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Figure 1: Overview of T2IScoreScore. T2I evaluation metrics are scored based on their ability
to correctly organize images in a semantic error graph (SEG) relative to their generating prompt,
checking ordering (Spearman’s ρ) and separation of nodes (Kolmogorov–Smirnov statistic).

Abstract

With advances in the quality of text-to-image (T2I) models has come interest in
benchmarking their prompt faithfulness—the semantic coherence of generated
images to the prompts they were conditioned on. A variety of T2I faithfulness
metrics have been proposed, leveraging advances in cross-modal embeddings
and vision-language models (VLMs). However, these metrics are not rigorously
compared and benchmarked, instead presented with correlation to human Likert
scores over a set of easy-to-discriminate images against seemingly weak baselines.
We introduce T2IScoreScore, a curated set of semantic error graphs containing
a prompt and a set of increasingly erroneous images. These allow us to rigorously
judge whether a given prompt faithfulness metric can correctly order images
with respect to their objective error count and significantly discriminate between
different error nodes, using meta-metric scores derived from established statistical
tests. Surprisingly, we find that the state-of-the-art VLM-based metrics (e.g., TIFA,
DSG, LLMScore, VIEScore) we tested fail to significantly outperform simple (and
supposedly worse) feature-based metrics like CLIPScore, particularly on a hard
subset of naturally-occurring T2I model errors. TS2 will enable the development
of better T2I prompt faithfulness metrics through more rigorous comparison of
their conformity to expected orderings and separations under objective criteria.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

mailto:saxon@ucsb.edu
https://t2iscorescore.github.io


1 Introduction

Text-to-image (T2I) models are improving at a breakneck pace in terms of quality, fidelity, and
coherence of generated images to their conditioning prompts [1–4]. Despite this, persistent challenges
in achieving image-prompt faithfulness [5, 6] remain—particularly in freely available models that
don’t sit behind proprietary APIs. Indeed, many techniques to improve T2I models have been
proposed of late, aiming to reduce hallucination [7, 8], duplication [9], composition errors [8, 10],
and missing objects [11, 12]. However, there is no consensus on how to best compare these many
models and methods, so it is hard to objectively track T2I progress [13, 14].

Recent work has proposed a litany of automated image-prompt coherence metrics which rate the
faithfulness of generated images: the degree to which a they satisfy the implicit requirements set forth
in the generating prompt [15–18]. These proposed metrics vary considerably in design; as rating how
well an image matches to its prompt is a nontrivial multimodal challenge [14, 19, 20].

This variety itself presents a meta-evaluation problem: there is no consensus on how these faithful-
ness metrics ought to be compared, and consequently each new metric is validated on its own ad-hoc
test set against prior baselines. Typically these self-evaluations consist of a set of prompt-image
pairs with accompanying human annotations (usually simple Likert scores [16, 19]), and metrics are
judged on their correlation to these human judgements [20].

Such self-evaluation is not ideal; authors may unwittingly tilt the scales by using evaluation examples
which cater to the particular strengths of their proposed method, and variance of metric performance
between different evaluation sets (containing different images and prompt semantics [21, 22]) is
high [23]. Additionally, relying on correlation to human judgements of small sets of images across
different prompts is highly subjective [24, 25] and prone to including judgements of quality and style
that are orthogonal to prompt coherence. We need a consistent and objective meta-evaluation.

To this end we propose T2IScoreScore (TS2), a benchmark and set of meta-metrics for evaluating
T2I faithfulness metrics. While it contains a similar number of images to previously proposed
coherence metric evaluation sets, it contains fewer prompts. This high image-to-prompt ratio allows
us to organize the images along semantic error graphs, or SEGs (fig. 1), where each edge corresponds
to a specific error with respect to the prompt that a child image set possesses but its parent images do
not. These semantic error graphs permit objective scoring of a metric by answering:

1. Can a metric correctly order increasingly wrong images against their generating prompt?
2. Can a metric reliably separate sets of images that differ by a specific semantic error?
3. Does the metric confidently separate the image sets within its dynamic range?

We adapt existing statistical tests [26, 27] to the SEG setting to answer these questions for a broad set
of T2I faithfulness metrics. We find some surprising results: despite their inferior performance in
correlating to human preferences against complicated vision-language model (VLM)-based metrics
[6, 16–18], simple embedding-correlation methods like CLIPScore [15] are actually quite performant
on our meta-metrics, and Pareto-optimal with respect to compute cost (§5). In summary, we:

• Formalize the task of objectively assessing T2I prompt coherence metrics by their ability to
correctly order and separate image populations within semantic error graphs (SEGs). (§2)

• Present T2IScoreScore (TS2), our evaluation for this task: a carefully-curated benchmark
dataset of SEGs each containing between 4 and 76 images, permitting 93,000 total pairwise
image comparisons and meta-metrics for ordering and separation in SEGs. (§2, §3)

