
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REPRESENTATION-BASED EXPLORATION FOR LANGUAGE
MODELS: FROM TEST-TIME TO POST-TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) promises to expand the capabilities of language mod-
els, but it is unclear if current RL techniques promote the discovery of novel behav-
iors, or simply sharpen those already present in the base model. In this paper, we
investigate the value of deliberate exploration—explicitly incentivizing the model
to discover novel and diverse behaviors—and aim to understand how the knowledge
in pre-trained models can guide this search. Our main finding is that exploration
with a simple, principled, representation-based bonus derived from the pre-trained
language model’s hidden states significantly improves diversity and pass@k rates—
both for post-training, and in a novel inference-time scaling setting we introduce.

1. For inference-time, exploration with representation-based diversity improves
efficiency, consistently improving pass@k rates across a variety of models and
reasoning tasks. For example, for Qwen-2.5-14b-Instruct we obtain over
50% improvement in verifier efficiency on almost all considered tasks.

2. For post-training, we show that integrating this exploration strategy into an
RL pipeline improves reasoning performance over that of the initial model and
over standard RL post-training. For example, on AIME 2024, our post-trained
Qwen-2.5-7b-Instruct’s pass@80 matches the pass@256 of GRPO on the
same model, demonstrating a 3x improvement in test-time sample efficiency.

Overall, our findings suggest that deliberate exploration—with the right notion of
diversity—is a practical path toward discovery of new behaviors beyond sharpening.

1 INTRODUCTION

Reinforcement learning (RL) promises to endow agents with the ability to discover valuable behaviors
autonomously, via closed-loop trial and error. For language modeling tasks with verifiable rewards,
such as mathematical reasoning and code generation, post-training with reinforcement learning
has already enabled impressive breakthroughs (DeepSeek-AI, 2025; OpenAI, 2024). Still, it is
unclear whether contemporary RL implementations for language models attain the full promise of
reinforcement learning. Rather than unlocking capabilities not present in the pre-trained model, there
is increasing evidence (Yue et al., 2025; Gandhi et al., 2025) that existing RL recipes (Schulman et al.,
2017; Rafailov et al., 2023; DeepSeek-AI, 2025) may simply amplify or sharpen (Huang et al., 2025)
behaviors that the base model can already execute, albeit with modest probability. While this can be
mitigated through deliberate data curation and some algorithmic interventions (He et al., 2025; Liu
et al., 2025; Setlur et al., 2025), data scale and quality are rapidly becoming bottlenecks, particularly
in complex, open-ended domains where existing interventions fall short of eliciting desired behavior.

We argue that deliberate exploration—incentivizing the model to discover truly novel and diverse
behavior—is an essential ingredient in realizing the full potential of RL for language model reasoning.
Exploration has a rich history in both the theory and practice of RL, and exploration techniques
tailored to deep networks (Tang et al., 2017; Pathak et al., 2017; Burda et al., 2018; Osband et al.,
2019) have received extensive investigation in the context of embodied decision making, including
game playing and robotic control. These algorithms proceed from scratch, without pre-training, yet
rapidly learn complex behaviors, demonstrating that they enable learning beyond the sharpening
regime. If we can equip language models with exploration in a similar fashion, we may be able to
advance reasoning capabilities without incurring exorbitant data curation costs.

In spite of the potential benefits of exploration, it is unclear which, if any, exploration technique from
deep RL can be directly scaled to modern language models. A central challenge involves the scalable

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

100 101 102 103

Random samples-to-correct
100

101

102

103

Re
pE

xp
 sa

m
pl

es
-to

-c
or

re
ct

Exploration helps

100 101 102 103100

101

102

103

Re
pE

xp
 sa

m
pl

es
-to

-c
or

re
ct

Task
MATH
GSM8K
MBPP+
AIME 2025
Game of 24

Model
Llama 8B

Phi 3 medium
Phi 4

Qwen 3B
Qwen 7B
Qwen 14B
Qwen 32B

y = 7.13x0.49 Model
Llama 8B

Phi 3 medium
Phi 4

Qwen 3B
Qwen 7B
Qwen 14B
Qwen 32B

100 101 102 103

Random samples-to-correct
100

101

102

103

Re
pE

xp
 sa

m
pl

es
-to

-c
or

re
ct y = 1.12x0.59y = 1.12x0.59

Figure 1: Representation-based inference-time exploration improves verifier efficiency. (Left) We
plot the samples-to-correct, the average number of samples until a correct response is selected, for a
wide range of tasks and models. We compare two inference-time exploration methods: representation-
based exploration (Section 3) and naive (random) sampling from the base model. (Right) We display
samples-to-correct, disaggregated to each question in the dataset, for two model-task pairs. We find
representation-based exploration improves over random sampling for most model-task pairs.
For example, for Qwen-2.5-14b-Instruct we obtain over 50% improvement in verifier efficiency
on GSM8K, MATH, MBPP+, and Game-of-24. See Section 4.1 for details.

quantification of novelty and behavior diversity—and acting on this information—when the decision
space under consideration is the combinatorially large space of language. At the same time, pre-trained
language models contain tremendous prior knowledge compared to policies found in traditional
embodied settings, which may be the key to guiding efficient exploration. This leads us to ask:

1. Can the knowledge in pre-trained representations guide the search for novel behaviors?

2. Does deliberate exploration have the potential to move beyond sharpening the base model?

1.1 CONTRIBUTIONS

Toward answering these questions, we focus on understanding whether exploration with diversity
bonuses div(x, y) derived from a language model can effectively guide the search for diverse
behaviors. We adopt a novel methodology (Section 2) in which we first evaluate exploration in a
simple, purely inference-time setting, then integrate our findings into post-training.

The inference-time selection problem (Section 2). In this setting, we aim to select a small set
of responses y1, . . . , yk from a large set of candidates y1, . . . , yN for a given prompt x, such that
the chosen set is as diverse as possible, and has high probability of including a positive response.
This simple regime allows us to disentangle the role of diversity div(x, y) from other complex RL
mechanisms, such as optimization and generalization.

Results: Representation-based exploration improves diversity and efficiency. Our main finding
is that exploration with a representation-based bonus (Section 3) derived from the pre-trained
language model’s hidden states significantly improves diversity and pass@k rates—both for our
inference-time setting and for post-training. Our specific findings are as follows:

1. Inference-time (Section 4). Inference-time exploration with representation-based diversity
improves verifier efficiency. For example, we obtain over 50% improvement in verifier efficiency
over standard sampling for Qwen-2.5-14b-Instruct on GSM8K, MATH, MBPP+ and Game-of-24.
See Figure 1 for an overview of our results for this setting.

2. Post-training (Section 5). Representation-based exploration can be incorporated into RL post-
training, where its pass@k performance is competitive with both GRPO and the base model
uniformly for all k (Figure 6). Notably, representation-based exploration completely eliminates
the “diversity collapse” phenomenon where RL degrades pass@k with respect to the base
model for large k (Dang et al., 2025; Yue et al., 2025; Wu et al., 2025).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Our findings, particularly this last point, suggest that deliberate exploration is a practical path toward
discovery of new behaviors beyond sharpening. Although our experiments focus on arguably the
simplest principled representation-based exploration scheme—for which we already see substantial
performance improvements—we expect that our two-pronged evaluation approach will enable a
deeper understanding of the benefits and tradeoffs of more sophisticated strategies, which may help
realize the full potential of reinforcement learning for language model reasoning.

Additional results: Diversity-guided generation (Section 4.2). As a proof of concept, we also
evaluate an inference-time exploration algorithm that uses representation-based diversity to encourage
exploration during the autoregressive generation processs itself. We find that this improves pass@k
for large k over naive sampling for Qwen-2.5-7b-Instruct on MATH.

2 PROBLEM SETUP: FROM INFERENCE-TIME TO POST-TRAINING

In this section, we describe the two problem settings we consider for exploration: inference-time
selection and RL post-training. In what follows, π denotes a language model that maps a prompt
x ∈ X to a distribution over responses y ∈ Y , and r⋆(x, y) ∈ {0, 1} denotes a verifiable reward
function that measures correctness at a task of interest, such as whether the answer to a math question
is correct, or whether a Python program passes unit tests.

Methodology and motivation. The goal of RL post-training is to find a policy π that maximizes
the expected reward Ey∼π(·|x)[r

⋆(x, y)]. Given a budget k of verifier queries per question at each
data collection round, post-training algorithms such as GRPO (Shao et al., 2024) update the model
iteratively, where in each iteration they sample k responses y1, . . . , yk

i.i.d.∼ π(· | x) per prompt x from
the current model π, query the verifier for a reward r⋆(x, yi) for each response, and use observed
rewards to update the model for the next iteration.

