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Abstract

Are generative pre-trained transformer (GPT) models only trained to predict the1

next token, or do they implicitly learn a world model from which a sequence is2

generated one token at a time? We examine this question by deriving a causal3

interpretation of the attention mechanism in GPT, and suggesting a causal world4

model that arises from this interpretation. Furthermore, we propose that GPT-5

models, at inference time, can be utilized for zero-shot causal structure learning6

for in-distribution sequences. Empirical evaluation is conducted in a controlled7

synthetic environment using the setup and rules of the Othello board game. A GPT,8

pre-trained on real-world games played with the intention of winning, is tested on9

synthetic data that only adheres to the game rules. We find that the GPT model is10

likely to generate moves that adhere to the game rules for sequences for which a11

causal structure is encoded in the attention mechanism with high confidence. In12

general, in cases for which the GPT model generates moves that do not adhere to13

the game rules, it also fails to capture any causal structure.14

1 Introduction15

In recent years, the generative pre-trained transformer (GPT) model Radford et al. [2018] has16

demonstrated high-quality generative capabilities, as perceived by humans. Although this model is17

trained to generate one token at a time, it have been demonstrated to perform a range of tasks beyond18

next-token prediction, such as visual understanding and even symbolic reasoning [Liu et al., 2024,19

Team et al., 2023, Chowdhery et al., 2023]. Are these emergent abilities [Li et al., 2023] or merely a20

‘mirage’ resulting from the choice of metric and task Schaeffer et al. [2024]?21

In this paper we suggest that there is no restriction in the GPT architecture for learning conditional22

independence (CI) relations between tokens in a sequence. Moreover, under certain assumptions,23

a causal structure is directly entailed from these CI relations. One may ask whether this lack of24

restriction results in implicitly learning a causal model of the world during the pre-training procedure25

of GPT. Assuming that, both, a causal world model and a model based on surface statistics are26

sufficient solutions. One possibility is that a causal world model is a more compact solution and27

thus more probable to be learned during pre-training (Occam’s razor). For example, if weights are28

distributed from a uniform distribution in the surface statistics model, then a causal structure limits29

the range of their distribution. If so, what are the assumptions underlying this causal world model?30

Recently, Rohekar et al. [2024] derived a causal interpretation for unmasked self-attention in BERT31

models Devlin et al. [2019]. In this paper we follow a similar approach, with several differences, and32

propose a causal interpretation of the masked attention mechanism in GPT. We additionally define a33

corresponding causal world model. The ABCD method Rohekar et al. [2024] is adapted and used34

to learn causal structures of which the induced dependency-relations are encoded in the attention35

matrices in GPT. We then ask whether errors generated by GPT are correlated with the uncertainty in36

the causal structure representation by the attention matrices. To this end, we define a metric based on37

the entropy of p-values of CI tests that are used for inferring the causal structures.38
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Recent work examined the internal process of large language models and examined whether a world39

model is implicitly learned using a well-defined and constrained setting, such as in the Chess game40

setting Toshniwal et al. [2022] and Othello board game setting Li et al. [2023]. For the Othello41

board game setting, Li et al. [2023] demonstrated that the board state can be inferred from attention42

matrices in GPT, and Nanda et al. [2023] showed that even a linear classifier suffices to reconstruct43

the state of the board game from the attention matrices. They claim an emergent world model in44

GPT. Nevertheless, they do not provide explanation on how the board game is encoded within the45

attention matrices and why the attention mechanism can represent the board state. In essence, they46

do not provide an explanation to the apparent emergence of the world model. In addition, the world47

model they reconstruct (board game state) is specific only to the domain for which the GPT model48

was trained and lacks recovering the generative mechanism of the token-sequences.49

In this paper, we consider the structural causal model as the world model, which describes the50

generative process and is generally applicable for a range of applications (not domain specific, such51

as Othello board state, used by Li et al. [2023]). We explore why GPT is able to capture a world52

model and its apparent emergence.53

2 Preliminaries54

In this section we provide notations and descriptions of self attention in the GPT architecture,55

and structural causal models. Matrices are written in bold, vectors in bold-italic, and models in56

calligraphic font. A summary of the main symbols that are used in this paper is given in Table 1.57

2.1 Attention in GPT58

Attention is a mechanism that estimates network weights with respect to the context in an input59

sequence of tokens [Schmidhuber, 1992]. In a GPT model, which is based on the decoder part of the60

