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Figure 1. SVAD. Our method creates high-fidelity 3D avatars from a single image through synthetic data generation. We leverage video
diffusion to generate pose-conditioned animations, enhance them with identity preservation and image restoration modules, then train a 3D
Gaussian Splatting avatar. The resulting avatars maintain consistent identity across novel poses and viewpoints while enabling real-time
rendering, outperforming state-of-the-art approaches.

Abstract

Creating high-quality animatable 3D human avatars from
a single image remains a significant challenge in computer
vision due to the inherent difficulty of reconstructing com-
plete 3D information from a single viewpoint. Current
approaches face a clear limitation: 3D Gaussian Splat-
ting (3DGS) methods produce high-quality results but re-
quire multiple views or video sequences, while video dif-
fusion models can generate animations from single im-
ages but struggle with consistency and identity preserva-
tion. We present SVAD, a novel approach that addresses
these limitations by leveraging complementary strengths of
existing techniques. Our method generates synthetic train-
ing data through video diffusion, enhances it with identity
preservation and image restoration modules, and utilizes
this refined data to train 3DGS avatars. Comprehensive
evaluations demonstrate that SVAD outperforms state-of-
the-art (SOTA) single-image methods in maintaining iden-
tity consistency and fine details across novel poses and
viewpoints, while enabling real-time rendering capabili-

ties. Through our data augmentation pipeline, we overcome
the dependency on dense monocular or multi-view training
data typically required by traditional 3DGS approaches.
Extensive quantitative, qualitative comparisons show our
method achieves superior performance across multiple met-
rics against baseline models. By effectively combining the
generative power of diffusion models with both the high-
quality results and rendering efficiency of 3DGS, our work
establishes a new approach for high-fidelity avatar genera-
tion from a single image input.

1. Introduction

The ability to generate animatable 3D human avatars from
minimal input data, such as a single-image, has significant
potential across a range of applications. Traditional meth-
ods, particularly those based on 3DGS, have demonstrated
considerable success in producing high-quality avatars [12,
27, 49, 50, 58, 66, 67, 73, 85, 92]. These methods rely
on dense input data, typically monocular or multi-view



video [12, 27, 49, 58, 66, 73, 92], to achieve high fidelity
across varied viewpoints and poses. This reliance on ex-
tensive video input complicates deployment in single-image
scenarios, where ensuring viewpoint consistency and adapt-
ability to novel poses becomes a key challenge.

Recent advancements in video diffusion models offer a
potential solution by enabling animation generation from
a single static image [26, 39, 77, 80, 93]. These models
use certain conditions in diffusion processes to create video
sequences, demonstrating the powerful generative capabili-
ties of diffusion for single-image-driven animation. How-
ever, diffusion models often struggle to maintain tempo-
ral coherence, leading to inconsistent features and identity
drift across frames [4, 16, 25, 70] . Additionally, their it-
erative denoising process for each frame introduces signif-
icant computational overhead, limiting their feasibility for
real-time or interactive applications where rapid rendering
across novel views is essential.

To overcome these challenges, we propose SVAD, a
novel synthetic data generation and avatar creation pipeline
that synergizes the generative flexibility of diffusion mod-
els with the efficient rendering capabilities of 3DGS avatars.
Our approach leverages video diffusion model [74] to gen-
erate diverse pose-conditioned synthetic training data from
a single-image. This synthetic data is refined through an
identity-preservation module and an image restoration mod-
ule to ensure that perceptual identity consistency and struc-
tural fidelity are preserved across diverse poses and tempo-
ral sequences. The resulting high-quality synthetic dataset
is then used to train a 3DGS avatar model [49], which bene-
fits from the rapid rendering capabilities inherent to 3DGS.
By combining the generative strengths of diffusion for syn-
thetic data creation with the efficiency of 3DGS for ren-
dering, SVAD achieves consistent, high-quality 3D avatar
animations from single-image input.

In summary, our main contributions are:
• We introduce a novel pipeline that generates high-quality

synthetic training data from a single-image to create de-
tailed, animatable 3D human avatars.

• We develop a comprehensive data augmentation approach
that combines identity preservation and image restoration
to ensure consistent identity and fine details across di-
verse poses.

