
Softmax is not Enough (for Sharp Size Generalisation)

Petar Veličković 1 Christos Perivolaropoulos 1 Federico Barbero 2 * Razvan Pascanu 1

Abstract
A key property of reasoning systems is the abil-
ity to make sharp decisions on their input data.
For contemporary AI systems, a key carrier of
sharp behaviour is the softmax function, with
its capability to perform differentiable query-key
lookups. It is a common belief that the predic-
tive power of networks leveraging softmax arises
from “circuits” which sharply perform certain
kinds of computations consistently across many
diverse inputs. However, for these circuits to be
robust, they would need to generalise well to ar-
bitrary valid inputs. In this paper, we dispel this
myth: even for tasks as simple as finding the max-
imum key, any learned circuitry must disperse
as the number of items grows at test time. We
attribute this to a fundamental limitation of the
softmax function to robustly approximate sharp
functions with increasing problem size, prove this
phenomenon theoretically, and propose adaptive
temperature as an ad-hoc technique for improving
the sharpness of softmax at inference time.

1. Motivation
It is no understatement to say that the softmaxθ : Rn →
[0, 1]n function1:

softmaxθ(e) =

[
exp(e1/θ)∑
k exp(ek/θ)

. . .
exp(en/θ)∑
k exp(ek/θ)

]
(1)

is one of the most fundamental functions in contemporary
artificial intelligence systems.

The role of softmax in deep learning is to convert any vector
∗Work performed while the author was at Google DeepMind.

1Google DeepMind 2University of Oxford. Correspondence to:
Petar Veličković <petarv@google.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1Strictly speaking, the proper name for this function should
be softargmax. We choose to retain the terminology introduced
by Bridle (1989), primarily for reasons of alignment with modern
deep learning frameworks.

x
(4)
1 x

(4)
2 x

(4)
3 x

(4)
4

...
...

...
...

...
...

...
...

e
(4)
1 e

(4)
2 e

(4)
3 e

(4)
4

y

q

x
(n)
1 x

(n)
2 x

(n)
3 x

(n)
4 x

(n)
5 x

(n)
6

. . . x
(n)
n

e
(n)
1 e

(n)
2 e

(n)
3 e

(n)
4 e

(n)
5 e

(n)
6

. . . e
(n)
n

y

e
(4)
1 e

(4)
2 e

(4)
3 e

(4)
4 e

(n)
1 e

(n)
2 e

(n)
3 e

(n)
4 e

(n)
5 e

(n)
6

. . . e
(n)
n

. . .

. . .

...
...

...
...

...
...

...

...
...

...
...

...
...

...q

e
(n)
1 e

(n)
2 e

(n)
3 e

(n)
4 e

(n)
5 e

(n)
6

. . . e
(n)
n

(in-distribution) (out-of-distribution)

Figure 1. Illustration of Theorem 2.2, one of our key results. As-
suming a tokenised input from a fixed vocabulary and a non-zero
temperature, for every softmax attention head inside an architec-
ture comprising only MLPs and softmax self-attention layers,
it must hold that, given sufficiently many tokens, its attention
coefficients will disperse, even if they were sharp in-distribution.

of logits, e ∈ Rn, into a probability distribution, in a form
that is part of the exponential family. Further, softmax
allows for application of a temperature parameter, θ ∈ R, to
adjust the amount of probability mass attached to the highest
logit—a concept borrowed from the Boltzmann distribution
in statistical mechanics.

Initially, the primary utilisation of softmax in deep learning
was within the final layer of classifiers. Its influence in
this domain vastly expanded after it saw use in the internal
layers—as a differentiable key-value store (Graves et al.,
2014) or a mechanism for attending over the most relevant
parts of the input (Bahdanau et al., 2015). This attentional
framing of softmax was critical in defining important mod-
els for sequences (Vaswani et al., 2017, Transformers), im-
ages (Dosovitskiy et al., 2021, ViTs) and graphs (Veličković
et al., 2018, GATs).

Several efforts attribute the success of softmax to its capa-
bility of modelling computations relevant to reasoning. This
can be related to the concept of circuits in theoretical com-
puter science (Arora & Barak, 2009). Several interpretable
pieces of “circuitry” (Olah et al., 2020) have already been
discovered in large Transformers, primarily under the um-
brella of mechanistic interpretability (Elhage et al., 2021;
Olsson et al., 2022; Wang et al., 2022).

Here we study the robustness of such circuitry, especially
when going beyond the distribution the models are trained
on—a critical regime for reasoning engines. We find that,
in spite of its many successes, softmax is fundamentally

1

Softmax is not Enough (for Sharp Size Generalisation)

unable to robustly generalise such circuits out of distribution,
especially as it provably cannot approximate sharpness with
increasing problem size (Figure 1).

Here we call a function taking a variable number of inputs
sharp if its output value can be expressed using only a
constant number of these inputs. For example, max is sharp,
as its output value is equal to exactly one of its inputs’
values2. The average function is not sharp, as its output
value depends on all of its input values (with factor 1/n for
each of the n items).

Key Theoretical Result We define sharp functions by
their behaviour as their number of inputs varies. This di-
rectly motivates the size generalisation setting we study:
generalising to different amounts of inputs. Specifically,
when we analyse neural networks that learn sharp functions,
we assume that they are trained on problem instances con-
taining no more than n input items, and we take a particular
interest in their sharpness on instances with n′ > n items;
these are considered out-of-distribution instances because
they go beyond the maximal number of inputs the model
had been prepared for. In language modelling, this setting
is also known as length generalisation (Anil et al., 2022); in
graph machine learning, it is known as size generalisation
(Yehudai et al., 2021).

Through one of our key theoretical results (Theorem 2.2),
we demonstrate that modern deep learning architectures,
operating over a fixed vocabulary of input tokens and lever-
aging the softmax function, are fundamentally incapable
of learning functions that remain sharp under such larger
instances. This is due to the fact that the coefficients emitted
by the softmax function must disperse as we increase the
number of input items. Here by dispersing we mean that, as
the number of input items grows, the coefficient attached to
each individual item must decay towards zero. This makes
it impossible to robustly compute functions that depend on
any particular finite amount of input values, such as the
aforementioned max, as we show in Appendix B (Corollary
B.1 and Remark B.2).

We hope that our results will encourage future study of
alternative attentional functions, in light of the problems
we identify, especially for building reasoning engines of the
future. That being said, we also believe our findings indicate
ways to modify the softmax function to support sharpness
for longer—as one simple example, we propose an adaptive
temperature mechanism for softmax.

2In practice, as softmax coefficients that are exactly zero or
one are often not easily obtainable, we may consider an item to
be expressed in the final answer if its coefficient is greater than
some ϵ > 0 (which may depend on the problem size). That said,
the exact choice of ϵ does not affect the essence of our results, as
we are able to bound the coefficients both above and below.

Background The analysis of attentional coefficients and
attempting to attribute interpretable operations to them dates
back to the earliest deployments of internal softmax layers
at scale; examples include Graves et al. (2014, Figure 6),
Bahdanau et al. (2015, Figure 3), Vaswani et al. (2017,
Figures 3–5) and Qiu et al. (2018, Figure 5). A strong
current topic in this space analyses the self-attentional heads
of Transformers (Voita et al., 2019; Jain & Wallace, 2019).

With the rise of large language models, mechanistic inter-
pretability has taken charge in detecting and elucidating
various circuits in Transformers (Elhage et al., 2021). Some
prominent discoveries include induction heads (Olsson et al.,
2022), indirect object identification (Wang et al., 2022),
multiple-choice heads (Lieberum et al., 2023), successor
heads (Gould et al., 2023), attentional sinks (Darcet et al.,
2023), comparator heads (Hanna et al., 2024) and retrieval
heads (Wu et al., 2024). Most recently, these efforts have
relied on sparse autoencoders (Kissane et al., 2024).

The skills above are quite impressive and span many rules
one might hope a robust reasoning system would have, and
the discovered heads always appear sharp when inspected
on in-distribution samples. However, it is also known that
many easy tasks requiring sharp attention—such as find-
ing minima—are hard to do reliably with LLMs out-of-
distribution, particularly on larger inputs (Markeeva et al.,
2024, Figure 6). More challenging sharp order statistic tasks,
such as finding the second minimum (Ong & Veličković,
2022) may even be hard to learn in-distribution. The discrep-
ancy of such results with the previous paragraph motivate
our study, and formalisation of softmax dispersion.

Certain dispersion effects in softmax—e.g. as an effect
of increasing temperature—are already well-understood in
thermodynamics. A core contribution of our work is under-
standing dispersion in a setting where the amount of logits
can vary, which is relevant for generalisation in Trans-
formers. We are not the first to observe dispersion in this
setting empirically; prior works studying the capability of
Transformers to execute algorithms (Yan et al., 2020) and
perform random-access lookups (Ebrahimi et al., 2024) also
note dispersion patterns. Our work is the first to rigorously
prove these effects, directly attribute them to the softmax
operator, as well as propose ways to improve sharpness
empirically within softmax. The proof technique we will
use to demonstrate this is inspired by Barbero et al. (2024),
though unlike their work, our key results apply regardless
of whether the computational graph is bottlenecked or not.

Primer on Attentional Heads and Transformers Within
this paper we will primarily study the use of softmax within
self-attentional neural network architectures, such as Trans-
formers (Vaswani et al., 2017). The core building block of
such models is the (dot-product) attentional head, which op-

2

Softmax is not Enough (for Sharp Size Generalisation)

erates over a collection of n nodes (or tokens), with features
x
(n)
i ∈ Rk for node 1 ≤ i ≤ n, for a given query vector

q̃(n) ∈ Rk.

