Demystifying Network Foundation Models

Sylee (Roman) Beltiukov* Satyandra Guthula
UC Santa Barbara UC Santa Barbara
Wenbo Guo Walter Willinger Arpit Gupta
UC Santa Barbara NIKSUN, Inc UC Santa Barbara
Abstract

This work presents a systematic investigation into the latent knowledge encoded
within Network Foundation Models (NFMs). Different from existing efforts, we
focus on hidden representations analysis rather than pure downstream task perfor-
mance and analyze NFMs through a three-part evaluation: Embedding Geometry
Analysis to assess representation space utilization, Metric Alignment Assessment
to measure correspondence with domain-expert features, and Causal Sensitivity
Testing to evaluate robustness to protocol perturbations. Using five diverse network
datasets spanning controlled and real-world environments, we evaluate four state-
of-the-art NFMs, revealing that they all exhibit significant anisotropy, inconsistent
feature sensitivity patterns, an inability to separate the high-level context, payload
dependency, and other properties. Our work identifies numerous limitations across
all models and demonstrates that addressing them can significantly improve model
performance (up to 0.35 increase in I scores without architectural changes).

1 Introduction

Machine learning solutions are widely applied in the networking domain, with numerous applications
ranging from traffic classification [} 32} 58 159] and anomaly detection [28}149] to quality of service
optimization [6, [36L |57]] and network security [2} 138]. However, many of them fail to generalize
to production environments [8}, 26, 34, 160] due to inherent biases in data collection methodology,
limited coverage of operational scenarios, distribution shifts, and other factors, creating fundamental
generalizability challenges.

Network foundation models as a potential solution. As a potential answer to these challenges,
network foundation models (NFMs) have been gaining traction in the networking community [23|
32, 141} 152, 153} 159]. Similar to foundation models in other application domains, these models
incorporate additional self-supervised pretraining phases that utilize unlabeled data to learn critical
spatial, temporal, and causal relationships. NFMs represent a paradigm shift in network analysis,
moving from the development of task-specific learning models to the use of general-purpose pre-
trained representations. Significant aspects of this shift include (i) generalizability: NFMs learn
representations that transfer across multiple network analysis tasks; (ii) scale: NFMs process raw
packet data and require no domain expert-based feature engineering; and (iii) impact: NFMs are
expected to be increasingly deployed in production network systems for security, optimization, and
monitoring. The adoption of NFMs promises to alleviate the difficulties caused by the growing
complexity of modern network infrastructures and is viewed as an important step towards realizing
the vision of self-driving networks.

Diverse architectures complicate evaluation. While aiming toward the similar goal of utilizing
unlabeled data, design architectures and pretraining tasks vary significantly between existing NFMs,

*Corresponding author: rbeltiukov@ucsb.edu

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

including masked token prediction purely on raw network payload [32] or packet header bytes [37, 141}
52|); flow statistics calculation [23]]; patched image reconstruction [53}59]; and modifying foundation
models developed for other domains and applying them to the networking domain [27, 51]]. Resulting
largely from the variability in network data preprocessing (see[Appendix Alfor additional details), such
diversity obscures the influence of the pretraining phase on model performance, making it difficult
to understand what knowledge the model gains during pretraining. Historically, the community has
relied on the performance of such models on fine-tuning tasks [40]], which utilize small (compared
to the pretraining phase) labeled datasets as quality indicators and comparison metrics between
models. However, this approach poses challenges for understanding foundation models’ design
choices, pretraining tasks, chosen pretraining datasets, and overall knowledge gained during the
critical pretraining phase.

Beyond downstream tasks: intrinsic evaluation. In this paper, we address these limitations and
complement the existing downstream task-oriented research by exploring and assessing the repre-
sentational quality of NFMs’ embeddings without depending on fine-tuning problems. Specifically,
we develop three complementary analysis techniques to answer specific questions: (1) Embedding
Geometry Analysis (§3.1) quantifies how effectively models distribute representations across the
embedding space through anisotropy analysis, measuring the entanglement of learned representations
and their influence on model performance. (2) Metric Alignment Assessment (§3.2) evaluates feature
correlation to identify whether models capture domain-expert metrics like flow duration or TCP
window dynamics. (3) Causal Sensitivity Testing (§3.3) employs perturbation analysis to evaluate
how embeddings respond to controlled protocol and context modifications, revealing higher-order
context understanding, including traffic shaping policies and congestion control mechanisms.

Key findings. Our empirical results demonstrate (§4.3) that embeddings from publicly available
pretrained models exhibit significant anisotropy (mean cosine similarity = 0.86 £ 0.09) and that
addressing this issue leads to model performance improvement (up to 0.35 increase in F} scores). We
notice (§4.4) significant alignment of models’ embeddings with packet lengths, time-based features,
packet flags, and even payload information (§4.5) despite its frequent encryption or absence in
production environments, and show a direct correlation between anisotropy and high-level context in
the models.

Our work shifts the focus from downstream task performance to intrinsic representational prop-
erties and sets the stage for further explorations into developing next-generation NFMs that
can be expected to facilitate the creation of performant, generalizable, and robust ML-based
solutions for disparate learning problems — a critical step toward realizing the ambitious goal
of fully self-driving computer networks. Our fully reproducible code is available at https:
//github.com/maybe-hello-world/demystifying-networks,

2 Preliminaries

In this section, we provide information about existing evaluation efforts and preliminary information
on what hidden context refers to in the networking domain.

2.1 Existing evaluation efforts

To our best knowledge, several papers attempted to taxonomize the existing works in the area of
foundation models for networking. Bovenzi et al. [10] contains a survey of existing works in GenAl
for networking, including both text-based and traffic-based approaches, and raises various questions
about interpretability and efficiency, but does not provide any comparative analysis of the models and
their performance. Wickramasinghe et al. [34] provides a comprehensive analysis of both feature-
engineered and foundation model-based approaches for network traffic classification, including
design choices, feature selection, traffic granularity, and benchmarks and downstream tasks used. The
work also implements several data occlusion strategies to evaluate the influence of different features
on model performance and includes model development guidelines, though these results are derived
from a single dataset for two models only. Qian et al. [40]] provides a downstream task-oriented
framework for evaluating classic and pretrained models for network traffic classification, relying on
7 public datasets covering 20 existing tasks and 7 different models for evaluation (with only two
foundation models). Despite including an extensive set of downstream results, this work does not
investigate model design choices, input data, or embedding structure and quality.

https://github.com/maybe-hello-world/demystifying-networks
https://github.com/maybe-hello-world/demystifying-networks

Intrinsic Evaluation Framework

White-box White-box II: Metric Alignment
Feature Extractors Features Assessment
Original ”)
Network Traffic Original I: Embedding

‘ Embeddings Geometry Analysis
P S - Network

Perturbed LT »| Foundation Model |- - - {) IIL: Causal

! : Perturbed
:\._I_\{?EY(_){I_(_I{%@?___E | - ¥ Embeddings | - Sensitivity Testing

Figure 1: Visual overview of the proposed framework. Color indicates different stages of the analysis
and dashed lines and boxes denote the perturbed network traffic path.

2.2 Hidden context in networking

One key learning challenge in the networking domain is that network traffic is influenced by various
hidden context C', which is not explicitly expressed in the network traffic traces but significantly
influences it. This context consists of: various network conditions, which include partially observ-
able characteristics of the network (throughput, latency), traffic shaping policies, network congestion
situation, and influence of other network traffic passing through the same interfaces; application be-
havior, which includes participants and their communication rules, such as communication protocols
and congestion control algorithms, adaptive bitrate algorithms, application specific communication
pattern (prevalence of download traffic over upload), inherent burstiness of the traffic; and others.

Both aspects of networking hidden context can often depend on one another, introducing cross-
dependencies that have to be dealt with during analysis. Examples include how network conditions
influence application behavior (e.g., ABR algorithm choices of bitrate [6, 7, 9,136, 56]]), and vice versa
(e.g., TCP congestion control algorithms fairness [3, 135, 155]), or how even more complicated multi-
way dependencies may arise (e.g., usage of performance-enhancing proxies [33] in geostationary
satellites which terminate connections and introduce their own behavior on multiple levels).

2.3 Necessity of intrinsic evaluation

Since traditional evaluation efforts rely exclusively on downstream task performance, they suffer from
critical shortcomings such as (i) performance scores provide no insight into what the models actually
learn about network conditions or application behaviors, (ii) high performance for one task does
not guarantee generalizability to new network domains, (iii) models can achieve good performance
through dataset-specific shortcuts rather than genuine network understanding, and (iv) practitioners
have no guidance for choosing models or identifying failure modes. Addressing these shortcomings
calls for creating an intrinsic evaluation framework that can reveal what the models actually learn
about network traffic, independent of specific tasks.

3 Intrinsic Evaluation Framework

NFMs pretrained on raw packet traces inherently encode an internal latent space reflecting various
network and application characteristics captured from the utilized training data. To gain insights into
these characteristics, we explore embeddings generated from diverse network data by frozen NFMs.

Using the calculated embeddings, we aim to: quantify how effectively models distribute representa-
tions across their available dimensions (§3.1]), demonstrating if they capture both shared protocol
patterns and distinctive flow characteristics; measure the correspondence between learned embed-
dings and established network metrics (§3.2), revealing whether NFMs inherently calculate the same
statistical features that domain experts have engineered over decades; and evaluate how embeddings
respond to controlled perturbations at both protocol and contextual levels (§3.3)), verifying that models
learn meaningful causal dependencies. For each technique, we provide a claim (what NFMs should
be able to do), the rationale behind this claim, and our methodology to evaluate NFMs for the given
claim. A visual overview of the Intrinsic Evaluation Framework is presented in

Applicability. In theory, our intrinsic evaluation framework can be used to evaluate any model
that learns latent space representations, but it is most valuable for models that involve task-agnostic
pre-training. While traditional approaches (e.g., neural networks trained using supervised learning
techniques) can be evaluated using our metric alignment component, they often lack the explicitly
extracted latent representations that make geometric analysis and causal sensitivity testing meaningful.

