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Figure 1. SVAD. We present a novel pipeline that leverages video diffusion models and data augmentation methods to generate high-
quality synthetic training data from a single human image. This synthetic data generation approach enables us to train 3D Gaussian
Splatting avatars with significantly improved fidelity, outperforming state-of-the-art single-image avatar creation methods while preserving
identity and fine details across novel poses and viewpoints.

Abstract

Creating animatable 3D human avatars from a single image001
remains a significant challenge with applications in virtual002
reality and human-centered AI. Traditional 3D Gaussian003
Splatting (3DGS) methods produce high-quality avatars but004
require monocular video sequences or multi-view inputs,005
while video diffusion models can animate from static images006
but struggle with temporal coherence and identity preser-007
vation. We present SVAD, a novel framework for synthetic008
data generation and avatar creation that addresses these009
limitations. SVAD leverages video diffusion models to gen-010
erate an initial set of synthetic pose-conditioned anima-011
tions from a single image, then enhances this synthetic data012
through identity preservation and image restoration mod-013
ules. This high-quality synthetic dataset enables training of014
3DGS avatar models that maintain subject fidelity and fine015
details across diverse poses and viewpoints. Our approach016
combines the generative capabilities of diffusion models017
with the rendering efficiency of 3DGS, resulting in state-of-018

the-art performance in single-image avatar creation. Ex- 019
periments demonstrate that SVAD’s synthetic data genera- 020
tion pipeline significantly improves temporal stability and 021
identity consistency compared to existing methods, while 022
enabling real-time rendering for interactive applications. 023

1. Introduction 024

The ability to generate animatable 3D human avatars from 025
minimal input data, such as a single image, has significant 026
potential across a range of applications. Traditional meth- 027
ods, particularly those based on 3DGS, have demonstrated 028
considerable success in producing high-quality avatars [9, 029
19, 37, 38, 44, 51, 52, 56, 67, 74]. These methods rely 030
on dense input data, typically monocular or multi-view 031
video [9, 19, 37, 44, 51, 56, 74], to achieve high fidelity 032
across varied viewpoints and poses. This reliance on ex- 033
tensive video input complicates deployment in single-image 034
scenarios, where ensuring viewpoint consistency and adapt- 035
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ability to novel poses becomes a key challenge.036
Recent advancements in video diffusion models offer a037

potential solution by enabling animation generation from a038
single static image [18, 59, 62, 75]. These models use pose-039
conditioned diffusion processes to create video sequences,040
demonstrating the powerful generative capabilities of dif-041
fusion for single-image-driven animation. However, diffu-042
sion models often struggle to maintain temporal coherence,043
leading to inconsistent features and identity drift across044
frames. Additionally, their iterative denoising process for045
each frame introduces significant computational overhead,046
limiting their feasibility for real-time or interactive applica-047
tions where rapid rendering across novel views is essential.048

To overcome these challenges, we propose SVAD, a049
novel synthetic data generation and avatar creation pipeline050
that synergizes the generative flexibility of diffusion mod-051
els with the efficient rendering capabilities of 3DGS avatars.052
Our approach leverages video diffusion models to generate053
diverse pose-conditioned synthetic training data from a sin-054
gle image. This synthetic data is refined through an identity-055
preservation module and an image restoration module to en-056
sure that perceptual identity consistency and structural fi-057
delity are preserved across diverse poses and temporal se-058
quences. The resulting high-quality synthetic dataset is then059
used to train a 3DGS-based avatar model [37], which bene-060
fits from the rapid rendering capabilities inherent to 3DGS.061
By combining the generative strengths of diffusion for syn-062
thetic data creation with the efficiency of 3DGS for ren-063
dering, SVAD achieves consistent, high-quality 3D avatar064
animations from single image input.065

Our contributions can be summarized as follows:066
• We introduce SVAD, a novel pipeline for generating high-067

quality synthetic training data from a single image, en-068
abling the creation of detailed and animatable 3D human069
avatars.070

• We incorporate an identity-preservation module and an071
image restoration technique to refine diffusion-generated072
synthetic data, ensuring consistency in identity and fine073
details across diverse poses and viewpoints.074

• We demonstrate that our synthetic data generation ap-075
proach significantly improves the quality of 3DGS avatars076
compared to state-of-the-art single-image methods, while077
maintaining efficient real-time rendering capabilities.078