First, the attentional head computes key, (updated) query
and value vectors via matrix multiplication:

k
(n)
i = Kx

(n)
i q(n) = Qq̃(n) v

(n)
i = Vx

(n)
i (2)

where K,Q,V ∈ Rk′×k are learnable parameter matrices.
Then, dot-products between the query and all of the key
vectors are taken to compute unnormalised attentional coef-
ficients of each item, also known as logits, e(n)i ∈ R. These
coefficients are normalised using the softmax function to
obtain attentional coefficients, α(n)

i ∈ R. Finally, the at-
tentional coefficients are used for a weighted sum of value
vectors, which represents the output of the attentional head,
y(n) ∈ Rk′

:

e
(n)
i =

(
q(n)

)⊤
k
(n)
i , α

(n)
i = softmaxθ(e

(n))i (3)

y(n) =
∑

1≤i≤n

α
(n)
i v

(n)
i

With regard to how attentional heads are used within Trans-
formers, we will mainly analyse two of the most popular
strategies: BERT-style (Devlin et al., 2019) and GPT-style
(Radford et al., 2018). In both cases, each of the input nodes
computes its own attentional output, i.e. there is one query
vector per node, computed as q

(n)
i = Qx

(n)
i , leading to

per-node attention coefficients αij and outputs y(n)
i by dis-

tributing Equation 3 across queries. The main difference is
in the choice of keys.

In BERT-style self-attention, each node’s query vector at-
tends over all of the key vectors, i.e. it is obtained by directly
distributing Equation 3 across all queries:

e
(n)
ij =

(
q
(n)
i

)⊤
k
(n)
j , α

(n)
ij = softmaxθ(e

(n)
i)j (4)

y
(n)
i =

∑
1≤j≤n

α
(n)
ij v

(n)
j

In comparison, GPT-style attention (also known as “causal
masking” or the decoder-only Transformer) only allows
information to flow forwards; each node’s query vector may
only attend to the key vectors from nodes that precede it.
This yields the following modification:

e
(n)
ij =

(
q
(n)
i

)⊤
k
(n)
j j ≤ i

−∞ j > i
α
(n)
ij = softmaxθ(e

(n)
i)j

(5)
y
(n)
i =

∑
1≤j≤i

α
(n)
ij v

(n)
j

Figure 2. Visualising the attentional head for the max retrieval task
for a batch of 32 randomly-sampled input sets (each represented
by one of the rows), over the 16 items with largest key (columns).
If the head operates correctly, it must allocate sharp attention to
the rightmost item. From left to right, in each frame we double the
number of items the head has to process (starting from 16 items).

Figure 3. Entropy of attention heads in the first block of Gemma
2B with prompt "What is the maximum in the following
sequence: {seq}? The maximum is:" and varying the number
of elements in seq. Each curve is one attentional head; the blue
shaded curve is the mean and standard deviation across all of them.

Our key dispersion results hold for both styles of attention—
this is mainly due to the fact that all predictions made by
GPT-style architectures are dependent on the final token
embedding, y(n)

n , which will attend over all items, much
like any BERT head. The main difference between the two
will be in qualitative effects on certain corollaries of the
theory (Appendices B–C).

2. Dispersion in softmax and Transformers
To motivate our theory, we train a simple architecture in-
cluding a single attentional head to predict a feature of the
maximum item in a set. Each item’s features are processed
with a deep MLP before attending, and the output vector
of the attention is passed to a deep MLP predictor (see Ap-
pendix A for experimental details). We train this model
using sets of ≤ 16 items, and in Figure 2 we visualise the
head’s attentional coefficients, computed over sets of vary-
ing size at inference time.

While the model indeed attributes focus sharply and cleanly
on the maximum item, this only holds true on the problem

3

Softmax is not Enough (for Sharp Size Generalisation)

sizes that the model was trained on. As we simulate a gener-
alisation setting where the problem size increases (without
changing the value distribution), the attentional coefficients
eventually disperse towards the uniform distribution.

This effects manifests in the attention heads of Transformers
as well—we visualise the entropy (a proxy for sharpness)
of Gemma 2B (Gemma Team et al., 2024)’s heads when
answering a similar maximisation task in Figure 3.

In fact, we can show that this effect is inevitable in softmax
using the following Lemma:

Lemma 2.1 (softmax must disperse). Let e(n) ∈ Rn be
a collection of n logits going into the softmaxθ function
with temperature θ > 0, bounded above and below s.t.
m ≤ e

(n)
k ≤ M for some choice of constants m,M ∈ R.

Then, as more items are added (n → +∞), it must hold
that, for each item 1 ≤ k ≤ n, softmaxθ(e(n))k = Θ(1n).

The computed attention coefficients hence must disperse
for all items with increasing problem size.

Proof. Let us denote the attentional coefficient assigned to
k by α(n)

k = softmaxθ(e
(n))k ∈ [0, 1]. Then we can bound

α
(n)
k above as:

exp(e
(n)
k /θ)∑

l exp(e
(n)
l /θ)

≤ exp(M/θ)

n exp(m/θ)
=

1

n
exp

(
M −m

θ

)
(6)

Similarly, we can bound α(n)
k below as:

exp(e
(n)
k /θ)∑

l exp(e
(n)
l /θ)

≥ exp(m/θ)

n exp(M/θ)
=

1

n
exp

(
m−M

θ

)
(7)

Hence, if we let δ = (M −m)

1

n
exp−δ

θ
≤ α

(n)
k ≤ 1

n
exp

δ

θ
(8)

Which implies α(n)
k = Θ(1n) as δ and θ are both constants.

Lemma 2.1 relies on bounding logits. The difference of
these bounds (the spread, δ = maxi e

(n)
i −minj e

(n)
j) con-

trols the rate of dispersion. In modern Transformer LLM
architectures operating over a vocabulary of possible token
values, we can actually bound the logits in every single
attentional layer—implying that dispersion must happen
everywhere in a Transformer for sufficient problem sizes:

Theorem 2.2 (softmax in Transformers over vocabular-
ies must disperse). Let X ⊂ Rm be a set of possible m-
dimensional input features, and let X(n) ∈ Xn be a matrix
of input features for n items. Further, assume that input fea-
tures come from a finite set of possible values, i.e. |X | < |N|.

Let e(n)j = (q(n))⊤k
(n)
j where q(n) = ϕ(x

(n)
1 , . . . ,x

(n)
n)

and K(n) = κ(x
(n)
1 , . . . ,x

(n)
n), where ϕ : Xn → Rk

and κ : Xn → Rn×k are continuous functions, each ex-
pressible as a composition of L layers gL ◦ fL ◦ · · · ◦ g1 ◦
f1 where each layer contains a feedforward component
fi(z1, . . . , zn)k = fi(zk) or a self-attentional component
gi(z1, . . . , zn)k =

∑
1≤l≤n αlkvi(zl) where αlk ∈ [0, 1]

are softmax-normalised attention coefficients and vi is a
feedforward network. Then, for any θ > 0 and ϵ > 0, there
must exist an n ∈ N such that softmaxθ(e(n))k < ϵ for all
1 ≤ k ≤ n.

That is, attention coefficients must disperse in all global
Transformer heads if the input vocabulary is finite.

Proof. Firstly, note that since X is a finite set of m-
dimensional vectors, then it is also part of a compact space
spanning all convex combinations of those vectors. Then, all
feedforward layers, fi and vi, being continuous functions,
move inputs from a compact set to another compact set.
Similarly, every self-attentional layer, gi, computes a con-
vex combination of the outputs of vi, and as such, if outputs
of vi are on a compact space, the outputs of gi remain on the
same compact space. Therefore, if the input space of ϕ and
κ is compact, then the output space of ϕ and (each row of) κ
on Rk must be compact as well, regardless of the choice of
n. Further, the dot product of two vectors (q(n))⊤k

(n)
j com-

ing from compact spaces must be compact as well. Hence,
the logits must be bounded by m ≤ e

(n)
k ≤ M for con-

stant m and M . Then, letting δ = M − m, we know
(Lemma 2.1) that softmaxθ(e(n))k ≤ 1

n exp (δ/θ), so for

all n >
exp (δ/θ)

ϵ
this value will be below ϵ.

It might seem intuitive that attention head dispersion is a
potentially destructive event, which forces the Transformer
into misclassifying certain inputs. We prove this intuition in
Appendix B. We also discuss the rate at which dispersion
occurs at various model depths in Appendix C.

Practical Values of δ It is evident that the logit spread, δ,
is the key controller of dispersion in our results. If we were
to naı̈vely apply our theory (to the maximal and minimal
values representable by the types used to represent floating
point numbers such as bfloat16), it would result in fairly
loose bounds which are not particularly informative.

However, it can easily be observed that empirical values of
δ do not reach those theoretical limits. For example, when
feeding Gemma 2B and 7B models with an entire code
sample of Gemma’s Modules file3 (∼ 4, 000 tokens), the

3https://github.com/google-deepmind/gemma/blob/
main/gemma/modules.py

4

https://github.com/google-deepmind/gemma/blob/main/gemma/modules.py
https://github.com/google-deepmind/gemma/blob/main/gemma/modules.py

Softmax is not Enough (for Sharp Size Generalisation)

empirically observed values of δ across all of their attention
heads are substantially more contained:

• Gemma 2B: δ ∈ [2.28, 14.78] (average 5.69± 2.05);

• Gemma 7B: δ ∈ [0.09, 32.74] (average 5.82± 2.61).

There are several possible reasons why practical pre-trained
models keep logit spreads contained; for example, any label
noise prevents the model from learning arbitrarily large
parameter values, or the derivative needed to make off-target
logits arbitrarily negative may vanish when the softmax
output is already sufficiently sharp.