Importantly, because of the data representation challenges posed by network traffic (see[Appendix A,
how a model’s input data is being preprocessed is intrinsically entangled with what model architecture
is selected. Since both aspects reflect the explicit decisions that the original model’s developers made,
we are unable to evaluate them individually.

3.1 Embedding Geometry Analysis: quantifying representation space utilization

Claim. NFMs that effectively capture both shared protocol semantics and distinctive per-flow packet
dynamics produce embeddings that efficiently utilize the full representation space. These models
generate flow representations that distribute anisotropically throughout the latent space rather than
collapsing into a concentrated cluster.

Rationale. Effective network modeling requires capturing both global protocol patterns and flow-
specific variations. A well-distributed embedding geometry with measured anisotropy indicates [21]]
that the model distinguishes between flows along multiple meaningful dimensions. Such embeddings
encode critical network characteristics including spatial (handshake vs. data exchange vs. teardown)
or temporal patterns (short vs. long inter-arrival times) and causal reactions (packet loss vs. delays).
Conversely, embeddings that cluster tightly with high cosine similarity suggest the model compresses
diverse flows into nearly identical representations (similar to Li et al. [[31]], Su et al. [48]]), overlooking
subtle per-flow variations essential for robust network reasoning and downstream task performance.

Methodology. To quantify embedding geometry, we employ the established concept of anisotropy
from contextualized language models [[11}[16}20], expressed by cosine similarity between different
traffic flows. For each network traffic flow x;, we extract its hidden representation h; from the final
encoder layer of an NFM (as defined by the authors of the model). Across a set of n such embed-
dings {h;}"_,, we estimate the anisotropy score A = [E;;[cos(h;, h;)] ~ ﬁ > (ijyes cos(hi,)
(where cos(u, v) is the cos similarity), by sampling random flow pairs S similar to Ethayarajh [17].

Further, we analyze the contributions to anisotropy of the largest dimensions by using Mean Co-
sine Contribution (MCC) from Hémmerl et al. [23] (defined for a dimension k as MCC(k) =
|—é‘ > i.jyes CCk(hi, hyj), where CCy(u, v) = TaifTf5) to ensure no single axis dominates. Lower
values of .4 combined with a uniform MCC distribution indicate that embeddings uniformly utilize
the available dimensions, possibly facilitating distinguishing between variations in network behavior.

3.2 Metric Alignment Assessment: measuring correspondence with domain-expert features

Claim. NFMs implicitly compute well-known network performance and behavioral metrics within
their latent space. Flow-level embeddings encode critical network statistics such as flow duration,
packet size distributions, and TCP dynamics without explicit supervision.

Rationale. Over decades, network domain experts have engineered various statistical white-box
features and successfully used them for developing traffic-based machine learning solutuons [2, 30,
45]]. By measuring the structural alignment between hidden representations of NFMs and these
network metrics, we can verify whether models have learned traditionally meaningful generalizable
network semantics rather than superficial correlations with particular downstream labels.

Methodology. We select a set of established network metrics calculated by CICFlowMeter [30],
which have been extensively validated for traffic classification in prior works [2]. Let {z; };-1:1 be
our set of flows and let m;(x;) denote the value of the ith CICFlowMeter metric for flow ;. We
extract the embedding h; € R? from the NFM’s final encoder layer before any task-specific heads
(ET-BERT, netFound) or decoder layers (YaTC, NetMamba) and assemble H = [hq, ..., hy].

For each metric m;, we compute the similarity index p(m;, h;) between the metric and the model’s
embedding representation across all traffic flows in the dataset using Centered Kernel Alignment
(CKA) [29]. Unlike cosine similarity, CKA allows for calculating the similarity index between
representations of different dimensionalities and is invariant to orthogonal transformations and

isotropic scaling, allowing for effective capture of both linear and non-linear relationships between
representations. CKA values near 1 demonstrate that semantic probes successfully extract network-
level metrics from embeddings, validating the model’s implicit computation of these key features.

3.3 Causal Sensitivity Testing: interventional analysis of protocol and context dependencies

Claim. NFMs that effectively encode both protocol semantics and network context exhibit two key
properties: (1) protocol-relevant perturbations produce quantifiable, focused changes in embedding
similarity scores, and (2) high-level network contexts (e.g., congestion control algorithms, queue
management policies) create distinct, linearly separable embedding subspaces. These properties are
proof that the model learns meaningful causal dependencies between inputs and network conditions.

Rationale. A comprehensive test of causal understanding requires dual validation: we aim to verify
both bottom-up causality (how low-level protocol features influence embeddings) and top-down
contextual awareness (how high-level network conditions shape representation space). We explicitly
separate these efforts into two complementary methodologies — feature perturbation analysis and
context discrimination — to provide quantitative evidence of whether an NFM has learned a coherent
causal model of network behavior spanning multiple levels of abstraction.

Methodology: sensitivity to protocol-relevant perturbations. For a selected dataset comprising
flows {x1,3,...,7,}, we compute the baseline similarity score S({h;}}_,), where h; denotes

the embedding of the j* flow and S(-) quantifies the average pairwise cosine similarity between
embeddings. We define a perturbation strategy J(f) operating on a subset of features f C F', where
F ={fi1, fa, ..., fn} constitutes the complete set of traffic header features. For our analysis, we use a
token replacement strategy that implements any token replacement from a valid range of tokens from
the model’s dictionary [43]. This strategy applies uniformly across all flows in the dataset.

Given a feature perturbation, we derive the perturbed flows {:L'?(f) =1 and extract their corresponding

embeddings {hj-(f) %—1, and then measure the similarity score between perturbed embeddings hj-(f)

and the original h; using cosine similarity to measure changes in the hidden representations.

A significant decrease in the similarity score after perturbation indicates that the model’s represen-
tation exhibits sensitivity to the perturbed features. Large changes for protocol-relevant features
demonstrate that these features causally influence the model’s internal representations. Such findings
reveal that the model implicitly learns to encode protocol-relevant features, aligning with domain
knowledge about network protocol behavior.

Methodology: extraction of exogenous network context. First, we use a network emulator to
generate network traffic with distinct high-level contexts (¢; € {1,...,C}). Each context has
multiple possible values, such as application type (video streaming vs. conferencing), congestion
control algorithm (CUBIC vs. BBR), queue management policies (pFIFO vs. CoDEL), and cross
traffic characteristics at the bottleneck link (more bursty and less intense or vice versa). For any given
NFM, we extract embeddings (h,) from the last encoder layer that represent the encoded state of j th
flow. We compute these embeddings across different combinations of high-level contexts.

To quantify the NFM’s context sensitivity, we employ two complementary analyses. First, we calculate
pairwise cosine similarities between embeddings generated under different context combinations.
We also establish a reference point by computing the average similarity score from embeddings
of publicly available unlabeled datasets (the “average”). We then measure the relative change in
similarity when moving from a base context (with default parameter values) to each alternative
context combination. By comparing these changes against the deviation of the base context from the
baseline average, we can contextualize the magnitude of embedding shifts. A significantly higher
relative change in similarity compared to the baseline deviation suggests that the model effectively
captures the distinctive characteristics of different network contexts.

As a second quantitative measure, we train a simple logistic regression classifier built on top of the
frozen embeddings to distinguish between different contexts, and calculate its F} score. This approach
assesses whether the information necessary to separate contexts is linearly accessible from the em-
bedding space. A high F score confirms that the NFM’s embeddings internalize unobserved network
conditions and can effectively discriminate between different operational scenarios, validating that
the model learns meaningful representations of network behavior under varying conditions.

4 Benchmarking

In this section, we evaluate state-of-the-art NFMs using our proposed evaluation framework.

4.1 Network Foundation Models

Our benchmarking applies the intrinsic evaluation framework to diverse architectural approaches in
NFMs. We selected four state-of-the-art representative NFMs that span different design philosophies,
input representations, and pretraining strategies to evaluate how these fundamental choices impact
representational quality.

For each model, we used publicly available pretrained checkpoints provided by the authors without
modifications, maintaining each model’s original data processing pipeline to ensure fair comparison.
Our selection includes YaTC [59], ET-BERT [32], netFound [23]], and NetMamba [53]]. Additional
information about their architectures can be found in

These models represent key design dimensions in NFM architecture: input modality (headers vs.
payload vs. both), sequence length (5 vs. 60 packets), architectural foundation (Transformer vs.
Mamba), and pretraining objectives (single vs. multi-task). Through our framework, we assess how
these design choices influence embedding geometry, metric alignment, and causal sensitivity.

4.2 Datasets

Our benchmarking requires diverse network traffic datasets to ensure comprehensive evaluation
across varying network conditions, traffic types, and operational settings. We selected five datasets
spanning both controlled environments (Android Crossmarket [42], CIC-IDS2017 [46], CIC-
APT-110T24 [22]) and real-world deployments (CAIDA [1]], MAWI [13]]). For preprocessing, we
standardized all datasets by extracting uniform flow records using the data processing scripts provided
by the authors of the considered models. We refer the reader to[Appendix B|for additional details.

4.3 Embedding Geometry Analysis

Table 1: Mean cosine similarity (cos) between embeddings and Mean Cosine Contribution (MCC) of
the top dimension of the embeddings towards the average cosine similarity.