• We demonstrate through extensive experiments that our
synthetic data-driven approach significantly outperforms
SOTA single-image avatar generation methods in identity
preservation and novel pose adaptation while maintaining
efficient real-time rendering.

2. Related Work
Diffusion Model for Human Image Animation The use
of diffusion models has led to significant advancements in
human image animation, enabling the generation of real-

istic and temporally consistent animations from static im-
ages [1, 5, 8, 18, 28, 33, 56, 60, 65, 68, 69, 82, 84, 87, 90].
Early methods, such as PIDM [3] and DreamPose [37], fo-
cused on improving texture fidelity by employing texture
diffusion modules to align texture patterns between refer-
ence and target images. These methods, while enhancing
detail preservation, still face challenges in maintaining tem-
poral stability across frames.

Recent works, including DisCo [77] and Animate Any-
one [26], have extended diffusion models to improve tem-
poral consistency and fine-grained control in human anima-
tion tasks. DisCo leverages dual ControlNets [86] to sep-
arately control pose and background elements, providing
more robust conditioning for complex motion sequences.
Similarly, Animate Anyone integrates a ReferenceNet with
temporal attention layers to ensure appearance consistency
and smooth transitions across frames, thereby addressing
flickering issues commonly observed in earlier models.
Dynamic 3D Gaussian based Avatars The concept of
Gaussian splatting for 3D avatars has emerged recently as
an innovative approach to explicit scene representation [38].
This technique models a scene as a collection of 3D Gaus-
sian elements, each containing photometric and geometric
properties. During rendering, these Gaussian splats are pro-
jected onto the image plane, creating the final rendered out-
put. The efficiency of 3DGS has been demonstrated in both
static [30, 35, 42] and dynamic [17, 36, 41, 43, 48] scenes,
making it a versatile tool for various applications. Recent
advancements [6, 7, 11, 15, 29, 32, 44, 57, 58, 76, 94] have
explored the use of 3DGS to create photorealistic human
avatars across different scenarios. These methods com-
monly rely on multi-view data [46, 53, 91] or monocular
video [27, 32, 44, 49, 58] as input to achieve high-quality,
consistent results. The advantage of 3DGS lies in its ability
to produce temporally stable animated avatars with superior
quantitative metrics.

3. Method
To generate high-quality human avatars from a single-
image, facilitating free-viewpoint rendering and realis-
tic animation, we integrate the generative capabilities of
video diffusion models with the rendering efficiency of 3D
Gaussian-based avatars. We start by leveraging a pretrained
video diffusion model [74] for character animation to pro-
duce initial synthetic data, as described in Sec. 3.1. Directly
using these frames to train a 3DGS avatar model [49], how-
ever, often yields poor results, with challenges in preserv-
ing facial identity, clothing details, and maintaining consis-
tent multi-view coherence across side and back views. To
address these issues and enhance avatar quality, we intro-
duce a data augmentation pipeline in Sec. 3.2 comprising
identity-preservation and image-restoration modules to re-
fine the diffusion outputs. With the augmented synthetic
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Figure 2. Overall Pipeline of SVAD. Starting from a single input image, the diffusion model generates pose-conditioned animations,
which are refined using an identity preservation module and an image restoration module. The refined outputs are then used to train the
3DGS avatar, enabling high-fidelity, animatable 3D avatars with consistent details across poses and viewpoints.

data, we proceed to train a 3DGS avatar model, as out-
lined in Sec. 3.3. The following sections detail the technical
methodologies employed in our approach.

3.1. Video Diffusion Module
To generate an animated character video V from a single in-
put image I , we leverage MusePose [74], a finetuned vari-
ant of Animate Anyone [26], which is a SOTA video dif-
fusion model designed for realistic human animation while
maintaining temporal consistency and appearance fidelity.
MusePose employs a U-Net [62]-based diffusion architec-
ture with integrated pose and temporal controls, allowing
for pose-guided animation across frames. For our pipeline,
we utilize a pose sequence video from a sequence from the
People Snapshot [2] dataset, which depicts a subject per-
forming a full-body rotation with arms extended horizon-
tally. This sequence results in 189 frames that serve as pose
inputs to the MusePose video diffusion model.

