) used a discriminative deep network (AlexNet) in a gener-
 141 ative way to synthesize images that maximally drive or selectively control V4 population responses,
 142 and Ponce et al. (2019) used closed-loop optimization in the latent space of deep generators (DeeP-
 143 Sim, BigGAN) to evolve images that strongly excite IT neurons. Building on GANs, Dado et al.
 144 (2024) and Papale et al. (2024) learned linear mappings between neural activity and GAN latents to
 145 reconstruct and optimize category-selective stimuli, while Shahbazi et al. (2024) introduced “per-
 146 ceptograms”: GAN-generated images that animals behaviorally confuse with the state of being op-
 147 togenetically stimulated in IT. We follow a similar strategy, but visualize *model* IT representations:
 148 simulated microstimulation perturbs topographic model IT activity, which we then map into GAN
 149 and diffusion latent spaces to illustrate the predicted perceptual consequences of stimulation. Our
 150 approach may thus provide intuitions about model IT representations.

151 3 METHODS

152
 153 We combine electrophysiological recordings, model-guided microstimulation, and primate behav-
 154 ior testing in a 3-stage process that closes the loop between computational models and primate
 155 experiments (**Fig. 2**). The experimental setup involves 2 macaque monkeys performing a two-
 156 alternative forced choice (2AFC) visual recognition task, with Utah electrode arrays implanted in
 157 their inferior temporal cortex (for details, see **Appendix Sec. A.2.1**). The goal of the stimulation is
 158 to bias monkey behavior towards one of the two choice targets.

159 To model this experiment, we first align topographic models to subject-specific passive-viewing
 160 electrophysiological recordings. Second, we prototype microstimulation experiments in the model
 161 to identify the most promising experimental setting. And third, we experimentally test whether

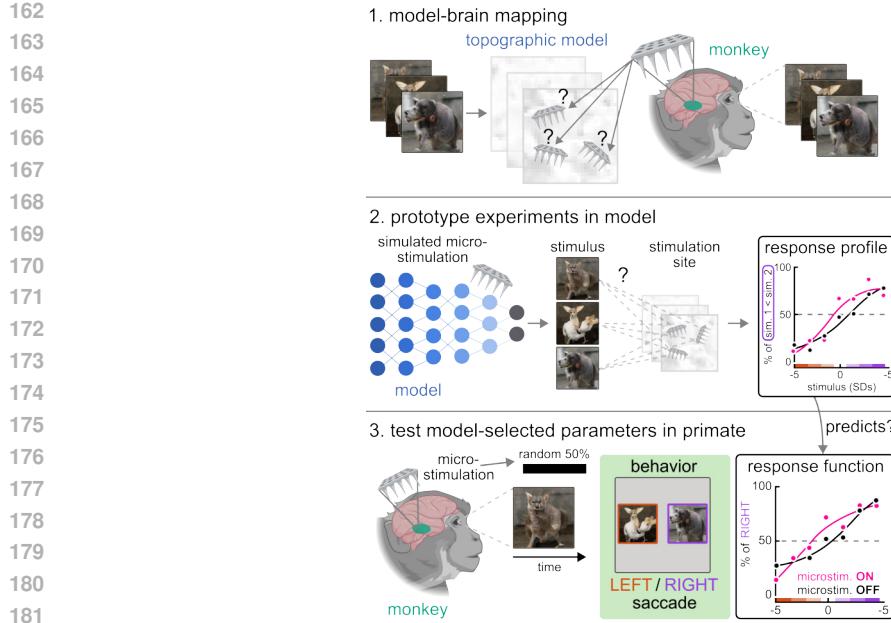


Figure 2: Model-guided microstimulation. **1. Model–brain mapping.** To align model tissue and monkey brain recordings, we use passive-viewing responses of 4,000 images recorded 2–4 days before each experimental session. We then simulate various positionings of an electrode grid on the topographic tissue of model candidates, selecting the model grid position and orientation that maximizes correlations between model and monkey recording sites. This yields a fixed one-to-one mapping between sites in the model and brain-implanted electrode grid. **2. Prototype experiments in model.** For each candidate site we generate sequences of seven images varying smoothly along GAN latent space, rank them by a selectivity score (slope-to-noise), and test the effect of microstimulation on model-predicted 2AFC behavioral choices. Deepest-layer representations are converted to two-alternatives-forced-choice responses via similarity comparisons. **3. Test model-selected parameters in primate.** We select the top site–sequence predictions, mapping model neural sites back to the corresponding IT electrodes, and deploy the monkey experiment in a 2AFC recognition task. Biphasic trains of electric stimulation are delivered on designated trials, interleaved with sham. Full details in [Appendix Sec. A.2.1](#).

the model-optimized combination of visual stimuli and stimulation sites yields predicted behavioral shifts when testing them in-vivo.

3.1 MODEL-BRAIN MAPPING

Topographic models. For modeling the effects of microstimulation and behavior we first train topographic deep artificial neural networks (TDANNs) based on the ResNet18 architecture (He et al., 2015) using an approach from Margalit et al. (2024) to incorporate spatial organization principles observed in biological vision. Before training the units of a given layer are assigned to a unique location on a 2D-plane that serves as the model cortical sheet. This spatial arrangement of model units allows us during training to compute a spatial loss (details below) and during inference to represent the neural changes induced by simulated microstimulation (Schrimpf et al., 2024).

We optimized TDANNs using a combined self-supervision (L_{task} ; SimCLR, Chen et al. 2020a) and spatial loss (SL)

$$\text{TDANN Loss} = L_{\text{task}} + \sum_{k \in \text{layers}} \alpha_k \text{SL}_k, \quad \alpha_k = 0.25.$$

For each layer k and batch, we sample local cortical neighborhoods on the layer’s 2D sheet and, within each sampled neighborhood, we sample unit pairs (i, j) . For each selected pair we compute 1) a response similarity r_{ij} as the Pearson correlation between the units’ activation vectors across

216 stimuli, and 2) an inverse-distance weight $D_{ij} = 1/(d_{ij} + 1)$, where d_{ij} is the Euclidean distance
 217 between their fixed cortical coordinates. By repeating this procedure for all sampled pairs, we obtain
 218 vectors r and D . Following Margalit et al. (2024), we instantiate the spatial term as the relative
 219 spatial loss (SL_k):

$$SL_k = 1 - \text{Corr}(r, D),$$

222 which encourages nearby units to have more correlated responses, yielding smoothly varying maps
 223 across layers. For example, model early visual regions show orientation preference maps forming
 224 'pinwheels' - where the preferred orientation of neurons rotates smoothly along all possible
 225 orientations from 0 to 180 degrees – that are known to exist in early visual areas across species
 226 (Kaschube et al., 2010). Additionally, model higher-level visual regions in the deepest layer show
 227 category-selective regions similar to higher-level visual cortex in humans and non-human primates
 228 (Kanwisher, 2017; Tsao et al., 2003; 2006; Freiwald et al., 2009).

229 We trained candidate topographic models on combinations of image datasets including ecoset
 230 (Mehrer et al., 2021), ImageNet (Russakovsky et al., 2015), Labeled Faces in the Wild (LFW, Huang
 231 et al. 2008), and VGGFaces2 (Cao et al. 2018; for details, see **Appendix Table 1**). For all model
 232 training, we used the same set of hyperparameters as Margalit et al. (2024): 200 epochs, initial
 233 learning rate: 0.6 (cosine decay), momentum: 0.9, batch size: 512. Weights are frozen after training
 234 such that the models' neural activity only depends on visual and stimulation input.

235 **Topographic mapping procedure.** Using passive-viewing responses of 4,000 images randomly
 236 sampled from a GAN latent space, recorded 2–4 days before each stimulation session, from Utah
 237 arrays in monkey inferior temporal cortex, we map neural sites in the model to neural sites in the
 238 brain implants. To do so, we first computed a linear predictivity score from the TDANN's deepest
 239 layer to each Utah array in IT. Concretely, for each model instance and each array, we extracted
 240 model activations to the 4,000 GAN images and fit a 10-fold cross-validated ridge regression. We
 241 quantified predictivity using the explained variance (R^2) across folds and retained those model–array
 242 pairs with the highest R^2 averaged across folds for subsequent topographic alignment. Importantly,
 243 linear predictivity (R^2) showed a large range across combinations of models and monkey
 244 arrays (monkey 1: [-0.06, 0.27], monkey 2: [0.05, 0.19]), indicating that the model and monkey
 245 array selection through this mapping procedure is indeed important. In a control analysis with an
 246 otherwise-matched non-topographic ResNet-18 trained without spatial loss ($\alpha_k = 0$), we observed
 247 comparable IT predictivity in monkey 1 (February session: $R^2 = 0.27$, June session: $R^2 = 0.19$ on
 248 the same IT array), indicating that introducing topography does not substantially change the linear
 249 model–brain alignment in this dataset.

250 We then aligned simulated arrays and arrays used in-vivo by comparing their responses to a subset
 251 of the same 4,000 reference images. Specifically, we presented the images to both the monkey and
 252 the model, and for each candidate placement of a simulated Utah array on the model's cortical sheet
 253 we correlated responses site by site with the monkey array. We averaged these correlations across
 254 all 64 electrodes and selected the placement and orientation that yielded the highest overall match,
 255 thereby fixing a one-to-one correspondence between model and monkey electrodes.

256 3.2 PROTOTYPING EXPERIMENTS IN-SILICO

257 Our goal was to select, for each monkey, a specific electrode in inferior temporal cortex and a
 258 specific image sequence that together produce the strongest stimulation-induced behavioral outcome
 259 in a complex visual recognition task. To this end, we optimized experimental parameters in model
 260 space before mapping them back to the animal (**Fig. 2**). For more detailed implementation details,
 261 see **Appendix Sec. A.1**.

262 **Perturbation modules.** Recent evidence shows that topographic deep artificial neural networks
 263 can predict the behavioral outcomes of causal intervention techniques such as microstimulation
 264 (Schrimpf et al., 2024). We adapt this approach in stimulation modules that simulate the effects
 265 of microstimulation on nearby neural tissue. These modules operate by applying localized activity
 266 changes to model units, simulating the magnitude and spatial spread of electrical microstimulation
 267 as observed in experimental studies. We parameterized the perturbation modules based on em-
 268 pirical data from prior microstimulation experiments in primate inferior temporal cortex (Stoney
 269 et al., 1968; Histed et al., 2009; Majaj et al., 2015; Kumaravelu et al., 2022). The magnitude of in-

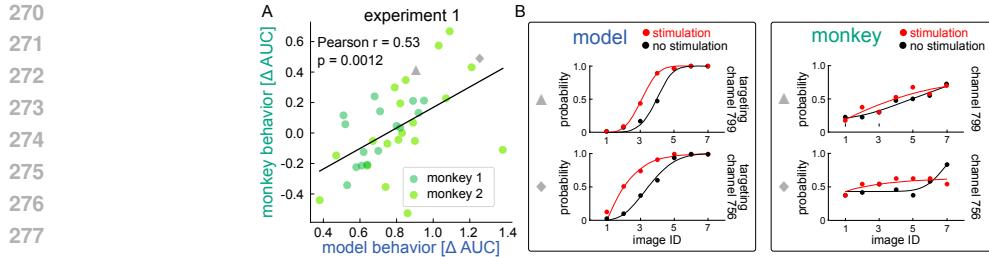


Figure 3: Model predictions correlate with stimulation-evoked behavioral shifts. **A)** Model-predicted behavioral shifts (ΔAUC) correlate with stimulation-evoked shifts in the monkeys' behavioral responses (ΔAUC), both when combining across the two subjects (Pearson $r = 0.53$, $p = 0.0012$). **B)** Example psychometric functions from two stimulation sites (gray symbols in A).

duced activity changes followed established current-distance relationships, with stimulation effects decreasing as a function of distance from the stimulation site.