YaTC ET-BERT netFound NetMamba
Dataset cos MCC cos MCC cos MCC cos MCC
Crossmarket 0.85 0.25 0.88 0.02 0.69 0.01 0.93 0.02

CIC-APT-IIoT24 0.87 027 088 0.02 082 00l 098 0.02
CIC-IDS2017 08 022 074 001 069 0.01 092 0.02
CAIDA 087 021 071 001 086 0.01 099 0.03
MAWI 088 019 078 001 094 0.02 099 0.02

[Table 1] presents results from applying our embedding geometry analysis (additional results can be
found in[Appendix O).

Models are not consistent in the anisotropy scores. Our analysis reveals significant variability
in how different NFMs utilize their representation space. netFound demonstrates more variability
in space utilization (with anisotropy score varying between 0.69 and 0.94 for different datasets)
compared to autoencoder-based models YaTC and NetMamba (which have more consistent scores of
0.85-0.88 and 0.92-0.99, respectively). ET-BERT occupies an intermediate position (0.71-0.88).

MCC analysis reveals distinct failure modes. While anisotropy scores identify models with
concentrated representations, our Mean Cosine Contribution analysis further distinguishes between
qualitatively different representational problems. NetMamba’s uniform MCC values (the highest
being around 0.03) indicate semantically collapsed representations without any single dimension
contributing significantly to the collapse, while YaTC’s uneven distribution (MCC 0.19-0.27) reveals
problematic dimensional dominance where a single dimension captures disproportionate variance.

Geometric properties predict environmental responses. Embedding geometry analysis systemati-
cally exposes how different architectures respond to dataset variations. The observation that most

models produce higher cosine similarity (more collapsed representations) on real-world datsets —
with ET-BERT uniquely showing the opposite pattern — provides predictive insight into how these
models might generalize to deployment environments with different traffic distributions.

Table 2: AF} of NetMamba after fine-tuning a single linear layer for 30 epochs on decorrelated
embeddings (over five training runs).

Crossmarket CIC-IDS2017 CIC-APT-IIoT24
NetMamba +0.354+0.02 +0.114+0.27 +0.03 £+ 0.02

Anisotropy directly impacts performance. While anisotropy is a measure that quantifies embed-
ding quality, it does not directly capture how this geometry affects downstream performance [[16].
Therefore, we complement our anisotropy analysis by considering an additional metric: isotropi-
fication gain. This metric quantifies the potential performance improvement when correcting for
suboptimal embedding distributions. We apply a deterministic decorrelation transformation [24]] to
the frozen raw representations and retrain only a linear classifier for the downstream task. We define
the isotropification gain as AFy = Flecorrelated _ praw - Additional popular techniques, such as batch

normalization and whitening, are discussed in

To validate that embedding geometry directly affects model utility, we identified NetMamba as
an ideal candidate for isotropification based on its high anisotropy. shows the resulting
F} score improvements (+0.03 to +0.35) after applying decorrelation transformations. Note that
this improvement is calculated for a simplified classification head (linear classifier), and results for
more complicated models can vary. However, these results suggest that anisotropy is not merely a
descriptive metric but can predict potential performance gains that derive from applying representation
enhancement techniques to NFMs.

4.4 Metric Alignment Assessment

Table 3: Averaged CKA similarity index between CICFlowMeter white-box features and model
embeddings.

Crossmarket CIC-APT-IIoT24 CIC-IDS2017 CAIDA MAWI Average

YaTC 0.098 0.148 0.092 0.014 0.070 0.093
ET-BERT 0.012 0.014 0.064 0.033 0.026 0.029
netFound 0.156 0.219 0.167 0.052 0.070 0.143
NetMamba 0.047 0.141 0.042 0.030 0.051 0.066
Average 0.078 0.131 0.091 0.032 0.055 0.077

presents the averaged Centered Kernel Alignment (CKA) similarity index between model
embeddings and CICFlowMeter features across all datasets, quantifying the degree to which NFMs
implicitly encode established network metrics without explicit supervision. [Appendix E| provides a
breakdown of this average similarity index into the similarity indices of the individual features.

Architectural design determines metric
alignment. Our analysis reveals substantial

variation in how different architectures encode

domain-expert features. netFound consistently £ >

demonstrates the highest alignment (average & 054 ;

CKA: 0.143), suggesting its multi-input ap- & b

proach and packet burst representation effec- = 04 o Model
tively capture statistical properties identified g L ,A/ —- Wi

by domain experts. In contrast, ET-BERT’s 3 %7 ol a f::::d
payload-only approach shows minimal align- 004 -4 NetMamba
ment (average CKA: 0.029), indicating tra- 00 01 02 0z 0.4
ditional network metrics cannot be reliably Averaged CKA similarity value

extracted from payload representations alone.

Since YaTC and NetMamba share similar ar- Figure 2: CDF of CKA similarity among different
chitectural designs, they demonstrate similar model embeddings and CICFlowMeter features aver-
CKA performance across datasets. aged across all five datasets.

Feature diversity enhances metric coverage. [Figure 2|shows the CDF of the CKA similarity index,
revealing that models with diverse input features exhibit a more uniform alignment distribution
compared to models with constrained input features (i.e., more slowly increasing CDF, resulting in
more features having a high CKA similarity value). Models processing packet headers, payload,
and flow metadata (netFound) capture a broader spectrum of expert-designed metrics compared
to specialized architectures (ET-BERT, YaTC, NetMamba), indicating that architectural diversity
directly impacts the comprehensiveness of implicit feature computation.

Environmental context affects metric relevance. All models demonstrate significantly lower CKA
similarity on real-world datasets (CAIDA: 0.032, MAWI: 0.055) compared to datasets from controlled
environments (CIC-APT-1IoT24: 0.131, CIC-IDS2017: 0.091). This consistent pattern suggests that
existing NFMs struggle to encode established network metrics in production environments.

Table 4: Average CKA similarity index between model embeddings and CICFlowMeter features. Top
5 features with the highest similarity index are presented for each model.

Model Feature name Mean CKA CKA Std Model Feature name Mean CKA CKA Std
Fwd Seg Size Min 0.423 0.185 FWD Init Win Bytes 0.385 0.352
FWD Init Win Bytes 0.339 0.241 Packet Length Max 0.372 0.302

YaTC Packet Length Min 0.286 0.085 netFound Fwd Seg Size Min 0.359 0.338
SYN Flag Count 0.282 0.230 Fwd IAT Total 0.331 0.173
Bwd Packet Length Min 0.272 0.209 Flow Duration 0.331 0.170
SYN Flag Count 0.122 0.080 Fwd Segment Size Avg 0.225 0.244
FWD Init Win Bytes 0.081 0.068 Fwd Packet Length Mean 0.225 0.244

ET-BERT Packet Length Std 0.078 0.094 NetMamba Average Packet Size 0.221 0.258
FIN Flag Count 0.074 0.074 Packet Length Min 0.215 0.273
Packet Length Max 0.068 0.097 Packet Length Mean 0.210 0.253

Temporal-spatial features dominate alignment patterns. shows that all models demonstrate
the highest alignment with features related to packet length, segment size, and flow burstiness. For
instance, netFound shows particularly strong alignment with features forward initial window bytes
(CKA: 0.385) and packet length max (CKA: 0.372), while YaTC prioritizes the feature forward
segment size min (CKA: 0.423). Even ET-BERT, despite overall low alignment, shows relative
preference for the feature SYN flag count (CKA: 0.122). These observations suggest that all models
discover the importance of learning initial connection behavior and data transfer volumes.

4.5 Causal Sensitivity Testing: protocol-relevant perturbations

Table 5: Cosine similarity between the baseline and embeddings after perturbing IP and TCP features.

YaTC ET-BERT netFound NetMamba

Baseline cos 0.87 0.71 0.86 0.99
%tok cos %tok cos %tok cos %tok cos
SEQ/ACK 5% 0.61 0% - 22% 0.99 5% 0.98
IP Total Length 0.6% 0.88 0% - 5% 099 06% 0.99
IP TTL 0.6% 0.88 0% - 5% 098 0.6% 0.99
TCP Flags 09% 0.86 0% - 5% 099 09% 0.99
TCP Window Size 2.5% 0.67 0% - 5% 099 25% 0.99
Payload 75% 0.18 100% 0.48 33% 0.99 75% 0.62

presents results of our protocol-relevant perturbations testing on the CAIDA dataset, mea-
suring how modifications to specific protocol features affect embedding stability. We selected the
CAIDA dataset because it contains diverse, unfiltered, real-world Internet backbone traffic and allows
therefore for a more realistic evaluation of model robustness than using controlled laboratory datasets.

Perturbation methodology accounts for model differences. Since the considered NFMs employ
substantially different tokenization techniques, we applied perturbations to semantically meaningful
packet features (e.g., TCP Window Size, IP TTL) rather than model-specific tokens. Consequently, the
same packet feature modification affects different percentages of tokens across models as shown in the
“% tok” columns of] This approach ensures fair comparison by focusing on model-independent
protocol semantics rather than model-specific implementations.

Models generally maintain stability under header perturbations. For most model-feature pairs
(netFound, NetMamba, some features of YaTC), the cosine similarity between embeddings before and
after header perturbation exceeds the average internal similarity of the baseline dataset. These findings
indicate that single feature modifications do not significantly influence model representations from an
embedding geometry perspective, indirectly showing architectural stability for header processing.

Selective feature sensitivity reveals architectural priorities. YaTC demonstrates selective sensitiv-
ity to modifying transport layer features, particularly SEQ/ACK (0.61) and TCP Window Size (0.67),
even though these modifications affect only small portions of the input (5% and 2.5% of tokens,
respectively). This targeted sensitivity suggests architectural attention to specific protocol control
signals, a pattern that is not evident in the other models, all of which maintain near-baseline similarity
across all header modifications.

Architectural differences in protocol processing. ET-BERT shows no sensitivity to header modifi-
cations. This result is not surprising because the model’s architecture deliberately ignores headers.
netFound demonstrates remarkable stability (0.98-0.99) across all header modifications despite pro-
cessing these fields, suggesting its representations prioritize higher-level patterns. These distinct
responses directly reflect fundamental differences in how models process protocol information.

