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Abstract

Large language models (LLMs) offer a generalizable approach for modeling patient
trajectories, but suffer from the long and noisy nature of electronic health records
(EHR) data in temporal reasoning. To address these challenges, we introduce
Traj-CoA, a multi-agent system involving chain-of-agents for patient trajectory
modeling. Traj-CoA employs a chain of worker agents to process EHR data in
manageable chunks sequentially, distilling critical events into a shared long-term
memory module, EHRMem, to reduce noise and preserve a comprehensive timeline.
A final manager agent synthesizes the worker agents’ summary and the extracted
timeline in EHRMem to make predictions. In a zero-shot one-year lung cancer risk
prediction task based on five-year EHR data, Traj-CoA outperforms baselines of
four categories. Analysis reveals that Traj-CoA exhibits clinically aligned temporal
reasoning, establishing it as a promisingly robust and generalizable approach for
modeling complex patient trajectories.

1 Introduction

Longitudinal Electronic Health Records (EHRs) provide rich, temporal data for modeling patient
trajectories and predicting clinical outcomes [1]]. Effective temporal reasoning is critical to unlocking
this potential [2]]. For instance, tracking a lung nodule’s evolution is key to diagnosing cancer [3]].
While traditional approaches required complex feature engineering and task-specific models [4} 15} 6],
modern Large Language Models (LLMs) promise a more generalizable, zero-shot paradigm for
clinical prediction [7, 8, 9]. However, the promise of LLMs is hindered by the unique challenges of
EHR data: extremely long patient histories and inherent noisiness of the recorded clinical data [2}[10].

Patient trajectories accumulate multimodal data over years, creating records that often exceed the
context windows of LLMs [[10]. Even models with large context windows are hampered by the "lost-
in-the-middle" problem, where performance degrades on long inputs as they struggle to attend to the
middle of a long input sequence [[11 [2]. Recent efforts to adapt LLMs for longitudinal EHR [2,|10]
have shown that LLMs tend to fail on temporal reasoning over long EHR. While methods like
temporal instruction tuning were proposed [2], these efforts have been largely confined to short EHR
data or intensive care unit (ICU) data (<16k tokens). Temporal reasoning on very long EHR data over
32k or even 128k tokens remains an unclear challenge.

EHR data are inherently heterogeneous and primarily designed to support clinical care rather than
research [12]]. Consequently, they often contain noise arising from inconsistent formats, typographical
errors, missing data, and irregular sampling. For many predictive tasks, only a small portion of a
patient’s record is informative, while abundant irrelevant data can obscure key predictive signals.
Early methods sought to address these challenges by enforcing standardized EHR formats [13]] or
applying extensive feature engineering during preprocessing [4, 5], which are difficult to generalize
across diverse healthcare systems. Recently, LLMs offer a more flexible and broadly applicable
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framework for processing such data [14]]. Yet, existing applications of LLMs in the EHR domain
remain limited: many are restricted to single data modalities [[15], while others struggle to capture
temporal dependencies in long and complex patient histories [2, [10]]. These gaps highlight the need
for a mechanism to isolate relevant events scattered throughout patient histories.

Several strategies exist to manage long-context inputs for LLMs, including retrieval-augmented
generation (RAG) and memory-based methods [16]]. More advanced are agent-based approaches,
which leverage the planning, memory, and reflection capabilities of LLMs to create autonomous
agents [17,[16]. Frameworks like the chain-of-agents (CoA), for instance, use multi-agent collabora-
tion to enhance reasoning over long contexts [[18]]. Despite their success in the general domain, the
application of these methods in healthcare remains limited, primarily confined to question-answering
tasks [[19}20]. Consequently, patient trajectory modeling with LLMs, typically prediction tasks, over
long and noisy EHR remains an underexplored practical challenge.

To overcome these challenges, we propose Traj-CoA, a novel framework for patient trajectory
modeling. Traj-CoA employs a chain-of-agents architecture [[18] with an external memory system to
perform complex temporal reasoning on long patient histories. Our framework accepts a unified XML
input that minimizes feature engineering and decomposes the longitudinal EHR into manageable
time-aware chunks for more effective reasoning and summarization. These chunks are processed
through a multi-agent workflow comprising specialized worker agents and a manager agent, which
interact with a long-term memory module (EHRMem). We use lung cancer risk prediction as a use
case to demonstrate the framework’s capabilities, though it holds the promise to be a general-purpose
solution for other longitudinal EHR tasks. The main contributions of this work are:

* We propose Traj-CoA, a novel chain-of-agents framework for temporal reasoning over long
and noisy EHRs.

* To handle data noisiness, worker agents process unified XML inputs in sequential time-aware
chunks, extracting salient signals for the task while removing localized noise.

* To manage long contexts, Traj-CoA leverages multi-agent communication and EHRMem
for effective temporal reasoning with global context.

» Under a zero-shot setting in a lung cancer risk prediction task, Traj-CoA outperforms ma-
chine learning (ML), deep learning (DL), fine-tuned BERT, vanilla LLM, and RAG baselines,
demonstrating its potential to become a simple yet powerful generalizable framework for
patient trajectory modeling.

2 Related Works

Patient Trajectory Modeling Extensive previous studies have explored patient trajectory modeling
with longitudinal EHR. Conventional approaches rely on task-specific feature engineering for special-
ized models, including recurrent neural networks [4} |5, [21]], neural differential equations [6, 22} 23],
and encoder-based transformers [24} 25 26| 27]. More recently, EHR foundation models [28| 29]
have demonstrated zero-shot generalizability by pre-training on large structured datasets. However,
they are often constrained by limited code sets and short context windows (<16k tokens), preventing
them from fully leveraging the rich information in unstructured text or modeling very long patient
histories. LLMs-based approaches are a promising alternative, with demonstrated success in long-
context reasoning across various domains [[16]. However, applying a single, off-the-shelf LLM
directly to model long patient trajectories has proven challenging. Recent studies show that even
with access to a long context window, LLMs struggle with robust temporal reasoning in complex
EHR data. For instance, a longer context does not guarantee better temporal understanding, and RAG
offers an incomplete solution [[10]. Similarly, LLMs exhibit a "lost-in-the-middle" phenomenon on
long EHRs, a problem partially mitigated by temporal instruction tuning [2]]. Therefore, a key open
question remains: how can LLM-based approaches perform robust temporal reasoning on very long
(over 32k or even 128k tokens) and noisy longitudinal EHR data without further training?