• We provide extensive experiments and evaluations show-079
ing that SVAD’s synthetic data-driven approach achieves080
superior performance in novel pose adaptation and iden-081
tity preservation for single-image avatar creation.082

2. Related Work083

Diffusion Model for Human Image Animation The use084
of diffusion models has led to significant advancements in085
human image animation, enabling the generation of real-086
istic and temporally consistent animations from static im-087

ages [1, 4, 5, 14, 20, 25, 42, 46, 50, 53, 54, 64, 66, 69, 72]. 088
Early methods, such as PIDM [3] and DreamPose [29], fo- 089
cused on improving texture fidelity by employing texture 090
diffusion modules to align texture patterns between refer- 091
ence and target images. These methods, while enhancing 092
detail preservation, still face challenges in maintaining tem- 093
poral stability across frames. 094

Recent works, including DisCo [59] and Animate Any- 095
one [18], have extended diffusion models to improve tem- 096
poral consistency and fine-grained control in human anima- 097
tion tasks. DisCo leverages dual ControlNets [68] to sep- 098
arately control pose and background elements, providing 099
more robust conditioning for complex motion sequences. 100
Similarly, Animate Anyone integrates a ReferenceNet with 101
temporal attention layers to ensure appearance consistency 102
and smooth transitions across frames, thereby addressing 103
flickering issues commonly observed in earlier models. 104
Dynamic 3D Gaussian based Avatars The concept of 105
Gaussian splatting for 3D avatars has emerged recently 106
as an innovative approach to explicit scene representa- 107
tion [30]. This technique models a scene as a collec- 108
tion of 3D Gaussian elements, each containing photometric 109
and geometric properties. During rendering, these Gaus- 110
sian splats are projected onto the image plane, creating 111
the final rendered output. The efficiency of 3D Gaussian 112
splatting has been demonstrated in both static [22, 27, 32] 113
and dynamic [13, 28, 31, 36] scenes, making it a versa- 114
tile tool for various applications. Recent advancements [8, 115
12, 21, 24, 33, 43, 44, 58, 76] have explored the use of 116
3DGS to create photorealistic human avatars across differ- 117
ent scenarios. These methods commonly rely on multi-view 118
data [34, 40, 73] or monocular video [19, 24, 33, 37, 44] as 119
input to achieve high-quality, consistent results. The advan- 120
tage of 3DGS lies in its ability to produce temporally stable 121
animated avatars with superior quantitative metrics. 122

3. Method 123

To generate high-quality human avatars from just a sin- 124
gle image, facilitating free-viewpoint rendering and real- 125
istic animation, we integrate the generative capabilities of 126
video diffusion models with the rendering efficiency of 3D 127
Gaussian-based avatars. We start by leveraging a pretrained 128
video diffusion model for character animation to produce 129
initial synthetic data, as described in Sec. 3.1. Directly 130
using these frames to train a 3DGS avatar model, how- 131
ever, often yields poor results, with challenges in preserv- 132
ing facial identity, clothing details, and maintaining consis- 133
tent multiview coherence across side and back views. To 134
address these issues and enhance avatar quality, we intro- 135
duce a data augmentation pipeline in Sec. 3.2 comprising 136
identity-preservation and image-restoration modules to re- 137
fine the diffusion outputs. With the augmented synthetic 138
data, we proceed to train a 3DGS avatar model, as out- 139
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Figure 2. Overall Pipeline of SVAD. Starting from a single input image, the diffusion model generates pose-conditioned animations,
which are refined using an identity preservation module and an image restoration module. The refined outputs are then used to train the
3DGS avatar, enabling high-fidelity, animatable 3D avatars with consistent details across poses and viewpoints.

lined in Sec. 3.3. The following sections detail the technical140
methodologies employed in our approach.141

3.1. Video Diffusion Module142

To generate an animated character video V from a single143
input image I , we leverage MusePose [57], a finetuned144
variant of Animate Anyone [18], which is a state-of-the-145
art video diffusion model designed for realistic human ani-146
mation while maintaining temporal consistency and appear-147
ance fidelity. MusePose employs a U-Net-based diffusion148
architecture with integrated pose and temporal controls, al-149
lowing for pose-guided animation across frames.150

The model architecture incorporates several key compo-151
nents for effective character animation. The denoising UNet152
is implemented as a 3D UNet [11] with motion modules for153
temporal coherence. Specifically, we use Vanilla motion154
modules with temporal self-attention blocks at resolutions155
of [1, 2, 4, 8] and in the mid-block. Each transformer block156
contains 8 attention heads, with temporal position encoding157
enabling positional awareness across a sequence of up to158
128 frames.159