Payload dependency across NFMs. Unlike header features, payload perturbations introduce
significant representation shifts across almost all models (YaTC: 0.18, ET-BERT: 0.48, NetMamba:
0.62). These results reveal a critical dependency on payload features for decision-making, even
though this data is often encrypted or omitted in production environments. These findings highlight a
potential model robustness concern that would go unnoticed in traditional downstream evaluations.

Perturbation magnitude does not predict representation impact. The percentage of tokens
modified does not consistently correlate with representation changes. Small modifications to critical
features (SEQ/ACK at 5% for YaTC) can produce larger representational shifts than more extensive
modifications to other features (IP TTL at 0.6%), revealing an implicit hierarchy of feature importance
within each model’s internal representations.

4.6 Causal Sensitivity Testing: exogenous network context

We use the network emulator NetReplica [15] to generated five synthetic datasets, each consisting of
~ 100 network flows and obtained using specific choices of congestion control algorithms, AQM
policies, and cross-traffic patterns. Additional details about NetReplica and the generated datasets

can be found in

Table 6: Average cos similarity across all datasets, cos similarity change (w.r.t. difference between
stability baseline and average value), and linear probing F} score for synthetic datasets.

YaTC ET-BERT netFound NetMamba

Metric cos - cos - cos - cos -
Average 0.8633 - 07977 - 0.8017 - 0.9639 -
Stability baseline 0.8939 - 0.9698 - 0.9700 - 0.9940 -
Acos F Acos Fi Acos F Acos F

Congestion Control -13.07% 048 0.32% 0.41 -1.84% 0.60 0.50% 0.29
AQM 0.99% 0.51 -1.44% 0.68 -1097% 0.93 -280.01% 0.70
Crosstraffic 571% 024 0.60% 043 -6.45% 0.78 0.51% 0.33
All 6.72% 047 -1.07% 0.46 -31.32% 097 -42.34% 0.62

[Table 6] presents average cos similarity values for a diverse set of public datasets used in this work
("Average" row) and for the stability baseline dataset (i.e., a fixed dataset with given parameters for
all choices, selected as a baseline). Assuming that the average and stability baselines represent lower
and higher bounds respectively for the possible similarity values for each model, we list for each
different high-level context change (see rows of the table labeled "Congestion Control", "AQM",
"Crosstraffic", and "All" for all changes) the Acos value which is calculated as the difference between
the average cos similarity of the test dataset and the stability baseline. The reported F; scores denote
the performance of a linear probe trained to separate between the stability baseline and the test
dataset.

All models are able to group the baseline traffic. (‘Average’ and ‘Stability baseline’ lines)
shows that all models demonstrate much higher average cos similarity (but staying below the upper
bound provided by the stability baseline) compared to the average similarity in diverse datasets. This
property suggest that the models are able to reliably group the similar traffic and is important, for
example, for anomaly detection tasks, where previously unseen anomalous traffic should be separated
from the normal traffic.

High-level context insignificantly influences the cos similarity of embeddings. Given that av-
erage cos similarity of diverse datasets and stability baseline are different for different models, we
normalized Acos in by the difference between the average cos similarity of the stability
baseline and average cos similarity across diverse datasets, effectively measuring changes between
the “lowest” and the “highest” measured cos values. We notice that for all models, the Acos of the
synthetic datasets is relatively small, implying that the resulting cos is very close to the stability
baseline. Except for NetMamba-AQM, NetMamba-All, and netFound-All, for all other model-dataset
pairs, the absolute value of Acos is lower than 15%, an indication that the models do not explicitly
disentangle the high-level context from the baseline. In some cases, the Acos is even positive (i.e.,
embeddings are grouped even closer), demonstrating that the model considers the traffic with the
introduced changes to be more similar to the stability baseline than the stability baseline itself and
does therefore not notice the high-level context change.

Acos correlates with linear probing £} score. For most of the model-dataset pairs, the lower
average cos score correlates with a higher linear probing F; score, demonstrating (similar to[Table 2)
that disentangling produced embeddings might lead to better fine-tuning performance even for more
complicated fine-tuning tasks.

Models are better at distinguishing different AQMs than different Congestion Control algo-
rithms, crosstraffic patterns, or even all changes together. For almost all models, the linear
probing I score is significantly higher for the AQM row in compared to the Congestion
Control and Crosstraffic rows. This observation suggests that the influence of AQM policies is
easier captured from the raw network traffic, and sometimes even easier than when all changes are
introduced together. Across all four rows, netFound has the highest F scores, an indication that it
is capable of capturing the high-level context changes. We also conducted additional experiments,
including examining linear combinations of embeddings, and report the results in[Appendix H]

5 Conclusion

In this paper, we introduce an initial approach to a principled evaluation of NFMs through intrinsic
representation analysis and conduct a series of experiments on four SOTA NFMs over five diverse
datasets for embedding geometry analysis, metric alignment assessment, and causal sensitivity testing.
Our work reveals a number of critical insights, such as (1) all analyzed NFMs exhibit significant
anisotropy that directly impacts downstream performance; (2) each model’s architectural design
fundamentally determines which network metrics can be reliably extracted from its representations;
and (3) all models demonstrate concerning sensitivity to payload information despite its frequent
encryption (or omission) in production environments. In particular, our proposed framework provides
the network community with systematic tools for comparing different NFM architectures objectively,
identifying model limitations before deployment, guiding architectural improvements based on
intrinsic properties, and understanding failure modes that downstream metrics miss. At the same
time, our findings highlight fundamental limitations in current NFM architectures and motivate
future research on relationships between architectural choices, representation properties, and models’
performance.

Limitations. The current work poses a number of limitations that affect the impact of our study. Our
current scope of exploration and metrics used are far from exhaustive and are an initial attempt at
evaluating NFMs’ performance and latent knowledge without focus on downstream performance.
Our application of the cosine similarity metric can produce incorrect insights [47] if applied to
other models (e.g., which used cosine-based loss functions during pretraining). Finally, our dataset
selection is based on publicly available data that can be flawed [34] or biased in terms of the network
traffic patterns contained in the data.

10

Acknowledgments and Disclosure of Funding

This work was supported in part by the National Science Foundation (CAREER Award No. 2443777
and CNS Award No. 2323229) and a research gift from Cisco. This research used resources of
the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility
supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231 using NERSC award NERSC DDR-ERCAP0029768.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

Anonymized Two-Way Traffic Packet Header Traces 100G (5 sec) sampler. https://catalog!
caida.org/dataset/passive_100g_sampler. Dates used: November 2024. Accessed:
01/21/2025.

Zeeshan Ahmad, Adnan Shahid Khan, Cheah Wai Shiang, Johari Abdullah, and Farhan Ah-
mad. Network intrusion detection system: A systematic study of machine learning and
deep learning approaches. 32(1):e4150. ISSN 2161-3915. doi: 10.1002/ett.4150. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.4150,

Adnan Ahmed, Ricky Mok, and Zubair Shafiq. FlowTrace : A Framework for Active Bandwidth
Measurements Using In-band Packet Trains. Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12048
LNCS:37-51, 2020. ISSN 16113349. doi: 10.1007/978-3-030-44081-7_3.

Paul Aitken, Benoit Claise, and Brian Trammell. Specification of the IP Flow Information
Export (IPFIX) Protocol for the Exchange of Flow Information. RFC 7011, September 2013.
URL https://www.rfc-editor.org/info/rfc7011,

Iman Akbari, Mohammad A. Salahuddin, Leni Ven, Noura Limam, Raouf Boutaba, Bertrand
Mathieu, Stephanie Moteau, and Stephane Tuffin. A Look Behind the Curtain: Traffic Clas-
sification in an Increasingly Encrypted Web. Proceedings of the ACM on Measurement and
Analysis of Computing Systems, 5(1):1-26, February 2021. doi: 10.1145/3447382.

Zahaib Akhtar, Yun Seong Nam, Ramesh Govindan, Sanjay Rao, Jessica Chen, Ethan Katz-
Bassett, Bruno Ribeiro, Jibin Zhan, and Hui Zhang. Oboe: Auto-tuning video ABR algorithms
to network conditions. In Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication, SIGCOMM 18, pages 44-58, New York, NY, USA, August
2018. Association for Computing Machinery. ISBN 978-1-4503-5567-4. doi: 10.1145/3230543.
3230558.

Abdullah Alomar, Pouya Hamadanian, Arash Nasr-Esfahany, Anish Agarwal, Mohammad
Alizadeh, and Devavrat Shah. CausalSim: A Causal Framework for Unbiased Trace-Driven
Simulation. Proceedings of the 20th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2023, pages 1115-1147, January 2022.

Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke, Fabio Pierazzi, Christian
Wressnegger, Lorenzo Cavallaro, and Konrad Rieck. Dos and don’ts of machine learning
in computer security. In 37/st USENIX Security Symposium (USENIX Security 22), pages
3971-3988, Boston, MA, August 2022. USENIX Association. ISBN 978-1-939133-31-1.

Chandan Bothra, Jianfei Gao, Sanjay Rao, and Bruno Ribeiro. Veritas: Answering Causal
Queries from Video Streaming Traces. pages 738-753, September 2023. doi: 10.1145/3603269.
3604828.

Giampaolo Bovenzi, Francesco Cerasuolo, Domenico Ciuonzo, Davide Di Monda, Idio Guarino,
Antonio Montieri, Valerio Persico, and Antonio Pescapé. Mapping the Landscape of Gener-
ative Al in Network Monitoring and Management. pages 1-1. ISSN 1932-4537, 2373-7379.
doi: 10.1109/TNSM.2025.3543022. URL https://ieeexplore.ieee.org/document/
10891637/

Xingyu Cai, Jiaji Huang, Yuchen Bian, and Kenneth Church. Isotropy in the Contextual
Embedding Space: Clusters and Manifolds. URL https://openreview.net/forum?id=
xYGNO860WDH.

