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dimensions, we describe a flag of vector spaces (i.e. a
nested sequence of vector spaces) that best represents the
collection based on a natural optimization criterion and
we present an algorithm for its computation. The utility
of this flag representation lies in its ability to represent
a collection of subspaces of differing dimensions. When
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component of the flag provides an approximation to the
Karcher mean. An intermediate matrix used to construct the
flag can also be used to recover the canonical components
at the heart of Multiset Canonical Correlation Analysis.
Two examples utilizing the Carnegie Mellon University Pose,
Illumination, and Expression Database (CMU-PIE) serve as
visual illustrations of the algorithm.

* Corresponding author. Tel.: +1 5093011787.
E-mail addresses: draper@cs.colostate.edu (B. Draper), kirby@math.colostate.edu (M. Kirby),

jmarks@bowdoin.edu (J. Marks), marrinan@math.colostate.edu (T. Marrinan),
peterson@math.colostate.edu (C. Peterson).
http://dx.doi.org/10.1016/j.laa.2014.03.022
0024-3795/© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

http://dx.doi.org/10.1016/j.laa.2014.03.022
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/laa
mailto:draper@cs.colostate.edu
mailto:kirby@math.colostate.edu
mailto:jmarks@bowdoin.edu
mailto:marrinan@math.colostate.edu
mailto:peterson@math.colostate.edu
http://dx.doi.org/10.1016/j.laa.2014.03.022
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.laa.2014.03.022&domain=pdf


16 B. Draper et al. / Linear Algebra and its Applications 451 (2014) 15–32
© 2014 The Authors. Published by Elsevier Inc. This is an
open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

The Grassmann manifold has found use as a setting in which to classify and make
comparisons between large data sets. It is particularly effective when aspects of the data
can be captured with linear subspaces. A sampling of settings where Grassmann tech-
niques have been applied includes activity modeling and recognition, shape analysis,
action classification, face recognition, person detection, subspace tracking, and general
manifold clustering [14,10,12,4–6,19,20,18]. Given a cluster of points on a Grassmann
manifold, algorithms have been developed to find a point on the manifold which rep-
resents the cluster [5,1,7,17]. These cluster representatives play the role of an average
subspace and can be used to reduce the cost of classification algorithms or to aid in
clustering tasks.

In a more general setting, consider data consisting of subspaces of R
n of differing

dimensions, i.e. a data cloud living on a disjoint union of Grassmann manifolds. This
paper proposes a flag mean representation for such a collection. The flag mean is a
nested sequence of vector spaces that best fits the data according to an optimization
criterion based on the projection Frobenius norm. The subspaces in the flag can be
treated independently as points on Grassmann manifolds, or collectively as a single
point on a flag manifold.

The layout of the paper is as follows. Section 2 provides background, definitions and
motivation for the construction. Section 3 presents the optimization problem, whose so-
lution is the flag mean, and provides an analytical solution by the method of Lagrange
multipliers. The result is an ordered set of unit length vectors most central to the col-
lection of subspaces being averaged. Section 4 exploits the singular value decomposition
as an efficient computational tool for determining this ordered set of unit length vectors
and connects them to multiset canonical correlation analysis. In Section 5 the central
vectors are used to construct the flag mean. The construction is then illustrated with
two numerical experiments using data drawn from the Carnegie Mellon University Pose,
Illumination, and Expression Database (CMU-PIE). Section 6 explores a special case
of the flag mean and relates it to alternative subspace means found in the literature.
Section 7 discusses conclusions and future work.

2. Background

Many image and video based computer vision systems represent data as a set of linear
subspaces of a fixed dimension [17,19,6,4,1]. This structure allows the data to be treated
as a collection of points on a single Grassmann manifold. The Grassmann manifold
Gr(V, p) is a manifold whose points parametrize the subspaces of dimension p inside the

http://creativecommons.org/licenses/by-nc-nd/3.0/
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vector space V . In this paper, we will assume that V is a finite dimensional real vector
space and thus we can identify V through its dimension, n. For the remainder of this
paper, we denote by Gr(n, p) the Grassmann manifold of p dimensional subspaces of Rn,
GL(p) denotes the general linear group of invertible p×p matrices and O(p) denotes the
orthogonal group of p× p orthogonal matrices.