If the initial model π has poor support over rewarding behavior—i.e., if r⋆(x, y) = 0, with high prob-
ability under y ∼ π(· | x)—common RL algorithms such GRPO or PPO (Schulman et al., 2017) will
not make any progress. This motivates interventions for exploration such as bonuses (Tang et al., 2017;
Pathak et al., 2017; Burda et al., 2018; Osband et al., 2019) and alternative sampling strategies. How-
ever, understanding the benefits and tradeoffs of these interventions in RL post-training is challenging
because exploration interacts with optimization and generalization. To isolate exploration from these
other considerations, we center our investigation around a task we refer to as inference-time selection,
validating interventions in this setting before integrating them into the RL post-training pipeline.

2.1 INFERENCE-TIME SELECTION

In the inference-time selection problem, we aim to use a fixed model π to build a set of k responses to a
given prompt x that are maximally diverse and have high probability of containing a positive response.
As a simple baseline, we may independently sample k reponses from the model—potentially with high-
temperature sampling, nucleus or min-p sampling, or another modified sampling scheme. However,
the limitations of these baselines are (i) they may not effectively capture the model’s understanding of
diversity, and (ii) by sampling independently, we may waste verifier queries on redundant responses.

Instead, we focus on selection-based approaches that initially sample a large set of candidate
responses to the prompt, then use a diversity bonus div(x, y) derived from the model to filter this
set down to a smaller, more diverse “coreset” (Clarkson, 2010; Feldman et al., 2020) that is passed
to the verifier. Formally, we consider the following protocol: For each prompt x, we (1) sample
an initial batch of N responses y1, . . . , yN ∼ π(· | x), (2) use the inference-time selection algorithm
Alg to select k of these responses (a subset S ⊂ [N] of size |S| = k), and (3) query the verifier and
record if any of the selected responses are rewarding. That is, we measure pass@k,

Ey1,...,yN∼π(·|x)
[
ES∼Alg(x,y1,...,yN)

[
max
i∈S

[r⋆(x, yi)]
]]
. (1)

Importantly, the filtering algorithm operates without the verifier, and so successfully retaining
high-quality responses translates to improved verifier efficiency (i.e., number of responses for which
we query the verifier) over the initial set of responses. Thus, a useful diversity bonus div(x, y)
should yield a coreset that is maximally “exploratory,” in the sense that it is the most diverse set of
responses that can be selected for a fixed budget of verifier queries. For example, in math reasoning
settings, we would like to select the distinct-but-plausible proof strategies for a given problem, thus
covering the space of potential proofs and maximizing the chance of selecting a correct one.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Remark 2.1. While we mainly introduce inference-time selection as a stepping stone to post-training
(i.e., algorithms in this setting are not necessarily more compute-efficient than naive sampling, even if
they are more verifier-efficient), we do expect inference-time exploration to be useful in its own right
for domains where querying a verifier is costly or difficult (e.g., collecting feedback from expert-level
annotators), allowing for more sample- and hence cost-efficient data collection.

2.2 REINFORCEMENT LEARNING POST-TRAINING

As described earlier, RL post-training (e.g., with GRPO or PPO) proceeds by iteratively sampling
batches of responses, querying the verifier, and using the feedback to update the current policy.
After selecting a checkpoint π̂, we evaluate performance via pass@k under standard generation,
Ey1,...,yk∼π̂(·|x)

[
maxi∈[k] r

⋆(x, yi)
]
. There are two natural approaches to integrate exploration

methods into this process. The first is to adjust the independent sampling process only (e.g., through
nucleus sampling or min-p sampling), and the second is to augment the training objective with an
exploration bonus div(x, y). Our experiments focus on the latter approach; however, based on our
results for inference-time selection, we expect that incorporating representation-based exploration
into the sampling process will also improve RL post-training performance. Indeed, our two-pronged
evaluation is motivated by the hypothesis that diversity bonuses div(x, y) that perform well at
inference-time also perform well in post-training.

3 REPRESENTATION-BASED EXPLORATION: INFERENCE-TIME AND RL
Having motivated our setup, we now turn to the question of what diversity bonuses div(x, y) are
suitable for exploration with language models. While many metrics have been proposed in the
literature (Tang et al., 2017; Pathak et al., 2017; Burda et al., 2018; Osband et al., 2019), the
challenge in adapting these techniques to language models is to simultaneously (i) capture the
model’s understanding and (ii) allow for efficient computation at scale. For example, count-based
exploration (Tang et al., 2017) is simple, but unsuited to large decision spaces. On the other hand,
metrics based on intrinsic curiosity (Pathak et al., 2017) and random network distillation (Burda et al.,
2018) are better suited to large or continuous spaces, but require additional learning machinery (i.e.,
auxiliary networks), which introduces significant complexity when scaling to language models.

We focus our experiments on an exploration strategy that avoids these shortcomings: An adaptation
of elliptic bonuses and sampling—a de facto standard for linear bandits and active learning (Abbasi-
Yadkori et al., 2011; Chu et al., 2011; Ash et al., 2021; Henaff et al., 2022; Saran et al., 2023; Foster
et al., 2025)1—with a representation derived from the language model’s hidden states.2 This approach
is arguably the simplest principled strategy that is appropriate for language models, and already yields
significant performance improvements in our experiments.

At a high level, elliptical bonus methods operate over a d-dimensional feature space and adopt a
linear-algebraic measure of novelty: given previously seen feature vectors h1, . . . , hi−1 the novelty
(or bonus) of a new feature vector h is defined as

div(h | h1:i−1) = h⊤Σ−1
i h Σi = λId +

∑
j<i

hjh
⊤
j (2)

These bonuses are grounded in the theory of linear regression: If we fit a linear model fθ(h) = ⟨θ, h⟩
on features h1, . . . , hi−1 (with associated regression targets), the prediction error on h will be
bounded by div(h | h1:i−1) (Lattimore & Szepesvári, 2020). Thus, div(h | h1:i−1) reflects novelty,
as it will be large for features h that are poorly represented by the training dataset.

To adapt elliptical bonuses to language models, we use representations extracted from the model
itself as the feature vectors. Formally, given a prompt x and a response y = y1, . . . , yT of T

tokens, we form the feature vector as h̄θ(x, y) := 1
T

∑T
t=1 hθ(x, y1:t) where hθ(x, y1:t) ∈ Rd is

the last-layer hidden state of the model on input (x, y1:t) (the activation prior to the unembedding
matrix). Figure 2 shows an experiment ablating this choice, comparing it to the effectiveness of using

1Indeed, elliptical bonuses are ubiquitous in linear bandits and reinforcement learning, the simplest non-
tabular RL setting, where they have strong provable guarantees. Beyond this, elliptic bonuses and iterative
schemes such as Algorithm 1 have a long history in the theory of optimal experimental design (Kiefer &
Wolfowitz, 1960; Pukelsheim, 2006; Allen-Zhu et al., 2021) and active learning (Cesa-Bianchi et al., 2009;
Agarwal, 2013; Gu et al., 2014; Chaudhuri et al., 2015)

2Our use of elliptic bonuses is particularly inspired by Foster et al. (2025), who prove that test-time
exploration with such bonuses has provable benefits in a simplified language model setting with frozen features.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 RepExp

1: input: Embeddings h̄θ (abbrv. h̄),
generations Y for prompt x,
budget k, regularization param. λ.

2: Initialize L← {y1}, y1 ∼ Unif(Y).
3: Initialize inverse covariance Λ0 = λ−1Id.
4: for t = 1 to k − 1 do
5: Λt ← Λt−1 − Λt−1h̄(x,yt)h̄(x,yt)

⊤Λt−1

1+h̄(x,yt)⊤Λt−1h̄(x,yt)
.

6: yt+1 = argmax
y∈Y

h̄(x, y)⊤ Λt h̄(x, y).

7: L← L ∪ {yt+1}.
8: return: L.

Mean Last Second-to-last
Representation type

0

100

200

300

400

Av
er

ag
e

sa
m

pl
es

-to
-c

or
re

ct

Phi-4 on Game of 24

Figure 2: Representation ablation. We com-
pare averaging all token representations to
using those for the penultimate or final token.
Averaging is over 2x more sample efficient.

representations at the last token hθ(x, y1:T) or penultimate token hθ(x, y1:T−1) instead. We reduce
dimensionality to 512 using a sparse random projection (Li et al., 2006); see Appendix B for details.