To incorporate pose guidance, a lightweight Pose Guider160
encodes the motion control signal from the predefined 2D161
keypoints into a pose-aligned latent representation P (pt) ∈162
RH×W×C . For a pose feature pt ∈ RJ×2 at time t, where163
J is the number of keypoints, we align the encoding to en-164
sure continuity between frames by adding this encoded pose165

signal to the noise latent zt: 166

zt = zt + P (pt) (1) 167

For the diffusion process, we adopt a v-prediction [49] for- 168
mulation with zero-SNR sampling [35], using a scaled lin- 169
ear beta schedule with βstart = 0.00085 and βend = 0.012. 170
The DDIM sampler [55] is configured for efficient inference 171
with 20 sampling steps and a classifier-free guidance scale 172
of 3.5. The temporal consistency loss Ltemp minimizes dis- 173
crepancies across successive frames by enforcing coherence 174
in appearance and pose: 175

Ltemp =

T−1∑
t=1

∥Ft − Ft+1∥2 (2) 176

where Ft ∈ RH×W×3 represents the RGB frame output at 177
time t. 178

A critical challenge in character animation is ensuring 179
anatomical consistency between the reference image and 180
the motion poses. Direct application of pose control can 181
result in unnatural animations due to mismatches in body 182
proportions. Therefore, we employ a comprehensive pose 183
alignment procedure that adapts the source pose to match 184
the reference character’s physical characteristics. 185

Given a reference pose Pref and a source pose Psrc de- 186
tected using DWpose [63], we compute scale parameters 187
S = {s1, s2, . . . , s10} for ten distinct body regions: neck, 188
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Single Image Input Avatar in Neutral Pose Reference Pose Novel Pose Novel View Synthesis

Figure 3. 3D Avatars trained by SVAD. SVAD generates high quality 3D avatars with just a single image. The trained avatars can be
rendered from any view point, in any pose.

face, shoulders, upper arms, lower arms, hands, torso, upper189
legs, and lower legs. For each body part i, we compute its190
scale factor si as the ratio between the corresponding key-191
point distances:192

si =
drefi

dsrci

(3)193

where drefi and dsrci represent the Euclidean distances be-194
tween keypoints. For body parts with bilateral symmetry195
(e.g., arms), we average the scales from both sides:196

sarm upper =
1

2

(
∥p2ref − p3ref∥
∥p2src − p3src∥

+
∥p5ref − p6ref∥
∥p5src − p6src∥

)
(4)197

To apply these scales to the source pose, we use a ro-198
tation matrix transformation centered at anchor points spe-199
cific to each body part:200

p′ = ci + si · (p− ci) (5)201

where ci is the anchor center for part i. This hierarchical ap-202
proach ensures body proportions match the reference while203
maintaining the overall pose structure.204

3.2. Data Augmentation Module 205

Training the 3DGS model using only outputs from the video 206
diffusion model often results in low-fidelity avatars, par- 207
ticularly in terms of facial details and high-frequency fea- 208
tures like hands and clothing. To address these challenges, 209
we introduce a data augmentation module that enhances the 210
quality of the training data. This module includes an iden- 211
tity preservation sub-module ensuring coherence in facial 212
details across frames and a image restoration submodule 213
which refines texture quality and high-frequency details, re- 214
sulting in more realistic textures. This comprehensive data 215
augmentation significantly improves the synthetic training 216
data, enabling the 3DGS Avatar model integrated in the fu- 217
ture to generate more realistic and detailed 3D avatars. 218

Identity preservation sub-module. To ensure consistent 219
and realistic facial details across frames, we implement 220
an identity preservation module that combines head recon- 221
struction and facial fusion techniques. This module lever- 222
ages a 3DGS-based head reconstruction method inspired by 223
Chu et al. [10] to create a 3D Gaussian-based head avatar 224
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from a single input image using a novel dual-lifting ap-225
proach that predicts both forward and backward lifting dis-226
tances.227

Given an input image Is, global and local features Flocal228
are extracted using a frozen DINOv2 [39] backbone. These229
features are used to predict forward and backward lifting230
distances, positioning 3D Gaussians Gpos as follows:231

