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ABSTRACT

Federated domain generalization (federated DG) aims to learn a client-agnostic
global model from various distributed source domains and generalize the model to
new clients in completely unseen domains. The main challenges of federated DG
are the difficulty of building the global model with local client models from dif-
ferent domains while keeping data private and low generalizability to test clients,
where data distribution deviates from those of training clients. To solve these
challenges, we present two strategies: (1) client-agnostic learning with mixed
instance-global statistics and (2) zero-shot adaptation with estimated statistics.
In client-agnostic learning, we first augment local features by using data distribu-
tion of other clients via global statistics in the global model’s batch normalization
layers. This approach allows the generation of diverse domains by mixing local
and global feature statistics while keeping data private. Local models then learn
client-invariant representations by applying our client-agnostic objectives with the
augmented data. Next, we propose a zero-shot adapter to help the learned global
model to directly bridge a large domain gap between seen and unseen clients. At
inference time, the adapter mixes instance statistics of a test input with global
statistics that are vulnerable to distribution shift. With the aid of the adapter, the
global model improves generalizability further by reflecting test distribution. We
comprehensively evaluate our methods on several benchmarks in federated DG.

1 INTRODUCTION

A huge amount of data is being collected every second from a wide range of IoT devices, and
the data have been utilized for building robust deep learning models. Federated learning (FL) has
emerged as a promising paradigm to train the model indirectly accessing the distributed data such
that it reduces privacy leakage. Pioneering studies such as FedAvg (McMahan et al.l 2017) and
FedProx (Li et al. 2020) train each local model on its own data while keeping data private and
transmit model parameters to the server for obtaining a generalized global model. The parameters
from local clients are aggregated in the server, and the server parameters are broadcasted to clients.
This process is iteratively performed until the global model converges to a stationary point, and user
privacy is ensured by sharing aggregated parameters not data itself with other clients.

In real-world scenarios, local data are collected from various domains across clients coming from
different characteristics of sensors and surrounding environments. For example, in autonomous
driving tasks, each vehicle captures street views and infrastructures differently from others due to
variances in camera sensors, region, and other factors. These local data deviates in terms of the
distribution in feature space, inducing non-iid data across clients, denoted as domain shift (Li et al.,
2021b; [Jiang et al., [2021). Currently, most studies have tried to solve the issues of FL on non-iid
data, especially heterogeneous label distribution (Li et al.| [2020; Karimireddy et al., [2020; Wang
et al., |2020), but domain shift has not been fully explored in the literature yet. Domain shift also
exists between training and test clients. After federated learning, the learned FL model is deployed
to new customers outside the federation, e.g., new vehicles or medical centers, where data distri-
bution is shifted from those of clients inside the federation. However, most works only focus on
improving model performance of the clients participated in FL, while neglecting generalization on
unseen clients. In this paper, we treat federated domain generalization (federated DG), which aims
to collaboratively learn a client-agnostic federated model from various distributed source domains
and generalize the learned model to new clients in unseen domains, as illustrated in Fig.
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This paper presents two approaches: (1) client-agnostic learning with mixed instance-global statis-
tics for local training and (2) zero-shot adaptation with estimated statistics for inference. Our pro-
posed methods, named FedIG-A, allow local models to learn client-invariant representations from
other clients’ data distribution while preserving privacy and let the learned global model directly
generalize to unseen domains. To this end, we adopt FedBN (L1 et al.|[2021b)) that is designed to mit-
igate domain shift across clients. In FedBN, local clients use local batch normalization (BN) layers
and keep them local to learn client-specific representations while the remaining parts are aggregated
in the server to learn client-invariant representations. However, it is difficult to explicitly train local
models to learn client-invariant representations only using single domain local data. To solve the
issue, we propose a novel client-agnostic learning with mixed statistics. In client-agnostic learning,
we augment local features using data distribution of other clients via aggregated BN statistics from
the global model, i.e., global statistics. Our proposed augmentation randomly mixes instance-level
and global feature statistics to produce diverse domain features. We then apply client-agnostic loss
functions to learn client-invariant representations. Note that our method exploits global statistics that
do not pose additional privacy leakage, the same amount with FedAvg. At inference time, we intro-
duce a zero-shot adapter for helping the learned global model to directly bridge a large domain gap
between seen and unseen clients. We mix instance statistics of a test input with global statistics that
are vulnerable to distribution shift. The optimal interpolation values are different across test samples
in each BN Ilayer, thus we design the adapter for estimating the interpolation value as an instance-
wise manner. With the aid of the adapter, the global model improves generalizability further by
reflecting test distribution. We conduct extensive experiments on several DG benchmarks in image
domain including PACS (Li et al., 2017), VLCS (Fang et al., 2013}, and OfficeHome (Venkateswara
et al.| 2017) in the federated setting and show the effectiveness of our components.

2 RELATED WORKS

2.1 FEDERATED LEARNING

Federated learning (FL) has been extensively studied to train a global model using distributed
datasets, while ensuring user privacy and reducing communication overhead issues. Most recent FL.
approaches focus on solving the issues of non-iid data distribution over clients, especially heteroge-
neous label distribution (Li et al., 2020; Karimireddy et al., [2020; Wang et al., 2020). Especially,
FedProx (Li et al., [2020) incorporates a proximal term into local loss functions to regularize the
local model reducing the gap with the global model. Only a few works (L1 et al., |2021bj |Andreux
et al.,[2020; Jiang et al.| [2021)) point out domain shift across different clients in FL.. FedBN (Li et al.,
2021b) and SiloBN (Andreux et al.,|2020) keep BN statistics locally without aggregating them in the
server for mitigating domain shift, but both methods only focus on boosting performance of clients
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inside the federation. TsmoBN (Jiang et al., |2021) tackles the generalization ability of previous
works. They present updating test batch normalization to adapt the global model to target clients,
but it requires lots of data in target domain. Moreover, three methods do not deal with building the
client-agnostic global model, i.e., training local clients without domain generalization algorithms.
We go beyond these approaches building the client-agnostic global model while mitigating domain
shift and directly generalizing the model to new target clients indicating zero-shot adaptation.