11

https://catalog.caida.org/dataset/passive_100g_sampler
https://catalog.caida.org/dataset/passive_100g_sampler
https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.4150
https://www.rfc-editor.org/info/rfc7011
https://ieeexplore.ieee.org/document/10891637/
https://ieeexplore.ieee.org/document/10891637/
https://openreview.net/forum?id=xYGNO86OWDH
https://openreview.net/forum?id=xYGNO86OWDH

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Kevin M. Carter, Raviv Raich, and Alfred O. Hero III. On local intrinsic dimension estimation
and its applications. IEEE Transactions on Signal Processing, 58(2):650-663, 2010. doi:
10.1109/TSP.2009.2031722.

Kenjiro Cho, Koushirou Mitsuya, and Akira Kato. Traffic Data
Repository at the {WIDE} Project. URL https://www.usenix.
org/conference/2000-usenix-annual-technical-conference/
traffic-data-repository-wide-project.

Benoit Claise. Cisco Systems NetFlow Services Export Version 9. RFC 3954, October 2004.
URL https://www.rfc-editor.org/info/rfc3954,

Jaber Daneshamooz, Jessica Nguyen, William Chen, Sanjay Chandrasekaran, Satyandra
Guthula, Ankit Gupta, Arpit Gupta, and Walter Willinger. Addressing the ml domain adaptation
problem for networking: Realistic and controllable training data generation with netreplica.
arXiv preprint arXiv:2507.13476, 2025.

Yue Ding, Karolis Martinkus, Damian Pascual, Simon Clematide, and Roger Wattenhofer.
On Isotropy Calibration of Transformer Models. In Shabnam Tafreshi, Jodo Sedoc, Anna
Rogers, Aleksandr Drozd, Anna Rumshisky, and Arjun Akula, editors, Proceedings of the Third
Workshop on Insights from Negative Results in NLP, pages 1-9. Association for Computational
Linguistics. doi: 10.18653/v1/2022.insights-1.1. URL https://aclanthology.org/2022|
insights-1.1/.

Kawin Ethayarajh. How Contextual are Contextualized Word Representations? Com-
paring the Geometry of BERT, ELMo, and GPT-2 Embeddings. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages
55-65. Association for Computational Linguistics. doi: 10.18653/v1/D19-1006. URL
https://www.aclweb.org/anthology/D19-1006.

Kawin Ethayarajh, David Duvenaud, and Graeme Hirst. Towards understanding linear word
analogies. In Anna Korhonen, David Traum, and Lluis Marquez, editors, Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, pages 3253-3262, Florence,
Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1315. URL
https://aclanthology.org/P19-1315/.

Elena Facco, Maria d’Errico, Alex Rodriguez, and Alessandro Laio. Estimating the intrinsic
dimension of datasets by a minimal neighborhood information. Scientific reports, 7(1):12140,
2017.

Alejandro Fuster Baggetto and Victor Fresno. Is anisotropy really the cause of BERT embed-
dings not being semantic? In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang, editors,
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 4271-4281.
Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-emnlp.314. URL
https://aclanthology.org/2022.findings-emnlp.314/|

Jun Gao, Di He, Xu Tan, Tao Qin, Liwei Wang, and Tie-Yan Liu. Representation Degeneration
Problem in Training Natural Language Generation Models. URL http://arxiv.org/abs/
1907.12009.

Erfan Ghiasvand, Suprio Ray, Shahrear Igbal, and Sajjad Dadkhah. Resilience Against APTs:
A Provenance-based IIoT Dataset for Cybersecurity Research.

Satyandra Guthula, Roman Beltiukov, Navya Battula, Wenbo Guo, Arpit Gupta, and Inder
Monga. netFound: Foundation Model for Network Security. URL http://arxiv.org/abs/
2310.17025.

Junjie Huang, Duyu Tang, Wanjun Zhong, Shuai Lu, Linjun Shou, Ming Gong, Daxin Jiang,

and Nan Duan. WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach. URL
http://arxiv.org/abs/2104.01767.

12

https://www.usenix.org/conference/2000-usenix-annual-technical-conference/traffic-data-repository-wide-project
https://www.usenix.org/conference/2000-usenix-annual-technical-conference/traffic-data-repository-wide-project
https://www.usenix.org/conference/2000-usenix-annual-technical-conference/traffic-data-repository-wide-project
https://www.rfc-editor.org/info/rfc3954
https://aclanthology.org/2022.insights-1.1/
https://aclanthology.org/2022.insights-1.1/
https://www.aclweb.org/anthology/D19-1006
https://aclanthology.org/P19-1315/
https://aclanthology.org/2022.findings-emnlp.314/
http://arxiv.org/abs/1907.12009
http://arxiv.org/abs/1907.12009
http://arxiv.org/abs/2310.17025
http://arxiv.org/abs/2310.17025
http://arxiv.org/abs/2104.01767

[25] Katharina Himmerl, Alina Fastowski, Jindr "ich Libovicky, and Alexander Fraser. Exploring
Anisotropy and Outliers in Multilingual Language Models for Cross-Lingual Semantic Sentence
Similarity.

[26] Arthur S. Jacobs, Roman Beltiukov, Walter Willinger, Ronaldo A. Ferreira, Arpit Gupta, and
Lisandro Z. Granville. AI/ML for network security: The emperor has no clothes. In Proceedings
of the 2022 ACM SIGSAC Conference on Computer and Communications Security (CCS), 2022.

[27] Xi Jiang, Shinan Liu, Aaron Gember-Jacobson, Arjun Nitin Bhagoji, Paul Schmitt, Francesco
Bronzino, and Nick Feamster. NetDiffusion: Network Data Augmentation Through Protocol-
Constrained Traffic Generation. URL http://arxiv.org/abs/2310.08543.

[28] Xi Jiang, Shinan Liu, Saloua Naama, Francesco Bronzino, Paul Schmitt, and Nick Feamster.
AC-DC: Adaptive Ensemble Classification for Network Traffic Identification. February 2023.

[29] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of
Neural Network Representations Revisited. URL http://arxiv.org/abs/1905.00414.

[30] Arash Habibi Lashkari, Gerard Draper Gil, Mohammad Saiful Islam Mamun, and Ali A.
Ghorbani. Characterization of Tor Traffic using Time based Features. pages 253-262. ISBN
978-989-758-209-7. URL https://www.scitepress.org/PublicationsDetail.aspx?
ID=g4glnPa/20M=&t=1.

[31] Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang, Yiming Yang, and Lei Li. On the Sentence
Embeddings from Pre-trained Language Models. In Bonnie Webber, Trevor Cohn, Yulan
He, and Yang Liu, editors, Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 9119-9130. Association for Computational
Linguistics. doi: 10.18653/v1/2020.emnlp-main.733. URL https://aclanthology.org/
2020.emnlp-main.733/.

[32] Xinjie Lin, Gang Xiong, Gaopeng Gou, Zhen Li, Junzheng Shi, and Jing Yu. ET-BERT: A
contextualized datagram representation with pre-training transformers for encrypted traffic
classification. In Proceedings of the ACM Web Conference 2022, Www ’22, pages 633-642,
New York, NY, USA, 2022. Association for Computing Machinery. ISBN 978-1-4503-9096-5.
doi: 10.1145/3485447.3512217.

[33] Jiamo Liu, David Lerner, Jae Chung, Udit Paul, Arpit Gupta, and Elizabeth Belding. Watching
Stars in Pixels: The Interplay Of Traffic Shaping and YouTube Streaming QoE over GEO
Satellite Networks. In Philipp Richter, Vaibhav Bajpai, and Esteban Carisimo, editors, Passive
and Active Measurement, volume 14538, pages 153-169. Springer Nature Switzerland. ISBN
978-3-031-56251-8 978-3-031-56252-5. doi: 10.1007/978-3-031-56252-5_8. URL https:
//link.springer.com/10.1007/978-3-031-56252-5_8|

[34] Lisa Liu, Gints Engelen, Timothy Lynar, Daryl Essam, and Wouter Joosen. Error prevalence
in NIDS datasets: A case study on CIC-IDS-2017 and CSE-CIC-IDS-2018. In 2022 IEEE
Conference on Communications and Network Security (CNS), pages 254-262, 2022. doi:
10.1109/CNS56114.2022.9947235.

[35] Kyle Macmillan, Tarun Mangla, James Saxon, and Nick Feamster. Measuring the performance
and network utilization of popular video conferencing applications. Proceedings of the ACM
SIGCOMM Internet Measurement Conference, IMC, pages 229-244, November 2021. doi:
10.1145/3487552.3487842.

[36] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. Neural Adaptive Video Streaming
with Pensieve. In Proceedings of the Conference of the ACM Special Interest Group on
Data Communication, SIGCOMM ’17, pages 197-210, New York, NY, USA, August 2017.
Association for Computing Machinery. ISBN 978-1-4503-4653-5. doi: 10.1145/3098822.
3098843.

[37] Xuying Meng, Chungang Lin, Yequan Wang, and Yujun Zhang. NetGPT: Generative Pretrained
Transformer for Network Traffic. URL http://arxiv.org/abs/2304.09513|

13

http://arxiv.org/abs/2310.08543
http://arxiv.org/abs/1905.00414
https://www.scitepress.org/PublicationsDetail.aspx?ID=g4gLnPa/2OM=&t=1
https://www.scitepress.org/PublicationsDetail.aspx?ID=g4gLnPa/2OM=&t=1
https://aclanthology.org/2020.emnlp-main.733/
https://aclanthology.org/2020.emnlp-main.733/
https://link.springer.com/10.1007/978-3-031-56252-5_8
https://link.springer.com/10.1007/978-3-031-56252-5_8
http://arxiv.org/abs/2304.09513

[38] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. Kitsune: An Ensemble of
Autoencoders for Online Network Intrusion Detection, May 2018.