Long Context Modeling in LLMs While modern LLMs feature increasingly long context windows,
their performance can degrade on lengthy inputs due to the "lost-in-the-middle" problem, where
models overlook information positioned in the middle of the context [[11]. To address this limitation,
several training-free strategies have emerged [16]. These include memory-based methods, which
utilize an external memory to store and dynamically update the context [30, 31]; RAG, which
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Figure 1: Traj-CoA architecture consisting of a chain of worker agents, a manager agent, and
EHRMem.

retrieves relevant information based on the query to augment the model’s input [32]; and agent-
based approaches. Agent-based systems leverage memory, reflection, planning, and inter-agent
communication to reason over extended contexts [[16]]. For instance, frameworks like LongAgent and
CoA segment the context into manageable chunks and employ multi-agent collaboration to process
them [33|[18]. Although these techniques have been successfully applied to general-domain and
medical question-answering tasks [19} 20, 34]], their utility for predictive tasks using longitudinal
EHR is not well-established. In this study, we bridge this gap by proposing a novel method that
synergizes memory and agent-based approaches for effective patient trajectory modeling.

Multi-Agent System for Biomedicine Multi-agent systems (MAS) in biomedicine employ multiple
collaborating LLM agents to solve complex problems through role-playing and structured communi-
cation [35]]. MAS has been successfully applied to biomedical discovery [36], diagnostics [37], and
clinical trial optimization [38]. For example, MedAgents [39] assembles a multi-disciplinary team of
specialized agents to improve zero-shot medical reasoning. Similarly, multiple specialized agents
were orchestrated to emulate the tumor boards [40]. While a recent study applied this collaborative
paradigm to Alzheimer’s prediction using longitudinal EHR [41], the effective application of MAS
for temporal reasoning over long and noisy EHR data remains unclear. In contrast to prior work,
Traj-CoA is a MAS for temporal reasoning in patient trajectory modeling.

3 Method

In this section, we introduce Traj-CoA, a generalizable framework for patient trajectory modeling
with longitudinal EHR. We outline the problem formulation and Traj-CoA’s core components: a
unified data preprocessing pipeline that represents heterogeneous EHR in an XML format with
time-aware chunking, a chain-of-agents (CoA) workflow that sequentially processes the long and
noisy EHR, and a long-term EHR memory system that memorizes detailed clinical events. The
framework is described in a general context before being applied to a specific use case of lung cancer
risk prediction. An illustration of Traj-CoA is shown in Figure



3.1 Problem Formulation

We consider a patient trajectory as a longitudinal, multimodal sequence of n observations from the
EHR, denoted as X = {x;,m;,t;}1"_,. Each tuple consists of a timestamp ¢;, a data modality m;
(e.g., diagnosis, lab result, clinical note), and the corresponding event data x; within the modality. A
prediction task 7 is defined as a mapping f : X — y, where y is the label of a task-specific outcome
that occurs after the final observation time ¢,,. We seek a generalized framework that learns task 7
with minimum task-specific data preprocessing and model training.

The task is challenging due to the inherent properties of EHR data. The observation window (¢, to
t,) may span over years. The data itself is heterogeneous, potentially from different EHR vendors
and with inconsistent coding systems (e.g., ICD-9 vs. ICD-10) across patients; irregularly sampled,
with non-uniform time gaps between observations; and noisy, containing missing data and irrelevant
events to 7. An effective solution must therefore identify task-related events from this long, noisy
data and model their temporal patterns in a generalizable manner. For instance, while lung nodule
growth indicates cancer risk [3], this temporal pattern is often scattered in EHRs, requiring algorithms
to extract and interpret these critical dynamics.

In this study, we consider the lung cancer risk prediction task as a use case to evaluate the general
Traj-CoA framework. Given the full patient trajectory X’ spanning up to 5 years before a reference
date t,,, the task is to predict whether the patient will be diagnosed with lung cancer within the
following year (y = 1 for cases, y = 0 for controls).

3.2 Data Preprocessing

To handle the noisy, long, and heterogeneous EHR data X', we design a simple yet effective pre-
processing pipeline to create a unified input representation X. Instead of relying on the complex
task-specific feature engineering and cleaning common in prior work [} 142} 43]], our approach pre-
serves the heterogeneity in the data while transforming it into an LLM-friendly format for reasoning.
This consists of two steps: data unification into XML format and time-aware chunking.

Data Unification We convert a patient’s entire multimodal history X" into a single, unified XML
format X. This strategy is motivated by the proven ability of LLMs to effectively comprehend
structured, tag-based data [44] and inspired by similar practice on EHR data [2]. As illustrated in
Figure[I] we organize the longitudinal data chronologically within a nested XML structure. The root
contains patient demographics, followed by a sequence of timestamped records, each encapsulating
all data modalities and events observed at that time. This approach yields a clean, well-structured
representation of the patient’s timeline for Traj-CoA, preserving the data heterogeneity in text format.

Time-Aware Chunking Long XML inputs pose computational and reasoning challenges for LLMs.
For example, in our lung cancer dataset, the 75th percentile token count reaches 120k (Table [ST].
Despite large context windows (>128k tokens) in recent LLMs, performance degrades significantly
with longer contexts due to the "lost-in-the-middle" phenomenon, where models fail to process
information from the middle sections effectively [[L1].

To address this limitation, we follow the CoA approach [18]] which splits the context into chunks and
uses multi-agent communication to ensure sequential information aggregation and seamless reasoning
(see Section [3.3). Instead of hard chunking based on a fixed chunk size, we design a time-aware
chunking strategy that avoids missing timestamp information caused by chunking. Specifically, we
partition the XML EHR input into chunks of maximum % tokens while preserving temporal ordering
and timestamp completeness. Since our data structure is organized by timestamps, we split XML
input into segments by timestamp, which are aggregated into chunks under the token limit k. When
a single timestamp’s records exceed k tokens, we split them further while maintaining the original
timestamp for each resulting chunk. This dynamic process converts the full XML input X into a
temporally coherent series of C' chunks {¢1, ca..., ¢c }, guaranteeing that all information within any
given chunk is closely related in time. Note that the number of chunks C' may vary by patient.

3.3 Chain-of-Agent

We adapt the CoA algorithm [18]] to reason over the chunked longitudinal EHR data. The vanilla
CoA consists of two stages involving a chain of worker agents to conduct temporal reasoning chunk-



by-chunk and a manager agent for the final prediction. Instead of relying on task-specific feature
engineering or model training, CoA operates via task-specific instructions provided to its LLM agents,
an approach that offers greater flexibility and efficiency for complex reasoning tasks. [18] 145]]

In stage one, a series of worker agents W; sequentially process each chunk ¢;. Each worker agent
takes the current chunk ¢;, a task-specific instruction Iy, and the summary message .S;_1 from the
preceding agent as input. Its function is to extract salient task-related information from c;, analyze
temporal patterns in relation to the aggregated summary, and produce an updated summary message
S;. This sequential process allows for the progressive task-related information aggregation across the
entire longitudinal EHR. The operation of each worker agent is defined as:

S; =W, (Iw, Si—1, ¢i) 1

In stage two, a manager agent M receives the final summary message S¢ from the last worker
agent W along with a task-specific instruction [,. The manager agent’s role is to synthesize the
comprehensive information contained in S¢ to produce the final output O. This is formulated as:

O =M(Iy,5c) @

The CoA framework transforms a long-context reasoning problem into a structured agent communi-
cation chain, with each agent assigned a shorter context, thereby improving the reasoning quality and
mitigating the LLM’s "lost-in-the-middle" phenomenon common in long-context reasoning. [[18]]

3.4 EHRMem

In our experiments, we found that a direct application of the vanilla CoA framework to longitudinal
EHR data can lead to the progressive abstraction and loss of critical task-related information over
long sequences. In other words, early clinical events may be vital for accurate prediction but may be
“forgotten" by the final summary message S¢. To mitigate this, we introduce EHRMem, a structured
long-term memory module storing task-related events and timestamps, denoted by M.