Representation-based exploration for inference-time selection. Algorithm 1 presents RepExp,
our main algorithm for inference-time selection using representation-based elliptical bonuses. Here,
given a single prompt x and a set of candidate generations Y = {y1, . . . , yN}, we iteratively select
the generation that maximizes the elliptical bonus via yt+1 = argmaxy∈Y h̄θ(x, y)Σ

−1
t h̄θ(x, y),

leveraging the representations h̄θ(x, y) described above. We efficiently update the inverse covariance
matrix Σ−1 using the Woodbury identity for O(d2) time per step (Vetterling & Press, 1992).

Representation-based exploration for RL post-training. For our post-training experiments,
we use the same representations h̄θ(x, y) as above, but directly augment the rewards with
elliptic bonuses instead of performing coreset selection. Concretely, given the current iterate
πθ in GRPO, we first sample a group of k responses y1, . . . , yk

i.i.d.∼ πθ(· | x) for each prompt
x. Letting Σ := λId +

∑k
i=1 h̄θ(x, yi)h̄θ(x, yi)

⊤, we define the reward for response yi as3

r⋆(x, yi) + β · h̄θ(x, yi)
⊤Σ−1h̄θ(x, yi), where β > 0 is a bonus parameter. While one could also

imagine performing inference-time coreset selection in the loop with GRPO, this approach is more
practical and efficient, and it achieves significant improvements in performance.

Why representation-based elliptical bonuses? We summarize several desirable properties of
these bonuses. First, by leveraging the hidden state of the model in featurization, the bonuses
capture rich information about the current and previously chosen generations, thereby incorporating
the language model’s prior knowledge. Second, the method is history-aware: the covariance
matrix summarizes all previously selected generations, and redundancy with previous selection (in
representation space) is penalized. Finally, the method is simple and scalable, involving no additional
learning machinery and using rank-one updates to avoid costly matrix inversions.

4 INFERENCE-TIME EXPLORATION: EXPERIMENTAL RESULTS

In this section, we investigate the performance of representation-based exploration for the inference-
time selection problem.

Datasets. We use the test splits of the following five datasets: MATH (Hendrycks et al., 2021),
GSM8K (Cobbe et al., 2021), MBPP+ (Liu et al., 2023), Game-of-24 (Yao et al., 2023), and AIME 2025.
We chose these tasks as they cover easy (GSM8K), medium (MATH), and harder (Game-of-24, AIME)
difficulty levels in math. In addition, we include MBPP+ to verify that our findings transfer to the
coding domain. For a more detailed overview of these datasets, please refer to Appendix B.1.

Models. We consider a range of model families and sizes: Llama-3.2-3B-Instruct and
Llama-3.1-8B-Instruct (Dubey et al., 2024), Phi-3-Medium (Abdin et al., 2024a) and Phi-4 (Ab-
din et al., 2024b), Qwen-2.5-X-Instruct (Qwen et al., 2024) for X ∈ {0.5B, 3B, 7B, 14B, 32B}, and
Mistral-7B (Jiang et al., 2023).

3The bonus here can be interpreted as a leverage score for yi (Drineas et al., 2006; Cohen et al., 2015).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8
Relative rank (based on pass@1)

150

100

50

0

50

100

%
 im

pr
ov

em
en

t o
ve

r r
an

do
m

Stronger modelsWeaker models

0 10 20 30 40 50 60 70 80 90 1000
100
200
300
400
500
600
700
800

Sa
m

pl
es

-to
-c

or
re

ct

Qwen-2.5-14B-Instruct on MATH
Model

Llama 3B
Llama 8B

Phi 3 medium
Phi 4

Qwen 0.5B
Qwen 3B
Qwen 7B
Qwen 14B
Qwen 32B

Mistral 7B

RepExp
Random

Model
Llama 3B
Llama 8B

Phi 3 medium
Phi 4

Qwen 0.5B
Qwen 3B
Qwen 7B
Qwen 14B
Qwen 32B

Mistral 7B

0 10 20 30 40 50 60 70 80 90 100
Hardness quantile (%)

0

200

400

600

800

1000

1200

1400

Sa
m

pl
es

-to
-c

or
re

ct

Phi-4 on Game of 24

RepExp
Random

Task
MATH
GSM8K
MBPP+
AIME 2025
Game of 24

Figure 3: A closer look into when RepExp provides improvement. (Left) For each task, we rank
models according to their pass@1 rate (the weakest model has rank 0, and the strongest has rank
8). We then plot relative improvement (%) of RepExp over random sampling, sorting by rank on the
x-axis. While RepExp can hurt weaker models (e.g., Qwen-2.5-0.5B-Instruct), we find stronger
models almost always benefit from exploration (e.g., Qwen-2.5-14B-Instruct). (Right) For
two different model-task pairs, we plot the samples-to-correct as a function of question hardness.
Hardness is measured by the samples-to-correct from a high-quality third-party model (GPT-4o
mini). We find that RepExp has the greatest benefit on harder examples (e.g., the hardest 20%
of questions on MATH). Shaded areas indicate one standard error.

Algorithms. In our experiment protocol, we initially draw a pool of N candidate generations from
the base model, where unless otherwise specified we use temperature τ = 1.0 and top-p = 1.0, which
we refer to as vanilla settings (for MBPP+, we set top-p = 0.95). Then we compare RepExp with budget
k with the baseline of random sampling (without replacement) of k responses from this pool. We
consider generating the pool using different samplers such as nucleus and min-p sampling in Figure 4,
but always use random sampling without replacement as the baseline. See Appendix B.1 for details.

4.1 BENEFITS OF REPRESENTATION-BASED EXPLORATION

We present our results as a series of Research Findings (RF), expanding on the findings in Figure 1.

RF1: RepExp improves verifier efficiency across models and tasks. In Figure 1, we plot the
samples-to-correct, defined as the expected number of samples k with which we query the verifier
before finding a correct answer, for all model-task pairs. We compare RepExp, which picks responses
to a fixed question according to Algorithm 1, with the random sampling baseline. For both algorithms,
we average the samples-to-correct across all questions in the dataset. Our results show the bulk
of the data fall below the line y = x, indicating exploration improves over random sampling in
most cases. For example, we find RepExp obtains a 50% improvement in samples-to-correct for
Qwen-2.5-14b-Instruct in MATH, GSM8K, MBPP+, and Game-of-24.

RF2: The benefits of RepExp grow with model strength. Since RepExp relies on the model’s
internal representations, it is natural to hypothesize that weaker models might have worse represen-
tations and thus benefit less from exploration. To validate this hypothesis, we expand the collection
of models in Figure 1 to include additional weaker models (e.g., Qwen-2.5-0.5B-Instruct and
Mistral-7b). For each task, we rank models according to their pass@1 performance, and plot the
relative improvement of representation-based exploration over random sampling in Figure 3. We
indeed observe a strong correlation between model strength and the benefit from representation-based
exploration: weaker models (e.g., Qwen-2.5-0.5B) experience no benefit or even degradation, while
the strongest models (e.g., Qwen-2.5-32B) almost uniformly benefit.

RF3: RepExp provides more improvement for harder questions. Beyond RF2—which provides
insight into the benefits of RepExp across models—we also evaluate the benefits across question
difficulty, for a fixed model and task. To this end, we sort all questions for a given task by their

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

20 22 24 26 28 210

0.5

0.6

0.7

0.8

Pa
ss

@
k

×4.1

20 22 24 26 28 210

0.5

0.6

0.7

0.8

×6.0

20 22 24 26 28 210

0.4
0.5
0.6
0.7
0.8

×0.1

20 22 24 26 28 210

k

0.5

0.6

0.7

0.8

Pa
ss

@
k

×3.3

20 22 24 26 28 210

k

0.5

0.6

0.7

0.8

×4.6

Data pool
Vanilla
Low temp
High temp
Min-p
Nucleus

Method
Random
RepExp

Method
Random
RepExp

Figure 4: Benefits of RepExp across data pools, for the inference-time exploration setup in Figure 1
(Section 4.1). We plot the pass@k curve for random vs. RepExp across five different data pools (base
samplers). RepExp on top of vanilla generation outperforms random sampling on top of any
of the generation strategies. Moreover, except for the high-temperature pool, RepExp over a pool
improves verifier efficiency, with 3x to 6x improvement over random sampling for that pool.

samples-to-correct under random sampling with a reference model (GPT-4o-mini). We then group
the questions in bins, each containing 10% of the dataset, and plot the average samples-to-correct for
each bin for both RepExp and random sampling. As displayed in Figure 3 (right), RepExp matches or
improves verifier efficiency across all bins, with the largest improvements on the hardest bins (e.g.,
the hardest 20% of questions on MATH). Concretely, on the hardest Game-of-24 questions, we find
that RepExp with Phi-4 provides a 3x improvement in verifier efficiency.