2.2 DOMAIN GENERALIZATION

Domain generalization aims to train a model from multi-source or single-source domain data such
that it can generalize to unseen target domains. Multi-source domain generalization (Li et al., 2019
Xu et al., 2021a} |Seo et al., |2020; |Zhao et al., 2021; |[Pandey et al., [2021; Nam & Kim, 2018}; |(Chen
et al., [2022; 2021} [Lv et al., 2022) has been extensively explored to learn domain-invariant repre-
sentations by minimizing domain discrepancy over multiple source domains. These methods can be
applied to federated DG to help building the client-agnostic model. However, client data should be
shared across clients for multi-source domain generalization, and it leads to serious privacy issues
in federated learning. Single-source domain generalization (Zhou et al. 2021} [Li et al.| 2021a; [Xu
et al.,2021b;|Wang et al., [2021} |Carlucci et al.,|2019; | Huang et al., 2020; Kim et al.,2021) has tried
to learn a generalized model with single source data. These algorithms can be applied to federated
DG without privacy leakage. They can improve the generalization ability through domain expan-
sion or regularization, but the performance improvement is limited since they are designed to use
individual source domain data. It cannot fully exploit the advantage of federated learning. Recently,
federated DG has been studied to treat the distributed multi-source domain setting. COPA (Wu &
Gong, 2021) and FedDG (Liu et al.l 2021} apply multi-source domain generalization methods (L1
et al.,[2019; [ Xu et al., 2021a)) to the distributed setting without sharing raw data across clients, but
they share classifiers and style distribution with other clients, respectively, which contain private
information. Another work, CSAC (Yuan et al.,2021), proposes an aggregation method solving do-
main shift, but it requires a pre-training stage and achieves marginal performance improvement due
to naive local training with single domain data. Compared to these works, we propose utilizing data
distribution of other clients without privacy leakage for learning client-invariant representations.

3 CLIENT-AGNOSTIC LEARNING AND ZERO-SHOT ADAPTATION

3.1 PRELIMINARIES

Notation and Problem Formulation: Let X and ) denote the input space and the label space,
respectively. k-th client has single domain data Dy, = {(z; k, yi k) };, and { D1, ..., D } is the set
of distributed source domain data of K clients inside the federation. In federated domain general-
ization (federated DG), there exists domain shift across clients, where each client data Dj, sampled
from a domain-specific distribution (X}, )) different with other clients. D; indicates the target test
domain data from a new client outside the federation, which distribution (X}, )) is shifted from that
of training data. Fj is the feature extractor parameterized by 6, and Cy, is the classifier parameterized
by ¢. Federated DG aims to learn a generalized global model Cy, o Fy, : X — ) by aggregating
K distributed clients’ models {Fy, , Cs, } 2, trained on source data { Dy, }1<_ | such that the global
model generalizes to unseen domain D;.

Challenges: Domain shift over clients hinders obtaining the generalized global model since the local
models are easily over-fitted to their domains, indicating large model divergence across clients (Li
et al.,|2021b). Even though data from various domains and a large amount of data are used through
federated learning, domain shifts in the distributed setting negatively affect the generalization ability
both inside and outside the federation. Local models should learn domain-invariant representations
such that the generalized global model is collaboratively obtained from the local models.

FedBN: We adopt FedBN (Li et al., [2021b) for dealing with domain shift across clients. FedBN

l l
keeps all BN layers local, and these local BN layers operate as 7}, “== + f}, where s, and o},
k

are BN statistics of [-th BN layer in k-th client, which are calculated as funning means and standard
deviation. 7,2 and ﬁé are learnable affine parameters, and o indicates an input tensor. BN statistics
remain local as a client-specific part while the remaining parts are uploaded and broadcasted by the
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Figure 2: The local feature f; j, is extracted by batch statistics (Local BN), and the augmented feature
fi,a is extracted by mixed instance and global statistics (MixIG). MixIG is constructed by randomly
interpolating instance and global statistics, and an intermediate feature a a  is standardized by MixIG
(right) to possibly be various features. This operation is repeated on every BN layer. With both local
and augmented features, local models learn client-invariant representations by Eq. (FH) and @

server, denoted as a client-agnostic part. We can expect that local BN statistics learn client-specific
characteristics and the client-agnostic part learns client-invariant representations. In this paper, we
use 6 = {0?, 6°} indicating client-agnostic and client-specific parts, respectively.

In the centralized setting that accesses to multiple source datasets together, using multiple BN layers
forces the model to learn domain-specific and domain-invariant characteristics separately, finding
the common knowledge in multiple domains with ERM (Gulrajani & Lopez-Paz, 2021) as follows:

K ngk
1
ﬁCenteralized CE — E ID | E CE O¢7G (F{Ga 95}(1:1',16))7 yi,k)7 (1)

where CE(-, -) is the cross-entropy loss, and {6, ¢G} are shared across all domains, thus it can learn
domain-invariant characteristics while k-th domain-specific information is learned by BN statistics
6} In federated learning, local client only has single domain data different with centralized learning,
thus the model cannot explicitly learn domain-invariant representations. To solve the issue, we pro-
pose to use mixed instance-global statistics in BN layers to learn domain-invariant representations.

3.2 CLIENT-AGNOSTIC LEARNING WITH MIXED INSTANCE-GLOBAL STATISTICS

In local training, k-th local model is trained with the cross-entropy loss on k-th dataset as follows:

1
Log = [De] & ZCE (Cor (Froo 05y (%)), Yik)- 2

Before starting local training, the client receives the global model parameters {6%, ¢ } and initialize
the local model {0}, ¢5.} with the global parameters while 0} remains. Then, Figa g:} and Cy, are
trained on local data for long epochs. Although {6, ¢, } is initialized with the generalized global
model, there is no way to learn client-invariant representations only using single domain data with
the cross-entropy loss because the direct use of other clients’ data leads to privacy issue. To mitigate
the issue, we propose to generate diverse domain using statistics in BN layers from the global model.

Mixed Instance and Global Statistics (MixIG): Global statistics that are aggregated with local
BN statistics in the server reflect training data distribution over clients. We exploit this property
for data augmentatlon in local training as illustrated in Fig.[2] In naive local training, an input
tensor a' ;.. 1s normalized with statistics of batch samples in [-th BN layer, and a local feature f; »
is always calculated with statistics from single domain local data. It makes the local model learn
representations only in single domain. Here, we propose to normalize inputs with mixed statistics
exploiting global statistics beyond local statistics. We mix mean and standard deviation of each
sample with global statistics { g, oG}, i.e., running mean and standard deviation, as follows:

phy = ulpl + (1 —uul, and o =ulel + (1 —uh)ol, 3)

where 4! and o! indicate instance mean and standard deviation along the channel axis of the in-

termediate feature of the i-th input to the I-th BN layer, respectively. u! € RS is an interpolation
weight vector, where each element is independently sampled from uniform distribution U (0, 1) each
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iteration, and C! is the feature dimension in /-th BN layer. The feature normalized by instance statis-
tics contains local representative characteristics, and the normalized feature with global statistics is
composed of global representations. By randomly interpolating these two statistics in all BN layers,
we obtain more diverse data fully utilizing the characteristics of local and global domains. In Fig. 2,
we denote the intermediate feature by déﬁk normalized with MixIG, and the augmented feature f; A

is obtained with {ua, o} lel. We train the local model using both f; ,, and f; A in a client-agnostic
way, which is described in the next section. While previous works (Zhou et al.| 2021} [Li et al.
2021a) augment features with random noise values or styles of batch samples, our method gets
access to aggregated data distribution for safe and diverse augmentations as multi-source domain
generalization. It is noting that our method uses global statistics in BN layers for data augmentation,
which can reduce a threat of privacy leakage different withWu & Gong|(2021);|Liu et al.| (2021}).