EHRMem is populated during stage one, where each worker agent extracts new clinical events or
risk factors that are potentially task-related, and stores their contents and timestamps as entries F;
in M. To prevent overwhelmingly redundant entries caused by EHR "copy-forwarding," [29] we
employ a deduplication mechanism: each agent’s prompt is augmented with the last k£ events from
M and is instructed to only store new, unrecorded information. In stage two, the manager agent’s
decision-making is augmented by the global context in M, conditioning its output on both the final
summary message S¢ and the entire memory M. The Traj-CoA’s operation is thus redefined as:

Si, Ei = Wi (Iw, Si—1, ¢, M|~k ]) 3
M- MOE; “4)
0 = M(Ins, S, M) 5)

where M[—Fk :] denotes the last k events in M, and & means concatenation. The EHRMem module
serves two primary functions: (1) it constructs a distilled clinical timeline, effectively reducing the
noise inherent in raw EHR, and (2) it provides the manager agent with a structured global context
complementary to the unstructured worker agents’ summary, enabling more robust reasoning across
the entire patient history.

Crucially, the extraction heuristic for populating EHRMem is intentionally inclusive. Worker agents
identify a slightly broader set of events potentially relevant to T, rather than strictly filtering for
those with an immediate, obvious connection to the task. This design choice acknowledges that
local worker agents lack the global context to definitively assess an event’s long-term significance.
By preserving a richer, slightly redundant set of events in M, we delegate the final synthesis and
attribution of importance to the manager agent, which can leverage the complete temporal context for
a more informed judgment.

4 [Experiments

4.1 Dataset

We experimented on a proprietary case-control dataset on lung cancer risk assessment. Each instance
in the dataset is anchored to a specific chest-related radiology exam (chest X-ray, chest CT, or



abdomen CT) capable of visualizing the lungs. The prediction task is to determine, at the time of
this index exam (%,,), whether a patient will receive a primary lung cancer diagnosis within 1 year.
Cases are defined as subjects diagnosed with primary lung cancer within one year of the index exam,
with diagnoses cross-validated against a state cancer registry. Controls are subjects with no cancer
diagnosis. Cases and controls were matched at a 1:10 ratio on the time and type of the index exam.
For each instance, up to five years of the patient’s longitudinal EHR history prior to the index exam
were recorded. This rich, multi-modal data encompasses both structured records (e.g., ICD codes, lab
results, vitals) and unstructured text (e.g., clinical notes, radiology reports).

We randomly sampled 13,629 instances (1,239 cases and 12,390 controls) for model development,
which were further randomly split into a training (12,266 samples) and validation (1,363 samples)
set. These data were used for fine-tuning and not used under a zero-shot setting. From the rest, we
randomly sampled 300 instances (28 cases and 272 controls) to construct a test set for feasible and
fair evaluation. We highlight that the token count of XML input is substantial, with an interquartile
range (IQR) of 28k—121k for cases and 19k—132k for controls in the test set (Table[ST). A detailed
data description is presented in the Appendix [A.T]

4.2 Experimental Settings

We used MedGemma-27B [7] as the base model of Traj-CoA, with a default chunk size of 8k tokens
and a maximum of 15 chunks to accommodate contexts up to 120k tokens. We benchmarked Traj-
CoA against four baseline categories: (1) ML: logistic regression (LR) and XGBoost [46] trained on
summary EHR features. (2) DL: The RNN-based trajectory models RETAIN [21] and PatientTM [4].
(3) BERT-based: Clinical ModernBERT (C-MBERT) [47], fine-tuned with LoRA [48]] using an 8k
context window. (4) LLM: Zero-shot MedGemma using two strategies: direct prompting (Vanilla, up
to 64k context) and RAG with a bge-m3 [49] retriever on the time-aware chunks.

For LR, XGBoost, and RETAIN, we used diagnosis codes as input features. For PatientTM, we used
the text descriptions of medical codes and unstructured notes as input. For BERT and LLM methods,
we used the same XML input and employed a middle truncation strategy for context beyond the
window. Specifically, we alternately selected texts from the beginning and end of the patient record
until the context window limit is met, maintaining their relative chronological order. Compared
to left truncation, where the most recent records are used, this method retains a longer and more
challenging temporal span for evaluating temporal reasoning. We further report the performance using
left truncation for BERT and vanilla baselines in Appendix [A.2] preliminary results of fine-tuning
Traj-CoA in Appendix[A.3] a case study in Appendix [A.4] and error analysis in Appendix [A.5]

We evaluated all methods on AUROC and the best F1 score among all thresholds, with its correspond-
ing precision and recall. We report AUPRC and discuss the differences in the Appendix[A.2] For
BERT, the risk score was derived from the output logit. For all LLM-based methods, we prompted the
model to output a risk score between 1 and 10. Further experimental details are in the Appendix [B.1]

Table 1: Performance comparison of different models. Bold indicates the best AUROC and F1
among all models or zero-shot models. SFT means supervised fine-tuning. The average performance
(mean=std) for Traj-CoA across 5 runs with different random seeds is reported.

Model Family Model Prediction  Context AUROC Precision Recall F1
Method Window

ML LR SFT — 0.741 0.306 0.393 0.344
XGBoost SFT — 0.763 0.367 0.393 0.379

DL RETAIN SFT — 0.757 0.346 0.321 0.333
PatientTM SFT — 0.730 0.361 0.464 0.406

BERT C-MBERT SFT 8k 0.749 0.367 0.393 0.379
Vanilla Zero-shot 32k 0.743 0.345 0.357 0.351

%I\EllzliGemma) RAG Zero-shot 1k x 32 0.753 0.221 0.607 0.324
Traj-CoA (w/o EHRMem)  Zero-shot 8k x 15 0.748 0.183 0.821 0.299
Traj-CoA Zero-shot 8k x 15  0.766 + 0.019 0.358 + 0.057 0.436 £0.105 0.380 + 0.018




4.3 Results

Table [T|reports the performance of each method. Vanilla MedGemma with a 32k context window and
RAG with top 32 chunks of maximum 1k tokens each achieves an AUROC of 0.74-0.75. However,
expanding vanilla MedGemma’s context to 64k degrades its performance to an AUROC of 0.714,
suggesting difficulty in utilizing longer input sequences effectively (Table [S2). In contrast, Traj-
CoA, with its 120k context and dedicated design, substantially outperforms all zero-shot baselines,
achieving an AUROC of 0.766 and an F1 score of 0.380, outperforming most SFT baselines and
comparable to the best. These results highlight Traj-CoA’s superior capability to conduct temporal
reasoning over very long EHRs, overcoming the limitations observed in standard long-context models.