Transformer architecture Vaswani et al. [2017], an attention layer estimates an n× n lower-triangular61

(masked) attention matrix A given an input sequence of n tokens. The input sequence is in the form62

of an n× d matrix Y, where the i-th row vector is Y(i, ·), is an embedding (representation) of the63

i-th token in d dimensions. The attention matrix is estimated by A = softmax(YWQKY⊤), such64

that A is lower triangular and the rows sum to 11. In addition to the attention weights, the attention65

layer calculates a values matrix, V = YWV , where row V(i, ·) is the value vector of the i-th token.66

Then, the output embeddings are67

Z = AV, (1)

where the i-th row, Zi, is the embedding of the i-th output token. In a GPT, several attention layers are68

stacked, and pre-trained such that the i-th output embedding in the last layer predeicts the (i+ 1)-th69

input token. That is, predicts the next input token.70

It is important to note that in the GPT architecture, the embedding of one token is influenced by71

another token only by the attention matrix, A. In addition, note that an attention matrix A is estimated72

uniquely for each input sequence of tokens, using weight matrices {WQK ,WV } learned commonly73

for all in-distribution input sequences.74

2.2 Structural Causal Model75

A structural causal model (SCM) is a model that can encode causal mechanisms in a domain76

[Pearl, 2009, Spirtes et al., 2000, Peters et al., 2017] and explain data samples generated from these77

causal mechanisms Pearl and Mackenzie [2018]. An SCM is a tuple {U ,X,F , P (U)}, where78

U = {U1, . . . , Um} is a set of latent exogenous random variables, X = {X1, . . . , Xn} is a set of79

endogenous random variables, F = {f1, . . . , fn} is a set of deterministic functions describing the80

values X given their direct causes, and P (U) is the distribution over U . Moreover, each endogenous81

variable Xi has exactly one unique exogenous cause Ui (m = n). The value of an endogenous82

variable Xi, ∀i ∈ [1, . . . , n] is determined by83

Xi ← fi(Pai, Ui) (2)

1The weight matrix is WQK = WQW⊤
K/
√

dK , where generally the weight matrices WQ and WK are
learned explicitly and dK is the number of columns in these matrices Vaswani et al. [2017].
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where Pai is the set of direct causes (parents in the causal graph) of Xi, and left-arrow indicates84

assignment resulting from the cause-effect relation. A graph G corresponding to an SCM consists of85

a node per variable, and directed edges for direct cause-and-effect relations that are evident from F .86

In this paper we employ a linear-Gaussian SCM having directed and acyclic graphs (DAG). In these87

models each variable is determined by a linear combination of its direct causes and an independently88

distributed additive noise determined by a corresponding normally distributed exogenous variable.89

For a linear-Gaussian SCM let G be a weight matrix, where G(i, j) is the weight of parent (direct90

cause) node Xj linearly determining the child (direct effect) node Xi. Node Xk is not a parent of Xi91

if and only if G(i, k) = 0. In addition, U ∼ N (µU ,CU ), where in this paper we assume Σ) is a92

diagonal matrix. The set of functions F is defined such that ∀i ∈ [1, . . . , n],93

Xi ← G(i, ·)X + Ui. (3)
Assuming a DAG and causally sorted nodes (ancestors precede their descendants), G is strictly lower94

triangular (zero diagonal). Given the assignment, we can write in matrix form X = GX +U , and95

X = (I−G)−1 U . (4)
Since G is a strictly lower-triangular weight matrix, (I −G)−1 is a lower uni-triangular matrix96

(ones on the diagonal). Note that this is equal to the sum of a geometric series97

(I−G)−1 =

n−1∑
k=0

Gk. (5)

It can be seen that element (i, j) represents the cumulative effect of Xj on Xi via all directed paths98

having length up to n − 1. The equivalent weight of a directed path from Xj to Xi is the product99

of the weights of all edges on that path, and the cumulative effect via all the paths is the sum over100

equivalent weights of distinct directed paths from Xj to Xi. Note that even if some of the nodes101

are latent confounders is still (I−G)−1 triangular because, by definition, latent confounders do not102

have ancestors and are first in a topological ordering. Equation 4 represents a system with input U ,103

output X and weights (I−G)−1. The covariance matrix of the output is (see details in Appendix A,104