RF4: RepExp improves verifier efficiency over standard generation modifications. We now
investigate the effect of alternative base sampling strategies that might already induce diversity. Using
Qwen-2.5-7B-Instruct on MATH, we change the underlying generation strategy to use one of five
different generation settings: vanilla (no changes), low temperature (τ = 0.6), high temperature
(τ = 1.5), min-p (Minh et al., 2025) (τ = 1.5, p = 0.05), and nucleus sampling (Holtzman et al.,
2020) (top-p = 0.9). In Figure 4, we find that RepExp improves verifier efficiency in all settings,
except for when paired with high-temperature sampling. We suspect this is because high-temperature
sampling tends to produce less coherent responses, which may look novel in representation space, yet
do not necessarily contain correct answers.

4.2 EXTENSION: REPRESENTATION-BASED EXPLORATION AT THE TOKEN LEVEL

While useful in its own right as a testbed for benchmarking the viability of exploration methods, one
drawback of the inference-time selection setting is that compute—as measured by N , the size of the
per-question data pool—may need to be rather large relative to k for selection to yield improvements.
As an extension, we conduct a preliminary investigation into algorithms that use elliptic bonuses to
guide the autoregressive generation process itself, removing the need to generate such a pool at all.

Representation-based exploration for autoregressive generation. To guide sampling for im-
proved diversity, given a budget k, we use features from responses 1, . . . , i−1 to guide the generation
of the ith response by modifying the logits at every generation step. Specifically, consider the ith gen-
eration for a given prompt x. At each position t within the generation, we perturb the |V |-dimensional
token-level logit vector as z̃(i)(x, y<t) = z(i)(x, y<t) + β · b(i)(x, y<t, V), z̃(i)(x) ∈ R|V |,
where the bonus b(i)(x, y<t, V) is a token-level elliptic bonus, defined as b

(i)
j (x, y<t, V) =√

h̃θ(x, y<t, vj)⊤Σ
−1
(i) h̃θ(x, y<t, vj), for vj ∈ V . Here h̃θ(x, y<t, vj) is a mean-centered Trans-

former representation for sequence (y<t, vj); see Appendix B.2 for details.

RF5: RepExp for autoregressive generation improves solve rate. In Figure 5, we visualize the ef-
fect of token-level representation-based exploration for Qwen-2.5-7B-Instruct on the MATH task.
We use two values for the bonus parameter β (0.5, 1.0), and compare this to vanilla autoregressive

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

128 256 384 512 640 768 896 1024
k

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

Pa
ss

@
k

Vanilla (= 0.0)
Low RepExp (= 0.5)
High RepExp (= 1.0)

0 20 40 60 80 100
Hardness quantile (%)

10

5

0

5

10

15

So
lv

e
ra

te
 li

ft
(%

)

High RepExp (= 1.0)

Figure 5: Representation-based exploration at the token level, compared to naive autoregressive
generation (β = 0) for inference-time exploration. (Left) We plot pass@k for different exploration
methods on Qwen-2.5-7B-Instruct, for the 200 hardest (but solvable) questions in MATH as judged
by GPT-4o-mini. RepExp improves pass@k for large k over naïve sampling (for both choices of β).
(Right) When binning the questions by hardness (judged by samples-to-correct for GPT-4o-mini),
solve rate improves the most on the hardest questions. Error bars indicate 95% paired bootstrap CIs.

generation. While token-level exploration tends to solve fewer problems compared to vanilla genera-
tion when given a small budget, this trend reverses when the budget exceeds 512− 640 (depending
on choice for β). In addition, we find the improvement in solve rate is largest on the hardest ques-
tions. This initial result is encouraging, though further research is required (e.g., on more tasks and
models) before one can draw a definitive conclusion; further, our implementation is not optimized
for efficiency, and hence does not yet give a wall-clock time improvement over naive autoregressive
generation with a larger budget k.

5 EXPLORATION FOR RL POST-TRAINING

Following the methodology in Section 2, we now investigate the use of representation-based explo-
ration to guide the RL post-training process.

Tasks and models. We use Qwen-2.5-7b-Instruct evaluated on MATH, GSM8K, and AIME 2024.
Because there are only 30 questions in AIME 2024, we follow Yu et al. (2025) and use the
DAPO-Math-17K dataset for training, leaving AIME 2024 for evaluation only. Please refer to Ap-
pendix C for exact details on train, validation, and test splits for all tasks.

Baselines. We compare our method with three baselines: (1) Unlikeliness (He et al., 2025)
modifies GRPO by scaling the extrinsic rewards by a value inversely related to the likelihood of
a generation under the current policy. (2) GRPO is simply an unmodified version of the original
GRPO algorithm. (3) Base Model is the original untrained model included as a reference point to
see if methods can improve upon it, even at high values of k.

Representation-based Exploration (RepExp). We augment the rewards in GRPO with representation-
based bonuses as described in Section 3. Concretely, we add sequence-level elliptic bonuses to the
binary extrinsic rewards provided by the verifier: ri = R(x, yi) + b(x, yi) for the ith rollout yi of a
given prompt x. As mentioned in Section 3, we specifically use leverage score-like elliptic bonuses,
which allow easier control over their scale as they are bounded in [0, 1]. The covariance matrix Σ
used to compute bonuses is re-initialized for each batch of RL training. This way, the bonus b(x, yi)
measures the novelty of yi only with respect to the other rollouts in the batch—previously generated
sequences for x are not considered. To better maximize the bonus along all relevant directions in
representation space, we draw a new random projection of h̄θ(x, yi) at each optimization step.

RF6: RepExp improves pass@k. Figure 6 compares pass@k curves after training for all methods. In
line with earlier work, we find that all instantiations of GRPO improve the pass@k for small values of
k, and that standard GRPO degrades performance relative to the base model for large values of k (Yue
et al., 2025). Exploration appears to be an essential part of mitigating the latter effect: policies fit using
RepExp preserve or improve pass@k for large values of k with limited reductions for small k. This phe-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

20 21 22 23 24 25 26 27 28

k

0.70

0.75

0.80

0.85

0.90

0.95

Pa
ss

@
k ×5.6

×4.1

MATH

20 21 22 23 24 25 26 27 28

k

0.93
0.94
0.95
0.96
0.97
0.98
0.99

×13.4

×3.0

GSM8K

20 21 22 23 24 25 26 27 28

k

0.1

0.2

0.3

0.4

0.5

0.6

×3.2

×2.1

AIME 2024

GRPO RepExp (ours) Unlikeliness Base Model

Figure 6: Pass@k for RL post-training with exploration. We find that RL generally increases the
pass@k for small values of k compared to the base model, but that exploration is required to improve
or even preserve base model pass rates for larger values of k. For MATH and GSM8K, RepExp
roughly matches or improves upon Unlikeliness for k ≥ 2. For AIME 2024, RepExp is slightly
worse than Unlikeliness until k = 64, after which it surpasses Unlikeliness for all larger values of k.
Shaded areas indicate one standard error. Horizontal arrows indicate the test-time sample efficiency
improvement for pass@256 of RepExp over GRPO (blue) and Unlikeliness (orange). RepExp is 2.1-
4.1x more sample-efficient than Unlikeliness and 3.2-13.4x more sample-efficient than GRPO.

nomenon is more pronounced for RepExp than for Unlikeliness, and suggests that, with the right explo-
ration strategy, we may be able to escape the sharpening regime and discover novel model behaviors.

6 DISCUSSION

Related work. Several recent works aim to encourage exploration in language models, either by
adapting exploration techniques from deep reinforcement learning, or by augmenting PPO or GRPO
in ways that are more specialized to language models (He et al., 2025; Cheng et al., 2025; Chen et al.,
2025; Zhou et al., 2025; Setlur et al., 2025; Liu et al., 2025). Examples of the former include count-
based exploration via pseudo-counts (Bai et al., 2025) and at the outcome level (Song et al., 2025),
random network distillation (Liu et al., 2024b; Gao et al., 2025), and posterior sampling (Dwaracherla
et al., 2024). Examples of the latter include rewarding unlikely-but-correct responses (He et al., 2025),
entropy bonuses (Cheng et al., 2025), training the model to explore in-context (Setlur et al., 2024),
and reformulating post-training to more-directly maximize the pass@N objective (Balashankar et al.,
2024; Chow et al., 2025; Chen et al., 2025; Walder & Karkhanis, 2025). Among these, we experiment
with the unlikeliness reward approach of He et al. (2025) as a baseline, due to its robust performance
and clean implementation. More generally, our work is unique in (1) the specific representation-
based objective, and (2) our focus on inference-time as a means to validate methods with minimal
confounding factors. See Appendix A for a detailed overview.