Ablation Study To analyze the contribution of the EHRMem component, we performed an ablation
study by removing it from our architecture. As detailed in Table[I] this modification significantly
impairs model performance, causing an absolute drop of 1.8% in AUROC and 8.1% in F1 score. This
result underscores the importance of maintaining a detailed long-term memory of clinical events, as
it provides predictive signals that are not fully captured by the evolving summary alone.

5 Analysis

To further probe the mechanisms by which Traj-CoA synthesizes temporal information from longitu-
dinal EHR, we conducted additional analyses to answer five research questions. We fixed a random
seed for the following analyses.

5.1 Sensitivity Analysis
Q1: How does the chunk size affect the performance?

Motivated by recent findings that LLM performance can degrade in very long contexts [11], we
analyzed Traj-CoA’s sensitivity to chunk size. To isolate this effect, we fixed the total context
length at 80k tokens and varied the chunk size from 2k to 16k, which correspondingly adjusted the
number of chunks from 40 down to 5. Figure[2JA shows that performance peaks with a moderate
chunk size of 8k, while both smaller (2k) and larger (16k) chunks result in lower AUROC scores.

This reveals a fundamental trade-off. Small chunks force (A) ~ Chunk Size vs AUROC

. . . . . . . (Fixed Max Window = 80k, Log Scale)
a long chain of iterative summarizations, risking catas-
trophic forgetting [50] where early, critical details are ab- 076

0.75

stracted away. Conversely, large chunks shorten the chain
but are susceptible to the "lost-in-the-middle" issue [[11]], ors
where each worker agent fails to identify fine-grained sig- 072
nals within a vast context. The 8k chunk size appears to
provide an optimal balance, preserving local detail while

AUROC

0.74

2 4 8 16
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0.775
Q2: How does o ores
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< 0.755
We next analyzed how performance scales with the total 05
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context window to determine if more temporal information
is beneficial. We fixed the chunk size at 8k and increased
the maximum number of chunks from 5 to 20, thereby

expanding the context window from 40k to 160k tokens. Figure 2: Sensitivity analysis on (A)

chunk size and (B) number of chunks.
As shown in Figure 2B, AUROC consistently improves

as the context window expands. While the vanilla LLM

baseline also improves when scaling from an 8k to a 32k

context, its performance degrades significantly at 64k (Table[S2). In contrast, Traj-CoA maintains its
positive trend up to 160k tokens. This demonstrates that EHRs contain rich, albeit noisy, predictive
signals and that Traj-CoA’s architecture is uniquely capable of leveraging these ultra-long sequences
where standard methods fail.
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Figure 3: Analysis of Traj-CoA’s behavior. (A) t-SNE plot visualizing the distribution of lung cancer
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de-identification purposes). The events were embedded through nomic-embed-text-v1.5 [51]; (B)
Distribution of categories in the lung cancer related events; and (C) Normalized date distribution of
the events.

5.2 Temporal Reasoning Analysis

To investigate Traj-CoA’s temporal reasoning, we performed a topic modeling analysis on the clinical
events it identified as salient for lung cancer prediction. We used an LLM-based pipeline inspired by
TopicGPT [52] to systematically categorize these events. First, for all positive cases, we extracted the
relevant events from the model’s final output O. Next, using Qwen2.5-7B-Instruct [53]], we conducted
a three-step analysis: (1) each event was classified into one of seven predefined categories (diagnosis,
procedure, lab tests, vital, medication, health behaviors or symptoms, and demographics); (2) for
each category, the top three common themes were generated based on all events under it; and (3)
each event was mapped to its most relevant theme, if any, or recorded as “Others". This structured
thematic analysis of the model’s output forms the basis to answering the subsequent Q3—-Q5.

Q3: Does Traj-CoA reason across diverse event categories?

We sought to verify that Traj-CoA’s reasoning extends beyond trivial heuristics (e.g., identifying
smoking status) to encompass a broad range of clinical events. Our analysis confirms that Traj-CoA
identifies salient events from all seven predefined categories. As shown in the distribution in Figure
B, the most frequently utilized categories are diagnosis, health behaviors or symptoms, and lab tests.

The diversity of these identified events is further underscored by the t-SNE visualization in Figure
BJA. The event embeddings are scattered across the semantic space rather than forming a single
cluster, indicating that the model draws upon a wide variety of clinical concepts. The qualitative
examples presented in the figure corroborate this ability. This demonstrates that Traj-CoA performs
multifaceted reasoning by integrating signals from a medically diverse set of events for its predictions.

Q4: Can Traj-CoA reason over the entire time horizon?

To determine if Traj-CoA utilizes the full patient trajectory or suffers from the "lost-in-the-middle"
phenomenon, we analyzed the temporal distribution of the events it identified as salient. In Figure[3|C,
we plot the normalized date distribution of events from the EHRMem (M) and the final output (O).



Both distributions show a concentration of events in the final year before the prediction date, which
aligns with the clinical intuition that recent events are often most critical for diagnosis. Crucially,
however, the model still identifies events from earlier periods. The presence of historical events in the
final output demonstrates that Traj-CoA effectively synthesizes information over long time horizons,
appropriately weighing recent events more heavily without discarding valuable historical context.

QS: Is Traj-CoA’s reasoning clinically relevant?

Finally, we assessed the clinical relevance of Traj-CoA’s reasoning by analyzing the themes of the
salient events. The t-SNE visualization of the event embeddings (Figure [3]A) reveals that the most
frequently identified themes form distinct semantic clusters, indicating thematic consistence.

Importantly, these data-driven themes align directly with well-established clinical knowledge. The top
themes identified include advanced age, anemia, COPD, cough, inflammatory markers, lung nodules,
pneumonia, pulmonary function, smoking, and weight loss. These are either widely recognized by
clinical practice and screening guidelines for assessing lung cancer risk [54,[55], or consistent with
existing evidence [56} 157, 158]]. This validates the model’s interpretability and demonstrates that its
risk predictions are based on clinically meaningful patterns within the EHR data.

5.3 Complexity Analysis

We compare the time complexity of Traj-CoA to vanilla
prompting and RAG, similar to the previous study [[18]. For

each patient, let L, L¢, Lr, and Lo denote the average lengths Table 2: Time complexity.

of the total input, a single chunk, the retrieved context for _Method  Encode Decode
RAG, and each model output, respectively. As shown in Ta- ~ Vanilla O(LZQ) O(LLo)
ble[2] Traj-CoA has a lower encoding complexity than vanilla ~ RAG O(Lz)  O(LrLo)

prompting but is more computationally intensive than RAG. _raji-CoA O(LLc) O(LLo)

This presents a trade-off between latency and contextual com-

pleteness. RAG achieves lower latency via selective retrieval at the risk of information loss, whereas
Traj-CoA processes the entire context. The optimal choice depends on whether an application
prioritizes real-time performance or comprehensive temporal reasoning over a patient’s history.