[39] Vern Paxson. Bro: a System for Detecting Network Intruders in Real-Time. Computer Networks,
31(23-24):2435-2463, 1999. URL http://www.icir.org/vern/papers/bro-CN99.pdf,

[40] Chen Qian, Xiaochang Li, Qineng Wang, Gang Zhou, and Huajie Shao. NetBench: A Large-
Scale and Comprehensive Network Traffic Benchmark Dataset for Foundation Models, March
2024.

[41] Jian Qu, Xiaobo Ma, and Jianfeng Li. TrafficGPT: Breaking the Token Barrier for Efficient
Long Traffic Analysis and Generation. URL http://arxiv.org/abs/2403.05822,

[42] Jingjing Ren, Daniel J Dubois, and David Choffnes. An International View of Privacy Risks for
Mobile Apps.

[43] Tom Roth, Yansong Gao, Alsharif Abuadbba, Surya Nepal, and Wei Liu. Token-modification
adversarial attacks for natural language processing: A survey. Al Communications, 37(4):
655-676, 2024. doi: 10.3233/AIC-230279. URL https://journals.sagepub.com/doi/
abs/10.3233/AIC-230279.

[44] Peter J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of cluster
analysis. Journal of Computational and Applied Mathematics, 20:53-65, 1987. ISSN 0377-0427.
doi: https://doi.org/10.1016/0377-0427(87)90125-7. URL https://www.sciencedirect,
com/science/article/pii/0377042787901257.

[45] MohammadMoein Shafi, Arash Habibi Lashkari, and Arousha Haghighian Roudsari. NTLFlow-
Lyzer: Towards generating an intrusion detection dataset and intruders behavior profiling
through network and transport layers traffic analysis and pattern extraction. 148:104160. ISSN
0167-4048. doi: 10.1016/j.cose.2024.104160. URL https://www.sciencedirect.com/
science/article/pii/S0167404824004656.

[46] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani. Toward generating a new
intrusion detection dataset and intrusion traffic characterization. In Proceedings of the 4th
International Conference on Information Systems Security and Privacy - Volume 1: ICISSP,,
pages 108—116. SciTePress / INSTICC, 2018. ISBN 978-989-758-282-0. doi: 10.5220/
0006639801080116.

[47] Harald Steck, Chaitanya Ekanadham, and Nathan Kallus. Is cosine-similarity of embeddings
really about similarity? In Companion Proceedings of the ACM Web Conference 2024, WWW
’24, page 887-890. ACM, May 2024. doi: 10.1145/3589335.3651526. URL http://dx.doi!
org/10.1145/3589335.3651526.

[48] Jianlin Su, Jiarun Cao, Weijie Liu, and Yangyiwen Ou. Whitening Sentence Representations for
Better Semantics and Faster Retrieval. URL http://arxiv.org/abs/2103.15316/

[49] Tushar Swamy, Alexander Rucker, Muhammad Shahbaz, Ishan Gaur, and Kunle Olukotun.
Taurus: A Data Plane Architecture for Per-Packet ML; Taurus: A Data Plane Architecture for
Per-Packet ML. 2021.

[50] Lucrezia Valeriani, Diego Doimo, Francesca Cuturello, Alessandro Laio, Alessio Ansuini, and
Alberto Cazzaniga. The geometry of hidden representations of large transformer models. In
Proceedings of the 37th International Conference on Neural Information Processing Systems,
NIPS ’23, Red Hook, NY, USA, 2023. Curran Associates Inc.

[51] Changjie Wang, Mariano Scazzariello, Alireza Farshin, Simone Ferlin, Dejan Kosti¢, and
Marco Chiesa. NetConfEval: Can LLMs Facilitate Network Configuration? 2:7:1-7:25, . doi:
10.1145/3656296. URL https://dl.acm.org/doi/10.1145/3656296.

[52] Qineng Wang, Chen Qian, Xiaochang Li, Ziyu Yao, Gang Zhou, and Huajie Shao. Lens: A

Foundation Model for Network Traffic, . URL https://ui.adsabs.harvard.edu/abs/
2024arXiv240203646W.

14

http://www.icir.org/vern/papers/bro-CN99.pdf
http://arxiv.org/abs/2403.05822
https://journals.sagepub.com/doi/abs/10.3233/AIC-230279
https://journals.sagepub.com/doi/abs/10.3233/AIC-230279
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://www.sciencedirect.com/science/article/pii/S0167404824004656
https://www.sciencedirect.com/science/article/pii/S0167404824004656
http://dx.doi.org/10.1145/3589335.3651526
http://dx.doi.org/10.1145/3589335.3651526
http://arxiv.org/abs/2103.15316
https://dl.acm.org/doi/10.1145/3656296
https://ui.adsabs.harvard.edu/abs/2024arXiv240203646W
https://ui.adsabs.harvard.edu/abs/2024arXiv240203646W

[53] Tongze Wang, Xiaohui Xie, Wenduo Wang, Chuyi Wang, Youjian Zhao, and Yong Cui.
NetMamba: Efficient Network Traffic Classification via Pre-training Unidirectional Mamba.
https://arxiv.org/abs/2405.11449v4, May 2024.

[54] Nimesha Wickramasinghe, Arash Shaghaghi, Gene Tsudik, and Sanjay Jha. SoK: Decoding the
Enigma of Encrypted Network Traffic Classifiers. doi: 10.48550/ARXIV.2503.20093. URL
https://arxiv.org/abs/2503.20093,

[55] Francis Y. Yan, Jestin Ma, Greg D. Hill, Deepti Raghavan, Riad S. Wahby, Philip Levis, and
Keith Winstein. Pantheon: The training ground for Internet congestion-control research. In
Usenix Atc, 2018.

[56] Francis Y. Yan, Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi, James Hong, Keyi Zhang, Philip
Levis, and Keith Winstein. Learning in situ: A randomized experiment in video streaming. In
NSDI, 2020.

[57] Tan Yang, Yuehui Jin, Yufei Chen, and Yudong Jin. RT-WABest: A novel end-To-end bandwidth
estimation tool in IEEE 802.11 wireless network. International Journal of Distributed Sensor
Networks, 13(2), February 2017. ISSN 15501477. doi: 10.1177/1550147717694889/ASSET/
IMAGES/LARGE/10.1177_1550147717694889-FIG6.JPEG.

[58] Ruijie Zhao, Xianwen Deng, Zhicong Yan, Jun Ma, Zhi Xue, and Yijun Wang. MT-FlowFormer:
A semi-supervised flow transformer for encrypted traffic classification. In Proceedings of
the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Kdd 22,
pages 25762584, New York, NY, USA, 2022. Association for Computing Machinery. ISBN
978-1-4503-9385-0. doi: 10.1145/3534678.3539314.

[59] Ruijie Zhao, Mingwei Zhan, Xianwen Deng, Yanhao Wang, Yijun Wang, Guan Gui, and Zhi
Xue. Yet another traffic classifier: A masked autoencoder based traffic transformer with multi-
level flow representation. Proceedings of the AAAI Conference on Artificial Intelligence, 37(4):
5420-5427, June 2023. doi: 10.1609/aaai.v37i4.25674.

[60] Qianru Zhou and Dimitrios Pezaros. Evaluation of machine learning classifiers for zero-day
intrusion detection—an analysis on CIC-AWS-2018 dataset. arXiv preprint arXiv:1905.03685,
2019.

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: See “Beyond downstream tasks” and “Key findings” in the
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

15

https://arxiv.org/abs/2503.20093

Justification: Please, refer to the “Limitations™ section in where we discuss
limitations of the methods, framework, and selected datasets.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

 The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully describes the framework (see and provides all the
steps to reproduce the results on the publicly released datasets and models’ checkpoints in
addition to the publicly released code (the link is provided in the[section I). We also provide
the additional details when needed in the

16

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides all the source code and data required for reproducibility,
including links to the used public datasets and models’ checkpoints. Our code is available at
https://github.com/maybe-hello-world/demystifying-networks,

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

17

https://github.com/maybe-hello-world/demystifying-networks
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the experiments that require specification of training parameters contain
the description of the details. We also included datasets details in[Appendix B]

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Most of experiments in the paper are deterministic and do not require statistical
significance. For experiments, where different initialization (e.g., of weights) might produce
different results, we specified 20 errors based on five runs with separate seeds.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: All the required compute resources are discussed in|Appendix I

18

9.

10.

11.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This paper conforms in every respect with the NeurIPS Code of Ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper presents an exploration of publicly available models and datasets
and does not present a social impact different from what is already published.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

19

https://neurips.cc/public/EthicsGuidelines

12.

13.

Answer: [NA]

Justification: This paper uses publicly released models and datasets and does not introduce
new risks for misuse. The NetReplica dataset, used in [section 4| and [Appendix H| is a
synthetic dataset collected in a controlled environment and does not contain any private
information that can be potentially misused.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets used in the paper contain citations to the original paper that produced
this research and contain license information.

Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All new assets are documented both in the paper (see and in the
released source code.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

20

paperswithcode.com/datasets

14.

15.

16.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method and evaluation framework do not involve LLMs as any
important component.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

A Data representation for machine learning in networks

Network traffic (data exchanged between devices) is one of the main data sources for machine learning
in networking. One of the unique characteristics of network traffic is that the same data is often
represented in multiple ways simultaneously, such as raw packet captures that contain transmitted
headers and payload (PCAPs), flow records and statistics summarizing each individual flow (finished
communication session) between two endpoints (e.g., Zeek entries [39], IPFIX [4], NetFlow [14],
CICFlowMeter [30]], NTLFlowLyzer [45], etc.), and high-level extracted features (e.g., TCPInfo).