Equation 10)105

CX =
[
(I−G)−1

]
CU

[
(I−G)−1

]⊤
. (6)

In this paper we employ the constraint-based causal discovery approach Spirtes et al. [2000] that use106

conditional independence (CI) tests to learn the underlying causal graph. This approach generally107

requires assuming the causal Markov property (Definition 1) and faithfulness (Definition 2).108

3 A Causal Interpretation of GPT109

We describe the masked attention in GPT as a mechanism that infers correlations between tokens of110

a given sequence, where these correlations are induced by a causal structure underlying the output111

sequence tokens. We then describe how to learn a causal graph by estimating independence relations.112

3.1 A Relation between GPT and SCM-based World Model113

Rohekar et al. [2024] derived a causal interpretation of BERT-based models [Devlin et al., 2019]. We114

follow a similar approach, with several important modifications and extensions, to derive a causal115

interpretation to GPT. First, unlike BERT-based models, which are pre-trained to predict the input116

sequence Devlin et al. [2019], GPT is pre-trained to predict the next tokens in the sequence. That117

is, given an input sequence of tokens, {t0, . . . , tn−1}, GPT predicts tokens {t̂1, . . . , t̂n}. Hence, an118

attention matrix A and the corresponding values matrix V have n rows corresponding to tokens119

{t1, . . . , tn} and the output embeddings of of these tokens are the rows of matrix Z = AV. Thus,120

Note that V = YWV , where WV is a weight matrix fixed for all input sequences, and Y is input121

embedding of a specific sequence tokens. Each column of WV can be viewed as an independent122

vector onto which the input embeddings are projected. That is V(i, j) is the projection of token ti123

input embedding Y(i, ·) on, common to all in-distribution sequences, vector WV ( · , j). At inference,124

each attention matrix of the last attention layer, A, is extracted and a lower uni-triangular matrix is125

calculated, D−1A, where D ≡ diag(A). Then estimate the covariance matrix126

C =
[
D−1A

][
D−1A

]⊤
. (7)
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Note that unlike Rohekar et al. [2024], which proposed C = AA⊤ for unmasked self-attention,127

we utilize the triangular form of the masked attention in GPT to revert the attention normalization128

performed by the softmax and obtain a uni-triangular form. Thus, this covariance matrix allows129

us to treat properties calculated from different attention matrices in a similar manner. In this paper130

(Section 3.2 and Section 3.3), properties we calculate are based on p-values when testing conditional131

independence relations between tokens. Next, following Rohekar et al. [2024] we relate each token132

to an endogenous node in an SCM, and CU = I from the central limit theorem Rohekar et al. [2024].133

Thus, equate covariance C = CU134 [
D−1A

][
D−1A

]⊤
=

[
(I−G)−1

] [
(I−G)−1

]⊤
, (8)

where both D−1A and (I−G)−1 are lower uni-triangular matrices, and the (i, j) elements, ∀i > j,135

of these matrices have the same meaning, influence of token/node j on token/node i. Finally, since136

GPT is pre-trained to predict tokens {t1, . . . , tn} given input tokens {t0, . . . , tn−1}, and since the137

only cross-token influence on embeddings is in the attention layers, the last attention layer captures138

the causal structure underlying the output tokens. Earlier attention layers transform embeddings of139

{t0, . . . , tn−1} to values, V, which are equivalent to instantiations of exogenous variables, U in140

SCM. This follows from equating Equation 1 and Equation 4, where D−1A = (I−G)−1.141

In light of the causal interpretation of GPT, one important question is what is the causal world model142

that is supported by the GPT architecture. Often, a single causal structure is assumed to govern143

a domain. In contrast, the causal world model that is entailed from the causal interpretation of144

GPT assumes a distinct structural causal model for each in-distribution sequence. Specifically, in a145

causal world model supported by a GPT with k-heads in the last attention layer, each in-distribution146

sequence is assumed to be generated by an ensemble of k distinct SCMs.147

In addition, for a given head, the causal structure over a sequence of tokens {t1, . . . , tn} is equal to148

the sub-graph over these tokens for all in-distribution extensions of the sequence. That is, given a149

sequence of tokens {t1, . . . , tn} and a corresponding graph structure Gn, observing any next token,150

tn+1, such that {t1, . . . , tn, tn+1} is in-distribution, should not violate causal relations in Gn and151

may only reveal relations between tokens {t1, . . . , tn} and token tn+1.152

3.2 GPT for Zero-Shot Causal Structure Learning153

The causal interpretation presented in this paper leads to a view in which each attention module154

represents associations (correlations) between input tokens that are induced by the underlying causal155

structure. Although this allows only rung-1 inference in the ladder of causation Pearl and Mackenzie156