3. Adaptive Temperature
Since we now know dispersion is inevitable, are there any
ways we can leverage our theory’s findings to make softmax
sharper? One obvious constraint our theory rests on is
the assumption that θ > 0, i.e. that our temperature is
nonzero. While zero temperature—also known as hard
attention (Denil et al., 2012; Ranzato, 2014; Mnih et al.,
2014; Xu et al., 2015)—guarantees sharpness, training large-
scale Transformers with it tends to not work well in practice
(Bica et al., 2024).

What about applying θ = 0 to an already-trained Trans-
former? We can show this is also problematic since, for any
attention head where the Transformer has learnt to induce
sharpness, it necessarily did so by increasing magnitude
of its weights (see Appendix D for a proof and numerical
validation):

Proposition 3.1 (Sharpness in Transformers necessitates
large weights). Let e(n) ∈ Rn be a collection of n log-
its, computed using dot product attention; i.e. e

(n)
k =

⟨Qy,Kxk⟩, where y ∈ Rm is a query vector and Q,K ∈
Rm′×m are parameters. Let δ = max

1≤i≤n
e
(n)
i − min

1≤j≤n
e
(n)
j

be their maximum difference. Then δ is upper bounded as
δ ≤ 2σ

(Q)
maxσ

(K)
max∥y∥max1≤i≤n ∥xi∥, where σ(Q)

max, σ
(K)
max ∈

R are the largest singular values of Q and K.

That is, the sharpness of the softmax in Transformers de-
pends on the norm of its parameters. Note that there is a
common practice of leveraging operators such as layer nor-
malisation (Ba et al., 2016) extensively within Transformer
architectures, which clamps ∥xi∥ and ∥y∥ if applied right
before the query-key mechanism, accentuating the impact
of Q and K’s singular values.

However, forcing large parameters promotes overfitting, and
the likelihood that the incorrect item gets the largest logit—
see Figure 2. Setting temperature to zero will then degrade
accuracy—we might prefer to make the coefficients sharper
while making sure that the chosen item is not left behind.

This motivates our use of adaptive temperature, where we
vary θ depending on the entropy in the input coefficients.
Adaptive temperature can be elegantly motivated by the
fact that decreasing the temperature must monotonically
decrease the entropy, which is well-known in thermodynam-
ics:

Proposition 3.2 (Decreasing temperature decreases en-
tropy). Let e(n) ∈ Rn be a collection of n logits. Con-
sider the Boltzmann distribution over these n items, pi ∝
exp(−βe(n)i) for β ∈ R, and let H = −

∑
i pi log pi be

its Shannon entropy. Then, as β’s magnitude increases, H
must monotonically decrease.

Thus, since β ∝ 1
θ where θ is the temperature in softmaxθ,

decreasing the temperature must monotonically decrease
the entropy. We provide a full proof in Appendix E. To
supplement Proposition 3.2 empirically, we also provide—
in Figure 5—a visualisation of how the Shannon entropy
varies with temperature, for a 10-logit input with varying
spread between the logits.

To compute the approximate temperature value as a function
of entropy, we generate a dataset of inputs to our model
where the maximal items do not obtain the highest logit (see
Appendix F for a detailed overview). For each such input,
we find the “optimal” value of θ that would maximise its
probability. Then we fit an inverse degree-4 polynomial to
this data—see Figure 6—and use it to predict temperatures
to use at inference time. Note we do not wish to increase
entropy; as such, we do not correct θ to values greater than
1.

The JAX (Bradbury et al., 2018) implementation of our
adaptive-θ softmax is provided in Figure 4, and we use it
as a drop-in replacement for jax.nn.softmax in all of our
experiments.

While this approach requires two calls to jax.nn.softmax
in place of one, as well as computing several additional
intermediate tensors, we are able to implement it in a way
that allows the entropy correction computation to be fully
streamed, and hence compatible with efficient, scalable ap-
proaches like Flash Attention (Dao et al., 2022) that uses
O(n) rather than O(n2) memory to compute attention. We
provide the derivation of our streamed algorithm in Ap-
pendix G.

Note we are not the first to propose dynamically adapting
temperature—Neumann et al. (2018); Radford et al. (2021)
do this in the classification layer (and hence do not have to
handle an ever-increasing amount of items), whereas Chiang
& Cholak (2022); Cao et al. (2024) perform it over interme-
diate attentional heads, but in a way that only depends on
problem size (e.g. multiplying logits by log n), hence not
taking into account initial logit sharpness. It is important
to also call out AERO (Jha & Reagen, 2024), a method

5

Softmax is not Enough (for Sharp Size Generalisation)

def adaptive_temperature_softmax(logits):
original_probs = jax.nn.softmax(logits)

poly_fit = jnp.array([-0.037, 0.481, -2.3, 4.917, -1.791]) # see Figure 6
entropy = jnp.sum(-original_probs * jnp.log(original_probs + 1e-9),

axis=-1, keepdims=True) # compute the Shannon entropy
beta = jnp.where(# beta = 1 / theta

entropy > 0.5, # don't overcorrect low-entropy heads
jnp.maximum(jnp.polyval(poly_fit, entropy), 1.0), # never increase entropy
1.0)

return jax.nn.softmax(logits * beta)

Figure 4. Our implementation of adaptive temperature in JAX.

Figure 5. Entropy of softmaxθ(a) for 10 elements of a power
series ai = λi, split into four regions depending on range of
(λ, θ). Degenerate cases: near λ = 0 and λ = 1 (all logits equal).

Figure 6. The polynomial fit used to derive our adaptive formula
for θ as a function of the Shannon entropy, H . The fit degree-4
function was θ ≈ 1/(−1.791 + 4.917H − 2.3H2 + 0.481H3 −
0.037H4). We do not apply the correction to θ if predicted greater
than 1.

which introduces learnable temperature, and Entropix (xjdr
& doomslide, 2024), a notable library for (var)entropy-based
LLM sampling.

4. Experimental Results
To validate the utility of our proposed adaptive temperature
scheme, we evaluate it on both our previously-mentioned
max retrieval task—which allows us a pristine environment
for evaluating whether adaptive temperature leads to more
useful attention heads—as well as the CLRS-Text algorith-
mic reasoning benchmark (Markeeva et al., 2024), which
represents a challenging reasoning task for decoder-only
Transformers, and is hence likely to require low-entropy
behaviour.

4.1. Max Retrieval

For this task, we first train our single attention head archi-
tecture as described in Appendix A; then, we evaluate it
at various numbers of input items, with and without apply-
ing adaptive temperature to its sole softmax function call.
Note that this is a “pure” inference time adjustment—no
modifications to the learned parameters are performed!

The results—averaged over ten seeds and with statistical
significance tests applied—are summarised in Table 1. As
is evident, applying adaptive temperature leads to a more
performant retrieval head on larger inputs, with statistical
significance ascertained via a paired t-test.

These results are further supplemented by a qualitative com-
parison of the softmax coefficients before and after apply-
ing the temperature adaptation. As can be seen in Figure 7,
our proposed adaptive temperature adaptation indeed leads
to sharper coefficients on larger inputs and higher attention
being directed to the desired item, even in situations where
it did not receive the largest logit.

We have now successfully validated the predictions of our

6

Softmax is not Enough (for Sharp Size Generalisation)

Table 1. Improvements observed when applying adaptive temperature on the max retrieval task (without changing the parameters), averaged
over ten seeds. p-values computed using a paired t-test.

ID size Out-of-distribution sizes
Model 16 32 64 128 256 512 1, 024 2, 048 4, 096 8, 192 16, 384

Baseline 98.6% 97.1% 94.3% 89.7% 81.3% 70.1% 53.8% 35.7% 22.6% 15.7% 12.4%
Adaptive θ 98.6% 97.1%94.5% 89.9% 82.1% 72.5% 57.7% 39.4% 24.9%17.5% 14.0%

p-value 0.4 0.4 0.002 2 · 10−5 2 · 10−4 3 · 10−5 10−4 6 · 10−4 0.02 10−3 4 · 10−3

Figure 7. Visualising the attentional head for the max retrieval task
with (below) and without (above) adaptive temperature, for the
same batch and model as in Figure 2. Note the increased sharpness
in the coefficients, especially as the amount of items increases.

theory in a controlled environment. What about a more
challenging benchmark with a baseline model comprising
many attentional heads?

4.2. CLRS-Text

In this benchmark, we follow the protocol established by
Markeeva et al. (2024) and fine-tune Gemma 2B models
(Gemma Team et al., 2024) on the thirty algorithmic execu-
tion tasks in CLRS-Text, plotting their performance profiles
in- and out-of-distribution at various problem sizes.

While it may be tempting to directly re-apply our learned
adaptive temperature function from Figure 6 solely at in-
ference time—the same way we did in the max retrieval
experiments—this approach does not empirically work well
in the CLRS-Text regime. This is due to the fact that CLRS-
Text inputs are often textual representations of floating-point
numbers and therefore individual numbers often span multi-
ple tokens. It is therefore insufficient and inappropriate to
aim for entropy levels where all the focus would be on one
token only, as was desirable in the max retrieval task.

One follow-up on this could be to perform exactly the same
polynomial fit exercise leading up to Figure 6, only this time
focussing on “optimal” values of temperature for Gemma’s
attentional heads. However, in this regime, we argue this ex-
ercise is substantially less trivial to do—as we are now deal-
ing with a system spanning many attentional heads across
many layers, it is not easy to even discover relevant atten-

tional heads’ behaviours, and even less so to ascertain that
the model’s robustness depends on those specific heads in
those ways. As briefly discussed before, any such individual
endeavour typically leads to a brand-new research project
in mechanistic interpretability, and we do not find this to be
in-scope of our paper.