Final remarks. Our work shows that deliberate exploration is a viable path toward expanding the
reasoning capabilities of language models, offering the possibility of discovering novel behaviors that
would be unlikely under naive sampling. While our results show that representation-based diversity
is effective at incentivizing exploration, the algorithm design space for exploration techniques is vast,
and there is still much to understand regarding how to best use the knowledge encoded in foundation
models to guide exploration. Along these lines, natural directions for future work include:

1. Scaling up RL compute, and combining exploration with other techniques known to improve
reasoning behavior in RL post-training, such as prolonged reinforcement learning (Liu et al., 2025).

2. Exploration for autoregressive generation. Our results in Section 4.2 show that incentivizing
diversity during autoregressive generation is a promising approach to reducing the computational
burden of exploration, but much remains to be done in terms of (1) understanding which diversity
metrics are most helpful, and (2) optimizing the implementation to close the compute gap.

3. Beyond verifiable rewards. How can we deliberately incentivize exploration in domains without
verifiable rewards, while simultaneously mitigating reward hacking?

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we have listed all relevant details (hyperparameters, ex-
periment resources, etc.) for the inference-time experiments in Appendix B, and those for RL
post-training in Appendix C. In addition, we have uploaded a zip file with the complete, anonymized
code for all our experiments and plots.

REFERENCES

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic
bandits. In Advances in Neural Information Processing Systems, 2011.

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
Michael Harrison, Russell J Hewett, Mojan Javaheripi, Piero Kauffmann, et al. Phi-4 technical
report. arXiv preprint arXiv:2412.08905, 2024a.

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
Michael Harrison, Russell J Hewett, Mojan Javaheripi, Piero Kauffmann, et al. Phi-4 technical
report. arXiv preprint arXiv:2412.08905, 2024b.

Alekh Agarwal. Selective sampling algorithms for cost-sensitive multiclass prediction. In Interna-
tional Conference on Machine Learning, pp. 1220–1228. PMLR, 2013.

Zeyuan Allen-Zhu, Yuanzhi Li, Aarti Singh, and Yining Wang. Near-optimal discrete optimization
for experimental design: A regret minimization approach. Mathematical Programming, 186(1):
439–478, 2021.

Dilip Arumugam and Thomas L Griffiths. Toward efficient exploration by large language model
agents. arXiv preprint arXiv:2504.20997, 2025.

Jordan T Ash, Cyril Zhang, Surbhi Goel, Akshay Krishnamurthy, and Sham Kakade. Anti-
concentrated confidence bonuses for scalable exploration. arXiv preprint arXiv:2110.11202,
2021.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Chenjia Bai, Yang Zhang, Shuang Qiu, Qiaosheng Zhang, Kang Xu, and Xuelong Li. Online prefer-
ence alignment for language models via count-based exploration. arXiv preprint arXiv:2501.12735,
2025.

Ananth Balashankar, Ziteng Sun, Jonathan Berant, Jacob Eisenstein, Michael Collins, Adrian Hutter,
Jong Lee, Chirag Nagpal, Flavien Prost, Aradhana Sinha, et al. Infalign: Inference-aware language
model alignment. arXiv preprint arXiv:2412.19792, 2024.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018.

Shicong Cen, Jincheng Mei, Katayoon Goshvadi, Hanjun Dai, Tong Yang, Sherry Yang, Dale
Schuurmans, Yuejie Chi, and Bo Dai. Value-incentivized preference optimization: A unified
approach to online and offline rlhf, 2024.

Nicolo Cesa-Bianchi, Claudio Gentile, and Francesco Orabona. Robust bounds for classification
via selective sampling. In Proceedings of the 26th annual international conference on machine
learning, pp. 121–128, 2009.

Kamalika Chaudhuri, Sham M Kakade, Praneeth Netrapalli, and Sujay Sanghavi. Convergence rates
of active learning for maximum likelihood estimation. Advances in Neural Information Processing
Systems, 28, 2015.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ruizhe Chen, Xiaotian Zhang, Meng Luo, Wenhao Chai, and Zuozhu Liu. Pad: Personalized
alignment at decoding-time. arXiv:2410.04070, 2024.

Zhipeng Chen, Xiaobo Qin, Youbin Wu, Yue Ling, Qinghao Ye, Wayne Xin Zhao, and Guang Shi.
Pass@k training for adaptively balancing exploration and exploitation of large reasoning models,
2025. URL https://arxiv.org/abs/2508.10751.

Daixuan Cheng, Shaohan Huang, Xuekai Zhu, Bo Dai, Wayne Xin Zhao, Zhenliang Zhang, and Furu
Wei. Reasoning with exploration: An entropy perspective. arXiv preprint arXiv:2506.14758, 2025.

Yinlam Chow, Guy Tennenholtz, Izzeddin Gur, Vincent Zhuang, Bo Dai, Aviral Kumar, Rishabh
Agarwal, Sridhar Thiagarajan, Craig Boutilier, and Aleksandra Faust. Inference-aware fine-tuning
for best-of-n sampling in large language models. In The Thirteenth International Conference on
Learning Representations, 2025.

Wei Chu, Lihong Li, Lev Reyzin, and Robert E. Schapire. Contextual bandits with linear payoff
functions. In International Conference on Artificial Intelligence and Statistics, 2011.

Kenneth L Clarkson. Coresets, sparse greedy approximation, and the frank-wolfe algorithm. ACM
Transactions on Algorithms (TALG), 6(4):1–30, 2010.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv:2110.14168, 2021.

Michael B Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard Peng, and Aaron
Sidford. Uniform sampling for matrix approximation. In Proceedings of the 2015 conference on
innovations in theoretical computer science, pp. 181–190, 2015.

Xingyu Dang, Christina Baek, Kaiyue Wen, Zico Kolter, and Aditi Raghunathan. Weight ensembling
improves reasoning in language models. arXiv:2504.10478, 2025.

DeepSeek-AI. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learn-
ing. 2025. URL https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.
pdf.

Petros Drineas, Michael W Mahoney, and S Muthukrishnan. Subspace sampling and relative-error
matrix approximation: Column-row-based methods. In European Symposium on Algorithms, pp.
304–314. Springer, 2006.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv:2407.21783, 2024.

Vikranth Dwaracherla, Seyed Mohammad Asghari, Botao Hao, and Benjamin Van Roy. Efficient
exploration for llms. In Forty-first International Conference on Machine Learning, 2024.

Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny data: Constant-size
coresets for k-means, pca, and projective clustering. SIAM Journal on Computing, 49(3):601–657,
2020.

Dylan J Foster, Zakaria Mhammedi, and Dhruv Rohatgi. Is a good foundation necessary for efficient
reinforcement learning? the computational role of the base model in exploration. Conference on
Learning Theory (COLT), 2025.

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D Goodman. Cognitive
behaviors that enable self-improving reasoners, or, four habits of highly effective stars. arXiv
preprint arXiv:2503.01307, 2025.

Jingtong Gao, Ling Pan, Yejing Wang, Rui Zhong, Chi Lu, Qingpeng Cai, Peng Jiang, and Xiangyu
Zhao. Navigate the unknown: Enhancing llm reasoning with intrinsic motivation guided exploration.
arXiv preprint arXiv:2505.17621, 2025.

11

https://arxiv.org/abs/2508.10751
https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf
https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Quanquan Gu, Tong Zhang, and Jiawei Han. Batch-mode active learning via error bound minimization.
In UAI, pp. 300–309, 2014.

Andre He, Daniel Fried, and Sean Welleck. Rewarding the unlikely: Lifting grpo beyond distribution
sharpening. arXiv preprint arXiv:2506.02355, 2025.

Mikael Henaff, Roberta Raileanu, Minqi Jiang, and Tim Rocktäschel. Exploration via elliptical
episodic bonuses. Advances in Neural Information Processing Systems, 35:37631–37646, 2022.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2), 2021.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. In International Conference on Learning Representations, 2020.

Audrey Huang, Adam Block, Dylan J Foster, Dhruv Rohatgi, Cyril Zhang, Max Simchowitz, Jor-
dan T Ash, and Akshay Krishnamurthy. Self-improvement in language models: The sharpening
mechanism. International Conference on Learning Representations (ICLR), 2025.