Let R
n×p denote the vector space of n× p matrices with real entries and let (Rn×p)◦

denote the open submanifold of full rank n× p matrices. For each Y ∈ (Rn×p)◦, let [Y ]
denote the column space of Y . There is a natural surjective map φ : (Rn×p)◦ → Gr(n, p)
given by φ(Y ) = [Y ] (with [Y ] identified with its corresponding point on Gr(n, p)). It is
clear that φ(X) = φ(Y ) if and only if there exists an A ∈ GL(p) such that XA = Y .
Thus a point q on Gr(n, p) corresponds to a p-dimensional subspace Vq of Rn and can be
represented by any element of a GL(p) orbit of a full rank n×p matrix, Y , whose column
space [Y ] is equal to Vq. For the purposes of computation, we utilize a representative with
orthonormal columns (note that if Y is a representative with orthonormal columns and
if B ∈ O(p) then Y B will be another representative with orthonormal columns). Since a
matrix representative, with orthonormal columns, for a point on a Grassmann manifold
is only unique up to right multiplication by an orthogonal matrix, it is important that
the output of any algorithm is invariant to such a multiplication.

Let d : Gr(n, p)×Gr(n, p) → R be a metric. The metric, d, is said to be orthogonally in-
variant if for every [X], [Y ] ∈ Gr(n, p) and every A ∈ O(n), d([X], [Y ]) = d([AX], [AY ]).
One commonly used distance measure on Grassmannians is the metric induced from
the projection Frobenius norm (denoted by dpF ). It is an elementary exercise to show
that dpF is an orthogonally invariant metric on Gr(n, p). The projection Frobenius
norm arises from the identification of points in Gr(n, p) with n × n projection matri-
ces of rank p. If X,Y are full rank n × p matrices with orthonormal columns, then
the distance between [X], [Y ] ∈ Gr(n, p) is computed as a constant times the Frobe-
nius norm of the difference between the projection matrix representations of the points:
dpF ([X], [Y ]) = 2− 1

2 ‖XXT −Y Y T ‖F . As shown by Edelman et al., this distance can also
be computed as the �2-norm of the vector of the sines of the principal angles between
[X] and [Y ] [5]. If X (resp. Y ) are orthonormal matrix representatives for [X] (resp. [Y ])
then the cosines of the principal angles between [X] and [Y ] are the singular values of
XTY [3]. Note that if A,B ∈ O(p), then the singular values of XTY are the same as the
singular values of (XA)T (Y B).

In many applications, it can be natural and advantageous to represent aspects of
data through subspaces lying in a fixed ambient space that are of differing dimensions.
In such applications, a set of subspaces live naturally on a collection of Grassmann
manifolds rather than on a single Grassmann manifold. Suppose that [X] ∈ Gr(n, p1)
and [Y ] ∈ Gr(n, p2) for p1 < p2. As illustrated in Bjork and Golub’s foundational paper,
there will be p1 principal angles between [X] and [Y ] [3] and we define dpF ([X], [Y ]) as
the �2-norm of the vector of the sines of the p1 principal angles between [X] and [Y ].
Note that dpF is no longer a metric due to the possibility of dpF ([X], [Y ]) = 0 while
[X] �= [Y ] (for instance, if [X] is a proper subspace of [Y ]).
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The scenario in which data are represented as subspaces of differing dimensions is of
central interest to this paper. Finding an average representation for objects of this type is
a very practical problem. For example, an “action subspace” can be approximated from
the span of the frames of a video clip. The ambient dimension of such a subspace would
be the number of pixels in each frame, but the subspace dimension would vary depend-
ing on what type action was being represented. Similarly, an “illumination subspace”
might be computed from images of an object under a variety of lighting conditions.
The dimension of this subspace would depend on the number of unique surface normals,
as explained by Belhumeur and Kriegman [2]. Thus, different objects would need sub-
spaces of different sizes to fully capture lighting information. In either scenario, finding
an average or prototype for a collection of these subspaces has benefits when computing
statistics, clustering, or classifying data.

Existing methods for representing subspaces cannot handle this type of variation,
because they require that all points live on a single Grassmann manifold. In contrast,
this paper works with collections of subspaces such as these, that live on a disjoint
union of Grassmannians. It proposes that the whole collection of subspaces can be well
represented by a flag, and that a subset of the flag serves as a natural representative
on each of the Grassmannians. The flag avoids some of the undesirable side-effects of
standardizing the subspaces to a single manifold, and contains more subtle information
than existing subspace averages.