That being said, there is an alternate route to make the
Gemma model still benefit from our adaptive temperature
module exactly as-is (i.e., with exactly the same polyno-
mial fit as in Figure 6); it just has to directly learn how
to leverage it. As such, in our CLRS-Text ablation we
apply adaptive temperature both during fine-tuning and
at inference time. What this means is, we replace all in-
stances of jax.nn.softmax within all the attentional heads
of Gemma 2B with our adaptive temperature softmax
function, both during fine-tuning of the model and during
inference. This allows the model to learn how to compute
key/query embeddings that can maximally exploit the tem-
perature adaptation.

These final comparative results may be found in Figure 8,
and they demonstrate a significant advantage of the adaptive
temperature-backed model on nearly all of the thirty algo-
rithms under study. While we cannot make strong claims
about where the underperformance on outlying algorithms
comes from, a unifying property of some of them (Heapsort,
MST Kruskal and Bubble Sort) in CLRS-Text is that they
all occupy relatively large chunks of Gemma 2B’s context
window, which stretches further beyond the largest contexts
over which the polynomial fit of our adaptive temperature
was derived; this might cause unintended distribution shifts.

Our result indicates that, even in a complex system with
many interactions between attentional heads, it is possible
to extract benefits from the simple idea of dynamically adapt-
ing the temperature—and we hope our result paves the way
for more involved future investigation of such approaches.

5. Conclusions
“Energy continuously flows from being concentrated
To becoming dispersed, spread out, wasted and useless.”—
The 2nd Law: Unsustainable, by Muse

7

Softmax is not Enough (for Sharp Size Generalisation)

Figure 8. Resampling test results on CLRS-Text of variants of Gemma 2B, fine-tuned with and without adaptive temperature applied,
on various problem sizes. Each point on the x axis corresponds to a particular problem size in the corresponding algorithmic task. For
example, on sorting tasks, this corresponds to the number of items being sorted; for graph tasks, it corresponds to the number of nodes in
the graph. The blue curves represent the accuracy of the baseline fine-tuned Gemma 2B model, whereas the red curves represent the
accuracy of that same model, fine-tuned with adaptive temperature. Both Gemma 2B variants were explicitly trained on CLRS-Text
tasks—the training set sizes are denoted by red dots—and are evaluated zero-shot. Note that we limit our sample length to 2, 048 tokens,
and only show performance metrics for sizes where the answer fits in this constraint.

8

Softmax is not Enough (for Sharp Size Generalisation)

In this paper, we have provided extensive theoretical and
empirical evidence that the softmax—a key function in the
design of modern frontier architectures—is leveraged within
those architectures in a way that is fundamentally unable
to sustain robust reasoning behaviours across all possible
inputs. This is due to the fact its output coefficients are nec-
essarily dispersing provided sufficient input elements. Our
evidence relies on fundamental properties of the softmax,
as well as specific popular design decisions as tokenisation,
global attention, and similar.

Beyond illustrating and proving these dispersion effects, we
also attempted to use our theoretical framework to propose
an adaptive temperature approach that is able—at least to a
certain extent—to hold the dispersion effect at bay. It is our
opinion that the favourable results we observe with adaptive
temperature warrant further investigation, and indicate that
such adaptive layers are a strategy worth dedicating further
attention to in future work.

We conclude by remarking, once again, that adaptive temper-
ature is merely an ad-hoc method and it does not escape the
conclusions of our theory! The key takeaway of our paper
is not the adaptive temperature proposal; it is the fact that
we find it worthwhile to more seriously invest in research of
hybrid architectures that will not fully rely on the softmax
function, at least within the confines of the assumptions of
our theory. To name a few possibilities:

• Any kind of unnormalised attention, such as linear
(Schmidhuber, 1992), sigmoidal (Ramapuram et al.,
2024) or stick-breaking attention (Tan et al., 2025) does
not have the dispersion issues presented here. That
being said, it becomes substantially harder to meaning-
fully rank items using them, see e.g. the GATv2 paper
(Brody et al., 2022).

• Explicitly removing excess attention could be another
attractive alternative, as is robustly done in selective at-
tention (Leviathan et al., 2025) in a way that is capable
of alleviating dispersion. The Differential Transformer
(Ye et al., 2025) follows a similar idea, though the ex-
act way it is realised – subtraction of two distributions
after the application of softmax – may not effectively
evade dispersion, assuming it already happened in the
individual softmax calls.

• Similarly, forcing the attention to be hard or local
(Martins & Astudillo, 2016; Correia et al., 2019; Peters
et al., 2019; Vitvitskyi et al., 2025) would also escape
the confines of our theory. We already briefly discussed
the challenges of learning with hard attention—local
attention provides a very interesting alternative, but it
must be stressed that “out-of-distribution” behaviours
for certain heads may appear even at highly “local”
scales; OOD here refers to going outside the largest

problem size the head saw at training time, not the
largest context deployed at training time.

• Lastly, our key Theorem relies on the model being
built out of continuous building blocks. Inserting dis-
continuities in the feedforward layers—perhaps using
approaches like Dudzik et al. (2024) as inspiration—
would also break the assumptions of our theory, though
it comes with obvious challenges to learning at scale.

While such approaches haven’t seen as much success at
scale as the “vanilla” Transformer, we hope our results
inspire future work into making them stable, especially for
constructing reasoning systems.

Acknowledgements
We would like to deeply thank Daniel Johnson, the author
of Penzai (Johnson, 2024)—without it, our exploratory anal-
yses would not be nearly as fruitful. Further, we thank Alex
Matthews, Andrew Dudzik and João Araújo for helping us
with the proof of one of our propositions, and Arthur Conmy,
Neel Nanda and Csaba Szepesvári for reviewing the paper
prior to submission and numerous highly useful comments
and references. Lastly, we show deep appreciation to Alex
Vitvitskyi, Olga Kozlova and Larisa Markeeva, for their
endless engineering support with CLRS-Text.

Impact Statement
This paper presents a theoretical and empirical study into the
numerical properties of the softmax function, placing into
the spotlight several issues that models leveraging it will
experience when generalising to longer inputs at test time.
This is a setting that has clear implications to research in
long context generalisation, which is an important frontier
for reasoning in AI systems. Hence, any societal conse-
quences of our work would potentially be contained within
the consequences for general-purpose research in either of
those established areas.

References
Anil, C., Wu, Y., Andreassen, A., Lewkowycz, A., Misra,

V., Ramasesh, V., Slone, A., Gur-Ari, G., Dyer, E., and
Neyshabur, B. Exploring length generalization in large
language models. Advances in Neural Information Pro-
cessing Systems, 35:38546–38556, 2022.

Arora, S. and Barak, B. Computational complexity: a mod-
ern approach. Cambridge University Press, 2009.

Axler, S. Linear algebra done right. Springer, 2015.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

9

Softmax is not Enough (for Sharp Size Generalisation)

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate. In
ICLR, 2015. URL http://arxiv.org/abs/1409.0473.

Barbero, F., Banino, A., Kapturowski, S., Kumaran, D.,
Madeira Araújo, J., Vitvitskyi, O., Pascanu, R., and
Veličković, P. Transformers need glasses! information
over-squashing in language tasks. Advances in Neural
Information Processing Systems, 37:98111–98142, 2024.

Bica, I., Ilic, A., Bauer, M., Erdogan, G., Bošnjak, M., Ka-
planis, C., Gritsenko, A. A., Minderer, M., Blundell, C.,
Pascanu, R., and Mitrovic, J. Improving fine-grained
understanding in image-text pre-training. In Forty-first In-
ternational Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=5nxIRQ8GNa.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Bridle, J. Training stochastic model recognition algorithms
as networks can lead to maximum mutual information
estimation of parameters. Advances in neural information
processing systems, 2, 1989.

Brody, S., Alon, U., and Yahav, E. How attentive are
graph attention networks? In International Confer-
ence on Learning Representations, 2022. URL https:
//openreview.net/forum?id=F72ximsx7C1.

Cao, C., Ren, X., and Fu, Y. MVSFormer++: Revealing the
devil in transformer’s details for multi-view stereo. In The
Twelfth International Conference on Learning Represen-
tations, 2024. URL https://openreview.net/forum?
id=wXWfvSpYHh.

Chiang, D. and Cholak, P. Overcoming a theoretical limita-
tion of self-attention. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 7654–7664, 2022.

Correia, G. M., Niculae, V., and Martins, A. F. T. Adap-
tively sparse transformers. In Inui, K., Jiang, J., Ng, V.,
and Wan, X. (eds.), Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 2174–2184,
Hong Kong, China, November 2019. Association for
Computational Linguistics. doi: 10.18653/v1/D19-1223.
URL https://aclanthology.org/D19-1223.

Dao, T., Fu, D., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness. Advances in Neural Information Process-
ing Systems, 35:16344–16359, 2022.

Darcet, T., Oquab, M., Mairal, J., and Bojanowski, P.
Vision transformers need registers. arXiv preprint
arXiv:2309.16588, 2023.

Denil, M., Bazzani, L., Larochelle, H., and de Freitas, N.
Learning where to attend with deep architectures for im-
age tracking. Neural computation, 24(8):2151–2184,
2012.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Burstein, J., Doran, C., and
Solorio, T. (eds.), Proceedings of the 2019 Conference of
the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pp. 4171–4186, Min-
neapolis, Minnesota, June 2019. Association for Compu-
tational Linguistics. doi: 10.18653/v1/N19-1423. URL
https://aclanthology.org/N19-1423.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. An image is worth 16x16 words: Transformers for
image recognition at scale. In International Confer-
ence on Learning Representations, 2021. URL https:
//openreview.net/forum?id=YicbFdNTTy.