Being the most common representation, raw PCAPs contain all packets exchanged between the
endpoints, including headers and payload. However, due to the nature of network communication and
privacy concerns, the payload is often encrypted (e.g., TLS) and not available for analysis. Moreover,
the volume of network traffic is often so large that it is difficult to analyze everything. In such
cases, a practical solution is to analyze only a small portion of each network flow (e.g., the first few
packets). These and other challenges also limit the availability of labeled datasets, making the use of
self-supervised pretraining techniques especially attractive.

B Network Foundation Models and Datasets

ET-BERT [32] is a BERT-based network foundation model. ET-BERT uses only (encrypted) payload
data of the first five packets of network traffic flows, ignoring packet headers, and is trained using
masked token prediction and packet order prediction tasks. ET-BERT produces 768-dimensional
embeddings.

netFound [23] is a transformer-based network foundation model that uses packet headers, payload,
and additional flow information (such as packet interarrival times or total bytes transferred), extracting
packet burst representations (up to 60 packets), potentially from different parts of the traffic flow.
In addition to masked token prediction, netFound uses multiple additional tasks, such as metadata
prediction or packet order prediction, to pretrain the model. The used checkpoint of netFound (large)
produces 1024-dimensional embeddings.

YaTC [59] and NetMamba [53] are masked autoencoder-based network foundation models (based
on Transformer and Mamba architectures), which both transform existing network traffic data into a
fixed-size image-like representation. Both models use the first five packets of each network traffic flow,
taking into account both headers and payload data. The two models produce 192 and 256-dimensional
embeddings, respectively.

Endogenous Datasets. These datasets were generated in controlled settings with full ground-truth
information:

* Android Crossmarket [42] contains around 66k flows from 215 Android applications
across US, Chinese, and Indian app stores, capturing diverse mobile application traffic
patterns during actual user interactions.

e CIC-IDS2017 [46] is a benchmark intrusion detection dataset with 2.8M flows includ-
ing both benign traffic and common attack patterns (e.g., brute force, DDoS, port scans,
Heartbleed).

e CIC-APT-1I0T24 [22] contains 3.7M flows representing 25 distinct advanced persistent
threat techniques alongside benign traffic and is valuable for testing model sensitivity to
subtle attack patterns.

Real-World Traffic Datasets. These datasets were collected from actual production networks
without artificial manipulation:

» CAIDA [1] contains 1.5 million anonymized packet-level flows from an Internet backbone
link between Los Angeles and San Jose (collected in 2023).

* MAWTI [[13] comprises 1 million randomly sampled flows from a major Internet Exchange
Point in Tokyo (collected in 2023), capturing international transit traffic with significant
geographic routing characteristics.

22

C Anisotropy of the embedding space

Table 7: Anisotropy of the embeddings with top dimensions (TD) and their Mean Cosine Contribution
(MCQO).

YaTC ET-BERT netFound netMamba
Dataset Anisotropy TD MCC Anisotropy TD MCC Anisotropy TD MCC Anisotropy TD MCC
129 0.246 732 0.017 1008 0.009 94 0.023
Crossmarket 0.85 137 0.051 0.88 98 0.012 0.69 282 0.008 0.93 175 0.021
146 0.034 434 0.011 816 0.007 165 0.021
129 0.212 732 0.010 537 0.014 94 0.026
CAIDA 0.87 137 0.057 0.71 527 0.010 0.86 282 0.014 0.99 165 0.024
146 0.043 434 0.010 816 0.009 175 0.022
129 0.270 732 0.018 309 0.010 94 0.025
CIC-APT-loT24 0.87 137 0.039 0.88 98 0.012 0.82 1008 0.008 0.98 37 0.022
99 0.033 434 0.011 537 0.008 222 0.021
129 0.215 527 0.012 537 0.010 94 0.025
CIC-IDS2017 0.85 137 0.055 0.74 732 0.012 0.69 282 0.009 0.92 165 0.022
146 0.038 434 0.011 816 0.008 175 0.020
129 0.191 527 0.013 282 0.016 165 0.025
MAWI 0.88 137 0.054 0.78 434 0.011 0.94 537 0.016 0.99 94 0.025
146 0.044 130 0.010 354 0.010 175 0.023

[Table 7|provides anisotropy for each model and dataset separately, including information for the top
three dimensions and their Mean Cosine Contributions towards anisotropy.

Table 8: MCC distribution statistics across all datasets.

Model Range Std Skew Kurtosis Gini

YaTC 0.2105 0.0163 10.7569 129.9826 0.7522
ET-BERT 0.0157 0.0017 3.3156 16.2447 0.6547
netFound 0.0119 0.0012 3.5168 19.9052 0.6504
NetMamba 0.0250 0.0049 2.1100 44845 0.6388

[Table 8|lists MCC distribution-related statistics across all datasets, providing additional insight into
the variability of the MCC metric.

D Comparison of BatchNorm layer, decorrelation, and whitening

Table 9: AF} test score after finetuning for 30 epochs on frozen embeddings with BatchNorm layer
(BN), decorrelation (D), or whitening (W).

Crossmarket CIC-IDS2017 CIC-APT-1IoT24
BN D w BN D 4 BN D W

YaTC +0.013 +0.025 +0.006 -0.009 +0.002 -0.003 +0.007 +0.001 -0.018
ET-BERT +0.007 +0.002 +0.008 +0.010 +0.014 +0.017 +0.008 +0.038 +0.021
netFound +0.016 +0.064 +0.073 +0.001 +0.001 +0.001 +0.047 +0.053 +0.064

NetMamba +0.129 +0.350 +0.228 -0.052 +0.112 +0.031 +0.029 +0.033 +0.008

To further explore the influence of various normalization techniques, we implemented three different
techniques (batch normalization, decorrelation, and whitening) and applied them to all models for
all datasets containing downstream task labels. We trained a single linear layer for 30 epochs on
the produced embeddings. The results are presented in and show that the decorrelation
technique consistently provides the largest increase in the F} test scores among all implemented
techniques. At the same time, we also notice that the results can be expected to depend on the
considered model-dataset combination.

E CICFlowMeter feature correlation

Figure 3|provides an overview of the CKA similarity index for each feature produced by CICFlowMe-
ter. The CKA values are averaged over all datasets. We notice that ET-BERT shows a lack of
correlation between (payload-only) embeddings and the flow features, while YaTC and netFound
clearly correlate with various features, some of which might be explicitly connected to their training
algorithm and loss functions.

23

ACK Flag Count -
Active Max -
Active Mean -
Active Min -
Active Std -
Average Packet Size -
Bwd Bulk Rate Avg -
Bwd Bytes/Bulk Avg -
Bwd Header Length -
Bwd IAT Max -
Bwd IAT Mean -
Bwd IAT Min -
Bwd IAT Std -
Bwd IAT Total -
8wd Init Win Bytes -
Bwd PSH Flags -
Bwd Packet Length Max |
Bwd Packet Length Mean -
Bwd Packet Length Min -
Bwd Packet Length Std -
Bwd Packet/Bulk Avg -
Bwd Packets/s -
Bwd Segment Size Avg -
Bwd URG Flags -
CWR Flag Count -
Down/Up Ratio -
ECE Flag Count -
FIN Flag Count
FWD Init Win Bytes -
Flow Bytes/s -
Flow Duration -
Flow IAT Max -
Flow IAT Mean -
Flow IAT Min -
Flow IAT Std -
Flow Packets/s -
Fud Act Data Pts -
Fud Bulk Rate Avg -
Fud Bytes/Bulk Avg -
Fwd Header Length -
Fud IAT Max -
Fwd IAT Mean -
Fud IAT Min -
Fud IAT Std -

CICFlowMeter Feature

Fwd IAT Total -
Fwd PSH Flags -
Fwd Packet Length Max
Fwd Packet Length Mean -
Fwd Packet Length Min -
Fwd Packet Length Std -
Fwd Packet/Bulk Avg -
Fwd Packets/s -
Fud Seq size vin -
Fwd Segment Size Avg -
Fwd URG Flags -
Idle Max -
Idle Mean -
Idle Min -
Idle Std -
PSH Flag Count -
Packet Length Max
Packet Length Mean -
Packet Length Hin
Packet Length Std -
Packet Length Variance -
RST Flag Count -
51N Flag Count
Subflow Bwd Bytes -
Subflow Bwd Packets -
Subflow Fwd Bytes -
Subflow Fwd Packets -
Total Bwd packets -

Total Fwd Packet -
Total Length of Bwd Packet -
Total Length of Fwd Packet -

URG Flag Count -

YaTC ET-BERT netFound NetMamba
Model

Figure 3: Similarity index of each of CICFlowMeter features per model. YaTC and netFound
demonstrate higher similarity with well-known white-box features compared to other models.

F Manifold dimensionality

Intrinsic Dimension (ID) calculation is a common technique [50] for evaluation of the effective
degrees of freedom in the embedding space and efficiency of its usage. By comparing the intrinsic
dimensions of the embedding space produced by different models on the same datasets, we can
evaluate to what extent the models are able to capture the hidden context presented in the data. We
used the TwoNN estimator [19] to calculate the ID of the embeddings produced by our models on all

datasets. The results are presented in[Table 10

Table 10: Manifold ID of the embeddings produced by the network foundational models.