Hamish Ivison, Muru Zhang, Faeze Brahman, Pang Wei Koh, and Pradeep Dasigi. Large-scale data
selection for instruction tuning. arXiv preprint arXiv:2503.01807, 2025.

AQ Jiang, A Sablayrolles, A Mensch, C Bamford, DS Chaplot, D de Las Casas, F Bressand,
G Lengyel, G Lample, L Saulnier, et al. Mistral 7b. corr, abs/2310.06825, 2023. doi: 10.48550.
arXiv preprint ARXIV.2310.06825, 10, 2023.

Yuu Jinnai, Tetsuro Morimura, Kaito Ariu, and Kenshi Abe. Regularized best-of-n sampling to
mitigate reward hacking for language model alignment. arXiv:2404.01054, 2024.

Maxim Khanov, Jirayu Burapacheep, and Yixuan Li. Args: Alignment as reward-guided search.
arXiv:2402.01694, 2024.

Jack Kiefer and Jacob Wolfowitz. The equivalence of two extremum problems. Canadian Journal of
Mathematics, 12:363–366, 1960.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Ping Li, Trevor J. Hastie, and Kenneth Ward Church. Very sparse random projections. In Knowl-
edge Discovery and Data Mining, 2006. URL https://api.semanticscholar.org/CorpusID:
7995734.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation. Advances
in Neural Information Processing Systems, 36:21558–21572, 2023.

Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong.
Prorl: Prolonged reinforcement learning expands reasoning boundaries in large language models.
arXiv preprint arXiv:2505.24864, 2025.

Tianlin Liu, Shangmin Guo, Leonardo Bianco, Daniele Calandriello, Quentin Berthet, Felipe Llinares,
Jessica Hoffmann, Lucas Dixon, Michal Valko, and Mathieu Blondel. Decoding-time realignment
of language models. arXiv:2402.02992, 2024a.

12

https://api.semanticscholar.org/CorpusID:7995734
https://api.semanticscholar.org/CorpusID:7995734

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zichen Liu, Changyu Chen, Chao Du, Wee Sun Lee, and Min Lin. Sample-efficient alignment for
llms. arXiv preprint arXiv:2411.01493, 2024b.

Nguyen Nhat Minh, Andrew Baker, Clement Neo, Allen G Roush, Andreas Kirsch, and Ravid
Shwartz-Ziv. Turning up the heat: Min-p sampling for creative and coherent llm outputs. In The
Thirteenth International Conference on Learning Representations, 2025.

OpenAI. Introducing openai o1. Blog, 2024. URL https://openai.com/o1/.

Ian Osband, Benjamin Van Roy, Daniel J Russo, and Zheng Wen. Deep exploration via randomized
value functions. Journal of Machine Learning Research, 20(124):1–62, 2019.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.
PMLR, 2017.

Friedrich Pukelsheim. Optimal design of experiments. SIAM, 2006.

A Yang Qwen, Baosong Yang, B Zhang, B Hui, B Zheng, B Yu, Chengpeng Li, D Liu, F Huang,
H Wei, et al. Qwen2.5 technical report. arXiv preprint, 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 2023.

V. K. Rohatgi and A. K. Md. Ehsanes Saleh. An Introduction to Probability and Statistics. John
Wiley & Sons, Inc., 3rd edition, 2015.

Akanksha Saran, Safoora Yousefi, Akshay Krishnamurthy, John Langford, and Jordan T Ash. Stream-
ing active learning with deep neural networks. In International Conference on Machine Learning,
pp. 30005–30021. PMLR, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv:1707.06347, 2017.

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal,
Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling automated
process verifiers for llm reasoning. arXiv preprint arXiv:2410.08146, 2024.

Amrith Setlur, Matthew YR Yang, Charlie Snell, Jeremy Greer, Ian Wu, Virginia Smith, Max
Simchowitz, and Aviral Kumar. e3: Learning to explore enables extrapolation of test-time compute
for llms. arXiv preprint arXiv:2506.09026, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Ruizhe Shi, Yifang Chen, Yushi Hu, ALisa Liu, Noah Smith, Hannaneh Hajishirzi, and Simon Du.
Decoding-time language model alignment with multiple objectives. arXiv:2406.18853, 2024a.

Ruizhe Shi, Runlong Zhou, and Simon S Du. The crucial role of samplers in online direct preference
optimization. arXiv preprint arXiv:2409.19605, 2024b.

Yuda Song, Julia Kempe, and Remi Munos. Outcome-based exploration for llm reasoning. arXiv
preprint arXiv:2509.06941, 2025.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John
Schulman, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration
for deep reinforcement learning. Advances in neural information processing systems, 30, 2017.

13

https://openai.com/o1/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

William T Vetterling and William H Press. Numerical recipes: example book C. Cambridge University
Press, 1992.

Christian Walder and Deep Karkhanis. Pass@ k policy optimization: Solving harder reinforcement
learning problems. arXiv preprint arXiv:2505.15201, 2025.

Fang Wu, Weihao Xuan, Ximing Lu, Zaid Harchaoui, and Yejin Choi. The invisible leash: Why rlvr
may not escape its origin. arXiv preprint arXiv:2507.14843, 2025.

Tengyang Xie, Dylan J Foster, Akshay Krishnamurthy, Corby Rosset, Ahmed Awadallah, and
Alexander Rakhlin. Exploratory preference optimization: Harnessing implicit Q*-approximation
for sample-efficient RLHF. arXiv:2405.21046, 2024.

Wanqiao Xu, Allen Nie, Ruijie Zheng, Aditya Modi, Adith Swaminathan, and Ching-An Cheng.
Provably learning from language feedback. arXiv preprint arXiv:2506.10341, 2025.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in neural
information processing systems, 36:11809–11822, 2023.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at
scale. arXiv preprint arXiv:2503.14476, 2025.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does
reinforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

Shenao Zhang, Donghan Yu, Hiteshi Sharma, Ziyi Yang, Shuohang Wang, Hany Hassan, and Zhaoran
Wang. Self-exploring language models: Active preference elicitation for online alignment, 2024.

Ruiyang Zhou, Shuozhe Li, Amy Zhang, and Liu Leqi. Expo: Unlocking hard reasoning with
self-explanation-guided reinforcement learning. arXiv preprint arXiv:2507.02834, 2025.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A ADDITIONAL RELATED WORK

Exploration at test time. Test-time alignment techniques for language models are an active area of
research with many complementary threads (Khanov et al., 2024; Chen et al., 2024; Shi et al., 2024a;
Liu et al., 2024a; Jinnai et al., 2024; Shi et al., 2024b), but exploration has not typically been the
focus of this line of work.

Most closely related to our work, Setlur et al. (2025), propose a test-time exploration approach
based on the idea of learning to explore in-context. They propose to encourage exploration within a
long chain of thought by training the LLM to chain operations such as generation, verification, and
refinement together in search of a solution. This is somewhat complementary to our inference-time
exploration framework, which aims to improve diversity across parallel generations once the model
is fixed; these techniques could potentially be combined.

Also related, Xu et al. (2025) consider the problem of learning from language (non-verifiable)
feedback, and propose an iterative prompting approach to enable exploration at test time; their work
focuses on simpler exploration domains, but with more difficult, implicit feedback.

Exploration in RL post-training. Exploration in RL post-training for reasoning is a growing area
of research, motivated by the observation that standard techniques tend to simply sharpen responses
already covered by the base model (Yue et al., 2025; Gandhi et al., 2025; Wu et al., 2025). A number
of recent works, discussed below, aim to improve diversity and expand the reasoning frontier by
incorporating bonuses into the GRPO objective or by otherwise augmenting it. Briefly, our work
is unique in terms of (1) the specific representation-based diversity objective we focus on, and (2)
our focus on inference-time exploration as a means to validate diversity metrics before applying
them to post-training.

He et al. (2025) introduce an unlikeliness reward to GRPO, which reweights the reward by ranking
generations according to their unlikeliness under the sampling policy. Unlikeliness reward is a
form of diversity metric, similar to our representation-based diversity metrics. Cheng et al. (2025)
observe that high-entropy (high uncertainty) tokens in the model’s output often correspond to critical
reasoning steps, and augment the GRPO objective with entropy bonuses to encourage exploration at
these high-entropy steps. Entropy can be seen as another form of diversity metric in our setup.