Dudzik, A. J., von Glehn, T., Pascanu, R., and Veličković, P.
Asynchronous algorithmic alignment with cocycles. In
Learning on Graphs Conference, pp. 3–1. PMLR, 2024.

Ebrahimi, M., Panchal, S., and Memisevic, R. Your context
is not an array: Unveiling random access limitations in
transformers. arXiv preprint arXiv:2408.05506, 2024.

Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph,
N., Mann, B., Askell, A., Bai, Y., Chen, A., Conerly, T.,
et al. A mathematical framework for transformer circuits.
Transformer Circuits Thread, 1(1):12, 2021.

Gemma Team, Mesnard, T., Hardin, C., Dadashi, R., Bhu-
patiraju, S., Pathak, S., Sifre, L., Rivière, M., Kale, M. S.,
Love, J., et al. Gemma: Open models based on gemini re-
search and technology. arXiv preprint arXiv:2403.08295,
2024.

Gould, R., Ong, E., Ogden, G., and Conmy, A. Successor
heads: Recurring, interpretable attention heads in the
wild. arXiv preprint arXiv:2312.09230, 2023.

Graves, A., Wayne, G., and Danihelka, I. Neural turing
machines. arXiv preprint arXiv:1410.5401, 2014.

Hanna, M., Liu, O., and Variengien, A. How does gpt-2
compute greater-than?: Interpreting mathematical abili-
ties in a pre-trained language model. Advances in Neural
Information Processing Systems, 36, 2024.

10

http://arxiv.org/abs/1409.0473
https://openreview.net/forum?id=5nxIRQ8GNa
http://github.com/google/jax
https://openreview.net/forum?id=F72ximsx7C1
https://openreview.net/forum?id=F72ximsx7C1
https://openreview.net/forum?id=wXWfvSpYHh
https://openreview.net/forum?id=wXWfvSpYHh
https://aclanthology.org/D19-1223
https://aclanthology.org/N19-1423
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy

Softmax is not Enough (for Sharp Size Generalisation)

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Heek, J., Levskaya, A., Oliver, A., Ritter, M., Rondepierre,
B., Steiner, A., and van Zee, M. Flax: A neural network
library and ecosystem for JAX, 2024. URL http://
github.com/google/flax.

Hendrycks, D. and Gimpel, K. Gaussian error linear units
(gelus). arXiv preprint arXiv:1606.08415, 2016.

Jain, S. and Wallace, B. C. Attention is not explanation.
arXiv preprint arXiv:1902.10186, 2019.

Jha, N. K. and Reagen, B. Aero: Softmax-only llms for effi-
cient private inference. arXiv preprint arXiv:2410.13060,
2024.

Johnson, D. D. Penzai + Treescope: A toolkit for interpret-
ing, visualizing, and editing models as data. ICML 2024
Workshop on Mechanistic Interpretability, 2024.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In ICLR (Poster), 2015. URL http://
arxiv.org/abs/1412.6980.

Kissane, C., Krzyzanowski, R., Bloom, J. I., Conmy, A.,
and Nanda, N. Interpreting attention layer outputs with
sparse autoencoders. arXiv preprint arXiv:2406.17759,
2024.

Leviathan, Y., Kalman, M., and Matias, Y. Selective at-
tention improves transformer. In The Thirteenth In-
ternational Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=
v0FzmPCd1e.

Lieberum, T., Rahtz, M., Kramár, J., Nanda, N., Irving, G.,
Shah, R., and Mikulik, V. Does circuit analysis inter-
pretability scale? evidence from multiple choice capa-
bilities in chinchilla. arXiv preprint arXiv:2307.09458,
2023.

Markeeva, L., McLeish, S., Ibarz, B., Bounsi, W., Ko-
zlova, O., Vitvitskyi, A., Blundell, C., Goldstein, T.,
Schwarzschild, A., and Veličković, P. The CLRS-Text
Algorithmic Reasoning Language Benchmark. arXiv
preprint arXiv:2406.04229, 2024.

Martins, A. and Astudillo, R. From softmax to sparsemax: A
sparse model of attention and multi-label classification. In
International conference on machine learning, pp. 1614–
1623. PMLR, 2016.

Mnih, V., Heess, N., Graves, A., et al. Recurrent mod-
els of visual attention. Advances in neural information
processing systems, 27, 2014.

Neumann, L., Zisserman, A., and Vedaldi, A. Relaxed
softmax: Efficient confidence auto-calibration for safe
pedestrian detection. 2018.

Olah, C., Cammarata, N., Schubert, L., Goh, G., Petrov,
M., and Carter, S. Zoom in: An introduction to circuits.
Distill, 2020. doi: 10.23915/distill.00024.001. URL
https://distill.pub/2020/circuits/zoom-in.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen,
A., et al. In-context learning and induction heads. arXiv
preprint arXiv:2209.11895, 2022.

Ong, E. and Veličković, P. Learnable commutative monoids
for graph neural networks. In Learning on Graphs Con-
ference, pp. 43–1. PMLR, 2022.

Peters, B., Niculae, V., and Martins, A. F. T. Sparse
sequence-to-sequence models. In Korhonen, A., Traum,
D., and Màrquez, L. (eds.), Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pp. 1504–1519, Florence, Italy, July 2019.
Association for Computational Linguistics. doi: 10.
18653/v1/P19-1146. URL https://aclanthology.
org/P19-1146.

Qiu, J., Tang, J., Ma, H., Dong, Y., Wang, K., and Tang, J.
Deepinf: Social influence prediction with deep learning.
In Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining, pp.
2110–2119, 2018.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever,
I. Improving language understanding by generative pre-
training, 2018. URL https://www.mikecaptain.com/
resources/pdf/GPT-1.pdf.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International conference on
machine learning, pp. 8748–8763. PMLR, 2021.

Ramapuram, J., Danieli, F., Dhekane, E., Weers, F., Bus-
bridge, D., Ablin, P., Likhomanenko, T., Digani, J., Gu,
Z., Shidani, A., and Webb, R. Theory, analysis, and
best practices for sigmoid self-attention. arXiv preprint
arXiv:2409.04431, 2024.

Ranzato, M. On learning where to look. arXiv preprint
arXiv:1405.5488, 2014.

Schmidhuber, J. Learning to control fast-weight memories:
An alternative to dynamic recurrent networks. Neural
Computation, 4(1):131–139, 1992.

11

http://github.com/google/flax
http://github.com/google/flax
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=v0FzmPCd1e
https://openreview.net/forum?id=v0FzmPCd1e
https://distill.pub/2020/circuits/zoom-in
https://aclanthology.org/P19-1146
https://aclanthology.org/P19-1146
https://www.mikecaptain.com/resources/pdf/GPT-1.pdf
https://www.mikecaptain.com/resources/pdf/GPT-1.pdf

Softmax is not Enough (for Sharp Size Generalisation)

Tan, S., Yang, S., Courville, A., Panda, R., and Shen, Y.
Scaling stick-breaking attention: An efficient implemen-
tation and in-depth study. In The Thirteenth International
Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=r8J3DSD5kF.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Liò, P., and Bengio, Y. Graph attention networks.
In International Conference on Learning Representa-
tions, 2018. URL https://openreview.net/forum?
id=rJXMpikCZ.

Vitvitskyi, A., Araújo, J. G., Lackenby, M., and Veličković,
P. What makes a good feedforward computational graph?
arXiv preprint arXiv:2502.06751, 2025.

Voita, E., Talbot, D., Moiseev, F., Sennrich, R., and Titov, I.
Analyzing multi-head self-attention: Specialized heads
do the heavy lifting, the rest can be pruned. arXiv preprint
arXiv:1905.09418, 2019.

Wang, K., Variengien, A., Conmy, A., Shlegeris, B., and
Steinhardt, J. Interpretability in the Wild: a Circuit for
Indirect Object Identification in GPT-2 small. arXiv
preprint arXiv:2211.00593, 2022.

Wu, W., Wang, Y., Xiao, G., Peng, H., and Fu, Y. Re-
trieval head mechanistically explains long-context factu-
ality. arXiv preprint arXiv:2404.15574, 2024.

xjdr and doomslide. Entropix: Entropy Based Sampling and
Parallel CoT Decoding, 2024. URL https://github.
com/xjdr-alt/entropix.

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudi-
nov, R., Zemel, R., and Bengio, Y. Show, attend and tell:
Neural image caption generation with visual attention. In
Bach, F. and Blei, D. (eds.), Proceedings of the 32nd In-
ternational Conference on Machine Learning, volume 37
of Proceedings of Machine Learning Research, pp. 2048–
2057, Lille, France, 07–09 Jul 2015. PMLR. URL
https://proceedings.mlr.press/v37/xuc15.html.

Xu, K., Li, J., Zhang, M., Du, S. S., ichi Kawarabayashi,
K., and Jegelka, S. What can neural networks reason
about? In International Conference on Learning Rep-
resentations, 2020. URL https://openreview.net/
forum?id=rJxbJeHFPS.

Yan, Y., Swersky, K., Koutra, D., Ranganathan, P., and
Hashemi, M. Neural execution engines: Learning to
execute subroutines. Advances in Neural Information
Processing Systems, 33:17298–17308, 2020.

Ye, T., Dong, L., Xia, Y., Sun, Y., Zhu, Y., Huang, G.,
and Wei, F. Differential transformer. In The Thir-
teenth International Conference on Learning Represen-
tations, 2025. URL https://openreview.net/forum?
id=OvoCm1gGhN.