Client-agnostic Learning Objectives: We propose a client-agnostic feature loss as follows:
1 &
Lcoarr = Dsl Z | fir — fi,AH; €]
i=1

With this loss function, the local model can explicitly extract the client-agnostic features by min-
imizing the distance between the original and augmented features. Here, we perturb the features
on the client-specific part, i.e., BN statistics, thus the client-agnostic part explicitly learns client-
invariant characteristics helping to mitigate domain shift. In addition, we train the local classifier to
classify the features from other domains forcing the classifier to be client-agnostic. To achieve it,
the local classifier C, is trained with client-agnostic classification loss as follows:

1 nk
Lcacr = Dr Z CE(Cy, (fi,A), Yik)- ®)
1=1

Our client-agnostic learning can be considered as a regularization method that forces local models
not to deviate largely from the global model. Different with the previous work (Li et al., 2020) that
directly regularizes local weight parameters with the global model, our proposed learning considers
the importance of weight parameters for client-invariant representations with diverse domain data.

The overall loss for local optimization is as follows:

Liotal = Lor + A1 - LoacL + A2 Loarr, (6)
where A\; and )9 are balancing parameters. After local training for long epochs, model parameters
are aggregated by FedAvg (McMahan et al., 2017) in the server, i.e., 0 = Zszl "0y and ¢pg =
Zszl "= ¢y We denote FedIG as our federated model trained by Eq. (@)

3.3 ZERO-SHOT ADAPTATION

At inference time, the globle model, F{gaG,QSG} and Cy,,, is deployed to unseen clients. It cannot
generalize well to completely unseen domains, where data distribution is shifted from training dis-
tribution. In the literature of domain generalization using multiple BN layers, |Seo et al.| (2020) uses
ensemble predictions from multiple BN layers, and |Chen et al.|(2022); Zhou et al|(2022) get the
prediction from the selected BN that is most related to a test input. However, they cannot be appli-
cable to the federated setting since local client model cannot access local BN layers of other clients,
i.e., only global BN layers are allowed to access due to user privacy. In addition, recent test-time
adaptation works (Gong et al.}|2022;|You et al.,[2021j |Hu et al., 2021) use the interpolated statistics
between instance and learned statistics to reflect test distribution, but their interpolation parameters
are manually fixed suitable to the target domain or generated from the rule-based function containing
sensitive hyper-parameters. Here, we propose to dynamically generate instance-wise interpolation
parameters for mixing instance and global statistics with a learning-based network.

Interpolated BN Statistics: We utilize statistics of the test input with global statistics as follows:

ph=alplb + (1 -l and ol =alol + (1 - ab)ol, (7)

where pt and ¢! indicate instance mean and standard deviation of the input in I-th BN layer. ! and
o! are used for normalizing the test input tensor. o' is an interpolation parameter that adjusts the
contribution of instance statistics of the test sample. Ideally, optimal « is selected to test domains
or test inputs, but we cannot access test domain. We propose a zero-shot adapter that is carefully

designed to dynamically generate « for each input in both seen and unseen domains.
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Design of Zero-shot Adapter: We design
the zero-shot adapter G, parameterized by ¢, 2

Zero-shot adaptation

Xip—| E|- Vi k7u£+l?£ = Té Ol L
which aims to generate proper « for the test ] o %127 Eq )
sample. The zero-shot adapter is separately ) *—y
added on each BN layer in the feature extractor. N o
We set an input of the adapter in I-th BN layer o ——" = Eq.©) [ ]: Freeze
as the channel-wise distance between instance Zero-shot adapter G, [ J: Update

and global statistics {u! — ul;0l — oL} €

R2C l, and an output is ol. With this design, Figure 3: Zero-shot adapter takes the difference
the adapter estimates the statistics based on the ~between instance and global statistics, and it gen-
distance between input and global statistics as ~erates estimated statistics by Eq. (7) and Eq. (9).
an instance-wise manner at the test time.

Training Strategy for Zero-shot Adapter: In local training, we freeze the main model, i.e., Fy,
and Cy, , and train the adapter with the cross-entropy loss to classify the inputs as follows:

1 &
La= m Z‘CCE(O¢k(F{9]‘:,Gf}(Ii7k))7yi7k)’ ®)
i=1

where 0 indicates the interpolated statistics described in Eq. , and o! is generated from Gy,
as shown in Fig.[3] To prevent the zero-shot adapter from over-fitting to each local training data,
we apply reparameterization trick (Kingma & Welling, 2013). We generate o sampled from the
gaussian distribution reparameterized by the zero-shot adapter as follows:

ol =T(8'2" +€), where &' ¢ =Gi({p— pl;ol — b)), )
and 2! is sampled from N (0, 1). T(-) is a clamp function to ensure o within the range of [0, 1]. Here,
the main network and the adapter are alternately trained with the loss functions Eq. (6) and Eq. (8),
respectively, freezing the other model. The training procedure for the adapter does not affect the
performance on the main network since the purpose of the adapter is only to learn how to interpolate
instance and global statistics for minimizing the cross-entropy loss on the trained network, which
simulates the test scenario in new clients. Local zero-shot adapters are also aggregated by FedAvg.
Zero-shot Adapter at Inference Time: We set o' as €', which is the mean of 6'z! + €'. The test
input is normalized by interpolated statistics using o' at I-th BN layer, and this process operates via
one forward propagation same with the naive inference process. We analyze the inference cost in
the experimental section. We denote our overall framework by FedIG-A.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Settings: We conduct extensive experiments on three DG benchmarks: PACS (Li
et al.L[2017), VLCS (Fang et al., 2013)), and OfficeHome (Venkateswara et al.,2017). PACS contains
seven categories from Photo (P), Art painting (A), Cartoon (C), and Sketch (S) domains, where
domain shift is large across four domains (Dou et al., [2019; |Chen et al., |2022) compared to VLCS
and OfficeHome (see analysis in [A.4). VLCS consists of five categories which are collected from
VOC2007 (V) (Everingham et al.,[2010), LabelMe (L) (Russell et al., [2008)), Caltech-101 (C) (Fei-
Fei et al.|[2004), and SUN (S) (Xiao et al.;[2010), where domain shift stems from the type of camera.
OfficeHome (Venkateswara et al.,|2017) contains 65 categories collected from four domains, Artistic
(A), Clipart (C), Product (P), and Real world (R), and the domain shift problem is not as severe as
other two datasets (Du et al.;[2022;[Wu & Gong} 2021)). In federated DG, the client has single domain
data, and there are total four clients in each DG benchmark. The global model is collaboratively
learned with three clients, and the learned model is evaluated on the remaining client.