Various works (Balashankar et al., 2024; Chow et al., 2025; Chen et al., 2025; Walder & Karkhanis,
2025) formulate the problem of directly post-training to maximize the pass@N objective, deriving
approximate gradient estimators and using them for policy optimization. As discussed in Chow et al.
(2025); Chen et al. (2025), these gradient estimators implicitly encourage exploration, since they
allow the model to distribute probability mass across a more diverse range of responses when it is
uncertain about the correct answer.

Zhou et al. (2025) consider a setting where ground truth answers are available (as opposed to just
rewards), and propose to encourage exploration by prompting the model to generate self-explanations
for the ground truth answers.

Concurrent work of Song et al. (2025) adapts tabular UCB-style bonuses to language model post-
training with GRPO, but their approach—unlike representation-based exploration—is only suitable
for domains with a small, discrete set of possible outcomes.

Lastly, Liu et al. (2025) take a complementary approach and aim to incentivize reasoning beyond the
base model through (1) prolonged RL training (increasing the overall amount of training steps), and
(2) periodically resetting the reference model; they show that this can increase pass@N performance
beyond the base model in a variety of reasoning tasks. This approach is complementary, and could
likely be combined with our techniques.

Representation-based diversity. Our findings regarding benefits of inference-time exploration
with representation-based diversity parallel the findings of Ivison et al. (2025), who evaluated
the effectiveness of various data selection schemes for instruction tuning, and found a similar
representation-based scheme to be the most effective when normalized for compute.

Adapting exploration techniques from deep reinforcement learning. Various papers have
adapted exploration techniques from deep learning to language models, including Bai et al. (2025)
(count-based exploration), Liu et al. (2024b); Gao et al. (2025) (random network distillation), and

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Dwaracherla et al. (2024) (posterior sampling).4 These works show initial promise in terms of sample
complexity benefits, but their potential to explore beyond the base model in reasoning domains has
not been evaluated to our knowledge.

Theoretical analysis of language model exploration. On the theoretical side, our work draws
on Foster et al. (2025), who prove that test-time exploration with representation-based diversity has
provable computational benefits in a simplified linear setting. Our RepExp algorithm for test-time
exploration can be viewed as a simplified, practical adaptation of their theoretical algorithm.

Other theoretical works on exploration with language models include the XPO algorithm of Xie et al.
(2024) and related algorithms by Cen et al. (2024); Zhang et al. (2024),5 which augment the Online
DPO objective with exploration bonuses inspired by the optimism principle. To our knowledge, these
techniques have only been evaluated on RLHF tasks, and Foster et al. (2025) show that there may be
computational barriers to implementing them in a way that is faithful to the theoretical guarantees.

B DETAILS FOR INFERENCE-TIME EXPERIMENTS (SECTION 4)

B.1 DETAILS FROM SECTION 4.1

Hyperparameters. In Algorithm 1, we set λ = 1.0. For all models and tasks, we perform a sparse
projection from the respective model hidden dimension to d = 512.

Preprocessing. In Algorithm 1, after obtaining the representations h̄θ for every generation y for a
fixed prompt x, we sparse project all representations down and then mean-center where the mean is
taken across the response-level representations.

Datasets. Below we provide a brief overview of all datasets along with relevant numerical details.
Note that "vanilla" sampling settings refer to τ = 1.0, top-p = 1.0, and min-p = 0.0. We also do
not use top-k sampling in any of the coreset experiments. Finally, we only use the test split of every
dataset for all our inference-time experiments, unless specified otherwise.

• MATH. This dataset contains 12.5k problems from high school math competitions, split into 7.5k
training examples and 5k test examples. For each question in the test split, we generate 6400
responses using vanilla settings and set the maximum response length per generation to 512 tokens.

• GSM8K. This dataset contains 8.79k grade school math word problems, split into 7.47k training
examples and 1.32k test examples. For each question in the test split, we generate 6400 responses
using vanilla settings and set the maximum response length per generation to 512 tokens.

• MBPP+. This dataset contains 378 basic Python programming problems that are a curated subset of
the full MBPP (Austin et al., 2021) dataset with more test cases. Since the dataset does not come
with any train or test splits, we use the full set of questions for our experiments. For each problem,
we generate 6400 responses using vanilla settings, except that we set top-p = 0.95. We set the
maximum response length per generation to 768 tokens.

• Game of 24. This dataset contains 1.36k questions that specify four integers that need to be
combined using basic arithmetic operations (+,−, x, /) to equal 24. For each question, we generate
6400 responses using vanilla settings and set the maximum response length per generation to 512
tokens. We use the version available at https://huggingface.co/datasets/nlile/24-game.

• AIME 2025. This dataset contains the 30 problems taken directly from the 2025 edition of the
American Invitational Mathematics Invitation (AIME). For each question, we generate 8192
responses using vanilla settings and set the maximum response length per generation to 8192
tokens.

Experiment resources. We used vLLM (Kwon et al., 2023) on 1− 2 (depending on the size of the
model) NVIDIA A100 40GB GPUs per model-task pair to generate the data pools for all questions in
the dataset.

4See also Arumugam & Griffiths (2025), which uses a pre-trained model to simulate posterior sampling
in-context for multi-turn sequential decision making tasks.

5Cen et al. (2024); Zhang et al. (2024) concurrently proposed similar algorithms to XPO, but did not provide
non-trivial theoretical guarantees (e.g., guarantees that indicate benefits over purely passive exploration).

16

https://huggingface.co/datasets/nlile/24-game

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Estimating samples-to-correct. For random sampling, we estimate the average number of samples
to take (without replacement) from the data pool to find the first correct one as:

samples-to-correct =
N + 1

c+ 1
,

where N indicates the size of the data pool and c indicates the number of correct samples in the pool.
Please refer to Rohatgi & Saleh (2015) for a proof. For the representation-based exploration algorithm
described in Algorithm 1, we perform 5 trials per question where we record the samples-to-correct
for each and take their average.

Estimating pass@k. To compute the pass@k values plotted in Figure 4, we follow Chen et al.
(2021) and use the following unbiased estimator:

pass@k = ED

[
1−

(
n−c
k

)(
n
k

)] =
1

|D|

|D|∑
i=1

[
1−

(
n−c
k

)(
n
k

)] ,
where D indicates the dataset and |D| indicates its size.

B.2 DETAILS FROM SECTION 4.2
Hyperparameters. Similarly to Section 4.1, we initialize Σ−1

(0) = λ−1Id. We set λ = 0.1. For all
values of β, we use top-p = 0.95 and top-k = 128. At every time step t, we use a batch size of 64 to
compute hθ(x, y<t, vj) for all vj ∈ V where vj > −∞ (note that a logit vj is set to −∞ if it gets
filtered out by either the top-p or top-k filters mentioned earlier).

Computational expense. Note that computing the bonus b(x, y<t, V) requires one forward pass
through the model per token in the vocabulary at every time step t. While these can be batched
together since all tokens share the same prefix, this is still prohibitively time and memory intensive.
To mitigate this, we combine this method with nucleus and top-k sampling such that the bonus will
only need to be computed for at most k ≪ V tokens.

Dataset construction. Due to the large computational cost of experiments, we only focus on MATH
using Qwen-2.5-7b-Instruct. In addition, we do not evaluate on the full test split of MATH, but
instead use a subset consisting of the 200 hardest questions as ranked by GPT-4o mini. Specifically,
we sampled 1024 responses for each question in the MATH test split using GPT-4o mini to estimate
the per-question pass@1. We threw out all questions for which the pass@1 was 0 (indicating not
a single response was correct among all 1024), sorted the remaining questions, and kept the 200
questions with the lowest pass@1.

Estimating samples-to-correct. We collected up to 1024 generations per question (stopping early
once the correct answer was found). Since the resulting samples-to-correct value found can have high
variance due to the inherent randomness in the generation process, we repeat this process 5 times with
a different seed every time. This then results in a total of 200× 5 = 1000 data points, minus a few
data points that didn’t finish running in time, for an effective total of 985 data points used in Figure 5.

Experiment resources. Experiments were run on a combination of NVIDIA A100 40GB, NVIDIA
A100 80GB, and NVIDIA H100 80GB GPUs. Every run indicates one seed for a fixed question and
performs up to 1024 generations. We used one GPU (one of the several mentioned earlier) per run,
adjusting the forward batch size to compute the elliptical bonus down from 64 to 32 when using the
40GB GPUs.