[2018], under certain assumptions, many of the underlying causal relations can be extracted, even157

in the presence of latent confounders and selection bias Spirtes et al. [2000]. These relations are158

generally represented in a type of causal structure called partial ancestral graph (PAG) Richardson159

and Spirtes [2002]. We follow a procedure called ABCD, proposed by Rohekar et al. [2024] with160

several modifications. First, since the causal (topological) order is given (restricted by the masked161

attention in GPT) we can apply causal discovery recursively to efficiently learn the causal structure.162

To this end we call the ICD, iterative causal discovery, algorithm Rohekar et al. [2021] to reconstruct163

a causal structure in each recursive iteration (Algorithm 1). The result is a PAG structure. Thus, a164

causal structure for a specific output sequence can be learned in a zero-shot manner directly from the165

attention matrix in the last layer (in a k-head setting, a set of k causal structures is learned).166

3.3 Causal Structure Confidence167

In this section we derive a metric that describe how compatible a sequence is with the causal world168

model implicitly encoded by GPT. Given an output sequence of tokens, S, and a causal structure169

G recovered from the last attention layer A, can we score the confidence in this causal structure?170

Recall that in the proposed world model each sequence has its own causal structure, and each causal171

structure may have latent variables. It is not clear how to calculate likelihood P (S|G). We therefore172

propose the following approach approach.173

A causal structure-learning algorithm performs multiple statistical tests of conditional independence174

(CI) using the covariance matrix estimated from the attention matrix. These CI tests calculate p-values175

and compare them against a predetermined threshold of significance level (α). It is important to176

note that there is a one-to-one correspondence between the results of these CI test and the entailed177
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causal structure. That is, a causal structure can be represented uniquely by a set of CI tests and178

their results. Hence, we propose a scoring function based on the distribution of these p-values to179

evaluate the confidence in a structure learned from a given attention matrix. A complete undirected180

graph corresponds to lack of knowledge about causal relations. Generally, causal structure-learning181

algorithms prune edges from this graph based on statistical CI tests between pairs of variables (tokens182

in our case). The removal of edges between independent variables then may entail causal relations183

between other variables Zhang [2008]. Let p = {p1, . . . , pℓ} a set of all p-values computed as184

part of causal structure learning. The null-hypothesis is independence, where p-values greater than185

the significance threshold, α, correspond to edges removed from the complete graph. We denote186

pind = {p : p ∈ p and p ≥ α}, and pdep = {p : p ∈ p and p < α}. Since p-values are187

uniformly distributed under the null hypothesis, we expect the entropy of p-values corresponding188

to independence, redundant relations (spurious correlations), Hind to be higher for matrices that189

correspond to a structure compared to those that do not. In addition, we expect the distribution of190

p-values smaller than the significance level to be weighted towards zero. Hence, entropy of p-values191

corresponding to dependence relations, Hdep is expected to be lower for matrices that correspond to a192

structure compared to ones that do not. We therefore define the following confidence score given an193

attention matrix A,194

R(A) = Hind −Hdep, (9)
where Hind = −

∑
p∈pind

p log p and Hdep = −
∑

p∈pdep
p log p, are entropy of p-values correspond-195

ing to independence and dependence relations, respectively.196

4 Experiments and Results197

We use an experiment setup in which the world layout and rules are well defined and known but were198

not used during training with samples from this world (legal samples). We measure how well attention199

in the learned GPT model represents a causal model using Equation 9, and whether it is correlated200

with the ability of the model to generate tokens that adhere to the world rules (legal sequences).201

4.1 Setup202

We examine a GPT model trained by Li et al. [2023], for predicting the next move given a sequence203

of consecutive moves in the Othello strategy board game. They trained the model on approximately204

132,000 real-world sequences, where it is assumed the players played with the intention of winning.205