The model architecture incorporates several key compo-
nents for effective character animation. The denoising UNet
is implemented as a 3D UNet [14] with motion modules
for temporal coherence. Specifically, we use Vanilla mo-
tion modules [20, 21] with temporal self-attention blocks at
resolutions of [1, 2, 4, 8] and in the mid-block. Each trans-
former [75] block contains 8 attention heads, with tempo-
ral position encoding enabling positional awareness across

a sequence of up to 128 frames. To incorporate pose guid-
ance, a lightweight Pose Guider encodes the motion control
signal from the predefined 2D keypoints into a pose-aligned
latent representation P (pt) ∈ RH×W×C . For a pose feature
pt ∈ RJ×2 at time t, where J is the number of keypoints,
we align the encoding to ensure continuity between frames
by adding this encoded pose signal to the noise latent zt:

zt = zt + P (pt) (1)

For the diffusion process, we adopt a v-prediction [64] for-
mulation with zero-SNR sampling [47], using a scaled lin-
ear beta schedule with βstart = 0.00085 and βend = 0.012.
The DDIM [71] sampler is configured for efficient inference
with 20 sampling steps and a classifier-free guidance [24]
scale of 3.5.

A critical challenge in character animation is ensuring
anatomical consistency between the reference image and
the motion poses. Direct application of pose control can re-
sult in unnatural animations due to mismatches in body pro-
portions [8]. Therefore, we employ a comprehensive pose
alignment procedure that adapts the source pose to match
the reference character’s physical characteristics.

Given a reference pose Pref and a source pose Psrc de-
tected using DWpose [81], we compute scale parameters
S = {s1, s2, . . . , s10} for ten distinct body regions: neck,
face, shoulders, upper arms, lower arms, hands, torso, up-
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Figure 3. 3D Avatars trained by SVAD. SVAD generates high quality 3D avatars with just a single-image. The trained avatars can be
rendered from any view point, in any pose.

per legs, and lower legs. For each body part i, we compute
its scale factor si as the ratio between the corresponding
keypoint distances. For body parts with bilateral symmetry
(e.g., arms), we average the scales from both sides:

sarm upper =
1

2

(
∥p2ref − p3ref∥
∥p2src − p3src∥

+
∥p5ref − p6ref∥
∥p5src − p6src∥

)
(2)

To apply these scales to the source pose, we use a rotation
matrix transformation centered at anchor points specific to
each body part:

p′ = ci + si · (p− ci) (3)

where ci is the anchor center for part i. This hierarchical ap-
proach ensures body proportions match the reference while
maintaining the overall pose structure.

3.2. Data Augmentation Module
Training the 3DGS model using only outputs from the video
diffusion model often results in low-fidelity avatars, par-

ticularly in terms of facial details and high-frequency fea-
tures like hands and clothing. To address these challenges,
we introduce a data augmentation module that enhances the
quality of the training data. This module includes an iden-
tity preservation sub-module ensuring coherence in facial
details across frames and a image restoration submodule
which refines texture quality and high-frequency details, re-
sulting in more realistic textures. This comprehensive data
augmentation significantly improves the synthetic training
data, enabling the 3DGS avatar model integrated in the fu-
ture to generate more realistic and detailed 3D avatars.

Identity preservation sub-module. To ensure consistent
and realistic facial details across frames, we implement an
identity preservation module that combines 3D head recon-
struction and facial fusion techniques. From a single input
image, we first create a 3D Gaussian-based head avatar us-
ing a method inspired by Chu et al. [13], which employs a
novel dual-lifting approach that predicts both forward and
backward lifting distances.
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Figure 4. Qualitative Evaluation on the People Snapshot dataset and of THuman dataset scan renderings. From a single-image input,
SVAD generates high-quality, animatable 3D avatars.