6 Discussion

In this work, we introduced Traj-CoA, a framework designed to perform temporal reasoning on long
and noisy longitudinal EHR data for patient trajectory modeling. By decomposing the reasoning
process across agents that analyze moderate-sized data chunks, Traj-CoA effectively sidesteps the
"lost-in-the-middle" problem, while a dedicated EHRMem module prevents forgetting of crucial
early events. This design unlocks a key capability: unlike standard LLMs, Traj-CoA’s performance
on long EHR scales positively with context windows up to 160k tokens, effectively leveraging the
rich predictive signals in complete patient trajectories.

While the positive results from this study shows promise for Traj-CoA, limitations exist. From
a technical perspective, future efforts can enhance Traj-CoA’s performance, including access to
external knowledge [59, [60]], using more powerful base models, and fine-tuning via multi-agent
training approaches [61} 62]. Moreover, while our analysis interprets Traj-CoA’s temporal reasoning
in terms of what the salient events look like, further analysis is needed to understand how these
events are synthesized by the model for accurate prediction among different subpopulations. Finally,
although Traj-CoA is a task-agnostic framework, it requires carefully crafted prompts for specific
tasks. Research into prompt optimization [63] or data-driven hypothesis generation [64}36] could
reduce this dependency and allow for more general modeling of patient trajectories. From a clinical
application perspective, Traj-CoA was evaluated on a relatively small, single-institution cohort and one
predictive task. We plan to conduct broader-scale validation to establish Traj-CoA’s generalizability
across diverse clinical settings and a wider array of prediction targets.

In conclusion, Traj-CoA provides a novel framework for patient trajectory modeling and bridges
the gap between the generalist agentic Al [9,59] and the temporal reasoning in longitudinal EHR.
Traj-CoA demonstrates potential as a generalizable framework for patient trajectory modeling, though
further design and validation are needed to make it more trustworthy.
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Appendix A. Additional Results

A.1 Dataset Description

We present the dataset statistics of the test set in Table[ST] There are 28 cases and 272 controls in
the dataset. The data is extracted from a in-house institutional medical center, whose EHR system
has experienced a transition during the period. Therefore, the data has clinical notes from two EHR
systems. The table summarizes features including patient demographics and metrics quantifying the
volume of clinical data, such as the number of notes, diagnosis codes, and lab codes. All statistics
are presented as median and interquartile range (IQR). Notably, both the case and control groups
share a median record length or *Year span’ of 4.0 years, suggesting comparable observation periods.
However, the groups differ in the volume of specific data types; for instance, cases have a higher
median count of diagnosis codes (156.0 vs. 128.5), whereas controls have a higher median count of
medication codes (64.0 vs. 42.0).

Notably, this dataset presents a challenging prediction problem because both the case and control
cohorts are anchored to a radiology exam. Consequently, all patients in the dataset underwent radio-
logical imaging for a clinical indication, requiring the model to distinguish radiological abnormalities
associated with lung cancer from those attributable to other conditions, such as cardiovascular disease.

Table S1: Dataset Statistics by Case-Control Status. Values shown as median (IQR) unless otherwise
specified.

Variable Cases Controls
(n=28) (n=272)

Sex (Female/Male) 14/14 115/157

Year of last record 2015.5 (2014.0-2018.0) 2016.5 (2013.0-2018.0)

Year span 4.0 (2.0-5.0) 4.0 (1.0-5.0)

XML tokens 61,270 (28,675-121,722) 51,610 (19,442-132,777)

# Timestamps 42.5 (24.0-79.8) 38.5 (14.0-96.0)

# EHR System 1 notes 7.5 (1.0-29.3) 8.0 (0.0-29.0)

# EHR System 2 notes 3.5(0.0-12.8) 4.0 (0.0-14.0)

# Radiology reports 10.0 (4.8-17.3) 8.0 (3.0-15.3)

# Diagnosis codes 156.0 (92.8-271.3) 128.5 (42.5-349.3)

# Medication codes 42.0 (17.8-135.3) 64.0 (9.0-184.5)

# Procedure codes 98.0 (51.5-197.8) 106.5 (38.0-231.5)

# Lab codes 186.0 (26.8—439.3) 201.0 (49.8-523.0)

# Vital sign codes 28.0 (0.0-91.0) 20.0 (0.0-79.5)

A.2 Full Results

Table [S2|presents the complete results for our method, Traj-CoA, alongside BERT and LL.M-based
baselines. Traj-CoA, configured with a maximum chunk size of 8k, achieves the highest AUROC
(0.753 — 0.771), outperforming all BERT-based and LLM baselines.

While we observe a divergence between AUROC and AUPRC scores, we argue that AUROC is the
more appropriate primary metric for this clinical prediction task. Recent work by McDermott et
al. [[65]] demonstrates that while AUROC favors model improvements uniformly across all positive
samples, AUPRC can be a misleading metric that disproportionately rewards improvements for
samples assigned high scores. In the context of cancer risk prediction, the clinical cost of false
negatives is exceptionally high, making the correct classification of lower-scoring, at-risk individuals
paramount. Since AUPRC’s prioritization runs counter to this clinical need [65], we assert that Traj-
CoA’s superior performance on the more robust and relevant AUROC metric is the most significant
finding.
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Table S2: Full performance comparison of BERT-based and LLM baselines and Traj-CoA on the
lung cancer risk prediction task using the left or middle truncation strategy.

Model Family Model Prediction method Context Window Truncation AUROC AUPRC Precision Recall F1
. 8k Left 0.734 0.256 0323 0357 0339
Clinical ModernBERT  BERT SFT 8k Middle 0.749 0.310 0367 0393 0379
4k Left 0.627 0.133 0.191 0444 0.267

8k Left 0.668 0211 0370 0357 0364

16k Left 0.738 0.251 0266  0.607 0370

32k Left 0.739 0.249 0313 0357 0333

Vanilla  Zero-shot 64k Left 0.737 0.235 0233 0.500 0.318

4k Middle 0.646 0.139 0.169 0393 0.237

8k Middle 0.647 0.171 0217 0357 0270

16k Middle 0.732 0.256 0.500 0250 0.333

32k Middle 0.743 0.242 0345 0357 0351

64k Middle 0.714 0.214 0237 0500 0322

MedGemma 1k x 32 - 0753 0208 0221 0607 0.324
% x 16 - 0.740 0.224 0313 0357 0333

RAG Zero-shot 4k x 8 - 0731 0.190 0247 0643 0356

8k x 4 - 0.735 0.179 0215  0.500 0.301

8k x 5 Middle 0.753 0.203 0262 0393 0314

8k x 10 Middle 0.765 0.205 0217 0750 0336

8k x 15 Middle 0.764 0.233 0291 0571 0386

Traj-CoA  Zero-shot 8k x 20 Middle 0.771 0.214 0255  0.500 0.337

2k x 40 Middle 0.724 0.168 0.131  0.893 0.228

4k x 20 Middle 0.733 0.174 0203 0464 0.283

16k x 5 Middle 0.754 0.204 0.163 0857 0274

A.3 Preliminary Results of Fine-tuning Traj-CoA

To investigate if further training could enhance the predictive performance of Traj-CoA, we conducted
a preliminary study using rejection sampling fine-tuning (RFT) [66]. While our initial results are
promising, we caution that these findings are exploratory. A systematic application of this method
would necessitate a rigorous experimental design and extensive hyperparameter tuning to ensure
robust and generalizable improvements.