Gpos = [ps + EConv0(Flocal) · ns,ps − EConv1(Flocal) · ns],
(6)232

where ps is the initial point plane, ns is the normal vector,233
and EConv are convolutional layers predicting offsets. To234
capture expression variations, we bind 3DMM features:235

Gexpr = MLP(F3DMM + Fglobal). (7)236

After generating the head avatar renderings, we detect237
facial landmarks on both the original frame Iorig and the238
generated head image Ihead, compute an affine transforma-239
tion for alignment, and use Poisson image editing [41] for240
seamless fusion:241

min
I

∫
Ω

∥∇I −∇Iwarp∥2 dx dy, subject to I|∂Ω = Iorig|∂Ω,
(8)242

where Ω is defined by the facial mask, ensuring temporally243
consistent facial details throughout the animation.244

Image restoration sub-module. Finally, to preserve qual-245
ity of fine detailed regions, we employ an image restoration246
module based on the work of Chen et al. [7], specifically247
their diffusion-based image restoration method. BFRffu-248
sion leverages the generative prior encapsulated in the pre-249
trained Stable Diffusion model [47] to enhance image de-250
tails through a comprehensive architecture that effectively251
extracts features from low-quality images and restores real-252
istic facial details.253

In our method, we set the super-resolution scale factor to254
2, enhancing input frames while maintaining computational255
efficiency. The process uses 50 DDIM sampling steps with256
a classifier-free guidance scale of 3.5, achieving a balance257
between restoration quality and processing speed. For face258
regions, the method employs a face restoration helper with259
facial landmark detection to specifically enhance facial de-260
tails, ensuring identity consistency across generated frames.261

This image restoration submodule significantly improves262
the fidelity and realism of our synthetic training data by263
restoring fine facial details, enhancing texture quality in264
clothing and accessories, and improving overall image co-265
herence. The refined synthetic data enables the 3DGS266
Avatar to learn more accurate representations with consis-267
tent high-frequency details that persist across poses and268
viewpoints.269

3.3. 3D Human Gaussian Splatting Module 270

We apply the architecture of a 3DGS based avatar method 271
introduced by Moon et al. [37], which integrates the SMPL- 272
X model with a 3D Gaussian-based representation to pro- 273
duce animatable human avatars. Each 3D Gaussian acts as 274
a vertex connected by a pre-defined mesh topology follow- 275
ing SMPL-X. This hybrid representation combines the ex- 276
pressive surface modeling of SMPL-X with the flexibility 277
of a volumetric approach, allowing for smooth interpolation 278
across the body surface essential for realistic animations. 279

Each Gaussian point is associated with positional data 280
V ∈ RN×3, RGB color values C ∈ RN×3, and a scale 281
parameter S ∈ RN , where N is the number of Gaussians. 282
The Gaussian splatting rendering equation is: 283

I = f(V, exp(S), C,K,E), (9) 284

where V represents positions, S denotes scale, C colors, 285
and K and E camera parameters. 286

Pose-dependent deformations are applied through an 287
MLP network, predicting offsets for each Gaussian based 288
on SMPL-X pose parameters: 289

Vpose = V +∆Vpose +∆Vexpr. (10) 290

To maintain spatial coherence, a Laplacian regularizer mini- 291
mizes the difference between the Laplacian of the canonical 292
mesh and the deformed Gaussian points: 293

LLap = ∥∆Vcanonical −∆Vdeformed∥2 . (11) 294

This approach combined with our augmented synthetic data 295
achieves highly realistic, animatable avatars capable of real- 296
time rendering with smooth deformations across facial ex- 297
pressions, body movements, and hand gestures. 298

4. Experiments 299

4.1. Datasets and Metrics 300

People-Snapshot We use the People-Snapshot dataset[2], 301
which contains videos of individuals rotating in front of 302
a stationary camera. For consistency and fair compari- 303
son, we adhere to the evaluation protocol established by 304
InstantAvatar[26] . 305

THuman The PeopleSnapshot dataset has limited pose 306
variations. To evaluate the performance on more challeng- 307
ing test poses, we utilize the THuman dataset[65]. This 308
dataset includes a diverse set of poses that require higher 309
flexibility and adaptability. 310

Evaluation Metrics. We consider four metrics, PSNR[15], 311
SSIM[60], LPIPS[70], and Clip Similarity[45](denoted as 312
CLIP in tables) to assess the reconstruction quality on three 313
datasets. 314
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Method Female-4-casual Male-3-casual Female-3-casual Male-4-casual