Given an input image Is, global and local features Flocal
are extracted using a frozen DINOv2 [52] backbone. These
features are used to predict forward and backward lifting
distances, positioning 3D Gaussians Gpos as follows:

Gpos = [ps + EConv0(Flocal) · ns,ps − EConv1(Flocal) · ns],
(4)

where ps is the initial point plane, ns is the normal vec-
tor, and EConv are convolutional layers predicting offsets.
To capture expression variations, we bind 3DMM [45] fea-
tures:

Gexpr = MLP(F3DMM + Fglobal). (5)

To animate this 3D head avatar, we separately track
FLAME [45] parameters Θ = {β, ψ, θ, ϕ} from our pre-
defined pose sequence video (the same sequence used in
the video diffusion module), where β ∈ R300 represents
shape parameters, ψ ∈ R100 expression parameters, θ ∈ R6

global pose parameters, and ϕ ∈ R6 eye pose parameters.
These tracked parameters serve as animation controls for

the reconstructed 3D head. Using these tracked FLAME
parameters, we render the 3D head avatar to generate a
sequence of head images that match our predefined pose
sequence. These renderings provide high-quality, identity-
consistent facial details across different viewpoints. Since
the quality of the renderings deteriorates for back-of-head
views, we selectively apply the face fusion process only to
frames where the head is front-facing (front and side views).

For the face fusion process, we detect facial land-
marks [40] on both the diffusion-generated frame Iorig and
the rendered head image Ihead, compute an affine transfor-
mation for alignment, and use Poisson image editing [55]
for seamless blending:

min
I

∫
Ω

∥∇I −∇Iwarp∥2 dx dy, subject to I|∂Ω = Iorig|∂Ω,
(6)

where Ω is defined by the facial mask. This ensures tempo-
rally consistent facial details while preserving the original
identity throughout the animation sequence.



Image restoration sub-module. Finally, to preserve qual-
ity of fine detailed regions, we employ an image restoration
module based on the work of Chen et al. [10], specifically
their diffusion-based image restoration method BFRffusion.
This approach leverages the generative prior encapsulated
in the pretrained Stable Diffusion [61] model to enhance
image details through a comprehensive architecture that ef-
fectively extracts features from low-quality images and re-
stores realistic facial details.

For our implementation, we set the super-resolution
scale factor to s = 1.5, which our empirical analysis
showed provides an optimal balance between detail en-
hancement and artifact suppression. We observed that scale
factors s < 1.5 produce insufficient detail recovery, while
factors s > 2.0 introduce perceptual artifacts (particularly
in specular regions such as eyes) and significantly increase
computational demands during avatar training. The diffu-
sion process uses 50 DDIM sampling steps with:

zt−1 =
√
αt−1

(
zt −

√
1− αtϵθ(zt)√
αt

)
+
√
1− αt−1ϵθ(zt)

(7)
where αt =

∏t
i=1(1− βi) and ϵθ is the denoising network.

We utilize a classifier-free guidance scale of w = 3.5, with
the guidance equation:

ϵ̂θ(zt) = (1 + w)ϵθ(zt)− wϵθ(zt, ∅) (8)

where ϵθ(zt, ∅) represents the unconditional prediction.
This achieves an optimal balance between restoration qual-
ity and processing speed. For face regions, the method em-
ploys a face restoration helper with facial landmark detec-
tion to specifically enhance facial details, ensuring identity
consistency across generated frames. Restored faces are
blended with Poisson image editing.

This image restoration submodule significantly improves
the fidelity and realism of our synthetic training data by
restoring fine facial details, enhancing texture quality in
clothing and accessories, and improving overall image co-
herence. The refined data enables the 3DGS avatar to
learn more accurate representations with consistent high-
frequency details that persist across poses and viewpoints.

3.3. 3D Human Gaussian Splatting Module
We apply the architecture of a 3DGS based avatar method
introduced by Moon et al. [49], which integrates the SMPL-
X [54] model with a 3D Gaussian-based representation to
produce animatable human avatars. Each 3D Gaussian acts
as a vertex connected by a pre-defined mesh topology fol-
lowing SMPL-X. This hybrid representation combines the
expressive surface modeling of SMPL-X with the flexibility
of a volumetric approach, allowing for smooth interpolation
across the body surface essential for realistic animations.