Implementation Details: In the federated learning process, all clients use the same architecture
and hyper-parameter settings. We use ResNet-18 (He et al., 2016) pretrained on ImageNet as the
backbone network. For FedIG, all batch normalization (BN) layers are replaced with two BN layers,
i.e., local and global BN layers, respectively. We added two fully connected layers in front of each
BN layer for the zero-shot adapter. We train the network using SGD with momentum of 0.5, the
fixed learning rate of 0.01, and the batch size of 64 for 200 iterations at each round. Total 40 rounds
are conducted following the federated DG setting (Yuan et al., 2021). We set A; and A2 to 0.1 and
4.0 in Eq. (6), respectively. Following Li et al.| (2019), we only update the classifier by Eq. (5). We
conduct ablation studies about balancing parameters in
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Table 1: Variants of MixIG on PACS. Table 2: Ablation studies of client-agnostic learn-

ing objectives on PACS.

Mixing methods | Acc.
X (FedBN) 80.79 Objectives | Acc.
Global: u = 0.0 8175 X (FedBN) | 8079
Instance: u = 1.0 82.52 CACL 81.17
Global & instance: u = 0.5 83.43 CAFL 82.72
Global & instance: u ~ U (0,1) | 84.07 CAFL+CACL | 84.07

Table 3: Comparison studies to show the effectiveness our components on PACS.

\ Acc.
‘ Aug. ‘ Loss ‘ Inference | 5 x e 3 Ave
CE | 9274(0.97) 77.08(059) 75.08(0.85) 78.28(1.14) | 80.79
@] X ‘ FedProx | Olobal statistics ‘ 92.82(0.90) 7643 (0.93) 75.26(0.99) 78.95 (1.64) | 80.86
Mixstyle | 92.04(0.63) 80.19(028) 77.14(0.48) 82.53(0.94) | 82.98
(b) ‘ MixiG | CAL ‘ Global statistics ‘ 9299 (0.61) 82.17 (L15) 77.71(113) 83.40 (0.19) | 84.07
BIN: learncd alpha | 93.86 (0.53) 78.81(045) 79.54(0.40) 81.94 (0.88) | 83.54
Ensemble BNs | 9370 (0.39) 83.17 (1.09) 76.08 (130) 83.14 (1.02) | 84.02
IABN 93.29(0.13) 80.18(1.16) 7938 (1.33) 83.58(0.91) | 84.11
© | MixIG | CcAL MixNorm 93.60(0.52) 8277 (041) 7830 (1.13) 83.12(0.74) | 84.45
Random alpha | 90.67 (0.59) 74.82 (2.97) 74.96(0.76) 79.03 (1.64) | 79.87
Fixed alpha (0.5) | 9359 (0.25) 79.27 (1.40) 79.64(1.00) 8243 (1.12) | 83.73
Zero-shot adapter | 94.24 (0.33) 84.30 (0.44) 79.80 (1.16) 83.79 (0.49) | 85.53

Evaluation Protocols: We follow the standard DG evaluation protocols in DomainBed (Gulrajani
& Lopez-Paz,2021)) including dataset splits, image augmentations, and the model selection strategy.
For federated DG, we set the model selection strategy as single-source DG validation on local clients
and multi-source DG validation on the server. We give the details in [A.2] In this protocol, we
reproduce all competitive methods for a fair comparison in the federated setting. All experiments
are reported the average accuracy and standard deviation over four runs with different random seeds.

4.2 ABLATION STUDIES OF OUR COMPONENTS

Variants of MixIG: We conduct experiments with our variants to deeply analyze MixIG in Table[T]
Note that we use FedBN as the baseline and apply two client-agnostic learning objectives with data
from variants of MixIG, but the zero-shot adapter is not used to separately analyze MixIG in this
experiment. When we only use global statistics for MixIG, i.e., v = 0.0 in Eq. , the input is nor-
malized with statistics of the global model. Global statistics reflect data distribution of whole train-
ing clients, thus our objectives with normalized features allow the model to learn domain-invariant
representations with global information. In the case of using instance statistics only, the style re-
moved features (Huang & Belongiel |2017) become closer to the original features, which indicates
domain-invariant information to be learned within local domain. Features normalized with global
and instance statistics improve 0.96% and 1.73% of the average performance on PACS, respectively.
By mixing global and instance statistics, the model can take advantage of both characteristics, where
domain-invariant information is learned from global and local domains. Moreover, using randomly
mixed statistics generates more diverse domain data such that we achieve the performance improve-
ment further. Since global and instance statistics are randomly used for each BN layer, the model
can effectively learn representations within local client, across clients, and within other clients. We
also analyze the effect of distribution range in

Effectiveness of Client-agnostic Learning: We apply two loss functions, client-agnostic classifi-
cation loss (CACL) and client-agnostic feature loss (CAFL), on augmented features. CACL builds
a client-agnostic classifier, and CAFL forces the feature extractor to learn domain-invariant infor-
mation by strictly minimizing the distance between two features. In Table[2] we show that each loss
function is effective, and CACL and CAFL complementary operate to each other.

Client-agnostic Learning beyond Regularization: In Table [3}(a), we experiment the weight reg-
ularization method, FedProx (Li et al., 2020). Client-agnostic learning with the features only using
global statistics can be considered as regularization not to deviate from the global model, but it even
outperforms FedProx (81.75% vs 80.86%), here we set p to 0.1. Our approach regularizes the model
considering the importance of model parameters suitable for client-invariant representations on local
data. Beyond regularization, FedIG trains local clients with diverse domain data via MixIG.

Effectiveness of MixIG: MixIG is one type of feature augmentation for DG. We compare with
Mixstyle (Zhou et al.l |2021)), which randomly mixes instance statistics within batch samples to
synthesize styles and learn style-agnostic features. In Table [3}(b), we replace MixIG with Mixstyle
for a fair comparison, and MixIG consistently outperforms Mixstyle on all domains. Mixstyle only
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accesses the single-domain data in local training while MixIG exploits global statistics, and it shows
that feature augmentation with global statistics makes the model more robust to domains.