Yehudai, G., Fetaya, E., Meirom, E., Chechik, G., and
Maron, H. From local structures to size generalization in
graph neural networks. In International Conference on
Machine Learning, pp. 11975–11986. PMLR, 2021.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R. R., and Smola, A. J. Deep sets. Ad-
vances in neural information processing systems, 30,
2017.

12

https://openreview.net/forum?id=r8J3DSD5kF
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://github.com/xjdr-alt/entropix
https://github.com/xjdr-alt/entropix
https://proceedings.mlr.press/v37/xuc15.html
https://openreview.net/forum?id=rJxbJeHFPS
https://openreview.net/forum?id=rJxbJeHFPS
https://openreview.net/forum?id=OvoCm1gGhN
https://openreview.net/forum?id=OvoCm1gGhN

Softmax is not Enough (for Sharp Size Generalisation)

A. Experimental Details for the Maximum Entry Retrieval Task
As briefly described in the main paper, we leverage the max retrieval task over a single attention head as a way to empirically
validate our theory, as well as assess the benefits of adaptive temperature in a controlled setting. In this section, we describe
the various aspects of our experimental setup, for the purposes of clarity and reproducibility.

A.1. Motivation

We deliberately focus on a single attention head environment and a simple selection function (max) to remove any confounders
from our observations.

Since we are using exactly one attention head, whatever coefficients it outputs can be directly related to the network’s belief
in which items are most important for the downstream prediction. This allows us to, e.g., correlate the coefficients with the
ground-truth magnitude of the items.

Since we are looking for the maximal element’s property, we are not requiring any complicated behaviour from the
coefficients: when our target task is to approximate max, the softmax coefficients need to approximate argmax—which is
exactly what they are designed to be a smooth approximation for. As such, this choice of target task exhibits high algorithmic
alignment (Xu et al., 2020).

A.2. Data Generation

Let n be the number of items in the set that we wish to classify. For each item, 1 ≤ i ≤ n, we need to define a priority
value, which is used to select the maximal entry. We sample these values from a uniform distribution; ρi ∼ U(0, 1).

We would also wish our task to be a classification rather than regression task, in order to leverage a more robust accuracy
metric. As such, let C be the desired number of classes. We can now attach to each item a class, κi ∼ U{1, . . . , C}, sampled
uniformly at random. We assume C = 10 fixed.

Then, for each input item, 1 ≤ i ≤ n, we consider its features to be xi ∈ RC+1 to be defined as xi = ρi∥onehot(κi, C), i.e.
the concatenation of these two sampled pieces of data where κi is represented as a one-hot vector.

Lastly, since we will leverage dot-product attention, we also need a query vector. In this particular task, the query is
irrelevant, and we initialise it to a random uniformly-sampled value, q ∼ U(0, 1).

Our task is to predict, given {xi}1≤i≤n and q, the class of the maximal item, i.e., κargmaxi ρi
.

A.3. Neural Network Architecture

The neural network model is designed to be a simple set aggregation model (in the style of Deep Sets (Zaheer et al., 2017)),
with a single-head dot product attention as the aggregation function.

Its equations can be summarised as follows:

hi = ψx(xi) (9)
q = ψq(q) (10)

ei = (Qq)⊤(Khi) (11)

αi =
exp(ei/θ)∑

1≤j≤n exp(ej/θ)
(12)

z =
∑

1≤i≤n

αiVhi (13)

y = ϕ(z) (14)

Equations 9–10 prepare the embeddings of the items and query, using two-layer MLPs ψx and ψq using the GeLU activation
function (Hendrycks & Gimpel, 2016) and an embedding size of 128 dimensions. Then, a single-head dot-product attention
(with query, key and value matrices Q, K and V) is executed in Equations 11–13. Lastly, the output class logits are predicted
from the attended vector using a two-layer GeLU MLP, ϕ (Equation 14). Each component is a two-layer MLP to ensure it
has universal approximation properties.

13

Softmax is not Enough (for Sharp Size Generalisation)

A concise implementation of our network using JAX (Bradbury et al., 2018) and Flax (Heek et al., 2024) is as follows:

import jax.numpy as jnp
from flax import linen as nn
from typing import Callable

class Model(nn.Module):
n_classes: int = 10
n_feats: int = 128
activation: Callable = nn.gelu

@nn.compact
def __call__(self, x, q):

x = nn.Dense(features=self.n_feats)(x)
x = self.activation(x)
x = nn.Dense(features=self.n_feats)(x)
x = self.activation(x)
q = nn.Dense(features=self.n_feats)(q)
q = self.activation(q)
q = nn.Dense(features=self.n_feats)(q)
x = nn.MultiHeadDotProductAttention(

num_heads=1,
qkv_features=self.n_feats)(
inputs_q=q,
inputs_kv=x)

x = nn.Dense(features=self.n_feats)(jnp.squeeze(x, -2))
x = self.activation(x)
x = nn.Dense(features=self.n_classes)(x)
return x

A.4. Experimental Hyperparameters

We train our model for 100, 000 gradient steps using the Adam optimiser (Kingma & Ba, 2015) with initial learning rate
of η = 0.001. At each step, we present to the model a batch of 128 input sets. All sets within a batch have the same size,
sampled uniformly from n ∼ U{5, . . . , 16}. The model is trained using cross-entropy, along with L2 regularisation with
hyperparameter λ = 0.001.

The mixed-size training is a known tactic, designed to better prepare the model for distribution shifts on larger sets at
inference time. Similarly, the weight decay follows the recommendation in Proposition 3.1, as an attempt to mitigate
overfitting out-of-distribution as a byproduct of sharpening the softmax coefficients.

Both methods prove to be effective in deriving a stable baseline model.

B. Dispersion Harms Reasoning Performance
While it is intuitive that complete coefficient dispersion is an undesirable event, it may not be immediately obvious that its
occurrence may have any bearing on a reasoning model’s predictive power.

In this Appendix, we provide several corollaries and remarks stemming from Theorem 2.2 that concretise specific ways in
which reasoning failures will occur as a consequence of dispersion.

Corollary B.1 (Dispersion induces reasoning failures). Let X(n) ∈ Xn be a matrix of input features for n items, where
X is a finite set of possible values. Further, assume a strict total order < on the elements of X . Assume we are solving a
reasoning task to find the rank of the highest-valued row x

(n)
i in X(n) (according to <), using a classifier over a trained

single-head attention architecture: g
(∑

1≤i≤n α
(n)
i f

(
x
(n)
i

))
, where f and g are continuous functions implemented as

feedforward MLPs, and the coefficients α(n)
i are computed using dot-product self-attention with softmax normalisation (as

14

Softmax is not Enough (for Sharp Size Generalisation)

in Appendix A). Further, assume there are no ties in the class confidences predicted by g when deciding how to classify X(n).
Then, assuming any floating- or fixed-point datatype with machine epsilon ϵ > 0 is used to support the architecture’s data
representation, it will necessarily start to make prediction errors beyond a certain number of items n, due to the dispersion
effect.

Proof. Let K be the size of the vocabulary X = {v1, . . . ,vK}. The reasoning task presented here is effectively a K-class
classification problem, predicting the maximum rank in a set of values from X . Any prediction of the architecture must be
of the form g

(∑
1≤j≤K βjf (vj)

)
, with the constraints that βj ≥ 0,

∑
1≤j≤K βj = 1 and βj = 0 if vj /∈ X(n).

Now, consider two specific points va and vb such that va > vb. The architecture, if trained properly, must classify g(f(va))
into the a class, and g(f(vb)) into the b class.

Let X(n) be an input matrix formed such that x(n)
1 = va and x

(n)
i = vb for all 1 < i ≤ n. For such an input, the desired

output class is a, and the prediction must be of the form g
(
α
(n)
1 f(va) +

(
1− α

(n)
1

)
f(vb)

)
.

Since the input features come from a fixed vocabulary and are processed only using feedforward networks and self-attention
layers, we can leverage the argument in Theorem 2.2 to conclude that there will be a fixed spread in the trained architecture,
δ, and further that αi ≤ 1

n exp δ
θ for all i.

Using this we can see that, when n > 1
ϵ exp

δ
θ , it must hold that α(n)

1 < ϵ. At this point, the value of α(n)
1 will be

indistinguishable from zero, and the weighted sum will reduce to g(f(vb)), due to the assumed continuity of g around
f(vb).

Hence, by previous assumptions, and by the assumption that there are no ties in the class logits in g(f(vb))
4, at least one of

the following must be true once dispersion occurs:

• The input {va,vb,vb, . . . ,vb} of sufficiently large size will be misclassified into class b;

• The input {vb, . . . ,vb} (for any size) will be misclassified.

In either case, the architecture had to have made an error.

While Corollary B.1 concerns single attention heads, note that we can leverage the setting of Theorem 2.2 to prove that such
failures will occur in deep Transformers as well. We sketch this intuition:
Remark B.2. Given the same task as in Corollary B.1, using a deep Transformer architecture as described in Theorem 2.2,
dispersion in its attentional layers is sufficient to cause misclassifications to occur. To see why, first, assume that the models
have no residual connections. The arguments for why such architectures must misclassify are subtly different depending on
the Transformer model:

• For BERT-style Transformers, since all attention heads are global, after one dispersed layer, any sufficiently large set
{va,vb, . . . ,vb} will have identical embeddings to a set {vb, . . . ,vb} of the same size. After this, it is impossible to
classify them differently.

• For GPT-style Transformers, to simplify the argument, we assume the va element is at the end of the input:
{vb, . . . ,vb,va}. In this setting, only the final token’s attention head will receive the features from va. If it disperses,
this set will once again be indistinguishable from a set {vb, . . . ,vb} of the same size. This argument is inspired by
Barbero et al. (2024).