Formally, following Schrimpf et al. (2024), the perturbation of a unit at cortical distance d from the stimulation electrode is defined as

$$\Delta r(d) = \min(r_{\text{base}} + \gamma \cdot f_{\text{pulse}}, r_{\text{max}}) \cdot \exp\left(-\frac{d}{\lambda(I)}\right), \quad (1)$$

where r_{base} denotes the baseline firing rate (set to 30 Hz, consistent with primate IT recordings), f_{pulse} is the stimulation pulse frequency (Hz), and γ a gain factor linking pulse frequency to firing rate increase under a linear assumption. To prevent unrealistically high activity (Ponce et al., 2019), firing rates are clipped at $r_{\text{max}} = 200$ Hz. The distance-dependent decay is captured by d , the cortical distance (mm) from the electrode, and $\lambda(I)$, a spatial decay constant (mm) that increases with stimulation current I (μA), reflecting the broader spread of activity at higher currents. Thus, stimulation increases activity proportionally to the pulse rate at the electrode, saturates at a maximum firing rate, and falls off exponentially with cortical distance, consistent with current-distance relations from empirical studies.

Stimulus generation. We adopted the stimulus generation method of Papale et al. (2024) based on a StyleGAN-XL (Sauer et al., 2022), which links neural activity patterns in inferotemporal (IT) cortex to a generative adversarial network (GAN) latent space. Specifically, a linear mapping between multi-unit activity (MUA) from inferior temporal cortex recordings and the GAN's latent vectors (512 dimensions) was estimated from 4,000 reference images. This mapping enabled reconstruction of seen stimuli and, critically, of systematic perturbation of neural activity at individual cortical sites. By linearly adding or subtracting up to five standard deviations of the response at a targeted site to the 4,000 reference images, while keeping activity at other sites fixed, we generated naturalistic seven-image sequences in GAN image space. Each sequence thus corresponded to a parametric modulation of the targeted site's response, reflecting its neural tuning dimension. These GAN-derived image sequences then served as candidate stimuli for both in-silico and in-vivo microstimulation experiments, where they allowed us to test whether stimulation could bias neural activity and perceptual choices along the dimension to which the targeted site was tuned.

Procedure. For each candidate site, we 1) generate sequences of seven images to systematically modulate a site's activity; 2) rank sequences by a simple selectivity score (slope-to-noise), favoring monotonic, site-specific modulation, and 3) run in-silico perturbation experiments via the microstimulation module. To predict behavioral outcomes, we convert penultimate layer representations to 2AFC responses via similarity comparisons between the sample image and the two alternatives of a given trial (for details of the experimental design in model and monkey, see **Appendix Fig. 7**). To approximate trial variability in otherwise deterministic models, we aggregate across 30 top-ranked sequences per site to obtain smooth psychometric curves and summarize stimulation strength by ΔAUC (perturbed – unperturbed trials).

324 3.3 TESTING MODEL PREDICTIONS IN-VIVO
325

326 The final step is to test model predictions experimentally. To do so, we select the top site–sequence
327 pairs predicted by the model to evoke the highest behavioral change and map the neural sites back
328 to monkey electrodes via the model–brain mapping established in step 1. Following Papale et al.
329 (2024) monkeys performed a two-alternatives-forced-choice visual recognition task. During each
330 trial we first present a target stimulus (one of the possible seven images of a sequence) followed by
331 the simultaneous presentation of two alternative images (always two images at the two ends of the
332 given sequence). To indicate which of the two alternative images the animal perceived as more simi-
333 lar to the target image, they are trained to make a saccade to where the selected alternative image
334 was presented. We applied biphasic microstimulation trains using chronically implanted Utah arrays
(for details, see **Appendix Fig. 7**).

335 Stimulation and sham trials were randomly interleaved (50% / 50%) and choices were read out from
336 the alternatives used in model prototyping (sequence extremes). We quantified stimulation-evoked
337 shifts in choice probability between unperturbed and perturbed trials and report effects as Δ AUC.
338 Due to degrading signal quality (Appendix Fig. 9) the implants are now explanted from both ani-
339 mals, thus no additional experimental runs can be performed using our setup.

341 3.4 VISUALIZATIONS
342

343 We visualize the perceptual consequences of model-guided microstimulation using two comple-
344 mentary generative pipelines (see Appendix A.3). First, we adapt the Brain2GAN framework (Dado
345 et al., 2024) to our setting by replacing neural recordings with the deepest-layer activations of a
346 topographic vision model, and by pairing these activations with images generated by a pretrained
347 StyleGAN-XL (Sauer et al., 2022) in its feature-disentangled w-space. We learn a ridge regres-
348 sion on topographic activations to w-latents using only unperturbed activity, and then synthesize
349 images from model states with and without simulated microstimulation. Because the GAN and
350 ridge regression are fixed, differences between unperturbed and perturbed reconstructions directly
351 reflect the changes in the model’s internal representation induced by stimulation at specific cortical
352 locations and simulated current levels.

353 Second, we use a diffusion-based pipeline built on Stable Diffusion v1.5 with IP-Adapter (Rombach
354 et al., 2022; Ye et al., 2023), which conditions the denoising process on both a text prompt and a
355 CLIP (Radford et al., 2021) vision embedding. We generate a train/test image set from prompts
356 based on the ecoset category structure (Mehrer et al., 2021), and fit a ridge regression from deepest-
357 layer topographic features to CLIP vision embeddings. At test time, we hold the text prompt, noise
358 latent, and diffusion hyperparameters fixed and vary only the simulated microstimulation in the
359 model, decoding the resulting perturbed activations into CLIP space and re-running the diffusion
360 process. In both the GAN and diffusion pipelines, we additionally perform a shuffled-perturbation
361 control: the targeted perturbation at a maximally face-selective site is randomly permuted across
362 feature dimensions before decoding. This control preserves the overall perturbation magnitude but
363 destroys its topographic structure, allowing us to test whether the emergence or amplification of
364 face-like content in the generated images specifically depends on spatially structured stimulation of
365 face-selective regions rather than on non-specific global modulation.

366 4 RESULTS
367

368 We evaluated two complementary measures of stimulation effectiveness. First, we asked whether the
369 magnitude of stimulation-evoked behavioral shifts in the monkey was predicted by the magnitude of
370 shifts in our model (model–monkey Pearson-r correlation). Second, we asked whether stimulation in
371 the monkey induced a consistent behavioral shift away from baseline (monkey Δ AUC significantly
372 greater than zero).

373 We performed two experiments with the same experimental setup but that differ slightly in the way
374 we pre-selected the monkey stimulation sites (**Appendix Sec. A.1**). Electrode implants were rela-
375 tively stable for monkey 1 where we could perform both experiments, but the absolute number of
376 tested sites still decreased from experiment 1 (13) to experiment 2 (9 sites). Decreasing neural signal
377 quality (Appendix Fig. 9) only allowed us to perform one experiment in monkey 2. The two experi-
378 ments only differ in the spatial constraint applied to select candidate electrodes of a given Utah-array.

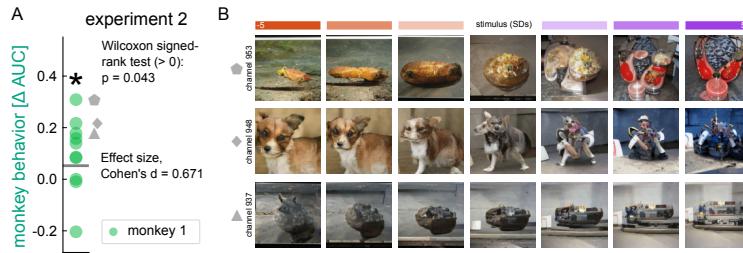


Figure 4: Model-guided stimulation biases monkey behavior. **A)** In experiment 2, model-guided stimulation induced a significant behavioral shift in monkey 1 (Wilcoxon signed rank test: $p = 0.043$; Cohen's $d = 0.67$). Due to declining signal quality, experiment 2 could not be conducted with monkey 2. **B)** Three example GAN-generated image sequences used for stimulation (images 1, 4, and 7 shown from each seven-image sequence; corresponding sites highlighted in A).

Specifically, in experiment 1 we used a Manhattan distance between candidate stimulation sites of 1.6mm, whereas we reduced this limit to 1.2mm in experiment 2 to allow for a larger number of candidate stimulation sites. In other words, the spatial constraint was loosened in experiment 2 to allow for a higher percentage of stim sites to be tested.

4.1 PREDICTING STIMULATION-EVOKED BEHAVIORAL SHIFTS (EXPERIMENT 1)

We found that model-predicted behavioral shifts were positively associated with stimulation-evoked shifts measured in both monkeys in experiment 1 (Fig. 3). Specifically, the model predictions (in ΔAUC , x-axis) versus monkey behavior (in ΔAUC , y-axis) revealed robust correlations in both animals (monkey 1: Pearson $r = 0.58$, $p = 0.024$, $r^2 = 0.34$, monkey 2: Pearson $r = 0.53$, $p = 0.019$, $r^2 = 0.28$). Bootstrap resampling yielded confidence intervals confirming that the estimated effect is reliably above zero in both animals while their range reflects the small sample size (monkey 1: 95% CI: $r \in [0.20, 0.89]$, $R^2 \in [0.04, 0.79]$; monkey 2: 95% CI: $r \in [0.16, 0.85]$, $R^2 \in [0.03, 0.73]$). To quantify how much of these effects could arise by chance, we shuffled behavioral labels and recomputed R^2 1,000 times. This yielded null distribution with medians close to 0 (monkey 1: median $R^2 = 0.034$; 95% CI $[6.8 \times 10^{-5}, 0.32]$; monkey 2: median $R^2 = 0.029$; 95% CI $[1.3 \times 10^{-4}, 0.24]$). For both animals, the observed R^2 exceeded nearly all null samples (monkey 1: permutation $p = 0.019$; monkey 2: $p = 0.017$). This indicates that combinations of stimulation site and GAN image sequence predicted by our model to yield stronger behavioral effects, tended to have a stronger behavioral effect in the monkey. However, the monkey behavioral responses were not significantly greater than zero (Wilcoxon signed rank test, $p > 0.05$) in this first experiment.

4.2 INDUCING BEHAVIORAL BIAS ALONG A TARGETED DIRECTION (EXPERIMENT 2)

Due to degrading signal quality of the implanted neural recording devices in monkey 2 (Appendix Fig. 9), we were only able to perform experiment 2 with more candidate stimulation sites in monkey 1. In this experiment, monkey behavioral responses were significantly shifted above a null baseline (Wilcoxon signed-rank test; $p = 0.043$, effect size Cohen's $d = 0.671$), indicating that parameters predicted by the model indeed yielded a reliable behavioral effect in-vivo (Fig. 4). However, the larger number of candidate stimulation sites available in this experimental setting no longer yielded evidence for per-site and per-image-sequence predictive behavioral power of our model ($p > 0.05$). We believe this reduced effect is mainly due to degraded signal quality (Appendix Fig. 9).

For both experiment 1 and 2 we cannot fully exclude contributions from global state changes, but several aspects of our design make explanations mainly based on attention/arousal effects unlikely. Stimulation and non-stimulation trials were randomly interleaved at 50% / 50%, minimizing expectation-driven state changes. What is more, we are not aware of evidence that inferior temporal microstimulation induces non-specific attentional or arousal effects that would be able to steer behavior in a targeted way.