3. The flag mean optimization problem

Let D = {[Xi]}Ni=1 be a finite collection of subspaces of R
n. Consider the set of

positive integers P = {dim([Xi]) | [Xi] ∈ D}. We can consider D as a collection of
points lying on the disjoint union of Grassmannians,

∐
pi∈P Gr(n, pi). We wish to find

the one-dimensional subspace [u(1)] ∈ Gr(n, 1) that lies closest to the elements in D as
measured by the sum of the squares of the sine of the principal angle between [u(1)] and
the elements of D. Thus we define:

[
u(1)] := arg min

[u]∈Gr(n,1)

∑
[Xi]∈D

dpF
(
[u], [Xi]

)2 (1)

While this optimization problem has some similarities to the Riemannian center of mass,
there are important differences in that it uses dpF (instead of the geodesic distance based
on arc length), the elements of D are not restricted to live on a single Grassmannian,
and [u(1)] ∈ Gr(n, 1). We can extend the problem to find a sequence of optimizers,
[u(1)], [u(2)], . . . by adding orthogonality constraints. In particular, we define:

[
u(j)] := arg min

[u]∈Gr(n,1)

∑
[Xi]∈D

dpF
(
[u], [Xi]

)2
subject to [u] ⊥

[
u(l)] for l < j,

(2)
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This leads to the set {[u(1)], [u(2)], . . . , [u(r)]} where r denotes the dimension of the span
of the elements in D.

Recalling that dpF ([X], [Y ]) = ‖ sinΘ‖2 (where sinΘ denotes the vector whose entries
are the sines of the principal angles between [X] and [Y ]), the sequence of optimizers
can be found analytically. Let θi be the lone principal angle between [u] and [Xi] and
let u,X1, . . . , XN be orthonormal matrix representatives for [u], [X1], . . . , [XN ]. For j =
1, . . . , r we can rewrite the cost function of Eq. (2) as,

[
u(j)] = arg min

[u]∈Gr(n,1)

∑
[Xi]∈D

dpF
(
[u], [Xi]

)2 (3)

= arg min
[u]∈Gr(n,1)

∑
[Xi]∈D

‖ sin θi‖2
2 (4)

= arg max
[u]∈Gr(n,1)

∑
[Xi]∈D

‖ cos θi‖2
2, (5)

= arg max
[u]∈Gr(n,1)

∑
[Xi]∈D

cos2 θi (6)

= arg max
[u]∈Gr(n,1)

∑
[Xi]∈D

uTXiX
T
i u (7)

= arg max
[u]∈Gr(n,1)

uT

(
N∑
i=1

XiX
T
i

)
u (8)

The equality between Eq. (6) and Eq. (7) follows from the thin singular value de-
composition of uTXi. Let pi = dim([Xi]). We know that Xi is an n × pi matrix whose
columns form an orthonormal basis for [Xi] and u is restricted to be a unit vector in R

n

whose span is [u]. If the thin SVD of uTXi is written as UΣV T , then U is a 1×1 matrix
whose only entry is ±1, Σ is a 1 × pi matrix whose first entry is cos θi with the other
entries equal to zero, and V is a pi × pi orthonormal matrix [3]. Thus

uTXiX
T
i u = UΣV TV ΣTUT

= U2 cos2 θi

= cos2 θi (9)

Substituting Eq. (8) in as the new cost function transforms the optimization problem
into

[
u(j)] := arg max

[u]∈Gr(n,1)
uT

(
N∑
i=1

XiX
T
i

)
u

subject to [u] ⊥
[
u(l)] for l < j.

(10)
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Define A =
∑N

i=1 XiX
T
i . Remember that u(1) is a unit length vector whose span is

[u(1)]. To find such a u(1), we consider the Lagrangian

L(u, λ) = uTAu− λ
(
uTu− 1

)
. (11)

The partial derivatives of L(u, λ) lead to the first order necessary conditions for opti-
mality that are satisfied when

Au = λu and

uTu = 1. (12)

Thus we solve the eigenvector problem, Au = λu, and the cost function is maximized
when u is the eigenvector associated with the largest eigenvalue of A. We set u(1) equal
to this eigenvector. Once u(1), . . . , u(j−1) has been found, we can find u(j) by considering
Lagrangians that incorporate the condition that u(j) has unit length and incorporate
orthogonality constraints in relation to u(l) for l < j. This leads to a Lagrangian of the
form

L(u, λ, λ1, . . . , λj−1) = uTAu− λ
(
uTu− 1

)
−

j−1∑
l=1

λl

(
uTu(l) − 0

)
(13)

The partial derivatives of L(u, λ, λ1, . . . , λj−1) lead to the first order necessary conditions
for optimality that are satisfied when

Au = λu and

uTu = 1 and

uTu(l) = 0 for l = 1 . . . j − 1. (14)

In other words, we seek an eigenvector of A that is orthogonal to previously found
eigenvectors of A. Since A is a real, symmetric, positive semi-definite matrix, there are
r = rank(A) mutually orthogonal eigenvectors associated with positive eigenvalues. If
these eigenvectors are ordered by their associated eigenvalues in descending order, the
resulting sequence is the set of sequential optimizers of Eq. (10), {[u(1)], . . . , [u(r)]}.