Training Data Generation We generated a high-quality dataset for RFT using a rejection sampling
methodology, beginning with an initial pool of 500 cases and 500 controls from the training set. For
each patient, we generated four candidate reasoning trajectories using Traj-CoA (8k x 15 chunks
setting) with a high sampling temperature of 1.5. A trajectory is defined as the sequence of inputs
and outputs from all worker and manager agents during a single forward pass.

To select for high-quality reasoning, we applied the following rejection criteria: for cases, we retained
the trajectory that produced the highest predicted risk score, provided it was greater than 6; for
controls, we retained the trajectory yielding the lowest score, provided it was less than 4. From each
retained trajectory, we constructed RFT samples by compiling the input-output pairs from the first
and last worker agents, two randomly sampled intermediate worker agents, and the manager agent.
This process yielded a final RFT dataset comprising 2,223 instruction-tuning samples for fine-tuning
both agent types.

RFT We fine-tuned the MedGemma-27B model using supervised fine-tuning (SFT). For memory
efficiency, we employed QLoRA [67] with 4-bit quantization, implemented with the Unsloth [68] and
Huggingface TRL [69] libraries. The LoRA rank and a were both set to 32. The model was trained
for 3 epochs on two A100 GPUs, using a per-device batch size of 2 and 8 gradient accumulation
steps, resulting in an effective batch size of 32. Because the RFT dataset contained a mixture of data
for both worker and manager agents, the single fine-tuned model serves as a unified base for both
agent types in our framework.

Preliminary Results As shown in Table[S3] RFT leads to a notable performance gain for Traj-CoA.
For example, when configured with a 16k x 5 context window, RFT improves the AUROC from
0.754 to 0.789. This result suggests that fine-tuning on data generated via rejection sampling is a
promising direction for enhancing model performance.

However, we observed two key disparities in these preliminary results. First, the improvement in
AUROC was not consistently accompanied by an increase in the F1 score. Second, the performance
gains were more pronounced in the 16k x 5 setting, despite the RFT data being generated from
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the 8k x 15 setting. We hypothesize that these inconsistencies may be attributable to the ratio of
instruction-tuning data between worker and manager agents in the RFT dataset.

Table S3: Preliminary results for training Traj-CoA.

Model Family Model Prediction Context AUROC Precision Recall F1
Method Window

Traj-CoA Zero-shot 8k x 15 0.764 0.291 0.571  0.386
g@%ﬂGemma Traj-CoA w/ RFT RFT 8k x 15 0.775 0262 0571  0.360
Traj-CoA Zero-shot 16k x5 0.754 0221 0607 0324
Traj-CoA w/ RFT RFT 16k x5 0.789 0241 0714 0360

Future Directions While our exploratory experiments are promising, this work highlights several
avenues for future research. First, our current approach trains a single, unified base model on mixed
data for both worker and manager agents. This co-training strategy may introduce biases and limit
the potential for agent specialization. Future work could explore dedicated multi-agent fine-tuning
strategies [61] to train distinct models for each role, potentially enhancing the performance of the
overall framework. Second, we employed an offline rejection sampling method for fine-tuning.
Adopting online learning paradigms, such as reinforcement learning [61) [70], could enable more
dynamic policy improvements and potentially lead to more robust and capable agents. Finally, we
observed that model performance can be sensitive to numerous hyperparameters. These include the
case-control balance of the training data, the sampling temperature used for trajectory generation, and
the ratio of worker-to-manager data. A rigorous, systematic study is needed to investigate the impact
of these parameters and establish a more principled approach to optimizing the training process.

A4 Case Study

We present a deidentified case study of Traj-CoA’s final output O for a case patient. As shown
in Table [S4] the patient is an elderly female with multiple comorbidities (e.g., COPD, cognitive
impairment) and established risk factors, including an advanced age and a history as a former smoker.
She recently had an emergency room visit for shortness of breath and a chest X-ray with a "prominent
interstitial pattern,” both of which are non-specific and could be attributed to her existing conditions.
Traj-CoA demonstrates its ability to synthesize this heterogeneous information effectively. It correctly
identifies that the combination of long-term risk factors and persistent, concerning symptoms warrants
a high-risk assessment (8/10), showcasing its capability to produce predictions grounded in a holistic
view of the patient’s trajectory.

A.5 Error Analysis

We conducted a qualitative analysis of the three false-negative cases, which were identified using a
predicted risk threshold of 5.0. To investigate the model’s failure modes, we performed a manual
chart review of each patient’s 5-year longitudinal EHR data preceding the index exam. This analysis
of why Traj-CoA assigned erroneously low-risk scores aims to reveal its limitations and guide future
improvements.

Case 1 is a patient in her early 70s with a complex medical history that includes a >40 pack-year
smoking history, COPD, and pulmonary hypertension. While the patient presented with persistent
cough, dyspnea, and chest pain, recent imaging showed no suspicious findings and indicated resolving
pneumonia. Traj-CoA reasoned that these symptoms were manifestations of her known comorbidities,
assigning a low predicted cancer risk of 3/10.

Case 2 is a patient in her 50s with a medical history notable for chronic cough and long-term
immunosuppression due to arteritis. Although a PET-CT three years prior revealed a small nodule,
the patient is a never-smoker with no family history of cancer, and subsequent CT scans showed
no new suspicious nodules. Traj-CoA likely discounted the historical nodule due to its long-term
stability and the patient’s otherwise low-risk profile, assigning a low predicted cancer risk of 4/10.

18



Case 3 is a patient in her early 70s with a medical history that includes severe obesity, hypertension,
and asthma. The patient reported a chronic cough and repeated exposure to fumes. She is a lifelong
nonsmoker, and interim exams noted clear lungs. Traj-CoA correctly identified the exposure to fumes
as a lung cancer related event, but attributed respiratory complaints to asthma and likely over-weighted
the patient’s nonsmoker status and negative exam results, thus assigning a low predicted cancer risk
of 2/10.

In conclusion, our error analysis identifies two key limitations of the proposed model. First, as shown
in all three cases, Traj-CoA demonstrates a tendency to over-rely on recent, benign imaging results,
which can lead to poorly calibrated risk assessments that fail to accurately capture a patient’s true risk.
Second, as shown in cases 2 and 3, Traj-CoA may underestimation of risk within the never-smoker
subpopulation, suggesting the model does not adequately capture the distinct predictive factors
relevant to this group (e.g., environmental or occupational exposures) [[71]].