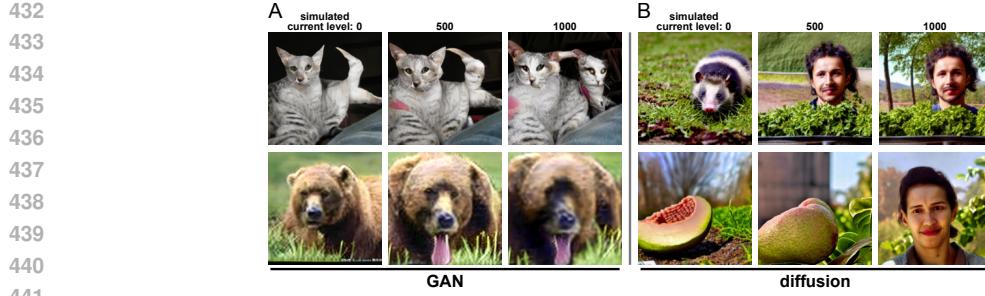


Figure 5: Visualizing perceptual effects of microstimulation. We visualize the effects of stimulation using a GAN-based approach (A), and a diffusion-based approach (B) and show two examples for each. Simulated current amplitude increases from left ($0 \mu\text{A}$) to right ($1000 \mu\text{A}$) in both panels. A) In the first row, stimulation transforms a cat's tail into an additional face, while in the second row it enlarges the face of a bear. B) The first row shows how stimulation transforms a bug-like creature into a face, while in the second row a fruit is transformed into a human face.

4.3 VISUALIZATION OF IN-SILICO PERCEPTUAL EFFECTS OF PERTURBATION

Beyond shifts in behavioral choices, a key question is how neural stimulation alters the perceptual content of visual experience. For instance, Schalk et al. (2017) examined a 26-year-old patient with intractable epilepsy who was implanted with 188 subdural electrodes also covering higher-level visual cortex to localize seizure foci. During stimulation, electrodes over a face-selective cortical region evoked illusory faces (“facephenes”) that appeared superimposed on any object the patient was viewing, whereas stimulation of color-selective sites produced illusory “rainbows”. These observations provide causal evidence, based on a subjective report, that stimulation of category-selective cortex can induce highly specific perceptual changes.

Inspired by this approach, we aimed to visualize the perceptual consequences of stimulation in our model-based framework. Papale et al. (2024) recently introduced a method for reconstructing perceived images by projecting neural activity patterns into the latent space of a generative adversarial network (GAN). Here we adapted this technique to examine the effects of perturbations in face-selective regions of our topographic model.

Mapping model states to image space. We trained a linear mapping from the deepest layer of the topographic model (model inferior temporal cortex, 25,088 units) into the latent space of the GAN used for stimulus generation (512 dimensions). This mapping was calibrated on 30,000 GAN-generated images, enabling us to project topographic model activity states into image space (for details, see **Appendix Fig. 8**). Reconstructions of unperturbed responses (simulated stimulation current = $0 \mu\text{A}$) closely matched the original stimuli (ground truth), confirming that the mapping preserved key visual content (see two leftmost columns ‘ground truth’ vs. ‘simulated stimulation current = $0 \mu\text{A}$ ’ in **Appendix Figs. 11,12,14**).

Qualitative stimulation effects. We then perturbed model sites with high face-selectivity as defined by a functional face localizer from neuroscience (Stigliani et al., 2015) while presenting objects in an independent set of 5,000 images not used to establish the linear mapping between the topographic model and the GAN. In several cases, the reconstructions revealed face-like features superimposed on the original object, resembling the “facephenes” reported in human stimulation studies (Schalk et al., 2017). For example, stimulating a site at the center of a face-selective region in model inferior temporal cortex with a simulated current level of $1000 \mu\text{A}$ added an illusory second face to an image of a cat or increased the area of an image occupied by a bear’s face (**Fig. 5**). Similar effects were observed for other objects, whereas stimulation at control sites with low face-selectivity did not reliably introduce such face-like structure. To provide an overview, we present exhaustive combinations of stimulation site coordinates corresponding to varying levels of face-selectivity of the underlying simulated cortical sheet and simulated current levels in the appendix (**Appendix Figs. 11,12,??**).

Interpretation. These visualizations provide an interpretable window into the otherwise inaccessible perceptual consequences of microstimulation. They suggest that activating face-selective regions

486 can bias representations of unrelated objects toward the preferred category, echoing the patient re-
 487 ports of "facephenes".
 488

489

490 5 DISCUSSION

491

492 We introduce a model-guided framework that links topographic deep networks, in-silico perturba-
 493 tions, and an explicit model-to-monkey electrode mapping to steer primate visual behavior via mi-
 494 crostimulation in inferior temporal (IT) cortex. Across two animals, model-derived combinations of
 495 stimulation site and image sequence yield positive correlations between model and monkey behavior
 496 in experiment 1, and lead to a stimulation-driven in-vivo behavioral shift in experiment 2. Together,
 497 these findings establish a proof-of-principle: topographic models with perturbation modules can
 498 guide causal interventions that bias in-vivo behavior in response to complex visual objects.
 499

500 **Limitations.** The main limitation of this study is the degrading signal that prevents more thorough
 501 testing to support our claim that model-guidance can steer primate behavior. With a stable signal
 502 quality we could have performed additional experiments in both animals to test whether further im-
 503 provements on our model-guided microstimulation framework result in larger effect sizes than those
 504 we describe. Without additional experiments our results are split between two experimental ses-
 505 sions, where either the monkey behavioral effect is not significantly different from zero (experiment
 506 1), or where there is no clear correlation between model and monkey behavior (experiment 2).

507 **Next steps.** Additional experiments would allow for further baselines, e.g. testing whether a random
 508 selection of both stimulation site and image sequence does indeed not result in the same behavioral
 509 changes we observed. Future experiments could further investigate alternative topographic models
 510 (Lu et al., 2023; Deb et al., 2025), including the relevance of topography in the first place, how to best
 511 perform model-brain mapping, and details of the perturbation module (additive vs. multiplicative
 512 modulation, optimal current level, single- vs. multi-site stimulation).

513 **Toward clinical impact.** By shifting the target from early retinotopic codes to higher-level object
 514 codes and using models to plan interventions, our framework outlines a computational backbone for
 515 next-generation visual prosthetics aimed at restoring percepts of complex visual objects. In other
 516 words, we believe it is possible that IT representations are not only necessary, but sufficient to rep-
 517 represent complex visual objects such as faces and scenes. If so, the effect of inducing activity patterns
 518 in IT would not be limited to changes at a categorical level, but could capture a more fine-grain level
 519 allowing for e.g. the modulation of single face-features by stimulating face-feature-selective regions
 520 (Issa & DiCarlo, 2012). Whether this holds true or whether simultaneous stimulation of earlier vi-
 521 sual areas is required to elicit percepts of complex visual objects on a detailed level, is in our eyes
 522 an empirical question. More broadly, model-guided stimulation may be applicable beyond vision –
 523 for example, selecting input stimuli and stimulation patterns for a range of causal intervention tech-
 524 niques such as microstimulation, but also transcranial magnetic stimulation, or focused ultrasound
 525 to diagnose and treat other neuropsychiatric disorders.

526

527 6 CONCLUSION

528

529 By aligning topographic models to higher-level visual cortex, optimizing stimulation sites and stim-
 530 ulation *in-silico*, and testing the model-predicted experimental parameters *in-vivo*, we establish a practi-
 531 cal model-in-the-loop framework for guiding causal interventions in vision. Model predictions were
 532 associated with stimulation-evoked shifts in behavioral responses, and with a bias along a targeted
 533 perceptual dimension. Image reconstructions from perturbed model activity further illustrated per-
 534 ceptual consequences, with stimulation at face-selective sites biasing representations toward faces.
 535 Together, these results define a pipeline in which topographic models with perturbation modules
 536 inform experimental design and predict behavioral outcomes. Our approach might extend to more
 537 advanced protocols such as multi-site stimulation, and to other causal intervention techniques. By
 538 targeting higher-level visual regions rather than early visual cortex, our framework offers a compu-
 539 tational foundation for prosthetic strategies aimed at eliciting richer, object-level visual experiences
 and supports closed-loop optimization with translational promise.

540 REFERENCES
541

542 Akiyuki Anzai, Xinmiao Peng, and David C Van Essen. Neurons in monkey visual area V2 en-
543 code combinations of orientations. *Nature Neuroscience*, 10(10):1313–1321, October 2007.
544 ISSN 1097-6256, 1546-1726. doi: 10.1038/nn1975. URL <https://www.nature.com/articles/nn1975>.
545

546 Pouya Bashivan, Kohitij Kar, and James J. DiCarlo. Neural population control via deep image
547 synthesis. *Science*, 364(6439):eaav9436, May 2019. ISSN 0036-8075, 1095-9203. doi: 10.
548 1126/science.aav9436. URL <https://www.science.org/doi/10.1126/science.aav9436>. Number: 6439.
549

550 Michael S. Beauchamp, Denise Oswalt, Ping Sun, Brett L. Foster, John F. Magnotti, Soroush
551 Niketeghad, Nader Pouratian, William H. Bosking, and Daniel Yoshor. Dynamic Stimula-
552 tion of Visual Cortex Produces Form Vision in Sighted and Blind Humans. *Cell*, 181(4):
553 774–783.e5, May 2020. ISSN 00928674. doi: 10.1016/j.cell.2020.04.033. URL <https://linkinghub.elsevier.com/retrieve/pii/S0092867420304967>.
554

555 Qiong Cao, Li Shen, Weidi Xie, Omkar M. Parkhi, and Andrew Zisserman. VGGFace2: A dataset
556 for recognising faces across pose and age, May 2018. URL <http://arxiv.org/abs/1710.08092>. arXiv:1710.08092 [cs].
557

558 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A Simple Framework
559 for Contrastive Learning of Visual Representations, June 2020a. URL <http://arxiv.org/abs/2002.05709>. arXiv:2002.05709 [cs, stat].
560

561 Xing Chen, Feng Wang, Eduardo Fernandez, and Pieter R. Roelfsema. Shape perception via a
562 high-channel-count neuroprosthesis in monkey visual cortex. *Science*, 370(6521):1191–1196,
563 December 2020b. ISSN 0036-8075, 1095-9203. doi: 10.1126/science.abd7435. URL <https://www.science.org/doi/10.1126/science.abd7435>. Number: 6521.
564

565 Thirza Dado, Paolo Papale, Antonio Lozano, Lynn Le, Feng Wang, Marcel van Gerven, Pieter
566 Roelfsema, Yağmur Güçlütürk, and Umut Güçlü. Brain2gan: Feature-disentangled neural en-
567 coding and decoding of visual perception in the primate brain. *PLOS Computational Biology*,
568 20(5):e1012058, May 2024. ISSN 1553-7358. doi: 10.1371/journal.pcbi.1012058. URL
569 <http://dx.doi.org/10.1371/journal.pcbi.1012058>.
570

571 Mayukh Deb, Mainak Deb, and N. Apurva Ratan Murty. TopoNets: High Performing Vision and
572 Language Models with Brain-Like Topography, January 2025. URL <http://arxiv.org/abs/2501.16396> [cs].
573

574 Stephen a. Engel, Gary H. Glover, and Brian a. Wandell. Retinotopic organization in human vi-
575 sual cortex and the spatial precision of functional MRI. *Cerebral Cortex*, 7(2):181–192, 1997.
576 ISSN 10473211. doi: 10.1093/cercor/7.2.181. Number: 2 ISBN: 1047-3211 (Print) 1047-3211
577 (Linking).
578

579 Eduardo Fernandez, Arantxa Alfaro, Cristina Soto-Sánchez, Pablo Gonzalez-Lopez, Antonio M.
580 Lozano, Sebastian Peña, Maria Dolores Grima, Alfonso Rodil, Bernardeta Gómez, Xing Chen,
581 Pieter R. Roelfsema, John D. Rolston, Tyler S. Davis, and Richard A. Normann. Visual percepts
582 evoked with an intracortical 96-channel microelectrode array inserted in human occipital cortex.
583 *Journal of Clinical Investigation*, 131(23):e151331, December 2021. ISSN 1558-8238. doi:
584 10.1172/JCI151331. URL <https://www.jci.org/articles/view/151331>.
585

586 Winrich a Freiwald, Doris Y Tsao, and Margaret S Livingstone. A face feature space in the macaque
587 temporal lobe. *Nature neuroscience*, 12(9):1187–96, September 2009. ISSN 1546-1726. doi:
588 10.1038/nn.2363. URL <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2719705/> {&} tool=pmcentrez {&} rendertype=abstract. Number:
589 9 Publisher: Nature Publishing Group.
590

591 Abdulkadir Gokce and Martin Schrimpf. Scaling Laws for Task-Optimized Models of the Primate
592 Visual Ventral Stream, November 2025. URL <http://arxiv.org/abs/2411.05712>.
593 arXiv:2411.05712 [cs].