4. Solution via the SVD

Finding the r mutually orthogonal eigenvectors of A =
∑N

i=1 XiX
T
i can be completed

in O(n3) flops with standard eigenvector solvers. In this section, we describe how com-
putations can be carried out more efficiently in cases involving a relatively small number
of very tall matrices.
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If P =
∑N

i=1 dim([Xi]) (with Xi an n× dim([Xi]) matrix with orthonormal columns
whose column space is [Xi]) and if

X = [X1, X2, . . . , XN ], (15)

then X ∈ R
n×P . Note that XXT =

∑N
i=1 XiX

T
i = A and that rank(X) = rank(A) = r.

If the Singular Value Decomposition (SVD) of X is

X = UΣV T (16)

then

XXT = UΣΣTUT . (17)

Thus the columns of U are the eigenvectors of XXT and the first r left singular vectors
of X are exactly the solutions to the optimization problem in Eq. (10), {[u(1)], . . . , [u(r)]}.
By solving for the singular value decomposition of X instead of an eigenvalue decom-
position of A the complexity changes to O(nP 2) flops (which is less than O(n3) when
P < n).

In a related problem, we can find the eigenvectors of the matrix

XTX = V ΣTΣV T , (18)

as the columns of V . These right singular vectors of X are related to Multiset Canonical
Correlation Analysis (MCCA) (see Section 6.3).

5. The flag mean

Let (q1, q2, . . . , qM ) be an ordered set of integers such that q1 < q2 < · · · < qM .
A flag in R

n of type (q1, q2, . . . , qM ) is a nested sequence of subspaces S1 ⊂ S2 ⊂
· · · ⊂ SM such that dim(Si) = qi. The flag manifold, FL(n; q1, q2, . . . , qM ), is a manifold
whose points correspond to the set of all flags of type (q1, q2, . . . , qM ). Note that the flag
manifold FL(n; q1) is equivalent to Gr(n, q1) and the points on either correspond to the
q1-dimensional subspaces of Rn. For more details about the geometry of flag manifolds,
refer to [13].

Let D = {[Xi]}Ni=1 be a finite collection of subspaces of R
n and let r =

dim(span(
⋃N

i=1[Xi])). The flag mean of D, denoted �μpF �, is (typically) a point on
the flag manifold FL(n; 1, 2, . . . , r) (the notation �μpF � comes from the use of the pro-
jection F-norm in the cost function). Each subspace in the flag acts as an “average” for
{[Xi]}Ni=1. The flag is built from the 1-dimensional subspaces, {[u(1)], . . . , [u(r)]}, arising
as the left singular vectors of the matrix, X, built from D. If the non-zero singular values
are all distinct, then the flag is:

�μpF �(D) :=
[
u(1)] ⊂ [

u(1)∣∣u(2)] ⊂ · · · ⊂
[
u(1)∣∣ . . . |u(r)] (19)
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and we get a point on FL(n; 1, 2, . . . , r). Algorithm 1 describes this formulation explicitly
from the eigenvector decomposition of A =

∑N
i=1 XiX

T
i . We note that since A is a

symmetric positive semi-definite matrix, these r eigenvectors form an orthonormal set
and the associated eigenvalues are positive.

Algorithm 1 Calculate the flag mean, �μpF �([X1], . . . , [XN ])
Ensure: XT

i Xi = I for i = 1, . . . , N
Let A =

∑N
i=1 XiX

T
i

Let r = dim(span(∪N
i=1[Xi]))

Find u(1), . . . , u(r) as the eigenvectors of A ordered based on their associated eigenvalues from largest to
smallest
Let �μpF � = {[u(1)], [u(1)|u(2)], . . . , [u(1)| . . . |u(r)]}

When P < n, computing the thin SVD of X is faster than computing the eigenvectors
of A. It is possible that one of the first r singular values has a multiplicity greater than 1.
In this case, the singular vectors associated with that singular value have equal weight
and they should be treated as a single subspace with dimension equal to the multiplicity
of the singular value (rather than as separate 1-dimensional subspaces). For example, if
the second singular value has multiplicity 2, the flag mean would be defined as

�μpF � =
[
u(1)] ⊂ [

u(1)∣∣u(2)∣∣u(3)] ⊂ · · · ⊂
[
u(1)∣∣ . . . ∣∣u(r)]. (20)

In this case, the flag would not contain a 2-dimensional subspace and determines a point
on FL(n; 1, 3, 4, . . . , r).