YaTC ET-BERT netFound NetMamba

Crossmarket 7.36 108.62 6.07 7.85
CAIDA 5.92 108.67 5.19 6.50
CIC-APT-IIoT24 11.58 131.66 2.83 0.60
CIC-IDS-2017 6.20 108.31 8.09 7.44
MAWI 4.81 106.94 7.80 7.63

Models’ manifold ID is stable between datasets and similar between models. Most of the models
have similar manifold IDs between different datasets (except CIC-APT-110T24), indicating that the
datasets contain approximately similar amounts of information extractable by the models, irrespective
of whether the dataset is synthetic (collected in a controlled environment) or realistic (collected in a

24

real-world production network). Also, all models (except ET-BERT) are able to extract approximately
the same amount of information from these datasets.

ET-BERT manifold ID represents an architectural choice. ET-BERT demonstrates much higher
manifold ID values compared to all other models. This observation can be explained by the model’s
architectural choice of selecting only the payload for the embeddings computation. Since the payload
is often encrypted and contains therefore in theory a uniformly distributed set of all possible input
tokens, the model needs a much higher number of intrinsic dimensions to fully express the data.

G Zero shot clusterization

Silhouette score [44] is a common technique for evaluating the clustering quality of the embeddings
using downstream task labels, with values ranging from —1 (meaning possibly wrong clusterization)
to +1, where higher is better.

We calculated the Silhouette score on the Crossmarket and CIC-IDS-2017 datasets for all models and

present the results in

Table 11: Silhouette (clustering quality) score of network foundational models.

YaTC ET-BERT netFound NetMamba

Crossmarket -0.1387 -0.0551 -0.3608 -0.5043
CIC-IDS-2017 -0.0226 0.0972 -0.0127 -0.0121

Most of the embeddings have a negative Silhouette score. We observe that for both datasets
and all models (except ET-BERT and CIC-IDS-2017), the resulting score is negative. This finding
suggests that the models’ extracted embeddings are grouped according to different patterns and
similarities compared to those provided by the datasets’ authors. It also shows that embeddings
extracted from the frozen pretrained models might not provide enough information for the downstream
tasks and that additional unfreezing and training of the models might be required to improve their
downstream-related extraction patterns.

H Embedding space linear transformation.

Inspired by Ethayarajh et al. [[18], we designed an experiment to evaluate the linear transformation of
the embedding space in networking foundation models. We used the same networking datasets as
in[subsection 4.6 where we use network traffic with a certain Congestion Control algorithm, AQM
policy, and crosstraffic patterns for the baseline E'p, s, and similar kind of traffic but with a different
Congestion Control algorithm, AQM policy, and crosstraffic pattern for Ecc, Eagar, and Ecross
respectively. We also define F 4;; for the network traffic with all the different Congestion Control
algorithms, AQM policies, and crosstraffic patterns from the baseline.

To investigate the linear transformation properties, we define the vector E, = Ecc + Eaqum +
Ecross. Aseach of Ecc, Eagu, and Ec,.ss contains a single high-level context change and two
unchanged contexts, to bring the resulting vector Ej% to F 4y, we subtract 2 x Eg, . from E}%. The

Table 12: cos similarity and L; distance from the resulting embedding E'r to embeddings of network
data with various high-level context.

YaTC ET-BERT netFound NetMamba

cos L1 cos L4 cos 14 cos 14

ERrto Epgse 09360 21.1 09833 114.6 09448 169.0 0.9955 253
Erto Ecc 0.9385 209 09846 1094 09574 137.1 0.9958 65.1
Erto Eagn 09445 203 09821 118.8 09617 1297 09134 442
Erto Ecross 09385 21.1 09853 108.5 0.9556 1452 0.9960 24.7

Erto Eay 0.9408 204 09823 1177 09596 1259 0.9830 28.1

25

resulting vector E'r is then defined as Er = Ecc + Eagm Ecross — 2 * Epase and should be close
to E 4y if the linear transformation property holds.

[Table 12|shows the cos similarity and L; distance from the centroid of the resulting embedding E'r
to the centroids of the embeddings Epase, Ecc, Eagnm, Ecross, and E4y;. Higher cos similarity
and lower L; distance indicate the closest embeddings to the resulting embedding Er.

Neither of models seem to uphold the linear transformation property in both metrics. Among
the four models, neither of the models managed to demonstrate the desired result of cos similarity
being the highest between Er (resulting embedding after linear transformation) and F 4;; (target
embedding), instead often aligning E'r more closely with E4gnr or Ecross. At the same time, E'r
produced by netFound has the lowest L; distance to F 4;;, showing that the model is able to express
(to some extent) the required linear transformation properties and contains correct internal mapping
of network context in the embedding space.

In addition, both the YaTC and netFound models have the lowest cos similarity and the highest L
distance between Er and Ep,se (original embedding before any changes or transformations). This
result highlights that both YaTC and netFound can notice high-level network context changes intro-
duced by Congestion Control, AQM, and crosstraffic variations, distancing the resulting embedding
from the original traffic even if this distance does not uphold linear transformation properties (in case
of YaTC).

I Compute resources.

All experiments for this paper were conducted on a single node with 4 GPUs A100 with 80 GB GPU
RAM. The server contained 512 GB of RAM and attached network storage for data storage purposes.
Raw precalculated embeddings from all the models require around 40 GB of storage, and the full
datasets require 200 GB of free space for storage.

A subset of the experiments (all experiments using precalculated embeddings) can be executed on a
single CPU-based node (without GPU accelerators), but the execution time might vary.

J NetReplica

NetReplica [15] is a programmable network emulator that offers realism (i.e., captures complex
protocol dynamics and application behavior in the generated data), and controllability (i.e., provides
tunable knobs to control the network conditions for data generation). The emulator was originally
designed to address the prevalent domain adaptation problem in networking, where models trained in
(skewed) controlled settings fail to generalize in challenging production settings.

System architecture. NetReplica decomposes a complex network environment into one or more
bottleneck links (i.e., links that experience congestion) and facilitates explicitly specifying each of
the links’ critical attributes to systematically create different types of network conditions. The system
is built around three core abstractions: Link (type, nodel, node2) for defining network paths,
Bottleneck(type, link) for configuring constrained paths, and CrossTraffic for managing
background traffic patterns. The system supports multiple backends, including LibreQoS, tc, and
mahimahi for implementing traffic control policies.

Specifically, NetReplica exposes two categories of control knobs that allow researchers to precisely
specify network conditions for a bottleneck link: (1) Static attributes provide levers for specifying
fundamental network conditions, including link capacity (e.g., 10 Mbps vs. 100 Mbps), maximum
queue length (affecting bufferbloat), traffic shaping policy (e.g., token bucket or leaky bucket), and
active queue management policy (e.g., Random Early Detection, Controlled Delay). (2) Dynamic
attributes account for the behavior of the cross-traffic that traverses bottleneck links and leverages
endogenously generated packet traces collected in situ from real production networks. These traces
are preprocessed into different cross-traffic profiles (CTPs), each characterized by metrics measuring
traffic intensity (average throughput), burstiness (temporal variation), and heterogeneity (traffic
composition).

Data-generation setup. We use three servers (A, B, C) with 2.2 GHz Intel Xeon processors, 192 GB
RAM, and dual Intel-X710 10 Gbps NICs — one connected to the Internet via our campus network,

26

the other to a Cisco SX550X 10 Gbps switch. We configure the static and dynamic attributes
for the bottleneck link that connects Server A and C (via Server B). We deploy video streaming
(Puffer) and speedtest (NDT) servers on Server C with clients inside Docker containers on Server A.
We use tcpreplay for replicating cross-traffic that offers precise timing control to preserve burst
characteristics and temporal patterns during replay. The LibreQoS implementation at Server B uses
an XDP-based bridge that provides efficient packet processing with minimal overhead.

NetReplica-generated dataset. We use a combination of control applications at endpoints (i.e.,
Server A and C) and static and dynamic attributes for the bottleneck link (LibreQoS at Server B)
to synthesize different networking contexts. Each contextual subset contains ~ 100 network flows
collected from the environment with fixed choices and small introduced variability in insignificant
network metrics (e.g., minimal packet arrival time variation). In particular, this dataset contains the
following subsets:

* Stability baseline. A subset of flows with BBR (as a congestion control algorithm), FIFO
(as Active Queue Management), and cross-traffic profile #36.

* Congestion Control. A subset of flows with Cubic, FIFO, and cross-traffic profile #36.
* AQM. A subset of flows with BBR, CoDEL, and cross-traffic profile #36.
* Crosstraffic. A subset of flows with BBR, FIFO, and cross-traffic profile #29.

 All. A subset of flows with Cubic, CoDEL, and cross-traffic profile #29 (containing all three
changes compared to the baseline).

The cross-traffic profiles #29 and #36 were purposefully selected to represent different combinations
of intensity and burstiness. Profile #36 exhibits moderate intensity with low burstiness, while profile
#29 features higher intensity with moderate burstiness, creating distinctly different network conditions.
Each profile maintains consistent host counts and traffic composition to isolate the effects of temporal
traffic patterns.

27

	Introduction
	Preliminaries
	Existing evaluation efforts
	Hidden context in networking
	Necessity of intrinsic evaluation

	Intrinsic Evaluation Framework
	Embedding Geometry Analysis: quantifying representation space utilization
	Metric Alignment Assessment: measuring correspondence with domain-expert features
	Causal Sensitivity Testing: interventional analysis of protocol and context dependencies

	Benchmarking
	Network Foundation Models
	Datasets
	Embedding Geometry Analysis
	Metric Alignment Assessment
	Causal Sensitivity Testing: protocol-relevant perturbations
	Causal Sensitivity Testing: exogenous network context

	Conclusion
	Data representation for machine learning in networks
	Network Foundation Models and Datasets
	Anisotropy of the embedding space
	Comparison of BatchNorm layer, decorrelation, and whitening
	CICFlowMeter feature correlation
	Manifold dimensionality
	Zero shot clusterization
	Embedding space linear transformation.
	Compute resources.
	NetReplica