594 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Im-
 595 age Recognition, December 2015. URL <http://arxiv.org/abs/1512.03385>. Issue:
 596 arXiv:1512.03385 arXiv:1512.03385 [cs].
 597

598 Jay Hegde and David C. Van Essen. Selectivity for Complex Shapes in Primate Visual Area
 599 V2. *The Journal of Neuroscience*, 20(5):RC61–RC61, March 2000. ISSN 0270-6474, 1529-
 600 2401. doi: 10.1523/JNEUROSCI.20-05-j0001.2000. URL <https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.20-05-j0001.2000>.
 601

602 Mark H. Histed, Vincent Bonin, and R. Clay Reid. Direct Activation of Sparse, Distributed Pop-
 603ulations of Cortical Neurons by Electrical Microstimulation. *Neuron*, 63(4):508–522, August
 604 2009. ISSN 08966273. doi: 10.1016/j.neuron.2009.07.016. URL <https://linkinghub.elsevier.com/retrieve/pii/S0896627309005455>.
 605

606 Gary B Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. Labeled Faces in the Wild:
 607 A Database for Studying Face Recognition in Unconstrained Environments. 2008.
 608

609 D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and functional architec-
 610 ture in the cat’s visual cortex. *The Journal of Physiology*, 160(1):106–154, January 1962.
 611 ISSN 00223751. doi: 10.1113/jphysiol.1962.sp006837. URL <https://onlinelibrary.wiley.com/doi/10.1113/jphysiol.1962.sp006837>.
 612

613 D. H. Hubel and T. N. Wiesel. Receptive fields and functional architecture of monkey striate cor-
 614 tex. *The Journal of Physiology*, 195(1):215–243, March 1968. ISSN 00223751. doi: 10.1113/jphysiol.1968.sp008455. URL <https://onlinelibrary.wiley.com/doi/10.1113/jphysiol.1968.sp008455>.
 615

616 DH Hubel and TN Wiesel. Receptive field and functional architechture in two nonstriate visual areas
 617 (18 and 19) of the cat. *Journal of neurophysiology*, 28:229–289, 1965. ISSN 0022-3077. ISBN:
 618 0022-3077 (Print).
 619

620 Elias B. Issa and James J. DiCarlo. Precedence of the Eye Region in Neural Processing of Faces.
 621 *The Journal of Neuroscience*, 32(47):16666–16682, November 2012. ISSN 0270-6474, 1529-
 622 2401. doi: 10.1523/JNEUROSCI.2391-12.2012. URL <https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.2391-12.2012>.
 623

624 Nancy Kanwisher. The Quest for the FFA and Where It Led. *The Journal of Neuroscience*, 37(5):
 625 1056–1061, February 2017. ISSN 0270-6474, 1529-2401. doi: 10.1523/JNEUROSCI.1706-16.
 626 2016. URL <https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.1706-16.2016>.
 627

628 Matthias Kaschube, Michael Schnabel, Siegrid Lowel, David M. Coppola, Leonard E. White, and
 629 Fred Wolf. Universality in the Evolution of Orientation Columns in the Visual Cortex. *Science*,
 630 330(6007):1113–1116, November 2010. ISSN 0036-8075, 1095-9203. doi: 10.1126/science.1194869. URL <https://www.science.org/doi/10.1126/science.1194869>.
 631

632 T. Anderson Keller, Qinghe Gao, and Max Welling. Modeling Category-Selective Cortical Regions
 633 with Topographic Variational Autoencoders, December 2021. URL <http://arxiv.org/abs/2110.13911>. arXiv:2110.13911 [cs, q-bio].
 634

635 Seyed-Mahdi Khaligh-Razavi and Nikolaus Kriegeskorte. Deep Supervised, but Not Unsuper-
 636 ved, Models May Explain IT Cortical Representation. *PLoS Computational Biology*, 10(11):
 637 e1003915, November 2014. ISSN 1553-7358. doi: 10.1371/journal.pcbi.1003915. URL
 638 <https://dx.plos.org/10.1371/journal.pcbi.1003915>. Number: 11.
 639

640 Nikolaus Kriegeskorte, Marieke Mur, Douglas A. Ruff, Roozbeh Kiani, Jerzy Bodurka, Hossein
 641 Esteky, Keiji Tanaka, and Peter A. Bandettini. Matching Categorical Object Representations in
 642 Inferior Temporal Cortex of Man and Monkey. *Neuron*, 60(6):1126–1141, December 2008. ISSN
 643 08966273. doi: 10.1016/j.neuron.2008.10.043. URL <https://linkinghub.elsevier.com/retrieve/pii/S0896627308009434>. Number: 6.
 644

648 Karthik Kumaravelu, Joseph Sombeck, Lee E. Miller, Sliman J. Bensmaia, and Warren M. Grill.
 649 Stoney vs. Histed: Quantifying the spatial effects of intracortical microstimulation. *Brain Stim-
 650 ulation*, 15(1):141–151, January 2022. ISSN 1935861X. doi: 10.1016/j.brs.2021.11.015. URL
 651 <https://linkinghub.elsevier.com/retrieve/pii/S1935861X21008305>.
 652

653 Hyodong Lee, Eshed Margalit, Kamila M. Jozwik, Michael A. Cohen, Nancy Kanwisher, Daniel
 654 L. K. Yamins, and James J. DiCarlo. Topographic deep artificial neural networks reproduce
 655 the hallmarks of the primate inferior temporal cortex face processing network. preprint, Neu-
 656 roscience, July 2020. URL <http://biorxiv.org/lookup/doi/10.1101/2020.07.09.185116>. DOI: 10.1101/2020.07.09.185116.
 657

658 Zejin Lu, Adrien Doerig, Victoria Bosch, Bas Krahmer, Daniel Kaiser, Radoslaw M Cichy, and
 659 Tim C Kietzmann. End-to-end topographic networks as models of cortical map formation and
 660 human visual behaviour: moving beyond convolutions. *Arxiv preprint*, 2023. doi: <https://doi.org/10.48550/arXiv.2308.09431>.
 661

662

663 Najib J. Majaj, Ha Hong, Ethan A. Solomon, and James J. DiCarlo. Simple Learned Weighted
 664 Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recog-
 665 nition Performance. *The Journal of Neuroscience*, 35(39):13402–13418, September 2015. ISSN
 666 0270-6474, 1529-2401. doi: 10.1523/JNEUROSCI.5181-14.2015. URL <https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.5181-14.2015>.
 667

668 Eshed Margalit, Hyodong Lee, Dawn Finzi, James J. DiCarlo, Kalanit Grill-Spector, and Daniel L.K.
 669 Yamins. A unifying framework for functional organization in early and higher ventral vi-
 670 sual cortex. *Neuron*, 112(14):2435–2451.e7, July 2024. ISSN 08966273. doi: 10.1016/
 671 [j.neuron.2024.04.018](https://linkinghub.elsevier.com/retrieve/pii/S0896627324002794). URL <https://linkinghub.elsevier.com/retrieve/pii/S0896627324002794>.
 672

673

674 Johannes Mehrer, Courtney J. Spoerer, Emer C. Jones, Nikolaus Kriegeskorte, and Tim C. Kiet-
 675 zmann. An ecologically motivated image dataset for deep learning yields better models of hu-
 676 man vision. *Proceedings of the National Academy of Sciences*, 118(8):e2011417118, Febru-
 677 ary 2021. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.2011417118. URL <https://pnas.org/doi/full/10.1073/pnas.2011417118>.
 678

679 Paolo Papale, Daniela De Luca, and Pieter R. Roelfsema. Deep generative networks reveal the
 680 tuning of neurons in IT and predict their influence on visual perception, October 2024. URL
 681 <http://biorxiv.org/lookup/doi/10.1101/2024.10.09.617382>.
 682

683 Sonia Poltoratski, Kendrick Kay, Dawn Finzi, and Kalanit Grill-Spector. Holistic face recognition is
 684 an emergent phenomenon of spatial processing in face-selective regions. *Nature Communications*,
 685 12(1):4745, August 2021. ISSN 2041-1723. doi: 10.1038/s41467-021-24806-1. URL <https://www.nature.com/articles/s41467-021-24806-1>.
 686

687 Carlos R. Ponce, Will Xiao, Peter F. Schade, Till S. Hartmann, Gabriel Kreiman, and Mar-
 688 garet S. Livingstone. Evolving super stimuli for real neurons using deep generative networks.
 689 preprint, Neuroscience, January 2019. URL <http://biorxiv.org/lookup/doi/10.1101/516484>.
 690

691

692 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
 693 wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
 694 Sutskever. Learning transferable visual models from natural language supervision. In Ma-
 695 rina Meila and Tong Zhang (eds.), *Proceedings of the 38th International Conference on Ma-
 696 chine Learning, ICML 2021, 18-24 July 2021, Virtual Event*, volume 139 of *Proceedings of Ma-
 697 chine Learning Research*, pp. 8748–8763. PMLR, 2021. URL <http://proceedings.mlr.press/v139/radford21a.html>.
 698

699 Neil Rathi, Johannes Mehrer, Badr AlKhamissi, Taha Binhuraib, Nicholas M Blauch, and Martin
 700 Schrimpf. TopoLM: brain-like spatio-functional organization in a topographic language model. In
 701 *International Conference on Learning Representations*, 2025. doi: 10.48550/arXiv.2410.11516.
 URL <http://topolm.epfl.ch/>.