These findings highlight opportunities for future research. To address miscalibration, future methods
may incorporate methodologies designed to produce more reliable predictions, such as model fine-
tuning. To improve fairness and accuracy, we advocate for the development of models that explicitly
stratify by smoking status, either through cohort-specific architectures or by integrating domain
knowledge of non-smoking-related risk factors.

Appendix B. Experimental Details

B.1 Experimental Settings

Our experiments were conducted using Python 3.10, Huggingface Transformers 4.53.2 [[72], and
vLLM 0.9.2 [[73]]. Models were downloaded from Huggingfac The BERT baseline was trained on
a single NVIDIA A100 GPU; we added a linear layer over the [CLS] token’s final hidden state to
produce logits and optimized the model using a binary cross-entropy loss with a learning rate of Se-5,
a batch size of 8, and 4 gradient accumulation steps (effective batch size of 32). We employed an
early stopping strategy with a patience of 3 epochs to prevent overfitting. For all LLM-based methods,
we used default decoding parameters of Gemma 3: a temperature of 1.0, top-p of 0.95, and top-k of
64. To accommodate the model’s size and the long-context requirements of the task, inference was
performed on two NVIDIA A100 GPUs, leveraging tensor parallelism. Implementation of Traj-CoA
will be released on GitHub upon acceptance.

Appendix C. Prompts
We present the prompt templates and query for RAG in Table[S5] [S6l [S7] [S8] [S9 and

"https://huggingface.co/Simonlee711/Clinical_ModernBERT
“https://huggingface.co/google/medgemma-27b-text-it
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Table S4: Case study of the final output O of a case patient.

De-identified Patient Lung Cancer Risk Assessment

Risk Evolution Summary

The patient is an .year—old female with a significant history of COPD and a past smoking history, both
established risk factors for lung cancer. Her medical history is complicated by multiple comorbidities
including dementia, hypertension, and chronic kidney disease (CKD), along with significant frailty and
cognitive impairment, which could potentially delay diagnosis. Chronologically, her COPD was noted on
chest X-rays in [ and confirmed in [l Her advanced age (i} iv | N I » I bos been
a consistent risk factor. The patient’s smoking status was documented as "Former’ in [} Recent
presentations (-) for syncope, chest pain, and shortness of breath are concerning, although
initial workup (negative troponin, stable CT head, non-specific CXR showing interstitial pattern) did
not confirm an acute cardiac or neurological event or definitively point to malignancy. The presence
of mild hypoxemia (SpO2 92%) and fever (38.3°C) during the ﬁ ER visit are non-specific but
warrant consideration in the context of her overall health. Her overall clinical picture remains high-risk
due to age, COPD, smoking history, and persistent concerning symptoms like shortness of breath and
chest pain, even if the immediate cause is unclear.

Final Lung Cancer-Related Events

. -: Patient born in -., making her - years old in - Advanced age is a risk factor

for lung cancer.

I !t X-ray revealed hyperinflation consistent with COPD. COPD is asso-
ciated with an increased risk of lung cancer.

. _: Diagnosis of COPD confirmed via radiology report (hyperinflation). COPD

is a significant risk factor for lung cancer.

. _: Patient is - years old. Advanced age is a significant risk factor for lung

cancer.

. _: Patient identified as a "Former’ smoker (tobacco_use). Being a former smoker

still carries an elevated risk compared to never smokers.

° _: Chest X-ray shows prominent interstitial pattern in the bilateral lungs. This
finding is non-specific and could represent pulmonary edema, interstitial lung disease, or potentially
an underlying malignancy, although it is not diagnostic.

. _: ER presentation for shortness of breath. Shortness of breath is a common

symptom of lung cancer, but also of COPD, heart failure, and other conditions.

° _: ER presentation for chest pain (unspecified). Chest pain is a potential
symptom of lung cancer, although it can have many other causes.

Final Risk Assessment

Risk Level: 8/10

Reasoning: The patient’s risk is assessed as high (8/10) for developing lung cancer within one year. This
assessment is based on the convergence of several significant risk factors: advanced age (- years), a
confirmed history of COPD (present since at least -) and a documented history as a former smoker.
While the recent chest X-ray finding of a "prominent interstitial pattern’ is non-specific, it warrants further
investigation in the context of these risk factors. Furthermore, the patient’s presentation with shortness
of breath and chest pain, although potentially attributable to her known COPD or other comorbidities,
are classic symptoms that could also indicate lung cancer. Her significant cognitive impairment and
dementia may complicate symptom reporting and potentially delay diagnosis if malignancy were present.
The combination of established lung cancer risk factors (age, COPD, smoking history) and concerning
symptoms elevates her risk profile significantly, justifying a high-risk assessment despite the absence of
definitive diagnostic findings to date.
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Table S5: Prompt for the initial worker agent.

INITIAL WORKER SYSTEM PROMPT

You are an expert clinical Al assistant specializing in lung cancer risk assessment from longitudinal EHR
data. You are answering the question of "How likely is this patient to develop lung cancer within one year?"
based on the provided EHR data chunk.

Task: Analyze the first chunk of a patient’s longitudinal EHR data, provided in XML format. Your goal is
to establish a baseline understanding of the patient’s lung cancer risk. You should filter out any irrelevant
information and focus solely on the clinical aspects that pertain to lung cancer risk assessment.

Input:
- chunk_xml: A string containing the first segment of the patient’s EHR data.

Instructions:

1. Summarize the Clinical Information: Briefly summarize the key clinical information present in this
data chunk. This includes demographics, diagnoses and symptoms, medications, procedures, abnormal lab
results, relevant lifestyle factors, and key statements from the notes. You should include timestamps for the
key clinical information in the summary. Provide a concise overview of the patient’s health status at the
beginning of their record.

2. Identify Initial Risk Factors or Clinical Events: Explicitly list all potential lung cancer risk factors or
clinical events found in the data, such as risk factors, symptoms, abnormal lab results, findings, etc. For each
event, provide the timestamp and a detailed description of the event.

3. Assess Initial Lung Cancer Risk: Based on the identified lung cancer related risk factors or clinical
events, provide an initial lung cancer risk assessment for this patient. The risk should be categorized as Low,
Moderate, or High. Provide a clear rationale for your assessment.

Output Format:
Your output must be a single, easily parsable JSON object with the following keys:
- summary: A string containing the clinical summary.
-risk_factors_or_clinical_events: A list of JSON objects, where each object details an identified
lung cancer related risk factor or clinical event.

- timestamp: The timestamp of the event.

- event: A detailed description of the event.
- risk_assessment: A JSON object indicating the assessed risk level for lung cancer diagnosis within 1
year ("Low’, "Moderate’, or "High’).

- risk_level: The assessed risk level for lung cancer diagnosis within 1 year ("Low’, "Moderate’, or
’High’).

- reasoning: A string explaining the basis for your risk assessment.

ONLY output the JSON object without any additional text or formatting. Ensure that the JSON is valid and
can be parsed easily.