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

HumanNeRF [61] 27.07 0.9615 0.0151 26.90 0.9605 0.0181 24.46 0.9516 0.0269 25.50 0.9397 0.0357
GaussianAvatar [19] 30.84 0.9771 0.0140 30.98 0.9790 0.0145 29.55 0.9762 0.0220 28.78 0.9755 0.0230
ExAvatar [37] 30.98 0.9789 0.0333 29.75 0.9628 0.0402 29.74 0.9678 0.0458 28.89 0.9666 0.0500
ExAvatar [37] (Single Image) 20.42 0.9427 0.0656 23.24 0.9448 0.0562 20.12 0.9492 0.0543 23.74 0.9497 0.0610
Ours (Single Image) 21.51 0.9442 0.0528 22.54 0.9467 0.0484 21.96 0.9609 0.0541 23.71 0.9570 0.0592

Table 1. Quantitative Evaluation on the People-Snapshot [2] Dataset. Our approach demonstrates superior performance on single-
image input, outperforming the baseline on most of the metrics. The top two results for single-image input are highlighted in first and
second , with the overall best result highlighted in first . Note that methods without the Single Image utilize approximately 200 input

frames.

Input Image Raw Video Diffusion After Augmentation

Figure 4. Synthetic Data Generated by SVAD. Comparison of
the original input image (left), unprocessed synthetic data from
video diffusion (middle), and our enhanced synthetic data after ap-
plying identity preservation and image restoration modules (right).
Note how our data augmentation approach preserves facial identity
and significantly improves detail quality in the synthetic training
data.

4.2. Quantitative Evaluation315

We quantitatively evaluate the quality of single-image 3D316
avatars generated by our method against SOTA 3D avatar317
generation methods [19, 37, 61]. While current 3D avatar318
models generally require a monocular video as input, we319
assess our model’s performance using a single image as in-320
put on ExAvatar [37]. Additionally, we report results us-321
ing the original full training set of approximately 200 input322
frames for monocular input based avatar models for refer-323
ence. As shown in Table 1, our model achieves highest324

Method PSNR↑ SSIM↑ LPIPS↓ CLIP↑

PIFu[48] 15.62 0.8921 0.1903 0.8612
TeCH[23] 15.85 0.8892 0.1667 0.8890
Ultraman[6] 18.13 0.9019 0.1334 0.9089
SIFU[71] 18.59 0.8591 0.1402 0.8873
SITH[17] 19.98 0.9018 0.1294 0.9084
Ours 20.92 0.9291 0.1124 0.9321

Table 2. Quantitative Evaluation. SVAD compared to recent
single-image based 3D human generation SOTAs. Top two results
are colored as first second .

scores on most of the metrics among single-image input 325
methods. We further compare our approach with single- 326
view 3D human reconstruction methods [6, 17, 23, 48, 71], 327
many of which employ the SMPL model, allowing for an- 328
imatability through mesh fitting and reposing techniques, 329
such as those in Editable Humans [16]. We randomly sam- 330
ple 100 scans from the THuman dataset and report results. 331
We repose our trained avatar using ground-truth SMPL-X 332
parameters, then render four viewpoints (front, left, right, 333
back) for each model and compare with the ground-truth 334
scan renderings from the same views. As presented in Ta- 335
ble 4, our method surpasses all other baselines, demonstrat- 336
ing superior quality in single-image 3D human reconstruc- 337
tion tasks. 338

4.3. Qualitative Evaluation 339

Figure 5 shows the overall quality of our generated 3D 340
avatars from single images in the People Snapshot and the 341
THuman dataset. Figure 6, Figure 7 shows that our method 342
performs superior compared to current single-view human 343
reconstruction SOTA [17]. For single image avatar genera- 344
tion, we evaluate on the People Snapshot dataset and com- 345
pare against the 3D-GS based avatar SOTA [37]. For fair- 346
ness, we train the SOTA with the single input image for the 347
same amount of iterations (12k iter) as our method. Figure 348
8 shows that for single image avatar generation, our method 349
performs superior especially for the back and side views. 350
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Single Image Input Single Image Input

Figure 5. Qualitative Evaluation on the People Snapshot dataset and of THuman dataset scan renderings. From a single image input,
SVAD generates high-quality, animatable 3D Avatars.

Input Image SITH SVAD

Figure 6. Qualitative Comparison with SITH [17]. Our ap-
proach better reconstructs complex contours and subtle features,
resulting in a more lifelike and coherent side-view appearance.