702 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 703 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Con-*
 704 *ference on Computer Vision and Pattern Recognition (CVPR)*, pp. 10684–10695, June 2022.
 705

706 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
 707 Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
 708 ImageNet Large Scale Visual Recognition Challenge, January 2015. URL <http://arxiv.org/abs/1409.0575>. Issue: arXiv:1409.0575 arXiv:1409.0575 [cs].
 709

710 Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-xl: Scaling stylegan to large diverse
 711 datasets. In *Special Interest Group on Computer Graphics and Interactive Techniques Conference*
 712 *Proceedings*, SIGGRAPH '22, pp. 1–10. ACM, August 2022. doi: 10.1145/3528233.3530738.
 713 URL <http://dx.doi.org/10.1145/3528233.3530738>.
 714

715 Gerwin Schalk, Christoph Kapeller, Christoph Guger, Hiroshi Ogawa, Satoru Hiroshima, Rosa
 716 Lafer-Sousa, Zeynep M. Saygin, Kyousuke Kamada, and Nancy Kanwisher. Facephenes and
 717 rainbows: Causal evidence for functional and anatomical specificity of face and color processing
 718 in the human brain. *Proceedings of the National Academy of Sciences*, 114(46):12285–12290,
 719 November 2017. doi: 10.1073/pnas.1713447114. URL <https://www.pnas.org/doi/10.1073/pnas.1713447114>. Publisher: Proceedings of the National Academy of Sciences.
 720

721 Martin Schrimpf, Jonas Kubilius, Ha Hong, Najib J. Majaj, Rishi Rajalingham, Elias B. Issa, Ko-
 722 hitij Kar, Pouya Bashivan, Jonathan Prescott-Roy, Franziska Geiger, Kailyn Schmidt, Daniel
 723 L. K. Yamins, and James J. DiCarlo. Brain-Score: Which Artificial Neural Network for Ob-
 724 ject Recognition is most Brain-Like? preprint, Neuroscience, September 2018. URL <http://biorxiv.org/lookup/doi/10.1101/407007>.
 725

726 Martin Schrimpf, Paul McGrath, Eshed Margalit, and James J DiCarlo. Do Topographic ANNs
 727 Predict the Behavioral Effects of Neural Interventions in Primate IT Cortex? *Bioarxiv*, 2024. doi:
 728 <https://doi.org/10.1101/2024.01.09.572970>.
 729

730 Elia Shahbazi, Timothy Ma, Martin Pernuš, Walter Scheirer, and Arash Afraz. Perceptography
 731 unveils the causal contribution of inferior temporal cortex to visual perception. *Nature Commu-*
 732 *nications*, 15(1):3347, April 2024. ISSN 2041-1723. doi: 10.1038/s41467-024-47356-8. URL
 733 <https://www.nature.com/articles/s41467-024-47356-8>.
 734

735 E. H. Silson, a. W.-Y. Chan, R. C. Reynolds, D. J. Kravitz, and C. I. Baker. A Retinotopic
 736 Basis for the Division of High-Level Scene Processing between Lateral and Ventral Human
 737 Occipitotemporal Cortex. *Journal of Neuroscience*, 35(34):11921–11935, 2015. ISSN 0270-
 738 6474. doi: 10.1523/JNEUROSCI.0137-15.2015. URL <http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.0137-15.2015>. Number: 34.
 739

740 A. Stiglani, K. S. Weiner, and K. Grill-Spector. Temporal Processing Capacity in High-Level Visual
 741 Cortex Is Domain Specific. *Journal of Neuroscience*, 35(36):12412–12424, September 2015.
 742 ISSN 0270-6474, 1529-2401. doi: 10.1523/JNEUROSCI.4822-14.2015. URL <https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.4822-14.2015>.
 743

744 S D Stoney, W D Thompson, and H Asanuma. Excitation of pyramidal tract cells by intracortical
 745 microstimulation: effective extent of stimulating current. *Journal of Neurophysiology*, 31(5):
 746 659–669, September 1968. ISSN 0022-3077, 1522-1598. doi: 10.1152/jn.1968.31.5.659. URL
 747 <https://www.physiology.org/doi/10.1152/jn.1968.31.5.659>.
 748

749 Doris Y Tsao, Winrich A Freiwald, Tamara A Knutson, Joseph B Mandeville, and Roger B H
 750 Tootell. Faces and objects in macaque cerebral cortex. *Nature Neuroscience*, 6(9):989–995,
 751 September 2003. ISSN 1097-6256, 1546-1726. doi: 10.1038/nn1111. URL <https://www.nature.com/articles/nn1111>.
 752

753 Doris Y Tsao, Winrich A Freiwald, Roger B H Tootell, and Margaret S Livingstone. A cortical
 754 region consisting entirely of face-selective cells. Supporting Online Material. *Science (New York,*
 755 *N.Y.*, 311(February):670–674, 2006. ISSN 0036-8075. doi: 10.1126/science.1119983. Number:
 February ISBN: 1095-9203.

756 Daniel L. K. Yamins, Ha Hong, Charles F. Cadieu, Ethan A. Solomon, Darren Seibert, and James J.
757 DiCarlo. Performance-optimized hierarchical models predict neural responses in higher visual
758 cortex. *Proceedings of the National Academy of Sciences*, 111(23):8619–8624, June 2014. ISSN
759 0027-8424, 1091-6490. doi: 10.1073/pnas.1403112111. URL <https://pnas.org/doi/full/10.1073/pnas.1403112111>. Number: 23.

760

761 Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt
762 adapter for text-to-image diffusion models, 2023. URL <https://arxiv.org/abs/2308.06721>.

763

764

765 Xiaomin Yue, Sophia Robert, and Leslie G. Ungerleider. Curvature processing in human visual
766 cortical areas. *NeuroImage*, 222:117295, November 2020. ISSN 10538119. doi: 10.1016/
767 j.neuroimage.2020.117295. URL <https://linkinghub.elsevier.com/retrieve/pii/S1053811920307813>.

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810
811
812
813
A APPENDIX
814

ImageNet	ecoset	LFW	VGGFaces2	# of instances
✓				5
✓		✓		10
✓			✓	3
	✓			10
	✓	✓		10
✓	✓			5

815
816
817
818
819
820
Table 1: Training data of candidate models. Before model selection (see Sec. A.1) models are
821 trained on different combinations of image sets. We refer to two models with the same architecture
822 trained with the same hyperparameters and on the same sets of images and only differing in their set
823 of initial weights as two model instances.
824

825
826
827
A.1 OPTIMIZING MICROSTIMULATION IN MONKEYS THROUGH SIMULATIONS OF
828 EXPERIMENTS IN MODELS
829

830
831 **Passive viewing data recording.** Two days prior to stimulation experiments we conducted passive
832 viewing sessions to calibrate the models. Each monkey passively viewed 4,000 reference images
833 randomly sampled from GAN latent space while we recorded activity from all available IT electrodes
834 in each animal.

835
836 **Stimulation site pre-selection in monkey array.** We selected electrodes in monkey arrays based on
837 signal quality (split-half reliability across 4,000 reference images) and a spatial constraint avoiding
838 tissue damage (minimum spacing of 1.6mm (experiment 1) or 1.2mm (experiment 2) Manhattan
839 distance between any two electrodes used in experiments).

840
841 **Selection of model, and of monkey array.** For each model instance, we computed cross-validated
842 linear predictivity from model inferior temporal cortex to monkey arrays using the 4,000 reference
843 images. We then selected the best combinations of monkey array and model with regard to the
844 expected behavioral outcome.

845
846 **Stimulus generation.** We used a generative-adversarial-network-based approach pioneered by Pa-
847 pale et al. 2024 to generate sequences of 7 images optimized to modulate neural activation level at
848 a targeted stimulation site in monkey inferior temporal cortex.

849
850 **Placing a simulated Utah array on the model cortical sheet.** We identified the simulated Utah
851 array location and orientation on the model equivalent of inferior temporal cortex that best correlate
852 with a monkey array of interest using a subset of the responses to the 4000 reference images.

853
854 **Ranking image sequences by a selectivity index.** We sorted stimulation site-specific image se-
855 quences by a selectivity index reflecting its ability to modulate neural activation levels at the targeted
856 site in a monotonically increasing or decreasing way. By favoring monotonic changes, we attempt to
857 bring the neural changes resulting from visual stimulation as close as possible to the neural changes
858 resulting from the stimulation.

859
860 **In-silico perturbation experiment and behavioral readout.** We performed the experiment in
861 the model using the selected combination of image sequence and stimulation site in model IT. We
862 considered the model behavioral response (Δ AUC of psychometric curves: perturbed – unperturbed
863 trials) as the prediction of the monkey behavioral response.

864
865 **Mapping from model to monkey stimulation device.** We projected model stimulation sites yield-
866 ing strongest behavioral model responses to the monkey cortex using the 1:1 mapping between
867 simulated model and monkey electrodes used for placing the simulated Utah array (see above).

868
869 **Model-guided microstimulation in monkeys.** Monkeys performed the delayed-match-to-sample-
870 task using the model-selected stimulation sites and image sequences.

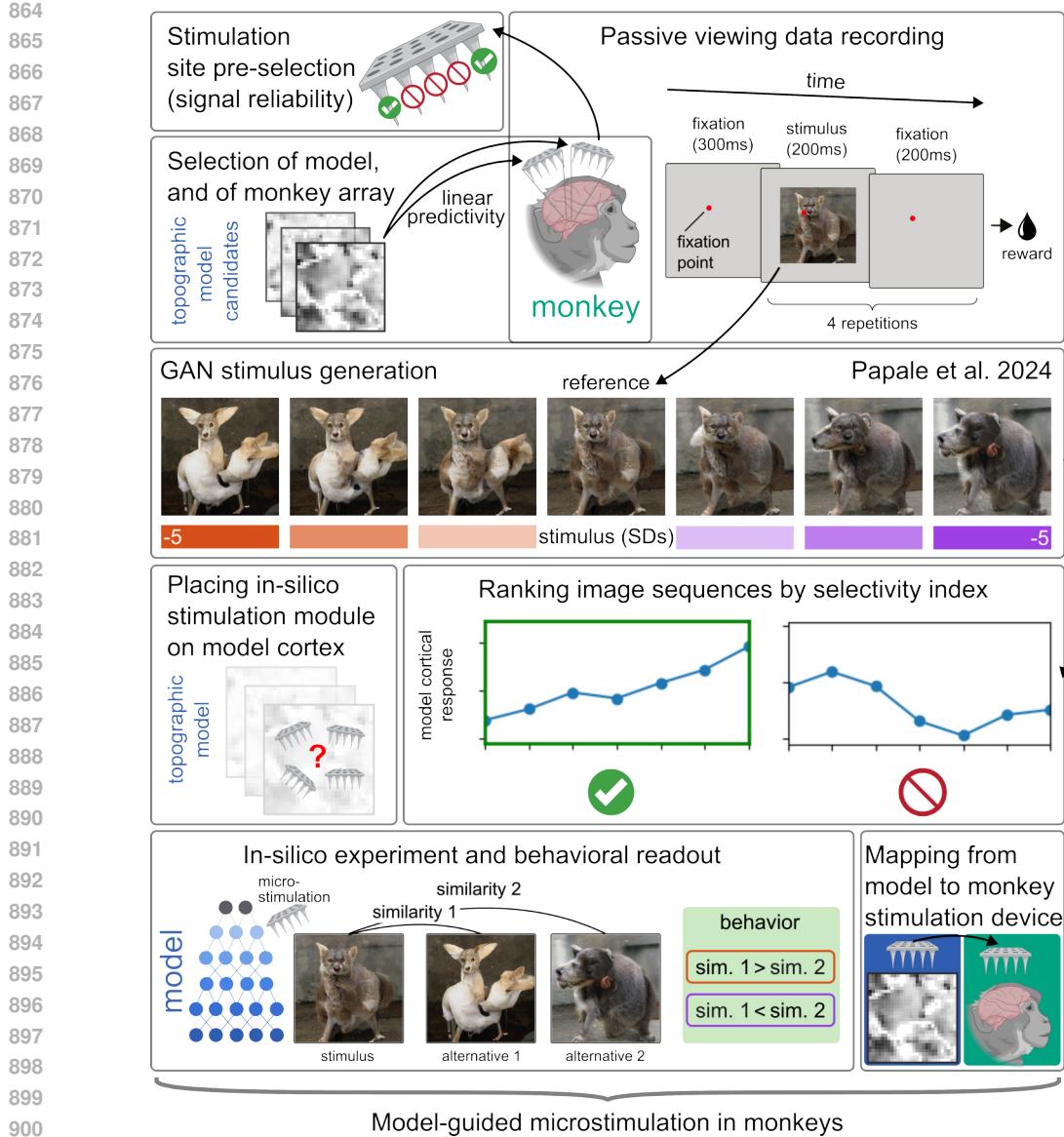


Figure 6: Simulating and optimizing monkey behavioral responses via topographic models For details, please see list in main text.

A.2 EXPERIMENTAL PARADIGM

A.2.1 MONKEY SETUP

The experimental design follows the experimental paradigm established by Papale et al. (2024), with modifications to integrate model-guidance for stimulation site and stimulus selection (Fig. 7A). For all information on animal care and housing, surgeries for implanting stimulation devices, electrophysiology including multi-unit-activity pre-processing, intracortical microstimulation, stimulus presentation, and ethical approval for animal testing we refer to (Papale et al., 2024).