Comparison Studies of Inference Methods: In Table [3}(c), we compare our zero-shot adapter
with various inference algorithms. First, we compare with BIN (Nam & Kim, [2018), denoted by
learned alpha, which replaces all BN layers to the weighted summation of BN and IN layers in the
backbone network. In training, the learnable interpolation parameters for BN and IN are optimized,
and learned parameters are used for test samples. Since the interpolation parameters are fitted to
training datasets, it cannot generalize well on unseen domains. Next, we adapt various inference
algorithms on the trained model using FedIG for a fair comparison. We obtain ensemble predictions
from multiple local BN layers. Learned multiple BN statistics can partially reflect the distribution
of unseen domains, but the performance on some domains that are severely deviated from training
domains is downgraded. Furthermore, this method leads to privacy issue due to sharing multiple
local statistics. TABN (Gong et al.| 2022)) calibrates learned statistics with instance statistics by
the rule-based function when difference between learned and instance statistics is large. IJABN has
sensitive hyper-parameters, and these parameters should be properly selected for each domain to
consistently improve the performance on all domains. Our learning based zero-shot adapter out-
performs IABN on all domains without any sensitive hyperparameters. MixNorm (Hu et al., 2021)
augments test input data with various spatial augmentations, here we use the original data and four
augmented data, estimating test distribution more accurately. It slightly boosts the performance, but
the inference time and the memory usage increase. We also compare the zero-shot adapter with
naive approaches, random and fixed alpha (You et al.,2021). Compared to two results, our zero-shot
adapter can generate more proper alpha values for each BN layer as an instance-wise manner. It
shows that layer-wise and instance-wise generation is more effective than using the fixed alpha.

Computational Overhead Analysis: Table [4|shows
the computational cost of each method. Training and
inference times are measured as the average time per

Table 4: Comparison of computational cost.
Acc. denotes the average accuracy on PACS.

. - . - Methods | #Parms. | Training | Inference | Acc.
iteration with batch size 64 on an Intel Xeon Gold FedAve 3IM | 143ms | 134ms | 7735
6342 and a single NVIDIA RTX A5000. FedAvg, FedBN 113IM | 143ms | 1.34ms | 80.79

FedIG 1131M | 225ms | 1.34ms | 84.07

EedBN, and FedIG do npt require additional process- BN MG T | 32im | T 835
ing to forward the test input at inference, while BIN  FediG w/ MixNorm | 11.31M | 2.25ms | 6.70ms | 84.45
consumes more time for calculating instance nor- FedlGw INBN | 113 IM | 220ms | Lo7ms | 8410
malization. We also add several inference methods

(IABN, MixNorm) to FedIG to confirm the computational efficiency and performance of our FedIG-
A. MixNorm forwards multiple data by batch; here, we use five for each test sample. It requires
five times more memory and computations than other methods. IABN calculates instance statistics
in each BN layer and gets alpha values from the rule-based function. It shows better efficiency
than MixNorm, but with less performance gain. FedIG-A achieves the best accuracy by increasing
marginal parameters and computations. Our FedIG and FedIG-A have a trade-off between perfor-
mance and overhead, but both are superior to other baselines in terms of efficiency and performance.
Users can choose the method according to the requirements of the target devices.

Effectiveness of Zero-shot Adapter: Using the zero-shot adapter, we plot alpha values on each
layer from all test samples in unseen A domain in Fig.|4l Alpha values are different for both instance-
wise and layer-wise. Since the degree of distribution shift of samples is different even in the same
domain, it is effective to use different alphas for samples and layers. More results and analysis are
described in In t-SNE plots, FedIG-A has fewer points in the middle, which indicate non-
meaningful features, and extracts more class-discriminative features than FedIG.

05

0
1
2
° 3
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@ ®)
Figure 4: (a) alpha values on each layer from all test samples, and (b) t-SNE of FedIG and FedIG-A
in unseen A domain, where features are normalized by global (left) and estimated statistics (right).
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Table 5: Classification accuracy comparison results on PACS, VLCS, and OfficeHome. Gray color
indicates methods posing privacy issues.

PACS | VLCS | OfficeHome
P A C S [ Avg. | Avg. | Avg.

FedAvg | 90.40 (0.97) 72.52(2.28) 72.59(0.37) 73.90(1.74) | 77.35 | 74.86 63.47
FedProx | 90.49 (0.69) 72.41(1.06) 73.09(0.91) 72.93(1.48) | 77.23 | 74.42 63.02

Paradigm Method }

Decentralized

wlo DG FedBN 92.74 (0.97) 77.08 (0.59) 75.08 (0.85) 78.28 (1.14) | 80.79 | 75.33 64.08
RandAug | 93.57(0.60) 77.15(1.39) 71.68 (2.14) 66.64 (2.34) | 77.26 | 74.32 64.59

Mixstyle | 92.75(0.45) 80.21(0.33) 76.77 (0.72) 79.98 (2.22) | 82.43 | 75.54 63.24

SFA 87.22(1.76) 72.01(3.22) 73.12(1.03) 79.52(1.63) | 77.98 | 72.77 59.47

Decentralized | RandConv | 91.78 (0.40) 77.16 (1.55) 70.56 (3.28) 78.78 (1.46) | 79.57 | 73.68 63.25
w/ DG L2D 93.59 (0.55) 79.69 (1.12) 75.81(1.37) 82.76 (0.55) | 82.96 | 75.37 63.29

JiGen | 92.14(0.40) 72.51(2.00) 72.76 (1.24) 73.34(1.96) | 77.69 | 75.13 64.09
RSC 92.53 (0.86) 78.10(0.56) 75.95 (1.08) 79.82 (1.31) | 81.60 | 75.90 63.01
SelfReg | 93.41 (0.76) 78.30 (1.16) 74.94 (0.43) 77.13 (2.09) | 80.94 | 72.79 64.85

COPA 94.70 (1.07) 83.75(0.29) 78.58 (0.96) 84.45(1.33) 62.42
. FedDG 94.45 (0.44) 83.83(0.28) 73.41(1.33) 78.40(0.73) 64.90
Decentralized

w/ federated DG CSAC 94.83 (0.42) 80.48 (1.25) 75.46 (1.58) 79.56(1.35) | 82.58 | 75.21 64.35
FedIG 92.99 (0.61) 82.17(1.15) 77.71(1.13) 83.40(0.19) | 84.07 | 76.62 64.01
FedIG-A | 94.24 (0.33) 84.30 (0.44) 79.80 (1.16) 83.79 (0.49) | 85.53 | 76.68 64.71

0
[
W
p}
-
N
n

4.3 COMPARISON WITH COMPETITIVE METHODS

Competitive Methods: In Table[5} we compare our FedIG and FedIG-A with representative meth-
ods of FL and DG. (1) Federated learning: FedAvg (McMahan et al. 2017)), FedProx (Li et al.,
2020), and FedBN (Li et al.,[2021b); (2) Data augmentation method: RandAug (Cubuk et al.,2020);
(3) Augmentation-based DG methods: Mixstyle (Zhou et al.;, [2021), SFA (Li et al., 2021a), Rand-
Conv (Xu et al} [2021b)), and L2D (Wang et al.| [2021); (4) Regularization-based DG methods: Ji-
Gen (Carlucci et al., 2019), RSC (Huang et al., 2020), and SelfReg (Kim et al.,[2021)); (5) Federated
DG methods: COPA (Wu & Gongl 2021), FedDG (Liu et al., [2021)), and CSAC (Yuan et al., 2021).