Residual connections (He et al., 2016) allow for preserving the information contained in va even across dispersed layers.
However, as we have assumed all heads attending over va have dispersed, no subsequent layer will be able to meaningfully
integrate this information across the set, and eventually the computation will hit the final layers’ attentional heads, where the
final embeddings will once again be indistinguishable across these two different sets.

4This assumption is important in the case that g(f(vb)) gives equal logits to classes a and b. As this is a boundary condition for
the classifier, if it occurred exactly on f(vb), we would not be able to guarantee that any two sets mapped to f(vb) will be classified
identically without sacrificing local continuity around f(vb). Note that, due to floating-point rounding errors, this assumption is rarely
broken in modern deep classifiers.

15

Softmax is not Enough (for Sharp Size Generalisation)

We note that the only condition on the coefficients necessary for this breakdown to occur is that they decay towards zero—the
failure on sets of the kind {va,vb,vb, . . . ,vb} is not prevented even if α(n)

1 decays substantially more slowly than the other
coefficients!
Remark B.3. If we assume a dispersion setting where

α
(n)
i =

{
Θ
(

logn
n

)
i = 1

Θ
(
1
n

)
1 < i ≤ n

The failure described by Corollary B.1 still applies, following exactly the same proof, i.e. eventually α(n)
1 < ϵ for any

machine epsilon value ϵ > 0. Note that, as per Theorem 2.2, this situation is impossible in vocabulary-based Transformer
architectures.

C. How does Dispersion Interact with Depth?
While Theorem 2.2 concludes that dispersion must eventually affect all global attention heads in Transformer architectures
over vocabularies, not much is said about how rapidly the dispersion must affect heads at various depths.

Intuitively, if dispersion occurs at a particular layer, it will cause the outputs of the dispersed attention heads to converge to
the average of all value vectors. This convergence, in turn, minimises the spread of logits, δ, that the subsequent layer will
experience. As shown by Lemma 2.1, the value of the spread directly controls at which sizes dispersion will occur.

Using this argument, we can show that in BERT-style Transformers without residual connections, a complete dispersion of
all heads in a particular layer leads all subsequent layers’ attention heads to immediately disperse.

Remark C.1. Let H(n) = {h(n)
i }1≤i≤n be the input node embeddings for an intermediate layer of a BERT-style Transformer

without residual connections. If all of this layer’s attention heads have dispersed on that input, i.e. α(n)
ij < ϵ where ϵ is

the machine epsilon, then all of that layer’s output node embeddings will be equal to the average embedding, h̃(n)
i =

1
n

∑
1≤j≤n Vh

(n)
j . Since these constitute the inputs for the next layer’s attention heads, we can conclude that all of the next

layer’s key and query vectors will be identical, namely (for any feedforward layer f):

k̃
(n)
i = K′f

 1

n

∑
1≤j≤n

Vh
(n)
j

 q̃
(n)
i = Q′f

 1

n

∑
1≤j≤n

Vh
(n)
j

As such, all logits of such a layer will themselves be equal to

ẽij =

Q′f

 1

n

∑
1≤j≤n

Vh
(n)
j

⊤K′f

 1

n

∑
1≤j≤n

Vh
(n)
j

and hence, the spread will converge to δ̃ = 0. Given Lemma 2.1, such a layer can only compute averages for any input
size n, which is equivalent behaviour to full dispersion. That is, dispersion in a layer implies that all subsequent layers will
output embeddings equivalent to fully dispersed ones.

Note that, if we introduce residual connections in BERT-style Transformers, or leverage GPT-style Transformers, these kinds
of conclusions are no longer applicable. This is because residual connections, as well as the more localised attention heads
in GPT-style models, ensure that not all token embeddings will converge to the average embedding (even under dispersion).
And whenever the output token embeddings of an attentional layer are not fully converged, any intermediate transformations
(such as the K and Q matrices) can re-amplify δ to less dispersed levels (see also Proposition 3.1).

Note this does not mean that any global attentional layer of Transformers over finite token vocabularies will escape
dispersion—Theorem 2.2 proves it is inevitable—it only means that we cannot tie the exact moment a particular layer’s
heads will disperse to a preceding layer’s dispersion event. But the dispersion of a layer will certainly play a direct part in
reducing the δ value of subsequent layers, and this may well accelerate dispersion in subsequent layers.

16

Softmax is not Enough (for Sharp Size Generalisation)

D. Proof of Proposition 3.1, with Numerical Validation
Proposition 3.1 (Sharpness in Transformers necessitates large weights). Let e(n) ∈ Rn be a collection of n logits, computed
using a dot product attention mechanism; i.e. e(n)k = ⟨Qy,Kxk⟩, where y ∈ Rm is a query vector and Q,K ∈ Rm′×m

are parameters. Let δ = max
1≤i≤n

e
(n)
i − min

1≤j≤n
e
(n)
j be their maximum difference. Then δ is upper bounded as:

δ ≤ 2σ(Q)
maxσ

(K)
max∥y∥ max

1≤i≤n
∥xi∥

where σ(Q)
max, σ

(K)
max ∈ R are the largest singular values of Q and K.

Proof. We start by showing that the largest singular values of Q and K determine the maximum stretch due to that matrix
acting on x ∈ Rm. More precisely, we wish to show:

∥Qx∥ ≤ σ(Q)
max∥x∥ ∥Kx∥ ≤ σ(K)

max∥x∥

where ∥ · ∥ is the Euclidean norm. Since both inequalities have the same form, we focus on Q w.l.o.g. Many of these
statements can be derived from linear algebra textbooks (Axler, 2015). However, the proofs are short enough that we
re-derive them here for clarity.

Consider the singular value decomposition (SVD) Q = UΣV⊤, where Σ is a rectangular diagonal matrix of singular
values σ(Q)

i ∈ R. As U and V are orthogonal, ∥Ux∥ = ∥Vx∥ = ∥x∥. Therefore, ∥Qx∥ = ∥UΣV⊤x∥ = ∥Σv∥, where
v = V⊤x, meaning that ∥v∥ = ∥x∥. Then we derive:

∥Σv∥ = ∥Qx∥ =

√∑
i

(
σ
(Q)
i vi

)2
≤ σ(Q)

max

√∑
i

v2i = σ(Q)
max∥x∥

We now note that
e
(n)
k = ⟨Qy,Kxk⟩ = ∥Qy∥∥Kxk∥ cos θ

with θ the angle between the arguments of the inner product. We can now bound e(n)k from above:

e
(n)
k ≤ ∥Qy∥∥Kxk∥ ≤ σ(Q)

maxσ
(K)
max∥y∥∥xk∥

with σ(Q)
max, σ

(K)
max being the maximum singular value of Q and K, respectively, and where the last step comes from the

inequality shown above. Similarly, we obtain a lower bound, yielding:

−σ(Q)
maxσ

(K)
max∥y∥∥xk∥ ≤ e

(n)
k ≤ σ(Q)

maxσ
(K)
max∥y∥∥xk∥

This gives us the desired upper bound for δ:

δ = max
1≤i≤n

e
(n)
i − min

1≤j≤n
e
(n)
j

≤ max
1≤i≤n

σ(Q)
maxσ

(K)
max∥y∥∥xi∥ − min

1≤j≤n
−σ(Q)

maxσ
(K)
max∥y∥∥xj∥

= σ(Q)
maxσ

(K)
max∥y∥ max

1≤i≤n
∥xi∥+ σ(Q)

maxσ
(K)
max∥y∥ max

1≤j≤n
∥xj∥

= 2σ(Q)
maxσ

(K)
max∥y∥ max

1≤i≤n
∥xi∥

completing the proof.

We remark that Proposition 3.1 lends itself to simple numerical verification as well. Accordingly, in Figure 9, we visualise
the evolution of the logit spread, as well as its predicted upper bound, as our single-head attentional model from Appendix A
is trained for increasing numbers of steps.

Indeed, we find that the upper bound is valid, and reveal a key mechanism in which our single-head architecture gradually
learns to sharpen its attention: the logit spread grows with training time, but so does the norm of the relevant vectors and
parameter matrices (in spite of our weight decay loss).

17

Softmax is not Enough (for Sharp Size Generalisation)

0.0 0.2 0.4 0.6 0.8 1.0
Training steps 1e5

0

200

400

600

800

1000

1200

Sp
re

ad
 M

ag
ni

tu
de

Spectral norm of self-attention kernels vs. logit spread

2 (Q)
max

(K)
max y max

i
xi

Figure 9. A plot of the logit spread, δ, against its upper bound value predicted by Proposition 3.1, 2σ(Q)
maxσ

(K)
max∥y∥maxi ∥xi∥, for the

single-head attentional experiment described in Appendix A, with statistics computed across ten seeds. This numerically validates
Proposition 3.1.

E. Proof of Proposition 3.2
Proposition 3.2 (Decreasing temperature decreases entropy). Let e(n) ∈ Rn be a collection of n logits. Consider the
Boltzmann distribution over these n items, pi ∝ exp(−βe(n)i) for β ∈ R, and let H = −

∑
i pi log pi be its Shannon

entropy. Then, as β’s magnitude increases, H must monotonically decrease.

Proof. We start by briefly acknowledging the extremal values of β: at β = 0 (i.e., θ → ∞), all logits are weighed equally,
hence pi = U(n) are uniform, and entropy is maximised. Similarly, at β → ±∞ (i.e., θ = 0), either the minimum or the
maximum logit is given a probability of 1, leading to a distribution with minimal (zero) entropy.