No information about the game board layout or game rules was used in their training process. For206

example, positional encoding was not used. In our experiments we use a test set that is not in-207

distribution with respect to the training set, but in-distribution with respect to the game rules. As a208

test set we use 1000 random sequences of legal moves. That is, each sequence consists of moves209

that adhere to the Othello game rules but without considering any strategy of winning the game as in210

the training set. In other words, the support of the test distribution is not a subset of the support of211

the training distribution, supp(Ptrain) ⊂ supp(Ptest). This enables evaluating whether the model212

implicitly encoded the game rules. In Figure 1 we plot the accuracy of the model in generating a213

legal next move (vertical axis) given a test input sequence having different sizes (horizontal axis).214

Although the average accuracy of the model is 95% (dashed red line), it is not uniformly distributed215

across different sequence lengths. For example, given a sequence of 15 moves, GPT generates a216

legal 16-th move in 88% of the times (adheres to the game board state and rules). It is evident that217

the accuracy is significantly lower for input sequence lengths in the range [10, 30] (lower than the218

average 95%). By definition of the Othello game rules, at the beginning of the game there are only219

four legal moves, and as the game unfolds, the number of possible legal moves increases before220

finally decreasing again as the number of vacant spaces on the board decreases. It might be that221

memorization of surface statistics can take place at the beginning and end of the game. We therefore222

report experiment results for input sequences with sizes in the range [10, 30] (gray area) where the223

accuracy is lower than the average.224

4.2 Legal Predictions vs. Structural Confidence225

Is there a relation between the legality of predicted tokens, with respect to a set of world rules,226

and compatibility of attention matrices with a causal graph? Recall that the model was not trained227

explicitly to generate legal Othello game moves but rather to predict the next move played by a228
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Figure 1: Baseline model accuracy of generating legal Othello game moves. A model trained by Li
et al. [2023] on real-world games to predict the next move. Test set consists of randomly generated
sequences. Measured accuracy: the percentage of generated moves that are legal according to the
Othello game rules. Gray area shows input sequences with sizes in the range [10, 30] where the
accuracy is lower than the average of 95% (red dashed line).

human with the intention of winning the game. Moreover, information about the game, such as229

the existence of a board game and rules, were not provided to the model explicitly Li et al. [2023].230

In this experiment we examine whether the cases in which the model generates illegal tokens, are231

also cases where the causal structure is less distinctive as measured by structural confidence score232

(Equation 9). In Figure 2 the legal move generation accuracy (vertical axis) monotonically increases233

with the structural confidence score (horizontal axis) for sequence lengths in [15, 30]. For sequence234

length 10 there is no clear trend. We suspect that for short sequence lengths in the Othello game,235

memorization of surface statistics enables generating legal tokens with high accuracy.236

4.3 Ablation Study237

Next we examine if conditional independence tests from which the causal structure is entailed provide238

an advantage over pair-wise correlations directly represented by elements in the attention matrix.239

To this end we calculate the confidence score using p-values of a) all pair-wise correlations (from240

raw attention-matrix elements)—empty conditioning set, b) CI-tests having exactly one node in the241

conditioning set, c) all CI-tests having empty or exactly one node in the conditioning set, and d)242

CI-tests used to reconstruct the causal structure without limiting conditioning set sizes. The results are243

depicted in Figure 3, with corresponding sub-figures. Vertical axis describe the difference between244

structural confidence averaged over legal and illegal predictions. Error bars indicate 95% confidence245

intervals. Horizontal axis indicate sequence length. It is evident that relying solely on raw attention246

values, case a), the difference between legal and illegal generated tokens in not statistically significant,247

except for sequence length 20. Relying solely on CI-test with exactly one node in the conditioning248

set, case b), the difference between the structural confidence is positive for all tested sequence lengths249

but statistically significant only for sequences lengths 17. When employing pair-wise correlations250

and CI tests with exactly one node in the conditioning tests, the result is statistically significant for251

both sequence lengths 17 and 20, implying that these two types of tests are complementary. Finally,252

it is evident that using CI-tests needed to learn the causal graph, without limiting the conditioning set253

sizes, case d), provide the best results where sequence lengths in [15, 22] are statistically significant254

and the difference between legal and illegal is positive in all sequence lengths.255

5 Conclusions256

We presented a causal interpretation of GPT that may explain apparent emergence of world model in257

recent studies. Following this interpretation, we described a method that utilizes the the triangular258

form of the attention matrices in GPT to efficiently recover the causal structures for input sequences259