Two male macaque monkeys were implanted with Utah arrays in posterior inferior temporal cortex and trained to perform a delayed match-to-sample task. On each trial, the monkey fixated a central point before a sample stimulus was presented for 200ms, followed by a 100ms gray screen. The sample stimulus was one of a sequence of 7 images optimized to drive the response profile of the stimulation site in the direction of the vector induced by stimulation. After this delay of 100ms, two

choice images appeared on opposite sides of the screen, corresponding to the extremes of the GAN-generated image sequence. After 400ms, the fixation point disappeared, cueing the animal to make a saccade to the image judged most similar to the sample stimulus presented before. Correct responses were rewarded with juice. When the central reference image of the associated GAN sequence of 7 images serves as the sample stimulus, rewards are delivered randomly on 50% of trials to avoid bias in either direction.

To assess the influence of microstimulation on visual behavior, electrical microstimulation was applied in 50% of trials via one IT electrode (200ms, 50 μ A, 300Hz biphasic pulses) during and shortly after the sample presentation window (75–275ms after stimulus onset). Trials without stimulation served as a baseline conditions (sham), allowing direct comparison of behavioral choices with and without stimulation.

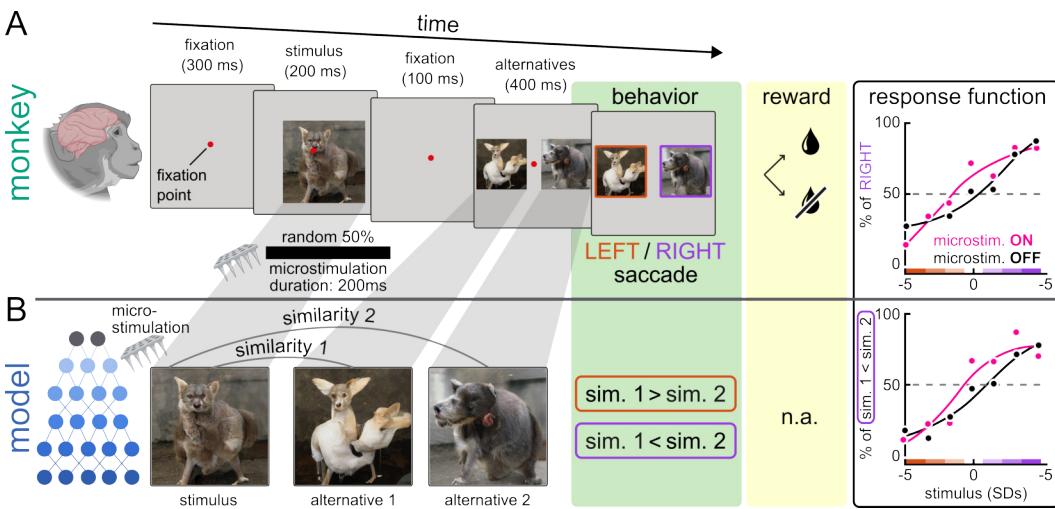


Figure 7: Experimental setup in monkey and model. **A)** Monkeys were trained to perform a visual delayed match-to-sample-task. The animals had to select which of two alternative images they perceive as more similar to a single stimulus shown at the beginning of a trial. Correct responses were rewarded with juice. We computed a psychometric function based on the responses across multiple stimuli. Monkey experimental design including stimulus generation as in (Papale et al., 2024). **B)** Model simulation of monkey experiment. We used topographic model to simulate the experimental design shown in A as follows. We extracted model activations in response to the two alternative images and the sample stimulus. If the similarity between alternative 1 and the sample stimulus was higher than the similarity between alternative 2 and the sample stimulus, this was scored as a behavioral response towards alternative 1 and vice versa. The psychometric response function across multiple stimuli was computed in the same way as in the monkey experiment.

A.2.2 TOPOGRAPHIC MODEL SETUP

To simulate the perturbation experiment in-silico, we employed topographic vision models with an explicit perturbation module (**Fig. 7B**). As there is no notion of time in our feed-forward models, a trial was simulated by presenting the stimulus of interest — one of the seven images constituting a GAN-derived sequence — together with the first and the last image of that sequence. We then extracted the activations from the deepest layer and computed the similarity between the stimulus representation and each of the two extremes. The model’s behavioral choice was defined by the extreme with higher similarity: if the stimulus was more similar to the last image than to the first, the model was scored as having chosen the last image, whereas if the reverse was true it was scored as having chosen the first.

Trials without activating the perturbation module provided the baseline condition, corresponding to trials without microstimulation in the monkey experiment. For stimulation trials, we applied a local perturbation to the model units corresponding to the targeted cortical site during stimulus presentation, thereby simulating the effect of electrical microstimulation. We compared the resulting

972 choice probabilities between baseline and stimulation conditions following the same analysis as in
 973 the monkey experimental setup.
 974

975 A key difference to in-vivo experiments is how we treat variability across trials in our models. In
 976 the monkey experiment, each trial is a repeated event in time: the same stimulus can yield different
 977 choices due to biological variability such as varying levels of attention, fatigue, or other forms
 978 of noise. In contrast, our models are fully deterministic: the same input image and perturbation
 979 always produce the same output. As a consequence, the psychometric function derived from a
 980 single image sequence is binary in shape consisting entirely of zeros, entirely of ones, or describes
 981 a sharp step function rather than the smooth, graded functions typically observed in behavior or
 982 biological organisms. To approximate biological variability and thus mimic trials, we therefore
 983 consider multiple GAN-generated sequences that are all optimized to modulate activity at the same
 984 monkey stimulation site. Each distinct sequence constitutes an in-silico trial, and averaging across
 985 these sequences provides a model analogue of the across-trial variability observed in the animal.
 986 We introduce variability on purpose on the data side so that any future model can be evaluated on
 987 the same image sequences without requiring model-specific noise mechanisms. If variability would
 988 be introduced by e.g. dropout or noise directly applied to weights or activations, each model would
 989 require its own implementation for it to be tested and compared on our data.

989 A.3 VISUALIZATION OF PERCEPTUAL EFFECTS OF STIMULATION

991 We use two complementary generative pipelines to visualize the perceptual consequences of simu-
 992 lated microstimulation in the topographic model: a GAN-based reconstruction approach and a dif-
 993 fusion-based approach based on Stable Diffusion with IP-Adapter. In both cases, the core idea is to
 994 learn a linear decoder from topographic model activity into the conditioning space of a pretrained
 995 generator, and then compare images synthesized from unperturbed versus perturbed model states.
 996

997 A.3.1 GAN-BASED VISUALIZATIONS

999 Our GAN-based visualization procedure closely follows the Brain2GAN framework (Dado et al.,
 1000 2024), with the primary difference being the source of the encoding features: we use the deepest
 1001 layer of a topographic vision model as the encoder, whereas Brain2GAN uses neural recordings. As
 1002 in Brain2GAN, we work in the feature-disentangled w-latent space of a pretrained StyleGAN-XL
 1003 generator (Sauer et al., 2022), rather than its original z-space.
 1004

1004 **Dataset construction.** We first generated a synthetic image dataset using a pretrained StyleGAN-
 1005 XL generator. We sampled latent codes \mathbf{z} from the StyleGAN-XL prior and mapped them through
 1006 the StyleGAN-XL mapping network to obtain corresponding w-latents. For each sampled latent,
 1007 we an image and recorded:

- 1008 • the StyleGAN-XL w-latent $\mathbf{w}_i \in \mathbb{R}^{d_w}$, and
- 1009 • the deepest-layer activation vector of the topographic vision encoder $f_i \in \mathbb{R}^{d_f}$,

1011 where $d_w = 512$ and $d_f = 25,088$. In total, we generated 30,000 training images and 6,000 test
 1012 images. All decoders are trained exclusively on unperturbed encoder activations.
 1013

1014 **Linear mapping from topographic model to w-space.** To map topographic model states into the
 1015 StyleGAN-XL latent space, we fit a ridge regression from deepest-layer activations to w-latents.
 1016 For a training set $\{(f_i, \mathbf{w}_i)\}_{i=1}^N$, we learn a weight matrix $W \in \mathbb{R}^{d_w \times d_f}$ by minimizing

$$1017 \quad 1018 \quad \mathcal{L}(W) = \sum_{i=1}^N \|\mathbf{w}_i - W f_i\|_2^2 + \alpha \|W\|_F^2, \quad (2)$$

1020 where $\alpha > 0$ is the ridge regularization parameter and $\|\cdot\|_F$ denotes the Frobenius norm.
 1021

1022 The regularization parameter α is selected via leave-one-out cross-validation on the 30,000-image
 1023 training set. After selecting α , we keep this linear map fixed for all subsequent visualizations.
 1024

1025 Given a new encoder state f , the corresponding predicted StyleGAN-XL w-latent is

$$\hat{\mathbf{w}} = W f. \quad (3)$$

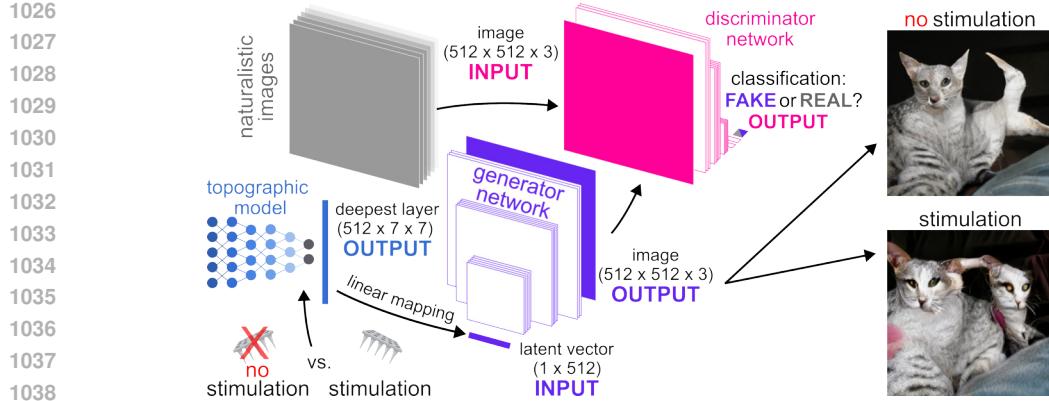


Figure 8: GAN-based visualization procedure. Neural activity patterns from the deepest layer of the topographic model are linearly mapped into the latent space of a generative adversarial network (GAN). This mapping enables reconstruction of unperturbed responses as well as visualization of the perceptual consequences of simulated microstimulation by comparing GAN reconstructions with and without perturbation.

Baseline reconstructions. To assess the quality of the decoder, we reconstruct test images from unperturbed encoder activations. For each test image x with deepest-layer feature vector $f_{\text{unpert}}(x)$, we compute

$$\hat{\mathbf{w}}_{\text{unpert}}(x) = W f_{\text{unpert}}(x), \quad (4)$$

and pass $\hat{\mathbf{w}}_{\text{unpert}}(x)$ through the StyleGAN-XL synthesis network to obtain a reconstructed image \hat{x}_{unpert} . These reconstructions (current level $0 \mu\text{A}$) serve as the baseline for the perturbation visualizations shown in the appendix.