5.1. Illustrations of the flag mean

The following examples are built from a collection of images from the Carnegie-Mellon
University Pose, Illumination, and Expression (CMU-PIE) database [16]. The database
contains black and white images of 68 subjects from the shoulders up. The images include
all combinations of 13 poses, 42 lighting conditions, and 4 expressions for each subject.
The images have been registered and cropped, with a resulting resolution of 277 × 299
pixels. Each image can be considered as a 277 × 299 matrix with entries between 0 and
255 thus as a vector in R

277×299 � R
82 823.

5.1.1. Pose and illumination subspaces
From the CMU-PIE database, image subspaces can be created in a variety of ways.

For example, consider a subset of the images that consists of 9 illumination conditions,
9 poses, and 1 expression for a single subject. Such a subset contains 81 unique images of
a single subject. In the following two examples, we partition the 81 images into 9 groups
of 9 images in two different ways.

In the first example, we determine an orthonormal basis for the 9 images of the subject
that contain all 9 poses in the subset under a single illumination condition. This defines
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Fig. 1. Organizing the PIE images into groups where subject and illumination are fixed while pose varies
creates what we refer to as SIP-points. The flag mean of these SIP-points appears to capture the common
pose information.

a subspace that we will refer to as a Subject-Illumination-Pose-point, or an SIP-point.
It is possible to create 9 distinct SIP-points from the subset of 81 images. The images
used to create two of these SIP-points for Subject 07 are displayed in Figs. 1a and 1b.
Thus, from the 81 images, we create 9 SIP-points, one for each illumination condition.
The SIP-points are 9-dimensional subspaces of pixel space and correspond to points on
Gr(82 823, 9). The first 7 vectors in the flag mean of 9 SIP-points of Subject 07 are
displayed in Fig. 1c. With the exception of the first vector, it appears as though the
vectors in the flag mean each approximate a small number of poses of Subject 07. This
seems reasonable, because the commonality between the SIP-points used to create the
flag mean of Subject 07 is that they contain all 9 poses from the subset.

In the second example, we determine an orthonormal basis for the 9 images of the
subject that contain all 9 illumination conditions in the subset under a single pose.
Subspaces that have a single subject, a single pose, and a range of illumination conditions
will be referred to as Subject-Pose-Illumination-points or SPI-points. The images used
to create two of these SPI-points for Subject 07 are displayed in Figs. 2a and 2b.

As before, we create 9 SPI-points, one for each pose. The first 7 vectors in the flag
mean of the 9 SPI-points of Subject 07 are displayed in Fig. 2c. This time each vector
in the flag appears to approximate a single illumination condition of Subject 07, while
individual poses are not discernible. It is important to note that the flags displayed in
Fig. 1c and Fig. 2c are both created using the same set of 81 images. The differences in
the associated flags are a result of how the images were organized into subspaces. For the
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Fig. 2. The PIE images here have been grouped on subject and pose, with illumination running free within
a group. The span of one such group forms what we refer to as an SPI-point. The flag mean of these
SPI-points appears to capture the illumination information that is common amongst the set of points.

SIP-points, the commonality is that each subspace contains all 9 of the poses, and this
appears to be represented in the images that make up the flag. For the SPI-points, the
shared attribute is that each subspace contains all 9 illumination conditions, and again
this similarity seems to “shine” through in the flag representation.

5.1.2. Hidden signal
The previous illustrations are visually interesting, but there may be too many forms

of variation present for us to build a firm understanding of the utility of the flag repre-
sentation. In this example, we will see how the flag mean can reveal a common attribute
from within subspaces of differing dimensions when the common attribute is weakly
represented.

One practical issue that the flag mean addresses is how to find an average representa-
tion for subspaces of differing dimensions. As we will see in Section 6, existing methods
for representing subspaces require that all points live on a single Grassmann manifold.
When this is not the case, points are typically up-projected to the size of the largest
subspace by finding the closest orthonormal matrix, or down-projected to the size of the
smallest subspace using the left singular vectors from a truncated SVD. The problem
with these methods is that up-projecting is not unique, and down-projecting discards po-
tentially useful information. The flag mean sidesteps these issues by allowing subspaces
of differing dimensions. Furthermore, by encoding the representation as a flag, rather
than a subspace, more subtle information can be expressed.
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Fig. 3. In the hidden signal experiment, images of a person of interest, Subject 1 from the CMU-PIE dataset,
are mixed into sets of images of other people. Computing the flag mean of the three sets recovers information
pertaining to the person of interest because her picture is a common feature in the three sets.