Performance Analysis: We first analyze the results on PACS with severe distribution shift be-
tween domains. Decentralized without DG methods achieve low performance compared to other
paradigms. FedProx regularizes local models not to deviate from the global model, but it cannot
solve domain shift. FedBN mitigates domain shift with local BN layers, and it can improve the
performance on unseen clients. However, the performance is very limited since they do not con-
sider learning client-invariant representations, explicitly. Decentralized with DG methods show per-
formance improvement on several domains. Especially augmentation-based DG methods achieve
significant accuracy improvement, but performance on few domains is downgraded a lot. Since
augmentation-based DG methods learn domain-invariant representations only within single domain,
it is not effective when augmentation on source domain does not cover test distribution. JiGen,
RSC, and SelfReg consistently improve or maintain the performance on four domains compared to
FedAvg, but the improvement is very marginal. COPA and FedDG allow the model to learn client-
invariant representations by utilizing data information from other clients, and they obtain the highest
performance on several domains among competitive methods. However, they cause serious privacy
issue. Our methods, FedIG and FedIG-A, achieve the state-of-the-art performance without sharing
private information across clients. FedIG outperforms all competitive methods with a large margin
on most domains except for COPA. With zero-shot adaptation, we boost the performance further
without significantly increasing the computational cost. On VLCS and OfficeHome, domain shift
is relatively small compared to PACS. FedIG and FedIG-A consistently improve the performance
almost all domains compared to other methods, indicating that our methods can be safely applied to
any domains (see more results in[A.5). We show the results on cross-silo FL in[A.6] Moreover, we
analyze the performance on clients inside the federation in[A.7]

5 CONCLUSION

We presented client-agnostic learning with mixed instance-global statistics for local training and
zero-shot adaptation with estimated statistics for inference. Our mixed instance-global statistics
generate diverse domain features helping local clients to learn client-invariant representations while
ensuring user privacy. In addition, our proposed zero-shot adapter directly bridges a large domain
gap between training and test clients at inference time. Extensive experiments on federated DG
benchmarks showed the effectiveness of our methods.
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REPRODUCIBILITY STATEMENT

Our experimental evaluation is conducted with publicly available DomainBed (Gulrajani & Lopez-
Paz| 2021) and CSAC (Yuan et al.,2021). We provide the data pre-processing and hyper-parameter
settings in Section 4.1 and pseudo-codes in[A.8] Together with the references of related works and
publicly available codes, our paper contains sufficient details to ensure reproducibility.
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A APPENDIX

A.1 PERFORMANCE DEPENDENCY OF HYPER-PARAMETERS IN OBJECTIVES

In Eq. (6), there are two hyper-parameters, A; and Ao, and we analyze performance dependency of
these parameters. It is worth noting that it is an important ablation study in DG, where the DG model
should generalize well on several domains, not sensitively depending on these parameters. In Fig.[3]
and[6] we conduct experiments changing each parameter while fixing another parameter, \; = 0.1
and Ao = 4.0. Although the optimal hyper-parameters are different with each domain, choosing
A1in [0.1,0.5] and Az in [2.0,5.0] shows consistent results on all domains. In this range, FedIG-A
consistently achieves high performance on all PACS domains compared to competitive methods (see
Table[3). We can train and evaluate models by setting hyper-parameters to optimal values for each
domain, but we set A; and A, to 0.1 and 4.0 for all datasets in our experiments.
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Figure 5: Ablation studies of client-agnostic classification loss on PACS. We conduct experiments
using various \; (x-axis) and get the performance (y-axis).
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Figure 6: Ablation studies of client-agnostic feature loss on PACS. We conduct experiments using
various Ay (x-axis) and get the performance (y-axis).

A.2 EVALUATION PROTOCOLS FOR FEDERATED DG

We use training-domain validation set for the model selection in|Gulrajani & Lopez-Paz[(2021). We
adopt different selection strategy for the client side and the server side to obtain the best global model
in the federated DG setting. In local training, the client model is uploaded to the server when the
validation accuracy on its single domain is best within 200 iterations (validation per 20 iterations).
In the server, the best round model is selected when the average of the validation performance on
seen clients is maximized among 40 rounds (validation per 1 round). The server can obtain the
validation performance from clients using the aggregated server parameters, thus it can be possible
to use the average of the validation performance on seen clients. It is practical and effective to use
single-source DG validation on local training and multi-source DG validation on the server.

A.3 MORE STUDIES ON MIXIG

In Table[6] we conduct experiments using different range of uniform distribution for mixing instance
and global statistics in Eq. (3)). The optimal range of augmentation is different for each test domain.
In other words, the desired strength or type of augmentation is different for each domain, as shown
in Table. 5] Different with augmentation-based DG methods, our method interpolates instance and
global information. The performance is consistently improved in all domains due to safe and diverse
augmentation using features normalized within instance and global statistics. With extrapolation
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U(-0.1,1.1), the performance on S domain, which is severely deviated with P, A, and C domains,
is largely improved. Using extrapolated statistics generates more diverse samples compared to using
interpolated statistics, but it induces the performance drop on not severely different domains.

Table 6: Accuracy on PACS using various range of distribution for MixIG.

PACS | VLCS
P A C S [ Avg. | Avg.

U(0,1) 94.24 (0.33) 84.30(0.44) 79.80(1.16) 83.79 (0.49) | 85.53 | 76.68
U(0.0,0.5) | 94.46(0.21) 84.50(0.17) 80.97 (1.15) 84.46(0.09) | 86.10 | 76.42
U(0.5,1.0) | 94.58(0.21) 82.89(0.59) 78.14(1.48) 83.18(0.04) | 84.69 | 76.36

U(-0.1,1.1) | 94.46 (0.64) 83.64(0.83) 80.12(0.36) 84.59 (0.05) | 85.70 | 76.46

Distribution }

A.4 ANALYSIS OF ALPHA VALUES FROM ZERO-SHOT ADAPTER

At the test time, we use alpha values in Eq. (7) from the trained zero-shot adapter for inference. We
plot alpha values on each layer from all test samples in PACS, VLCS, and OfficeHome in Fig.