Perturbation conditions. To visualize the perceptual effects of microstimulation, we apply the perturbation module to the topographic model at different stimulation sites and current levels. We focus on positions along the y -axis of the deepest-layer cortical sheet, with

- $y = 42$ corresponding to a highly face-selective region,
- $y = 20$ corresponding to a region with low face-selectivity,

and intermediate values (e.g. $y = 28, 34$) interpolating between these extremes. For each chosen site (y) and simulated current level $I \in \{0, 100, 500, 1000\} \mu\text{A}$, we obtain a perturbed deepest-layer activation

$$f_{\text{pert}}(x; I, y) \quad (5)$$

by applying the perturbation module to the unperturbed state $f_{\text{unpert}}(x)$ for image x .

GAN-based visualizations. For each test image x , stimulation site y , and current level I , we compute

$$\hat{\mathbf{w}}_{\text{pert}}(x; I, y) = W f_{\text{pert}}(x; I, y), \quad (6)$$

and synthesize the corresponding image via StyleGAN-XL. Because the generator and decoder are fixed, any systematic differences between \hat{x}_{unpert} and \hat{x}_{pert} can be attributed to the changes in topographic model state induced by simulated microstimulation, rather than to changes in the generative model itself.

Control perturbation ablation. As a control, we test whether the observed effects depend on the spatial specificity of the perturbation pattern in the topographic model. For each current level I , we first compute a targeted perturbation at the maximally face-selective location $y_{\text{face}} = 42$. We then construct a “shuffled” perturbation by randomly permuting the entries of this perturbation vector across feature dimensions. This preserves the marginal distribution and overall magnitude of the perturbation but destroys its topographic structure. The shuffled perturbation is then applied to the unperturbed deepest-layer features and visualized through the same StyleGAN-XL generator. Comparing targeted and shuffled perturbations allows us to dissociate effects driven by feature-selective,

1080 spatially localized stimulation from those that could arise from non-specific global modulation with
 1081 matched statistics.
 1082

1083 A.3.2 DIFFUSION-BASED VISUALIZATIONS WITH IP-ADAPTER

1085 To complement the GAN-based reconstructions, we also visualize perturbation effects using a text-
 1086 to-image diffusion model. Specifically, we use Stable Diffusion v1.5 with IP-Adapter (Rombach
 1087 et al., 2022; Ye et al., 2023), which conditions the diffusion process on a CLIP Radford et al. (2021)
 1088 vision embedding of an image in addition to a text prompt.

1089 **Text prompts and generated dataset.** We construct text prompts by sampling ecoset category la-
 1090 bels (Mehrer et al., 2021) and enriching them with quality and style modifiers, for example:

1092 “a high-quality photo of a [category], studio lighting, sharp focus”

1093 For each prompt, we run Stable Diffusion v1.5 with IP-Adapter to generate images. During genera-
 1094 tion we record, for each image:

- 1096 • the text prompt p_i ,
- 1097 • the initial noise latent ϵ_i that seeds the diffusion process,
- 1098 • the resulting synthesized image x_i .

1100 As before, we split the resulting dataset into training and test sets.

1102 **Linear mapping from topographic model to CLIP vision space.** To couple the topographic model
 1103 to the diffusion pipeline, we fit a ridge regression from deepest-layer activations to CLIP vision em-
 1104 beddings. For a training set $\{(f_i, \mathbf{c}_i)\}_{i=1}^N$ we learn a weight matrix $W_{\text{CLIP}} \in \mathbb{R}^{d_c \times d_f}$ by minimizing

$$1106 \mathcal{L}(W_{\text{CLIP}}) = \sum_{i=1}^N \|\mathbf{c}_i - W_{\text{CLIP}} f_i\|_2^2 + \alpha_{\text{CLIP}} \|W_{\text{CLIP}}\|_F^2, \quad (7)$$

1108 where $\alpha_{\text{CLIP}} > 0$ is selected via cross-validation on the training set. After training, we obtain
 1109 predicted CLIP embeddings from topographic states via
 1110

$$1111 \hat{\mathbf{c}} = W_{\text{CLIP}} f. \quad (8)$$

1112 At inference time, $\hat{\mathbf{c}}$ is used as a drop-in replacement for the CLIP vision encoder output in IP-
 1113 Adapter.

1115 **Controlled diffusion runs.** To visualize perturbation effects for a given test image x and its associ-
 1116 ated text prompt p and noise latent ϵ , we proceed in two stages.

1117 Baseline (unperturbed) condition.

- 1119 1. Extract the deepest-layer activation $f_{\text{unpert}}(x)$ from the topographic model.
- 1120 2. Compute the corresponding CLIP embedding

$$1122 \hat{\mathbf{c}}_{\text{unpert}}(x) = W_{\text{CLIP}} f_{\text{unpert}}(x). \quad (9)$$

- 1123 3. Run Stable Diffusion v1.5 with IP-Adapter using:

- 1125 • the stored text prompt p ,
- 1126 • the stored noise latent ϵ , and
- 1127 • $\hat{\mathbf{c}}_{\text{unpert}}(x)$ as the image-conditioning input.

1128 This yields a baseline image $\tilde{x}_{\text{unpert}}$ that approximates the original generated image under
 1129 our topographic decoder.

1131 Perturbed condition.

- 1133 1. Apply the perturbation module at a chosen stimulation site y and current level I to obtain
 $f_{\text{pert}}(x; I, y)$.

2. Compute the perturbed CLIP embedding

$$\hat{\mathbf{c}}_{\text{pert}}(x; I, y) = W_{\text{CLIP}} f_{\text{pert}}(x; I, y). \quad (10)$$

- Run Stable Diffusion with IP-Adapter again, using exactly the same text prompt p and noise latent ϵ , but replacing the image-conditioning embedding with $\hat{e}_{\text{pert}}(x; I, y)$.

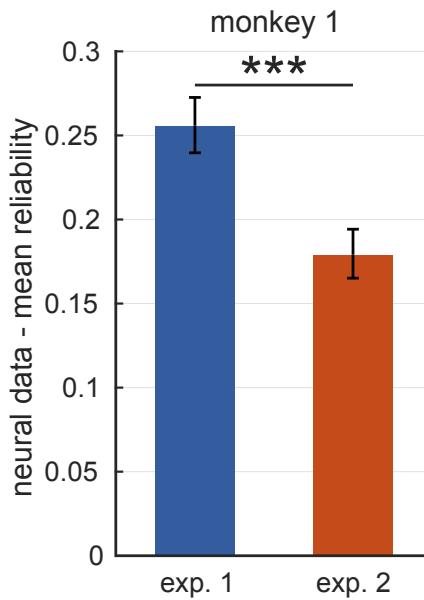
Because the text prompt, noise latent, and diffusion hyperparameters are held fixed between the unperturbed and perturbed runs, any systematic differences between $\tilde{x}_{\text{unpert}}$ and the perturbed image $\tilde{x}_{\text{pert}}(I, y)$ can be attributed to changes in the topographic model state induced by simulated microstimulation. As in the GAN-based case, we visualize these effects by varying both the stimulation site (e.g., along the face-selective axis of model IT) and the simulated current level, yielding image series that illustrate how perturbations bias the generative model's outputs.

Control perturbation ablation (diffusion). We perform an analogous shuffled-perturbation control in the diffusion setting. For each current level I , we reuse the targeted perturbation at the maximally face-selective location $y_{\text{face}} = 42$, randomly shuffle its entries across feature dimensions, and apply this shuffled perturbation to the unperturbed deepest-layer features. We then apply the same linear transformation to obtain a CLIP embedding and run Stable Diffusion with IP-Adapter using the same prompt p and noise latent ϵ . Comparing targeted and shuffled perturbations in this setting again controls for non-specific global modulation and tests whether the emergence of face-like structure depends on the spatially structured perturbation of face-selective regions.

1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188
1189

A.4 PASSIVE VIEWING DATA QUALITY

1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

1210 **Figure 9: Passive viewing data quality.** Using the passive viewing dataset from monkey 1, we
 1211 quantified the reliability of each electrode following Papale et al. (2024). For each recording site,
 1212 reliability was estimated by repeatedly splitting the 20 repetitions of each test image into two halves
 1213 and computing the correlation between the resulting split-half response averages. Repeating this pro-
 1214 cedure yielded 190 reliability estimates per electrode, whose mean defines the electrode’s reliability.
 1215 At the population level (averaging reliability across electrodes), we observed a significant decrease
 1216 from experiment 1 (February 2025) to experiment 2 (June 2025; $t = 6.84$, $p = 1.03 \times 10^{-11}$, Cohen’s $d =$
 1217 -0.30), indicating a decline in overall signal stability. At the single-electrode level, 735 out of 1024
 1218 channels (72%) showed a significant reduction in reliability after Benjamini–Hochberg FDR correc-
 1219 tion. The mean within-electrode effect size (computed on the 190 split-half estimates per electrode)
 1220 was large (Cohen’s $d = -1.25$), reflecting a robust and widespread degradation of reliability over the
 1221 four-month interval.

1221

1222

1223

A.5 USE OF LLMs

1224
1225
1226

We used *ChatGPT* (GPT-5, OpenAI, 2025) to help polishing the writing of this document. The
 authors reviewed, edited, and are fully responsible for the final content.

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271

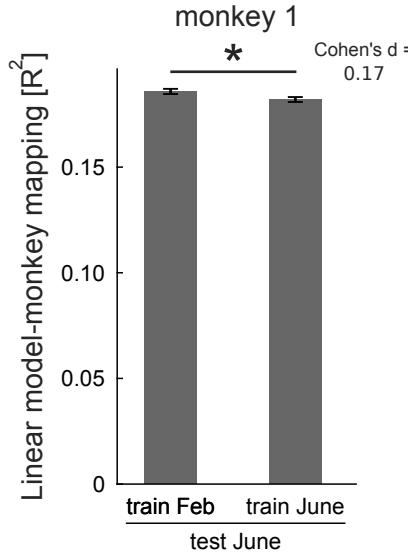


Figure 10: Stability of model–brain alignment across months. We quantified how stable the linear mapping between TDANN IT activations and neural responses remains over the four-month interval between February (experiment 1) and June (experiment 2) 2025 using the responses to the same passive viewing stimuli presented to monkey N. For each TDANN variant and seed, we fit a ridge-regression either on passive viewing data from February 2025 (experiment 1) or from June 2025 (experiment 2) and evaluated its predictions - in both cases - on the June data using 10-fold cross-validation with image splits shared across time points. The bars show the average variance explained (R^2) across all TDANN models, seeds, and folds when the mapping was trained on February data and tested on June data (left) versus when it was both trained and tested on June data (right). The February-trained mapping achieves $R^2 \approx 0.186$, compared to $R^2 \approx 0.182$ for the June-trained mapping, i.e. about 102% of the variance explained by the within-session paradigm. Despite the decline in neural reliability documented in Fig. 9, the TDANN–IT mapping remains highly stable across months, suggesting that a single passive-viewing session can provide a model–brain alignment that remains usable over extended periods and thus reduces the need for repeated model-mapping sessions before each causal experiment.