To illustrate these two properties, we look at a different collection of images from the
CMU-PIE database and use the images to create three subspaces of R82 823 with differing
dimensions. We start with 3 subjects from the database photographed in the frontal pose.
The “weak signal” will be the woman shown in the first image in each row of Fig. 3a.
Each of the subspaces consists of the span of one image of the woman and 4, 5, or 6
frontal images of other subjects. Each image has a unique illumination condition. The
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resulting subspaces determine points on Gr(82 823, 5), Gr(82 823, 6), and Gr(82 823, 7),
and have the shared property that they all contain a one-dimensional space representing
the subject of interest.

Images of random vectors taken from these three spaces can be seen in Fig. 3b.
Each row in the figure represents a single subspace. In order to emphasize that the flag
mean finds the strongest common signal, rather than the strongest signal overall, the
contribution of the person of interest has been scaled to 1/5 that of each other images
in the subspaces. That is, each picture in Fig. 3b is created as a linear combination of
the pictures in Fig. 3a with the caveat that the coefficient on the subject of interest is
also multiplied by 1/5. Thus, the subject of interest cannot easily be seen in any of these
pictures. These spanning sets of images are then used to find an orthonormal basis for
each subspace, and the flag mean of the three spaces is computed.

The first 7 images from the flag mean of these subspaces can be seen in Fig. 3c. The
first vector, which determines the best 1-dimensional representation of the subspaces
according to the flag mean, looks distinctly like the person of interest. The subsequent
images contain details that correspond to the other people present in the subspaces.
This experiment cannot be recreated with other existing subspace means because the
other mean representations cannot accommodate subspaces of differing dimensions. Ad-
ditionally, note that this result is quite distinct from what we would see if we performed
standard Eigenfaces on the entire collection of images [9]. With an Eigenfaces approach
we would see the first image as a generic average of all the people present, along with
finer details in the subsequent images.

The utility of the flag mean in this example is two-fold. First, its flexibility allows an
average to be computed for subspaces of differing dimensions. Second, the flag structure
provides a more detailed breakdown of the information shared between the subspaces.
If the task at hand was to identify which person was common in the three sets, we
could measure the similarity between a probe image to each of the four subjects used in
the first subspaces within the flag. Even naive methods would recognize that the first
flag image contains information about the person of interest. On the other hand, if we
had up or down-projected the subspaces to live on a single Grassmann manifold and
computed one of the existing subspace averages, the result would be a space spanning 5
or 7 dimensions (depending on our projection). Comparing images of our four subjects
to this object would merely confirm that each person was present in the average. Thus
the order of the subspaces within the flag has the ability to reveal the strongest common
signal, as desired.

Further elements of the flag beyond the first 1-dimensional subspace may also be
of interest. For instance, a related subspace average, the extrinsic manifold mean, is
interested in the span of the first p elements of the flag [17]. This connection will be
made explicit in Section 6.1.
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5.2. Weighted flag mean

The ability to compute a weighted flag mean offers advantages under certain circum-
stances. For instance, if we have a variable level of confidence in the given subspaces, we
may opt to scale the contribution of each subspace according to reliability. Alternatively,
we could weight the contribution of each subspace according to the dimension of the
subspace, perhaps to increase the impact of larger subspaces.

The flag mean allows for weighted mean calculations. Let {ci}Ni=1 be weights that
are selected to correspond to the N subspaces. Define B =

∑N
i=1 ciXiX

T
i and compute

the eigenvectors of B. The weighted flag mean is then the nested sequence of subspaces
created from these eigenvectors. Within the flag, the subspace of dimension q is the
span of the q eigenvectors corresponding to the q largest eigenvalues. The computation
of the weighted flag mean, �νpF �, is the same as in Algorithm 1 except we replace B
for A. If we let Y = [√c1X1,

√
c2X2, . . . ,

√
cNXN ] then we have B = YYT . Therefore,

computational tractability for large n can be maintained using the thin SVD of Y.

6. Related work

One main benefit of the flag mean, �μpF �, is that it can be computed for collections
of subspaces of R

n with differing dimensions. However, if the subspaces all have the
same dimension, p, then the p-dimensional subspace appearing in the flag, �μpF �, can
be compared directly to the commonly used Karcher mean, and the lesser known (but
quite useful) extrinsic manifold mean of Srivastava and Klassen [17].