and El In PACS, alpha values in P, A, and C domains have similar distribution on each layer.
In the low-level layers, different alpha values are used for test samples between 0.1 and 0.6, i.e.,
using different amount of instance statistics, and in the high-level layers, alpha values are within
0.0 and 0.6. In S domain, alpha values at the low-level layers are lower than other domains. Since
there is a large domain gap between S and other domains, distribution of alpha values are different.
Interestingly, alpha values in the middle-level layers are almost same across test samples, e.g., almost
all test samples get 0.2 on the 9-th BN layer in P domain. Alpha values in VLCS are all between 0.0
and 0.2, and it shows that global statistics work well without instance statistics because domain shift
existing in VLCS is not large compared to PACS. Similarly, alpha values in OfficeHome are smaller
than those in PACS. The distribution of alpha values is similar across domains because domain shift
is not large. The degree of shift between domains can be inferred from the distribution of alpha from
the zero-shot adapter.
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Figure 7: Alpha values on each layer from test samples in P (upper left), A (upper right), C (lower
left), and S (lower right).
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Figure 8: Alpha values on each layer from test samples in V (upper left), L (upper right), C (lower

left), and S (lower right).
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Figure 9: Alpha values on each layer from test samples in A (upper left), C (upper right), P (lower

left), and R (lower right).
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A.5 EXPERIMENTAL RESULTS ON VLCS AND OFFICEHOME

In Table[7] our FedIG and FedIG-A achieve the state-of-the-art performance on VLCS. Several meth-
ods downgrade the performance on V or S domains compared with FedAvg, e.g., CSAC achieves
low performance on V and S domains, but we can get consistent better performance on all domains.
In Table[8] both decentralized with DG and federated DG paradigms cannot get a large improvement
on OfficeHome because domain shift across clients is very small. FedIG-A gets comparable results
with the state-of-the-art previous methods.

Table 7: Comparison results on VLCS. Gray color indicates methods posing privacy issues.

] VLCS
Paradigm Method v T C S Avg
Decentralized FedAvg | 73.53(0.87) 57.92(1.08) 96.22(0.93) 71.77(1.15) | 74.86
w/o DG FedProx | 73.04 (0.53) 57.85(1.27) 95.97(0.75) 70.83 (3.91) | 74.42
FedBN 71.78 (0.98) 58.71 (1.14) 96.67 (0.53) 74.15(1.59) | 75.33
RandAug | 72.42 (0.78) 58.32(0.74) 95.79 (0.86) 70.76 (2.27) | 74.32
Mixstyle | 72.61 (0.66) 58.52 (0.66) 97.69 (0.51) 73.33(1.37) | 75.54
SFA 65.08 (0.81) 61.55(1.22) 96.29 (1.19) 68.15 (1.07) | 72.77
Decentralized | RandConv | 70.83 (0.90) 57.16 (1.50) 95.64 (0.23) 71.08 (2.24) | 73.68
w/ DG L2D 72.84 (1.59) 59.78 (0.69) 97.97 (0.54) 70.89 (1.83) | 75.37
JiGen 73.65 (0.57) 58.09 (0.69) 98.06 (0.35) 70.72(1.21) | 75.13
RSC 75.27 (1.00) 59.79 (1.22) 97.01 (1.01) 71.51(1.00) | 75.90
SelfReg | 68.13 (0.76) 60.37 (0.66) 88.64 (3.09) 74.03 (0.19) | 72.79
COPA 71.50 (1.05) 61.00 (0.89) 93.83(0.41) 71.72(0.74) | 74.51
Decentralized FedDG 71.05 (0.62) 59.46 (1.08) 96.64 (0.86) 73.96 (0.74) | 75.28
w/ federated DG CSAC 72.96 (0.91) 59.78 (0.84) 96.52(0.38) 71.60(1.20) | 75.21
FedIG 73.69 (0.90) 59.14 (0.74) 98.00 (0.29) 75.65 (1.00) | 76.62
FedIG-A | 73.93 (1.14) 59.29(0.28) 97.84(0.37) 75.64(0.86) | 76.68

Table 8: Comparison results on OfficeHome. Gray color indicates methods posing privacy issues.

. OfficeHome
Paradigm Method x C P R Avg.
Decentralized FedAvg 56.82 (0.31) 50.53 (0.60) 72.38 (0.24) 74.16 (0.38) | 63.47
w/o DG FedProx | 56.58 (0.63) 49.44(0.39) 72.15(0.30) 73.90(0.46) | 63.02
FedBN 58.29 (0.70) 51.16 (0.48) 72.80(0.59) 74.06(0.51) | 64.08
RandAug | 58.50 (0.34) 52.18(0.77) 73.17 (0.36) 74.52 (0.52) | 64.59
Mixstyle | 55.57 (1.24) 53.31(0.65) 70.90(0.81) 73.18 (0.27) | 63.24
SFA 50.99 (1.20) 50.97 (0.35) 66.84 (0.65) 69.08 (0.23) | 59.47
Decentralized RandConv | 56.19 (0.80) 53.20 (0.47) 71.66 (0.57) 71.94 (0.46) | 63.25
w/ DG L2D 54.70 (1.43) 56.36 (0.28) 69.96 (0.85) 72.13(0.35) | 63.29
JiGen 58.20 (0.67) 50.00 (0.02) 73.99 (0.56) 74.18 (0.00) | 64.09
RSC 56.67 (0.59) 49.59 (1.05) 71.61(0.47) 74.16(0.49) | 63.01
SelfReg 59.26 (0.26) 51.84 (0.86) 73.46(0.18) 74.85(0.62) | 64.85
COPA 53.39 (0.16) 57.46 (0.47) 68.61 (0.15) 70.24 (0.38) | 62.42
Decentralized FedDG 59.87 (0.06) 53.51(0.31) 72.81(0.89) 73.41(0.41) | 64.90
w/ federated DG CSAC 58.97 (1.13) 51.61(0.26) 72.57 (0.18) 74.25(0.49) | 64.35
FedIG 57.68 (0.64) 52.90(0.13) 71.79 (0.47) 73.68 (0.39) | 64.01
FedIG-A | 58.62 (0.51) 53.47(0.21) 72.34(0.45) 74.39(0.17) | 64.71
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A.6 EXPERIMENTS ON CROSS-SILO FL

Experimental Setup: We expand 3 training clients to 30 clients by distributing each dataset to
10 clients on PACS. It makes the client have the small amount of data. We consider both iid and
non-iid label distribution across clients. We equally distribute the data to 10 clients for iid label
distribution while we use Dirichlet distribution (o« = 0.5 and o = 0.1) for non-iid label distribution.
We illustrated class distribution of clients in Fig.[TI0] In this setup, we randomly select 10 clients for
local training with 20 iterations on each round, and total 120 rounds are conducted.