Each Gaussian point is associated with positional data
V ∈ RN×3, RGB color values C ∈ RN×3, and a scale

parameter S ∈ RN , where N is the number of Gaussians.
The Gaussian splatting rendering equation is:

I = f(V, exp(S), C,K,E), (9)

where V represents positions, S denotes scale, C colors,
and K and E camera parameters.

Pose-dependent deformations are applied through an
MLP network, predicting offsets for each Gaussian based
on SMPL-X pose parameters:

Vpose = V +∆Vpose +∆Vexpr. (10)

To maintain spatial coherence, a Laplacian regularizer [51,
72] minimizes the difference between the Laplacian of the
canonical mesh and the deformed Gaussian points:

LLap = ∥∆Vcanonical −∆Vdeformed∥2 . (11)

This approach combined with our augmented synthetic data
achieves highly realistic, animatable avatars capable of real-
time rendering with smooth deformations across facial ex-
pressions, body movements, and hand gestures.

4. Experiments
4.1. Datasets and Metrics
People-Snapshot Dataset [2] We conduct our avatar evalu-
ation on the People-Snapshot dataset, which features video
recordings of subjects performing 360-degree rotations.
Following both Anim-NeRF [79] and InstantAvatar [34],
we address a known limitation in this dataset: the provided
pose parameters often exhibit misalignment with the actual
image content. Anim-NeRF addressed this by optimizing
pose parameters for both training and test sequences. To en-
sure fair comparison with existing methods, we adopt these
same optimized pose parameters and keep them frozen
throughout our training process for fair comparison.
THuman Dataset [83] For evaluating single-image 3D hu-
man reconstruction, we employ the THuman dataset, ad-
hering to the methodology established in Ultraman [9]. Our
procedure involves randomly selecting 100 scans and gen-
erating renderings from four viewpoints (front, left, right,
back). We then measure the similarity between our recon-
structed outputs and the ground-truth scan renderings from
these identical perspectives, facilitating objective compari-
son with other SOTA methods.
Evaluation Metrics Our evaluation framework uses four
metrics to quantify reconstruction quality: PSNR [19],
SSIM [78], LPIPS [88], and CLIP Similarity [59] (referred
to as CLIP in our tables). This combination provides com-
prehensive assessment across different dimensions: PSNR
for pixel accuracy, SSIM for structural coherence, LPIPS
for perceptual alignment with human vision, and CLIP for
semantic consistency at the feature level. The use of these
metrics enables thorough evaluation of both fine-grained
detail, and overall perceptual quality.



Method Female-4-casual Male-3-casual Female-3-casual Male-4-casual

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

HumanNeRF [79] 27.07 0.9615 0.0151 26.90 0.9605 0.0181 24.46 0.9516 0.0269 25.50 0.9397 0.0357
GaussianAvatar [27] 30.84 0.9771 0.0140 30.98 0.9790 0.0145 29.55 0.9762 0.0220 28.78 0.9755 0.0230
ExAvatar [49] 30.98 0.9789 0.0333 29.75 0.9628 0.0402 29.74 0.9678 0.0458 28.89 0.9666 0.0500
ExAvatar [49] (Single Image) 20.42 0.9427 0.0656 23.24 0.9448 0.0562 20.12 0.9492 0.0543 23.74 0.9497 0.0610
Ours (Single Image) 21.51 0.9442 0.0528 22.54 0.9467 0.0484 21.96 0.9609 0.0541 23.71 0.9570 0.0592

Table 1. Quantitative Evaluation on the People Snapshot [2] Dataset. Our approach demonstrates superior performance on single-image
input, outperforming the baseline on most of the metrics. The top two results for single-image input are highlighted in first and second ,
with the overall best result highlighted in first . Note that methods that use monocular input utilize approximately 200 input frames.