1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

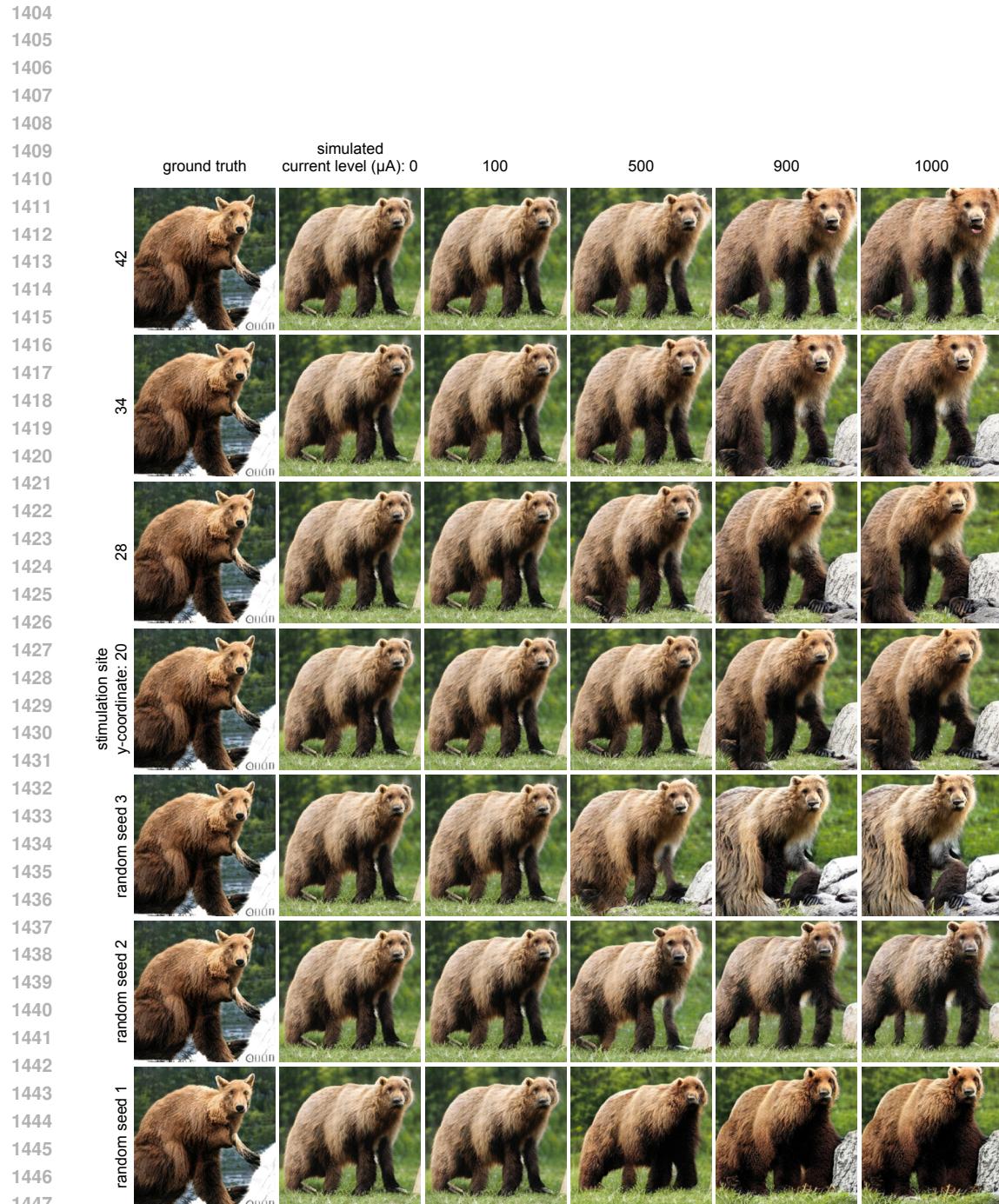


Figure 15: Visualizing model perceptual effects of simulated microstimulation - image #1161.
 Rows (from top to bottom): Y-coordinate in topographic model inferior temporal cortex (deepest layer) corresponding to high vs. low face-selectivity. Visualizing Columns: ground truth image randomly sampled from generative-adversarial-network (GAN) latent space, simulated current levels: 0, 100, 500, 1000 μ A.

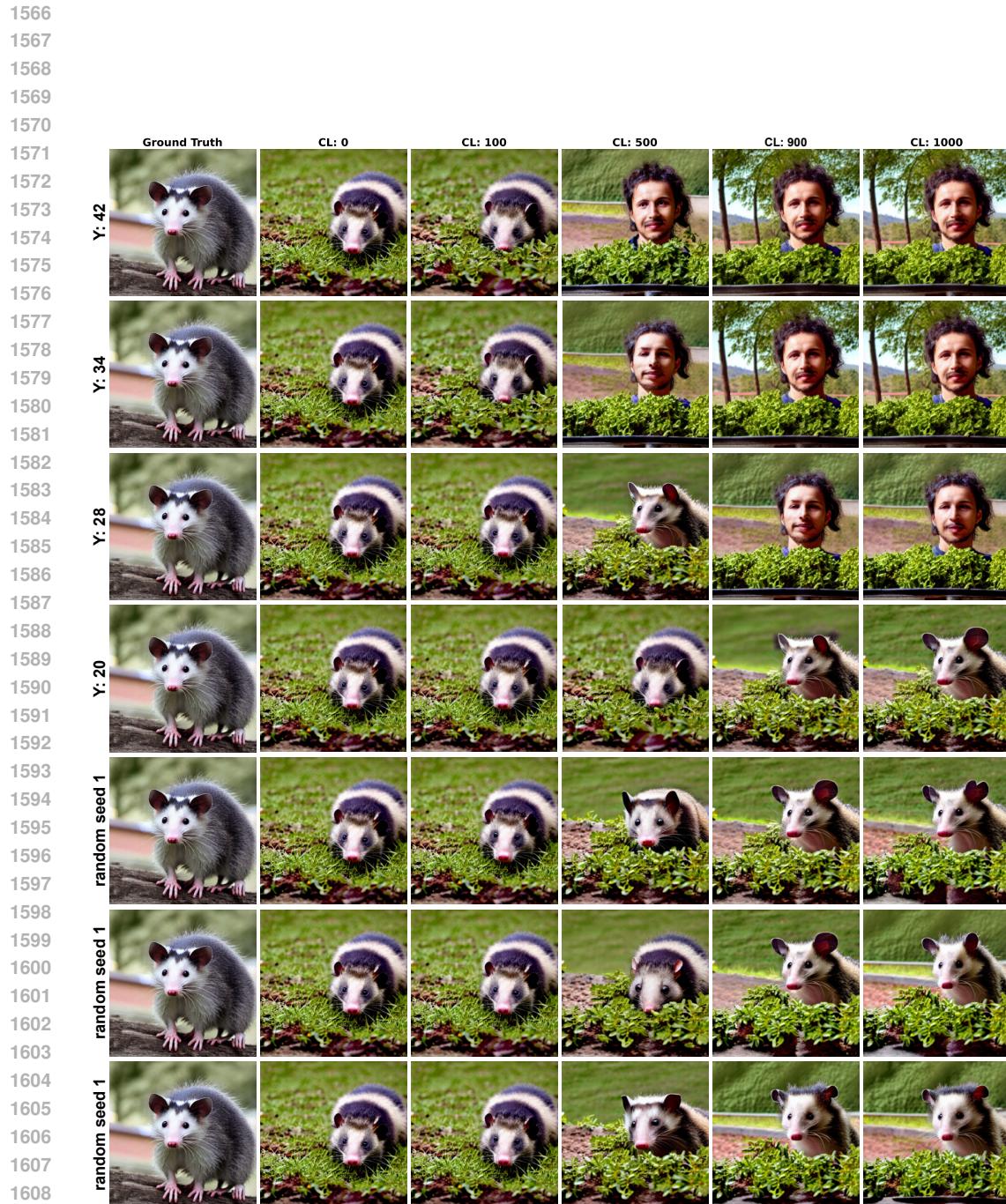


Figure 16: Visualizing model perceptual effects of simulated microstimulation - image #1894.
 Rows (from top to bottom): Y-coordinate in topographic model inferior temporal cortex (deepest layer) corresponding to high vs. low face-selectivity (top to bottom). The last three rows are random stimulations of model IT that follow the distribution of multiplicative factors of a standard stimulation whose results are shown in the first 4 rows. Columns: ground truth image randomly sampled from diffusion model latent space, simulated current levels: 0, 100, 500, 1000 μ A.

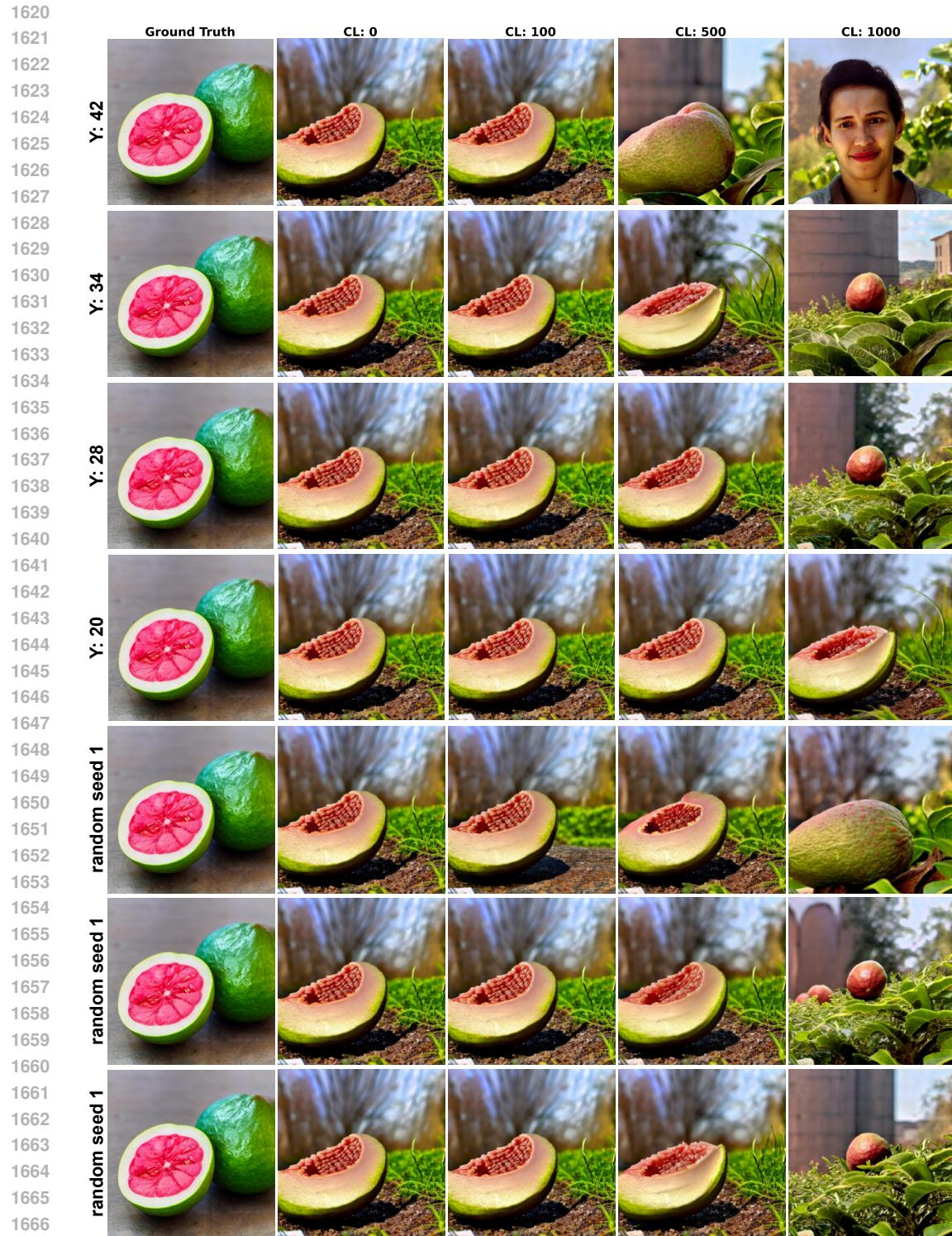


Figure 17: Visualizing model perceptual effects of simulated microstimulation - image #2339.
 Rows (from top to bottom): Y-coordinate in topographic model inferior temporal cortex (deepest layer) corresponding to high vs. low face-selectivity (top to bottom). The last three rows are random stimulations of model IT that follow the distribution of multiplicative factors of a standard stimulation whose results are shown in the first 4 rows. Columns: ground truth image randomly sampled from diffusion model latent space, simulated current levels: 0, 100, 500, 1000 μ A.