Experimental Results: In Table 0] and we compare our FedIG-A with FedProx [Li et al.
(2020) and FedBN (Li et al., 2021b). Our method works well when the number of clients is large.
The performance is slightly downgraded in non-iid label distribution compared to the performance
in iid label distribution, but we can expect that this negative effect is alleviated if the method for
non-iid label distribution is added together. In the case of severe non-iid label distribution, FedIG-A
significantly improves the performance compared to the baselines as shown in Table[T1] It demon-
strates that our method effectively solves the domain shift problem even severe label shift exists.
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Figure 10: We plot the data distribution of clients using (a) iid data partition, (b) non-iid data par-
tition following Dirichlet distribution of & = 0.5, and (c) non-iid data partition following Dirichlet
distribution of & = 0.1 when A, C, and S domains are source and P is target. The color bar denotes
the number of data samples, and x-axis indicates client ID and y-axis indicates class ID. Each rect-
angle represents the number of data samples of a specific class in a client. In this setup, 30 clients
are participated in FL from A, C, and S domains, and we test the FL. model on P domain.
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Table 9: Performance on iid label distribution with 30 training clients.

PACS
Method P A C ST
FedProx | 94.95(0.42) 7397 (048) 70.72(028) 7376 (0.24) | 78.35
FedBN | 94.53(0.85) 7595(0.17) 7053 (2.03) 7845 (2.16) | 79.86
FedIG-A | 94.76 (1.14) 8420 (0.31) 79.20(2.02) 82.87 (1.76) | 85.26

Table 10: Performance on non-iid label distribution (o« = 0.5) with 30 training clients.

PACS

Method P A C ST
FedProx | 9225 (025) 7175 (3.56) 74.87(0.61) 6930 (6.14) | 77.04
FedBN | 92.82(0.13) 7478 (1.55) 75.50(0.95) 71.71(2.66) | 78.70

FediG-A | 93.62(0.30) 79.54(0.83) 82.02(0.15) 77.49 (117) | 83.17

Table 11: Performance on non-iid label distribution (o = 0.1) with 30 training clients.

PACS
Method P A C S A
FedProx | 83.17(042) 62.65 (442) 66.95(095) 55.34 (433) | 67.03
FedBN | 84.41(1.40) 61.62(048) 69.05(3.81) 59.85(4.00) | 68.73
FediG-A | 92.13 (0.89) 7329(2.90) 73.19 (112) 71.96 (0.34) | 77.64

A.7 PERFORMANCE ON CLIENTS INSIDE THE FEDERATION

We measure the performance on clients inside the federation, i.e., personalized performance, in Ta-
ble@ In PACS with a large domain shift across training clients, the model with local statistics, i.e.,
the client-specific part, achieves the best performance compared to the model with global statistics,
i.e., the global model. Global statistics reflect data distribution of all clients, but it causes the per-
formance degradation on each test domain, where data distribution is shifted from other clients. Our
proposed zero-shot adapter can reduce the performance gap between using local and global statis-
tics with the aid of instance statistics of the test input. In the case of VLCS and OfficeHome, global
statistics help the model to generalize well to each test domain. Since the distribution shift across
clients is not large, global statistics represent more general distribution compared to local statistics.
It improves the model performance a lot. The zero-shot adapter also helps the model to generalize

well on seen domains in VLCS and OfficeHome.

Table 12: Personalized performance on PACS, VLCS, and OfficeHome.

PACS

Method P A C S Avg.

FedIG (local statistics) | 97.85 (0.89) 93.69 (2.06) 94.92 (0.91) 95.51 (0.37) | 95.49

FedIG (global statistics) | 96.86 (0.95) 92.46 (1.79) 93.81 (1.04) 95.02 (0.40) | 94.53

FedIG-A (global statistics) | 97.40 (0.79) 9353 (1.77) 94.53 (1.08) 9533 (0.44) | 95.20
VLCS

Method v L C S AvE

FedIG (local statistics) | 83.79 (1.86) 7172 (0.84) 99.44 (0.41) 80.76 (1.15) | 83.93

FedIG (global statistics) | 84.80 (1.74) 70.12 (1.24) 99.80 (0.23) 81.90 (1.62) | 84.15

FedIG-A (global statistics) | 84.92 (1.80) 7029 (137) 99.85(0.18) 82.09 (1.54) | 84.29

OfficeHome

Method A C P R [ Ag

FedIG (local statistics) | 66.57 (1.68) 76.11 (1.21) 87.81(1.32) 79.78 (1.80) | 77.57

FedIG (global statistics) | 68.05 (2.03) 76.77 (1.20) 88.19 (1.14) 8053 (1.91) | 78.38

FedIG-A (global statistics) | 68.50 (1.82) 76.63 (1.16) 88.08 (1.25) 80.70 (1.99) | 78.48

18



Under review as a conference paper at ICLR 2023

A.8 PSEUDO-CODE FOR REPRODUCIBILITY
We describe pseudo-codes of client-agnostic learning and zero-shot adaptation in Table [13|and

Note that federated DG benchmarks only contain four clients, i.e., three for training and one for test,
thus all three clients participate in the federation at every round.

Table 13: Pseudo-code for FedIG-A training.

Global weights {0, 0%}, da, . Local clients’ weights {67,051, {61}, {wr i),
Total round 7,,,., Total local iteration F,,,,;

Server executes:

initialize {0%, 0%}, da. vas
for eachroundt =1, ..., T}, do

Sy < (random set of m clients);

for each client k € S; in parallel do

Load {60¢,65}, ¢x. ¢ < LocalUpdate(k, {0%, 0%}, dc., vc);

Update global weights {6%, 0%}, ¢, o by FedAvg (McMahan et al.| 2017);

Output: {6%,08}, dc, vc-

function LocalUpdate(k, {0%, 0%}, . ¢c): // Run on client k
Load 0%, ¢i, @i < 0%, da. vc;
for each local iteration ¢ = 1, ..., g, do
Shuffle training set Dy;
Fetch mini batch {z; x, yi 1 }1—, from Dy;

// Train the main network

Obtain loss Lo g by Eq. ;

Obtain augmented features { f; o}, with 67, by Eq. ;
Obtain loss Loacr, Loarr by Eq. (4) and (5);

Update local weights {6, 0}, ¢). by minimizing Eq. (6);

// Train the zero-shot adapter
Obtain features with estimated statistics by Eq. (7) and @;
Update local weights ¢, by minimizing Eq. ;

Output: {62,605}, dr, vk

Table 14: Pseudo-code for FedIG-A inference.

Global weights {6, 0%}, éc, o, Test client’s weights {07, 07}, ¢r, 4

Deploy to test client:
Load {07, 0; }. 61, 01 (02,05}, b v
Obtain test set Dy;
for each test forward i = 1, ...,n; do
Fetch x; ; from Dy;
Obtain f; ; by Eq. (7) and (9);
Obtain the prediction with Cy, ;
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