Now, consider the partition function Z =
∑

i exp(−βe
(n)
i), such that pi =

exp(−βe
(n)
i)

Z . We will take derivatives of logZ
with respect to β. Starting with the first derivative:

d

dβ
logZ =

1

Z

∑
i

−e(n)i exp(−βe(n)i) = −
∑
i

e
(n)
i pi = −Ei∼pi

(e
(n)
i)

18

Softmax is not Enough (for Sharp Size Generalisation)

we recover the expected logit value sampled under the distribution. Now we differentiate again:

d2

dβ2
logZ = − d

dβ

∑
i

e
(n)
i pi

= −
∑
i

e
(n)
i

d

dβ

exp(−βe(n)i)

Z

= −
∑
i

e
(n)
i

−e(n)i exp(−βe(n)i)Z − exp(−βe(n)i)
∑

j −e
(n)
j exp(−βe(n)j)

Z2

=
∑
i

(e
(n)
i)2

exp(−βe(n)i)

Z
−
∑
j

e
(n)
j

exp(−βe(n)j)

Z

∑
k e

(n)
k exp(−βe(n)k)

Z

=
∑
i

(e
(n)
i)2pi −

∑
j

e
(n)
j pj

∑
k

e
(n)
k pk

= Ei∼pi
((e

(n)
i)2)− Ei∼pi

(e
(n)
i)2 = Vari∼pi

(e
(n)
i)

and we recover the variance of the expected logit value.

Now we turn our attention to the entropy formula:

H = −
∑
i

pi log pi = −
∑
i

pi(log exp(−βe(n)i)− logZ)

=
∑
i

pi logZ −
∑
j

−βe(n)j pj

= logZ + βEi∼pi
(e

(n)
i) = logZ − β

d

dβ
logZ

To check the monotonicity of H as β varies, we now take the derivative of this expression w.r.t. β:

dH

dβ
=

d

dβ
logZ − d

dβ
logZ − β

d2

dβ2
logZ = −β d2

dβ2
logZ = −βVari∼pi(e

(n)
i)

Since variance can never be negative, we find that dH
dβ ≤ 0 when β ≥ 0, and −dH

dβ ≤ 0 when β ≤ 0. As such, as the
magnitude |β| grows, the value of H must monotonically decrease.

F. Derivation of the Adaptive Temperature Scheme
In this Appendix we expand on the description of our adaptive temperature scheme in a way that provides a detailed
step-by-step overview of the individual steps taken to arrive at the final JAX algorithm presented in Figure 4.

The core principle of our approach is to adapt the θ parameter within softmaxθ in a way that is mindful of the entropy of its
inputs; that is, we first compute:

θ̂ = f(H(softmaxθ(e))) (15)

where e ∈ Rn is the vector of logits inputted into softmax, θ is the initial temperature (here, we set θ = 1 for simplicity),
H : [0, 1]n → R is the Shannon entropy of the distribution emitted by softmaxθ(e):

H(p) = −
∑
i

pi log pi (16)

and f : R → R≥0 is a (learned) function mapping the calculated entropy to an adapted temperature value, θ̂ (which
should be nonnegative). Once computed, our sampling scheme returns softmaxθ̂(e) instead of softmaxθ(e) as the final
distribution. Therefore, the only remaining important element to understand is how the function f is constructed.

19

Softmax is not Enough (for Sharp Size Generalisation)

While one could approach the construction of f using a complex learned function, for the purposes of this work we focus on
first learning a simple inverse-polynomial degree-4 approximator, f̂ :

f̂(H) =

(
4∑

i=0

aiH
i

)−1

(17)

In order to derive the coefficients ai, we need a dataset of (H, 1/θopt) values, mapping the observed entropy in a particular
sample to an optimal choice of temperature scaling, θopt. From such a dataset, one can use standard functions (such as
np.polyfit) to fit the coefficients.

We have a straightforward way of computing H for any particular sampled training example – simply record attentional
logits at every Transformer layer and compute the Shannon entropy. How can we compute the optimal temperature value for
this example (at least in the case of our single-head set Transformer from Appendix A)? It should be the value that would
place the highest probability possible on the item we are looking for – in this case, the item with the maximal value.

For starters, note that, for θopt to even be meaningful in this case, the item with the maximal value must not have the largest
logit already. In such cases it is easy to see the “optimal” temperature is zero, leading to an unwieldy target value of +∞
when learning f̂ . Hence, we will discard all samples where this is the case.

For all other samples, we know that the probability of the target item will be 0 at θ = 0 (as it will be overwhelmed by the
maximal logit), and it will be 1/n at θ → ∞. Somewhere in between these values lies the optimal choice. Rather than using
elaborate methods to search for θopt, we perform a simple grid search – attempting all values of θ between 0 and 10, in
increments of 0.1. Empirically, we find that for all samples we cared about, θopt was definitely in this range – and we record
the θ that led to the highest observed probability as our estimate of θopt.

Finally, we would not wish to “overcorrect” the temperature if the attention head is already confident (entropy below a
fixed threshold—we chose 0.5) or, given the target of our work towards sharpness, if the suggested temperature scale would
disperse the coefficients further (i.e. if it would result in a temperature greater than 1).

All together, we recover the following final form of our algorithm, implemented by Figure 4:

f(H) =

{
1 H ≤ 0.5

min
(
f̂(H), 1

)
H > 0.5

(18)

G. An Algorithm for Streaming Attentional Entropy
Computing our proposed adaptive temperature requires computing the entropy of the attentional coefficients. A naı̈ve
algorithm for doing so requires fully materialising the αij entries of the attention coefficient matrix, which requires O(n2)
memory and poses scalability concerns. Fortunately, there exists an online algorithm for computing the entropy that is
not FLOP/s efficient but does not leverage any additional memory, allowing for a linear-space attention implementation in
conjunction with Flash Attention (Dao et al., 2022). We present one such algorithm in this section. We have successfully
implemented this algorithm and numerically verified that its outputs match the expected adaptive temperature amounts,
allowing us to deploy layers with large context windows (up to 131, 072 tokens) on a single NVIDIA A100 node.

In order to compute the adaptive temperature, we need to first compute the attentional coefficient entropy for each row of the
attentional matrix. For convenience, let us define the exponentiated logit of token i’s attention over token j, taking into
account only the first 1 ≤ N ≤ n items:

λ
(N)
ij = exp

(
q⊤
i kj −max

k<N
(q⊤

i kk)

)

where qi and ki the query and key vectors, respectively, for token i.

Now, we can rearrange the terms of the expression for the entropy, H(N)
i , of each row of the corresponding matrix of

20

Softmax is not Enough (for Sharp Size Generalisation)

attentional coefficients, taking into account the first N items, in a form that will be more favourable for streaming:

H
(N)
i = H

{ λ
(N)
ij∑

k λ
(N)
ik

}
1≤j≤n

=
∑
j

λ
(N)
ij∑

k λ
(N)
ik

log
λ
(N)
ij∑

k λ
(N)
ik

=
∑
j

λ
(N)
ij∑

k λ
(N)
ik

(
log λ

(N)
ij − log

(∑
k

λ
(N)
ik

))

=
∑
j

λ
(N)
ij∑

k λ
(N)
ik

log λ
(N)
ij −

∑
j

λ
(N)
ij∑

k λ
(N)
ik

log

(∑
k

λ
(N)
ik

)

=

∑
j λ

(N)
ij log λ

(N)
ij∑

k λ
(N)
ik

−
∑

j λ
(N)
ij∑

k λ
(N)
ik

log

(∑
k

λ
(N)
ik

)

=

∑
j λ

(N)
ij log λ

(N)
ij∑

k λ
(N)
ik

− log

(∑
k

λ
(N)
ik

)
Next, we define two cumulative quantities:

Λ
(N)
i :=

∑
j<N

λ
(N)
ij m

(N)
i := max

j<N
q⊤
i kj

which allow us to further analyse the
∑

j λ
(N)
ij log λ

(N)
ij term as follows:∑

j<N

λ
(N)
ij log λ

(N)
ij =

∑
j<N

exp

(
q⊤
i kj −max

k
q⊤
i kk

)
log exp

(
q⊤
i kj −max

k
q⊤
i kk

)
=
∑
j<N

λ
(N)
ij

(
q⊤
i kj −m

(N)
i

)
=
∑
j<N

λ
(N)
ij q⊤

i kj −m
(N)
i Λ

(N)
i

Now we remark that we can incrementally compute Λ(N)
i using the following iterative formula, leveraging the same concepts

as Flash Attention (Dao et al., 2022):

Λ
(N)
i :=

∑
j<N

λ
(N)
ij =

∑
j<N

exp
(
q⊤
i kj −m

(N)
i

)
Λ
(N+1)
i = Λ

(N)
i exp

(
m

(N)
i −m

(N+1)
i

)
+ λ

(N)
iN

and we can incrementally compute the remaining term, K(N)
i =

∑
j<N λ

(N)
ij q⊤

i kj , using the following iterative formula:

K(N)
i :=

∑
j<N

λ
(N)
ij q⊤

i kj =
∑
j<N

exp
(
q⊤
i kj −m

(N)
i

)
q⊤
i kj

K(N+1)
i = K(N)

i exp
(
m

(N)
i −m

(N+1)
i

)
+ λ

(N)
iN q⊤

i kN

So our final result in terms of Λ(n)
i and K(n)

i (fully streamed across all n items) is:

H
(n)
i =

K(n)
i −m

(n)
i Λ

(n)
i

Λ
(n)
i

− log Λ
(n)
i

=
K(n)

i

Λ
(n)
i

−m
(n)
i − log Λ

(n)
i

21

Softmax is not Enough (for Sharp Size Generalisation)

This expression can be computed with O(n) memory, as we never have to materialise an entire matrix of coefficients. Under
this implementation, adaptive temperature can easily scale to large context windows (which we have validated empirically
up to 131, 072 tokens).

22