4.4. Ablation Study351

In this section, we conduct ablation studies to validate each352
component of our methods. The average metrics over 4353

Input Image SITH SVAD

Figure 7. Qualitative Evaluation against SITH [17]. Our
method reconstructs fine detail(hands), while preserving original
identity in facial regions.

sequences in the People Snapshot dataset are reported in 354
Table 3. It shows that our methods modules are required 355
to reach the optimal performance reflected by all the met- 356
rics. Using the THuman dataset, we apply the same eval- 357
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Ground Truth ExAvatar SVAD

Figure 8. Qualitative Evaluation against ExAvatar in single im-
age input.

Input Image w/o image restoration Full Model 

Figure 9. Ablation study on the image restoration module. We
show that applying the module into our pipeline recover fine de-
tails on the final avatar output.

Input Image (Cropped) w/o identity preserve Full Model 

Figure 10. Ablation study on the identity preservation module.
We show that with the module, the final avatar maintains facial
details on the original input image.

uation technique as in our quantitative evaluation. Results358
show that our method performs the best in PSNR, SSIM and359
CLIP similarity and performs second best in LPIPS. Fig-360
ure 9 shows visual results of the effect of the image restora-361
tion module. High-detailed regions such as clothing texture,362

Method PSNR↑ SSIM↑ LPIPS↓ CLIP↑
w/o Identity Preserve 25.19 0.9419 0.0623 0.9231
w/o Image Restoration 25.61 0.9298 0.0645 0.9239
Ours (Full) 25.79 0.9502 0.0594 0.9241

Table 3. Ablation study on the People Snapshot dataset.

Method PSNR↑ SSIM↑ LPIPS↓ CLIP↑
w/o Identity Preserve 21.12 0.9256 0.0898 0.9284
w/o Image Restoration 21.16 0.9212 0.0799 0.9201
Ours (Full) 21.95 0.9291 0.0824 0.9321

Table 4. Ablation study on the THuman dataset.

fingers, and facial details are better preserved when apply- 363
ing our module. Figure 10, shows the visual effect of the 364
identity preservation module. We clearly show that original 365
input’s facial details are more preserved with the presence 366
of our module. 367

5. Conclusion and Future Work 368

In this work, we introduced SVAD, a novel synthetic data 369
generation approach for creating high-fidelity, animatable 370
3D human avatars from a single image. By leveraging 371
video diffusion models to generate pose-conditioned syn- 372
thetic training data, and enhancing this data through iden- 373
tity preservation and image restoration, SVAD successfully 374
addresses key challenges in single-image avatar creation. 375
Our method demonstrates how carefully refined synthetic 376
data can overcome limitations in traditional approaches, en- 377
abling stable, visually consistent avatars that retain the orig- 378
inal subject’s identity and details across varied poses and 379
viewpoints. Through comprehensive evaluations, SVAD 380
achieves state-of-the-art performance compared to exist- 381
ing methods while maintaining the rendering efficiency of 382
3DGS. 383
Limitations and Future Work. Our method has three 384
primary limitations. First, the synthetic data generation 385
process relies on computationally intensive video diffusion 386
models, creating a bottleneck in the pipeline. Second, while 387
effective for diverse poses represented in the synthetic train- 388
ing data, SVAD struggles with extreme or unconventional 389
poses that fall outside this distribution. Third, the method 390
does not handle object interactions, limiting its applicability 391
in dynamic environments. 392

In future work, we plan to explore more efficient syn- 393
thetic data generation techniques to reduce computational 394
requirements while maintaining quality. We aim to expand 395
the diversity of synthetic training data to include extreme 396
poses and object interactions, and investigate how synthetic 397
data generation could benefit multi-subject scenarios and 398
clothing variation to extend SVAD’s capabilities beyond 399
single-subject avatars. 400
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[11] Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp,441
Thomas Brox, and Olaf Ronneberger. 3d u-net: learn-442
ing dense volumetric segmentation from sparse annota-443
tion. In Medical Image Computing and Computer-Assisted444
Intervention–MICCAI 2016: 19th International Conference,445
Athens, Greece, October 17-21, 2016, Proceedings, Part II446
19, pages 424–432. Springer, 2016. 3447

[12] Helisa Dhamo, Yinyu Nie, Arthur Moreau, Jifei Song,448
Richard Shaw, Yiren Zhou, and Eduardo Pérez-Pellitero.449
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