Computing the inverse covariance. The inverse covariance matrix Σ−1
(i) includes all mean-centered

hidden representations for all generated tokens in all i− 1 complete sequences generated so far for a
fixed prompt x. Note that the mean µ(i) of the raw hidden representations hθ is computed as:

µ(i) =
1

H

i−1∑
j=0

Tj∑
t=1

hθ(x, y
(j)
<t), H =

i−1∑
j=0

Tj ,

where Tj indicates the length (in number of tokens) of response j. Because of this, the mean changes
after every generation i. This means some care is required when computing the inverse covariance

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

matrix Σ−1
(i) with mean-centered hidden representations. To account for this, we will separately keep

track of the inverse covariance matrix Σ̃−1
(i) with non-mean-centered hidden representations as well as

the mean µ(i). Then, we compute the mean-centered inverse covariance matrix Σ−1
(i) as

Σ−1
(i) = Σ̃−1

(i) −

(
Σ̃−1

(i)µ
(i)µT

(i)Σ̃
−1
(i)

−1/H + µT
(i)Σ̃

−1
(i)µ

(i)

)
.

This result is immediate from Proposition B.1.

Proposition B.1. Given the current generation step i, the non-mean-centered inverse data covariance
matrix Σ̃−1

(i) and the current mean µ(i), the mean-centered inverse data covariance matrix Σ−1
(i) is

given as

Σ−1
(i) = Σ̃−1

(i) −

(
Σ̃−1

(i)µ
(i)µT

(i)Σ̃
−1
(i)

−1/H + µT
(i)Σ̃

−1
(i)µ

(i)

)
, H =

i−1∑
j=0

Tj .

Here, Tj indicates the length (in number of tokens) of response j.

Proof of Proposition B.1. We can write

Σ(i) =

i−1∑
j=0

Tj∑
t=1

(h
(j)
t − µ

(i)
t)(h

(j)
t − µ

(i)
t)T

=

i−1∑
j=0

Tj∑
t=1

h
(j)
t (h

(j)
t)T −

i−1∑
j=0

Tj∑
t=1

h
(j)
t (µ(i))T −

i−1∑
j=0

Tj∑
t=1

µ(i)(h
(j)
t)T +

i−1∑
j=0

Tj∑
t=1

µ(i)(µ(i))T

= Σ̃(i) −

i−1∑
j=0

Tj∑
t=1

h
(j)
t

 (µ(i))T − µ(i)

i−1∑
j=0

Tj∑
t=1

(h
(j)
t)T

+

i−1∑
j=0

Tj∑
t=1

µ(i)(µ(i))T

= Σ̃(i) −Hµ(i)(µ(i))T − µ(i)H(µ(i))T +Hµ(i)(µ(i))T

= Σ̃(i) − 2Hµ(i)(µ(i))T +Hµ(i)(µ(i))T

= Σ̃(i) −Hµ(i)(µ(i))T .

Inverting Σ(i), we conclude that

Σ−1
(i) =

(
Σ̃(i) −Hµ(i)µT

(i)

)−1

= Σ̃−1
(i) −

(
Σ̃−1

(i)µ(i)µ
T
(i)Σ̃

−1
(i)

−1/H + µT
(i)Σ̃

−1
(i)µ

(i)

)
,

where we used the Woodbury matrix identity lemma6 in the last step with U = µ(i), C = −H , and
V = µT

(i).

We exclude representations from the current sequence i in Σ(i) to keep the generation from veering
off topic, and update Σ−1

(i) after each generation i using Ti consecutive applications of the Sherman-
Morrison update in Algorithm 1, one for each hidden representation of the output tokens. Finally, we
found it necessary for numerical stability to perform all covariance related computations in double
precision.

Additional plots. In Figure 7, we provide a revised version of Figure 5 where we add shaded areas
indicating one standard error to the left plot, and we additionally add β = 0.5 to the right plot.

6https://en.wikipedia.org/wiki/Woodbury_matrix_identity

18

https://en.wikipedia.org/wiki/Woodbury_matrix_identity

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

128 256 384 512 640 768 896 1024
k

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

Pa
ss

@
k

Vanilla (= 0.0)
Low RepExp (= 0.5)
High RepExp (= 1.0)

0 20 40 60 80 100
Hardness quantile (%)

10

5

0

5

10

15

So
lv

e
ra

te
 li

ft
(%

)

Low RepExp (= 0.5)
High RepExp (= 1.0)

Figure 7: Representation-based exploration at the token level, compared to naive autoregressive
generation (β = 0) for inference-time exploration. (Left) We added shaded areas indicating one
standard error to the left side of Figure 5. (Right) Compared to the right side of Figure 5, we also
added β = 0.5

.

Table 1: Common RL hyperparameters.
Hyperparameter Value
Learning rate 1e−6
Maximum prompt length 1024
Maximum response length (tokens) 1024
Train batch size 1024
PPO mini batch size 256
PPO micro batch size per gpu 16
PPO epochs 1
KL loss coefficient 0.0
GRPO group size (rollouts) 8
Entropy coefficient 0.0
Log prob micro batch size per gpu 16
Tensor model parallel size 2
Number of GPUs 8
Validation frequency 20

Table 2: Unlikeliness hyperparameters.
Hyperparameter Value
βrank 0.25
No bonus if all rollouts correct True

Table 3: RepExp hyperparameters.
Hyperparameter Score
β 0.01
Sparse projection dimension 32
No bonus if all rollouts incorrect True

C DETAILS FOR RL POST-TRAINING EXPERIMENTS (SECTION 5)

Hyperparameters. We use verl for training (Sheng et al., 2024), and provide a full overview of all
common hyperparameters in Table 1, all hyperparameters specific to unlikeliness in Table 2, and all
hyperpameters specific to RepExp in Table 3. Note that for AIME 2024, we adjusted the maximum
prompt length to 2048, the maximum response length to 8192, the train batch size to 512, the ppo
mini batch size to 128, and the ppo micro batch size per gpu to 8.

Algorithm details. We note that we mean-center the representations h̄θ that are used to compute
the elliptic bonuses as described in Section 3, where the mean is taken over all the response-level
representations of the current group of rollouts for a fixed prompt x. In addition, we do not add a
bonus for questions where all rollouts in the batch are incorrect, as we found this to empirically hurt
performance.

Dataset splits. For MATH, we use the original 7.5k train split for training, MATH-500 (Lightman
et al., 2023) for validation, and the 4.5k (originally 5k minus the problems in MATH-500)) test split
for testing. For GSM8K, we use the original 8.79k train split for training, the first 512 examples from
the test split for validation, and the remaining 807 examples from the test split for testing. Finally
for AIME 2024, we use 4096 examples randomly chosen from the full DAPO-Math-17K dataset for
training and use the full AIME 2024 dataset both for validation and testing.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Modifications to unlikeliness baseline. The original unlikeliness method from He et al. (2025)
combines the reward modification described in Section 5 along with several other modifications to
the underlying GRPO mechanics:

• They only include samples for which the resulting rollouts have nonzero advantages in the batch
sent for training. Specifically, questions where either none of the rollouts are correct or all of the
rollouts are correct are thrown out. To ensure batch sizes stay roughly equal, the authors implement
a buffer mechanism that collects samples until the buffer reaches a target batch size.

• They increase the number of ppo epochs from 1 to 2 as they find this helps further increase the
pass@k.

• They use a high KL penalty coefficient of 0.1 as they find this helps prevent the pass@k from
decreasing.

Since our primary aim in this section is to isolate and compare the exploration mechanisms of our
method with others, we leave out the additional changes described above when running the unlikeli-
ness baseline. Furthermore, this allows us to use the exact same underlying GRPO hyperparameters
for all methods, making the comparison much more clean.

Checkpoint picking. For each seed per method, we pick the checkpoint during training that
achieves the highest pass@1 on the respective task’s validation set and use the resulting checkpoint
for evaluation.

Evaluation. We evaluate each final checkpoint (picked in the way described earlier) on the test split
of each respective task by sampling 256 responses per question using vanilla sampling parameters
(τ = 1.0, top-p = 1.0). We then estimate the pass@k exactly as described in Appendix B.1. We run
3 seeds for all methods on all tasks and average the resulting pass@k curves.

Experiment resources. We run all methods on all tasks using 8 NVIDIA H100 80GB GPUs per
seed per method for 1 day.

20

	Introduction
	Contributions

	Problem Setup: From Inference-Time to Post-Training
	Inference-time selection
	Reinforcement learning post-training

	Representation-Based Exploration: Inference-Time and RL
	Inference-time exploration: experimental results
	Benefits of representation-based exploration
	Extension: Representation-based exploration at the token level

	Exploration for RL Post-Training
	Discussion
	Additional Related Work
	Details for Inference-Time Experiments (Section 4)
	Details from Section 4.1
	Details from Section 4.2

	Details for RL Post-Training Experiments (Section 5)