4.2. Quantitative Evaluation
We quantitatively evaluate the quality of single-image 3D
avatars generated by our method against SOTA 3D avatar
generation methods [27, 49, 79]. While current 3D avatar
models generally require a monocular video as input, we as-
sess our model’s performance using a single-image as input
on ExAvatar [49]. Additionally, we report results using the
original full training set of approximately 200 input frames
for monocular input based avatar models for reference. As
shown in Table 1, our model achieves highest scores on
most of the metrics among single-image input methods.
We further compare our approach with single-view 3D hu-
man reconstruction methods [9, 23, 31, 63, 89], many of
which employ the SMPL model, allowing for animatability
through mesh fitting and reposing techniques, such as those
in Editable Humans [22]. We randomly sample 100 scans
from the THuman dataset and report results. We repose
our trained avatar using ground-truth SMPL-X parameters
and compare with the ground-truth scan renderings from the
same views. As presented in Table 2, our method surpasses
all baselines, demonstrating superior quality in 3D human
reconstruction tasks.

4.3. Qualitative Evaluation
Figure 4 shows the overall quality of our generated 3D
avatars from single-images in the People Snapshot and the
THuman dataset. Figure 5, Figure 6 shows that our method
performs superior compared to current SiTH [23]. For
single-image avatar generation, we evaluate on the People
Snapshot dataset and compare against ExAvatar [49]. For
fairness, we train ExAvatar for the same number (12,000)
of iterations. Figure 7 shows that for single-image avatar
generation, our method performs superior especially for the
back and side views.

4.4. Ablation Study
In this section, we conduct ablation studies to validate each
component of our methods. The average metrics over 4
sequences in the People Snapshot dataset are reported in
Table 3. It shows that our methods modules are required

Input SiTH Ours

Figure 5. Qualitative Evaluation against SiTH [23]. Our ap-
proach better reconstructs complex contours and subtle features,
resulting in a more lifelike and coherent side-view appearance.

Input SiTH Ours

Figure 6. Qualitative Evaluation against SiTH [23]. Our method
reconstructs fine detail (hands), while preserving original identity
in facial regions.

to reach the optimal performance reflected by all the met-
rics. Using the THuman dataset, we apply the same eval-
uation technique as in our quantitative evaluation. Results
show that our method performs the best in PSNR, SSIM and
CLIP similarity and performs second best in LPIPS. Fig-
ure 8 shows visual results of the effect of the image restora-
tion module. High-detailed regions such as clothing texture,
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Figure 7. Qualitative Evaluation against ExAvatar [49] in single-
image to 3D avatar task. Our method generates more plausible
back and side views with the generated synthetic dataset.

Method PSNR↑ SSIM↑ LPIPS↓ CLIP↑

PIFu[63] 15.62 0.8921 0.1903 0.8612
TeCH[31] 15.85 0.8892 0.1667 0.8890
Ultraman[9] 18.13 0.9019 0.1334 0.9089
SIFU[89] 18.59 0.8591 0.1402 0.8873
SiTH[23] 19.98 0.9018 0.1294 0.9084
Ours 20.92 0.9291 0.1124 0.9321

Table 2. Quantitative Evaluation on single-image to 3D human
reconstruction tasks on 100 scan renderings of the THuman [83]
Dataset. Top two results are colored as first second .

Method PSNR↑ SSIM↑ LPIPS↓ CLIP↑
w/o Identity Preserve 22.19 0.9419 0.0623 0.9231
w/o Image Restoration 22.61 0.9298 0.0645 0.9239
Ours (Full) 22.79 0.9502 0.0594 0.9241

Table 3. Ablation study on the People Snapshot dataset. Our full
model consistently outperforms variants with individual compo-
nents removed across all metrics.

Method PSNR↑ SSIM↑ LPIPS↓ CLIP↑
w/o Identity Preserve 20.12 0.9256 0.1294 0.9284
w/o Image Restoration 20.16 0.9212 0.0799 0.9201
Ours (Full) 20.92 0.9291 0.1124 0.9321

Table 4. Ablation study on the THuman dataset. The full model
achieves superior performance in most metrics, demonstrating the
importance of each component in our pipeline.

fingers, and facial details are better preserved when apply-
ing our module. Figure 9, shows the visual effect of the
identity preservation module. We clearly show that original
input’s facial details are more preserved our module.

Input w/o image restoration Full Model 

Figure 8. Ablation study on the image restoration module. We
show that applying the module into our pipeline recover fine de-
tails on the final avatar output.