6.1. A generalization of the extrinsic manifold mean

Let {[X1], [X2], . . . , [XN ]} be a finite collection of points on Gr(n, p). Srivastava and
Klassen define the extrinsic manifold mean, [μE ], as

[μE ] = arg min
[μ]∈Gr(n,p)

1
N

N∑
i=1

dpF
(
[μ], [Xi]

)2
, (21)

where dpF ([μ], [Xi]) is again the metric on Gr(n, p) derived from the projection Frobenius
norm. In Section 5, the flag mean was defined as

�μpF � =
{[

u(1)], [u(1)∣∣u(2)], . . . , [u(1)∣∣ . . . ∣∣u(r)]}, (22)

where u(j) was the eigenvector of
∑N

i=1 XiX
T
i corresponding to the jth largest eigenvalue.

Following the same line of reasoning as in Section 3 the following relationship can be
observed,

[μE ] = arg min
[μ]

1
N

N∑
dpF

(
[μ], [Xi]

)2 (23)

i=1
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= arg max
[μ]

1
N

p∑
j=1

u(j)T

(
N∑
i=1

XiX
T
i

)
u(j) (24)

=
[
u(1)∣∣u(2)∣∣ . . . ∣∣u(p)] (25)

= the p-dimensional subspace in the flag �μpF �. (26)

In the restricted case where [Xi] ∈ Gr(n, p) for 1 � i � N , the p-dimensional subspace
of the flag �μpF � is equal to the extrinsic manifold mean.

Sarlette and Sepulchre have described a generalization of the extrinsic manifold mean
to data lying on a class of manifolds broader than the Grassmann manifold [15]. Their
induced arithmetic mean is defined to be the set of points that globally minimize the
weighted sum of squared Euclidean distances in R

m to each of the points in question. It
requires the assumption that the points come from a connected compact homogeneous
manifold, M, smoothly embedded in R

m, such that the Euclidean norm is constant over
the points of M; and that the Lie group G acts as a subgroup of the orthogonal group
on R

m. The Grassmann manifold satisfies these assumptions and, in this setting, the
induced arithmetic mean is the same as the extrinsic manifold mean. When restricted
to SO(3), the induced arithmetic mean is equivalent to the projected arithmetic mean
defined by Moakher [11].

6.2. Relationship to the Karcher mean

The Karcher mean is a commonly used representation for a collection of data on a
Grassmann manifold. It can be viewed as a center of mass for a point cloud [7]. The
sample Karcher mean is defined as

[μK ] = arg min
[μ]

1
N

N∑
i=1

d
(
[μ], [Xi]

)2
, (27)

where d([μ], [Xi]) is the geodesic distance based on arc length. The geodesic distance
based on arc length is computed as the �2-norm of the vector of principal angles between
[μ] and [Xi], or d([μ], [Xi]) = ‖Θi‖2. It is shown in [5] that this measure of distance is
the canonical metric on the Grassmann manifold in the sense that it is equivalent to the
Euclidean metric in the tangent space of a single point on a Grassmannian. The Karcher
mean finds the point that minimizes the sum of the squared distances between itself and
the data (with respect to the geodesic distance), and can be viewed as an analogue of
the arithmetic mean in a Euclidean space.

The equivalence between the dominant p-dimensional subspace of �μpF � and [μE ], and
the definition of [μK ] reveal that the flag mean optimizes a similar cost function to that
optimized by the Karcher mean. The difference in the formulation is that �μpF � and [μE ]
use a metric derived from the projection F-norm to measure distance, while [μK ] uses the
canonical metric on Gr(n, p). These two metrics are asymptotically equivalent for small
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distances. In general, for [X] �= [Y ] we have d([X], [Y ]) > dpF ([X], [Y ]) [5]. Additionally,
both metrics are orthogonally invariant as they are based on principal angles. As a
result, distances will be independent of the choice of orthonormal representative for a
point in Gr(n, p). For tightly clustered sets of points, d([X], [Y ]) ≈ dpF ([X], [Y ]), and
hence [μK ] ≈ [μE ].

6.3. Right singular vectors of X: MCCA

As mentioned in Section 4, there is a connection between the flag mean and multiset
extensions to Canonical Correlation Analysis (CCA). Multiset Canonical Correlation
Analysis (MCCA) has been considered by Kettenring, and more recently by Via et al.
[21,8]. These works examine data matrices, D1, . . . , DN , where matrix Di represents a
data set of size n× pi.