Table S6: User prompt for the initial worker agent.

INITIAL WORKER USER PROMPT

Here is the first data chunk:
<chunk_xml>
{chunk_1_xml}
</chunk_xml>

Please provide the initial clinical summary and lung cancer risk assessment in JSON format.
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Table S7: Prompt for the subsequent worker agent.

SUBSEQUENT WORKER SYSTEM PROMPT

You are an expert clinical Al assistant specializing in lung cancer risk assessment from longitudinal EHR
data. You are answering the question of "How likely is this patient to develop lung cancer within one year?"
based on the provided EHR data chunk and previous clinical summary.

Task: Analyze a new chunk of a patient’s EHR data, considering the previous clinical summary, risk
assessment, and the universal memory of lung cancer related events. Your goal is to update the patient’s
lung cancer risk profile based on new information. You should filter out any irrelevant information and focus
solely on the clinical aspects that pertain to lung cancer risk assessment.

Input:

- previous_summary: A JSON object from the previous agent containing the summary, lung cancer related
events, and risk assessment up to this point.

- memory_events: A list of the last 10 lung cancer related events from the universal memory, providing
historical context across all processed chunks.

- new_chunk_xml: A string containing the next segment of the patient’s EHR data.

Instructions:

1. Update the Summary: Briefly summarize the key clinical information from the new data chunk and DO
aggregate it with the previous summary. You should include timestamps for the key clinical information in
the summary. Be sure to aggregate the new information with the previous summary so that the summary is
comprehensive and detailed. Include all important timestamps so far.

2. Identify Risk Factors or Clinical Events: List any new lung cancer risk factors or clinical events, such
as risk factors, symptoms, abnormal lab results, findings, etc.

3. Analyze Temporal Patterns and Status Changes: Describe any significant clinical changes or temporal
trends observed between the previous data and this new chunk (e.g., progression of a disease, initiation of a
new treatment).

4. Assess Updated Lung Cancer Risk: Provide an updated lung cancer risk assessment, categorized as
Low, Moderate, or High. Your reasoning should clearly connect the new information, memory events, and
temporal patterns to the change (or lack thereof) in risk.

Output Format:
Your output must be a single, easily parsable JSON object with the following keys:
- updated_summary: A string with the summary of the entire clinical information so far. The summary
should be concise but detailed and include timestamps for the key clinical information.
-new_risk_factors_or_clinical_events: A list of JSON objects detailing the new lung cancer risk
factors or clinical events that are NOT in the memory. Be comprehensive and detailed in the list of new
events.

- timestamp: The timestamp of the event.

- event: A detailed description of the event, and how it may be related to lung cancer (risk factors,
symptoms, abnormal lab results, findings, etc.)
- temporal_analysis: A string describing clinical changes and temporal patterns so far.
-updated_risk_assessment: A JSON object for the updated risk level for lung cancer diagnosis within 1
year ("Low’, "Moderate’, or "High’).

- risk_level: The updated risk level for lung cancer diagnosis within 1 year ("Low’, "Moderate’, or
"High’).

- reasoning: A string explaining the rationale for the updated risk assessment.

ONLY output the JSON object without any additional text or formatting. Ensure that the JSON is valid and
can be parsed easily.
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Table S8: User prompt for the subsequent worker agent.

SUBSEQUENT WORKER USER PROMPT

Previous Agent Output:
<previous_summary>
{previous_agent_output}
</previous_summary>

Memory Events (Last 10 from Universal Memory):
<memory_events>

{memory_events}

</memory_events>

New Data Chunk:
<new_chunk_xml>
{new_chunk_xml}
</new_chunk_xml>

Please provide the updated and consolidated summary in JSON format.
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Table S9: Prompt for the manager agent.

MANAGER AGENT SYSTEM PROMPT

You are a senior clinical Al expert specializing in longitudinal lung cancer risk analysis. You are answering the
question of "How likely is this patient to develop lung cancer within one year?" based on the comprehensive
outputs from multiple worker agents that have processed a patient’s EHR data chronologically.

Task: Synthesize the outputs from the last worker agent and the universal memory of all lung cancer related
events to provide a final, comprehensive lung cancer risk assessment and a narrative of the patient’s risk
evolution. You should filter out any irrelevant information and focus solely on the clinical aspects that pertain
to lung cancer risk assessment.

Input:

-final_worker_outputs: A JSON object, which is the output from the last worker agent that has processed
a patient’s EHR data chronologically. This object represents the patient’s entire available medical history
summarized by the worker agents.

-universal_memory_events: A list of all lung cancer related events from the universal memory, providing
complete historical context across all processed chunks.

Instructions:

1. Synthesize Temporal Trends: Review the sequence of outputs and the complete universal memory.
Create a concise narrative that describes the patient’s clinical journey and the evolution of their lung cancer
related events over time. Highlight key events or changes that significantly impacted their risk profile.

2. Final Lung Cancer Related Events Assessment: Consolidate all identified lung cancer related events
from the universal memory and worker outputs into a final, comprehensive list. Ensure no events are
duplicated and all are properly chronologically ordered.

3. Assess Final Lung Cancer Risk: Provide a final lung cancer risk assessment, from 1 to 10, where 1 is the
lowest risk and 10 is the highest risk.

4. Provide Comprehensive Reasoning: Justify your final risk assessment by explaining how the interplay
of all lung cancer related events from the universal memory and their temporal evolution contributes to the
patient’s overall risk. This should be your most detailed and conclusive reasoning.

Output Format:
Your output must be a single, easily parsable JSON object with the following keys:
- risk_evolution_summary: A string containing the narrative of the patient’s clinical journey and risk
evolution.
- final_lung_cancer_related_events: A list of strings containing all unique, consolidated lung cancer
related events from the universal memory.
- final_risk_assessment: A JSON object for the final risk level for lung cancer diagnosis within 1 year
(1 to 10, where 1 is the lowest risk and 10 is the highest risk).

- risk_level: An integer from 1 to 10, where 1 is the lowest risk and 10 is the highest risk.

- reasoning: A string providing a comprehensive justification for the final risk assessment.

ONLY output the JSON object without any additional text or formatting. Ensure that the JSON is valid and
can be parsed easily.

Table S10: User prompt for the manager agent.

MANAGER AGENT USER PROMPT

All Worker Agent Outputs:
<final_worker_outputs>
{final_worker_outputs}
</final_worker_outputs>

Universal Memory Events (All Events):
<universal_memory_events>
{universal_memory_events}
</universal_memory_events>

Please provide the final risk assessment and narrative summary in JSON format.
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Table S11: User prompt for the Manager agent without universal memory.

MANAGER AGENT USER PROMPT WITHOUT MEMORY

All Worker Agent Outputs:
<final_worker_outputs>
{final_worker_outputs}
</final_worker_outputs>

Please provide the final risk assessment and narrative summary in JSON format.

Table S12: The query for RAG.

LUNG CANCER QUERY FOR RAG

What is the patient’s risk of lung cancer?
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