Input (Cropped) w/o identity preserve Full Model 

Figure 9. Ablation study on the identity preservation module. We
show that with the module, the final avatar maintains facial details
on the original input image.

5. Conclusion and Discussion
In this work, we introduced SVAD, a novel synthetic data
generation approach for creating high-fidelity, animatable
3D human avatars from a single image. By combining
the generative power of diffusion models with the render-
ing efficiency of 3D Gaussian Splatting, SVAD produces
avatars that maintain consistent identity across varied poses
and viewpoints. Through comprehensive experiments, we
demonstrate that our method achieves SOTA performance.
Limitations and Future Work. Our method faces several
limitations. First, inaccurate background segmentation of
training frames produces floating artifacts. Second, our ap-
proach struggles with complex clothing textures and loose
outfits due to limitations of the video diffusion model in
generating detailed synthetic data. Finally, the computa-
tional requirements present practical challenges—the video
diffusion step demands substantial resources, and the com-
plete pipeline requires 5-6 hours per avatar generation. Fu-
ture work will focus on improving handling of diverse cloth-
ing types and optimizing computational performance.



References
[1] Badour AlBahar, Shunsuke Saito, Hung-Yu Tseng, Changil

Kim, Johannes Kopf, and Jia-Bin Huang. Single-image 3d
human digitization with shape-guided diffusion. In SIG-
GRAPH Asia, 2023. 2

[2] Thiemo Alldieck, Marcus Magnor, Weipeng Xu, Christian
Theobalt, and Gerard Pons-Moll. Video based reconstruction
of 3d people models. In CVPR, 2018. 3, 6, 7

[3] Ankan Kumar Bhunia, Salman Khan, Hisham Cholakkal,
Rao Muhammad Anwer, Jorma Laaksonen, Mubarak Shah,
and Fahad Shahbaz Khan. Person image synthesis via de-
noising diffusion model. In CVPR, 2023. 2

[4] Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dock-
horn, Seung Wook Kim, Sanja Fidler, and Karsten Kreis.
Align your latents: High-resolution video synthesis with la-
tent diffusion models. In CVPR, 2023. 2

[5] Yukang Cao, Yan-Pei Cao, Kai Han, Ying Shan, and Kwan-
Yee K Wong. Dreamavatar: Text-and-shape guided 3d hu-
man avatar generation via diffusion models. In CVPR, 2024.
2

[6] Hyunsoo Cha, Byungjun Kim, and Hanbyul Joo. Pega-
sus: Personalized generative 3d avatars with composable at-
tributes. In CVPR, 2024. 2

[7] Hyunsoo Cha, Inhee Lee, and Hanbyul Joo. Perse: Person-
alized 3d generative avatars from a single portrait. In CVPR,
2025. 2

[8] Caroline Chan, Shiry Ginosar, Tinghui Zhou, and Alexei A
Efros. Everybody dance now. In ICCV, 2019. 2, 3

[9] Mingjin Chen, Junhao Chen, Xiaojun Ye, Huan-ang Gao, Xi-
aoxue Chen, Zhaoxin Fan, and Hao Zhao. Ultraman: Single
image 3d human reconstruction with ultra speed and detail.
arXiv preprint arXiv:2403.12028, 2024. 6, 7, 8

[10] Xiaoxu Chen, Jingfan Tan, Tao Wang, Kaihao Zhang, Wen-
han Luo, and Xiaochun Cao. Towards real-world blind face
restoration with generative diffusion prior. IEEE TCSVT,
2024. 6

[11] Yufan Chen, Lizhen Wang, Qijing Li, Hongjiang Xiao,
Shengping Zhang, Hongxun Yao, and Yebin Liu. Monogaus-
sianavatar: Monocular gaussian point-based head avatar. In
SIGGRAPH, 2024. 2

[12] Yushuo Chen, Zerong Zheng, Zhe Li, Chao Xu, and Yebin
Liu. Meshavatar: Learning high-quality triangular human
avatars from multi-view videos. ECCV, 2024. 1, 2

[13] Xuangeng Chu and Tatsuya Harada. Generalizable and ani-
matable gaussian head avatar. NeurIPS, 2024. 4
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