Let P =
∑N

i=1 pi and suppose that X1, . . . , XN are orthonormal bases for the data
matrices. Using the general multiset formulation, MCCA seeks canonical vectors ki ∈
[Xi] in order to solve

arg max
k1,...,kN

N∑
i=1

N∑
j=1
j �=i

kTi kj

subject to
N∑
i=1

kTi ki = 1, ki ∈ [Xi].

(28)

Expressing ki as a linear combination, we write ki = Xiαi for αi ∈ R
pi . Next we form

the Lagrangian

L(α, λ) =
N∑
i=1

N∑
j=1
j �=i

αT
i X

T
i Xjαj − λ

(
N∑
i=1

αT
i αi − 1

)
(29)

Recall that X = [X1, . . . , XN ]. If we define the block column vector α ∈ R
P as α =

[αT
1 , . . . , α

T
N ]T , then Eq. (29) takes on the form

L(α, λ) = αT
(
XTX − I

)
α− λ

(
αTα− 1

)
. (30)

Finding the extrema of Eq. (30) via differentiation requires

XTXα = (λ + 1)α. (31)

Thus the set of canonical components of multiset CCA, ki = Xiαi, is obtained by finding
the eigenvectors of XTX via Eq. (31).
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It can be shown that the above argument extends to the jth set of canonical vectors,
{k(j)

i }Ni=1. Specifically, we compute

k
(j)
i = Xiα

(j)
i (32)

where α(j) = [α(j)T
1 , . . . , α

(j)T
N ]T is the eigenvector of XTX associated with the jth largest

eigenvalue.
As mentioned in Section 4, computing the right singular vectors of X is equivalent to

computing the eigenvectors of XTX. If X = UΣV is the singular value decomposition
of X, then V = [v(1)| . . . |v(P )] = [α(1)| . . . |α(P )]. Thus the columns of V can be used to
compute the canonical vectors of MCCA.

Computing k(j) for j = 1, . . . , P using the right singular vectors of X presents an
interesting connection between MCCA and the set of subspaces {[u(1)], . . . , [u(r)]}. In
particular,

u(j) = Xv(j)

σ(j) (33)

= 1
σ(j)

N∑
i=1

Xiv
(j)
i (34)

= 1
σ(j)

N∑
i=1

k
(j)
i . (35)

In other words, the 1-dimensional subspaces that are used to construct the flag mean
in Section 5 are the average of the corresponding canonical vectors in multiset CCA,
scaled to unit length. The utility of this connection is that if we compute the singular
value decomposition of X, we find both a collection of vectors in the span of X that
represent its constituent subspaces (the flag mean), as well as a collection of vectors that
are restricted to live within each Xi for i = 1, . . . , N that are conditioned on each of the
other subspaces (the canonical components).

6.4. Further connection to CCA

Although the left singular vectors of X did not appear to be of central interest to
the authors of the multiset CCA paper [21], they were of interest to Kettenring [8]. He
was interested in finding a vector z that solves an optimization problem that looks very
different from the ones in Eqs. (2) and (10), but has a similar goal. The solution to each
of these three optimization problems is a vector in the middle of a collection of data
matrices. Kettenring shows that the multiset CCA formulation produces the solution as
z = Dα

N with D = [D1, D2, . . . , DN ] the array of data matrices. Thus, if one were to use
orthonormal bases, Xi, in place of the general data matrices Di, Kettenring’s method
for finding the central vector z would be the same as the computation in Eq. (33) up to
scaling.
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7. Discussion and future work

We have described an algorithm for constructing a flag mean representation for a
finite collection of subspaces of a fixed vector space. The subspaces are allowed to have
differing dimensions. The algorithm, based on an optimization criterion derived from
the projection Frobenius norm, allows comparisons between collections of subspaces at
multiple levels. The flag mean representation has connections with the extrinsic manifold
mean but differs in allowing for the input data to be non-equidimensional and differs in
the form and interpretation of the output. For well clustered and equidimensional sets
of subspaces, both the extrinsic manifold mean and one of the components of the flag
mean recover a good approximation for the well known Karcher mean. The flag mean
representative for a collection of subspaces was shown to have a strong connection to the
set of left singular vectors of an associated data matrix X.

By representing our average as a flag, rather than a point on a specific Grassman-
nian, we get an ordering from the average representative. This structure can be useful
when classifying data with multiple semantically meaningful labels. As a consequence,
the flag mean is applicable in settings requiring one to classify data of different dimen-
sions, to classify data with multiple labels, to identify (without supervision) which forms
of variation cause classification to fail, and to organize multi-label data sets without
supervision. To achieve these tasks further work will be needed to identify useful metrics
and similarity scores for flag manifolds.
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