(zero-shot causal-discovery). Finally, using experiments in the controlled environment of Othello260

board game we demonstrated that GPT implicitly learns to represent causal structures. Specifically,261

in cases where the confidence in recovering any structure from the attention matrices is low, GPT262

generally fails to predict a token that adheres to the Othello board game rules. In future work, these263

result may provide insights on the sources of hallucination in GPT-based models and may lead to264

deriving a method to detect them.265
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Figure 2: legal move generation accuracy (vertical axis) as a function of structural confidence score
R (horizontal axis). Horizontal limits for each point indicates interval of R in which accuracy was
averaged. Horizontal dotted red line indicates average accuracy. For sequences of lengths greater
than 15 the accuracy increases with the structural confidence score, whereas this trend is not evident
for sequences having length 10.
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Figure 3: Average difference of structural confidence between legal and illegal move generation
(vertical axis) for different input-sequence length (horizontal axis). Error bars are 95% confidence
interval. Confidence score are calculated from p-values of: a) all unconditional independence tests
calculated directly from raw attention values, b) all CI tests having exactly one conditioning node,
c) only tests from cases a) and b), d) CI-tests, without limiting the conditioning set sizes, needed to
reconstruct a causal structure.
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A Additional Preliminaries308

In Table 1 we provide common symbols and their meaning used in this paper.309

Table 1: Main notations used for the analogy between GPT and attention in SCM. The first set of
symbols describes entities in GPT, and the second set of symbols describes entities in SCM.

Symbol Description

Zi output embedding of input symbol i, Zi ≡ Z(i, ·), in attention layer
V i value vector corresponding to input i, V i ≡ V(i, ·), in attention layer
A attention matrix
T Transformer neural network

WV ,WQK learnable weight matrices in GPT

Xi a random variable representing node i in an SCM
Ui latent exogenous random variable i in an SCM
G weighted adjacency matrix of an SCM
G causal graph (unweighted, directed-graph structure)

A.1 Covariance of Endogenous Nodes in SCM310

The covariance matrix of endogenous variables in a linear-Gaussian SCM, as given in Equation 6, is derived as311

CX = E[(X − µX)(X − µX)⊤] =

= E[(I−G)−1 (U − µU )(U − µU )⊤ ((I−G)−1)⊤] =

= [(I−G)−1] E[(U − µU )(U − µU )⊤] [(I−G)−1]⊤ =

=
[
(I−G)−1] CU

[
(I−G)−1]⊤,

(10)

where µX = (I−G)−1µU .312

A.2 Definitions313

Definition 1 (Causal Markov) In a causally Markov graph, a variable is independent of all other variables,314

except its effects, conditional on all its direct causes.315

Definition 2 (Faithfulness) A distribution is faithful to a graph if and only if every independence relation true316

in the distribution is entailed by the graph.317

B Recursive Causal Discovery for GPT318

In Algorithm 1 we describe an efficient causal discovery algorithm that utilizes the causal order restricted by319

GPT by masking attention matrices, forcing them to a lower-triangular form. That is, in a sequence of tokens,320

{t1, . . . , tn}, token tℓ is not an ancestor of token tℓ−1 for all ℓ > 1. In line 2, the last token is popped from the321

sequence and placed in tn resulting in a shorter sequence S′. Then, a recursive call is made in in line 3 to learn322

the structure over tokens in S′. Note that since it is ensured that tn is not an ancestor of any token in S′ the323

skeleton and v-structure relations of G′ is ensured not to be change when adding tn to the graph Spirtes et al.324

[2000]. In lines 4–6 token tn is connected to every node in G′. Finally, using the ICD algorithm Rohekar et al.325

[2021] edges between tn and the rest of the graph are learned (removed if conditional independence is found)326

and the graph is oriented Zhang [2008].327

9



Algorithm 1: Recursive Causal Discovery for GPT

Input: S: a sequence of tokens {t1, . . . , tn, }
Output: G: a partial ancestral graph (PAG)

1 Function LearnStructure(S):
2 tn,S

′ ← pop(S)
3 G′ ← LearnStructure(S′)
4 G ← G′ + {tn}
5 set E to be the set of edges (circle edge-marks) between tn and every node in G′
6 connect E in G
7 test CI for edges in E and orient G using ICD Rohekar et al. [2021]
8 return G

328
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