• Evaluate a broad and representative set of T2I faithfulness benchmarks using TS2, demonstrate
that it identifies novel failure cases, and motivate future work on improved metrics. (§4 §5, §6)

1.1 Related Work

Most evaluations in the T2I space test the quality of generating models based on a fixed faithfulness
metric’s scores over a fixed benchmark set of prompts. Often these reference prompt sets are designed
for testing a single specific capability. DrawBench [4], T2I-CompBench [28], and ABC-6k [8] focus
on attributes like compositionality, cardinality, and spatial relations, in strictly text-guided image
generation, while ImagenHub [14] tests them in a broader set of settings like image editing and
subject-driven synthesis. Other evaluation dimensions such as multilinguality [29, 30] and stereotype
bias [31] have also been explored. These prompts are usually sourced from some combination of
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# Images Img. per Prompt # Img Comparisons Ad-hoc
Dataset Total T2I-Gen. Avg Per equiv. pref Total T2I Errors

Benchmarks for captioning models.
Flickr8k [32] 8k 0 0.2 0.2 8k 0 –
Flickr30k [33] 31k 0 0.2 0.2 31k 0 –
MSCOCO Captions [34] 330k 0 0.22 0.22 330k 0 –

Benchmarks for image retrieval/matching models. (Could be used for T2I metric evaluation)
SeeTRUE [38] 31k 0 1 1 31k 0 ✓
Pick-a-Pic [37] 500k 500k 21 1 7M 0 ✓

Benchmarks for T2I faithfulness metrics.
TIFA v1.0 [16] 800 800 5 1 4k 0 ✓
DSG-1k [16] 1k 1k 1 1 1k 0 ✓
T2IScoreScore 2.8k 2690 17 3.4 93k 3.1k –

Table 1: Comparison of benchmark datasets that can be used to evaluate T2I faithfulness. Per equiv
pref means the average number of images for each prompt that are assigned the same preference or
correctness score. Bold numbers are best overall, italic are best of the T2I metric benchmarks.

existing natural image captioning resources [32–34] and sets of in-the-wild conditioning prompts
produced by real users [35, 36]. These benchmarks assess image quality either by direct human
analysis or automated metrics [14] including those we analyze in this work. Often the goal of these
benchmarks is to analyze how well a model generates images that comport with human preferences
[14, 37], and directly elicit opinions from users through a web interface for this purpose.

To meta-evaluate faithfulness metrics a benchmark containing a fixed set of images and prompts is
required. However, all existing benchmarks for this purpose suffer from two key limitations:

1. Evaluating on noisy human preference rather than explicitly labeled objective differences
2. Low image-to-prompt ratio limiting evaluation of discriminatory power over similar images

Captioning benchmarks [32–34] are poor candidates for faithfulness metric evaluation as single
images are paired with multiple prompt candidates rather than vice versa. Image matching and
entailment benchmarks such as SeeTRUE [38] and Pick-a-Pic [37] are also limited by a low ratio.

The few extant deliberately-designed faithfulness evaluation sets are limited by both factors. TIFA
v1.0 [16] and DSG-1k [6] were proposed ad-hoc to demonstrate the utility of their accompanying
metrics by relating the scores assigned by the metric to human preferences. These are done over
small sets of images (800 & 1000 respectively) with slightly more images-per-prompt (5 & 1).

The two limitations of these prior evals are linked. A reliance on human preference correlations is a
natural consequence of having few and poorly organized images to compare to each prompt. A lack
of meta-metrics designed for evaluating structured aspects other than human preference correlation
means limited utility in collecting larger, structured sets of images for each prompt. By providing
both meta-metrics and a structured eval set T2IScoreScore overcomes these limitations (table 1).

2 T2IScoreScore meta-metrics

We introduce three measures of ordering and separation by a given metric within semantic error
graphs (SEGs). We define SEG S as prompt P and a directed acyclic graph of nodes ni containing
one or more images Ij sharing the same errors wrt. the prompt. We label each node by its error count
and type (eg, [0, 1a, 1b] has 1 node with 0 errors, and 2 nodes with 1 error each of different type).

A good prompt coherence metric will correctly rank images along each walk of increasing error
counts within a SEG, and separate the scores assigned to images in successive nodes. Our metrics
assess this by evaluating each walk separately. For ease of notation, we refer to each SEG as a set of
walks W ∈ S over nodes of increasing error count (eg, (0, 1a, 2a), (0, 1a, 2b), etc), where each walk
is the in-order set of all (image, prompt, num. error) triples (I, P,N) ∈ W . For example, the first
walk in fig. 1 is [(0-0.jpg, P , 0), (0-1.jpg, P , 0), (1-0.jpg, P , 1),(2-0.jpg, P , 2), ...].

We introduce measures of metric m for SEG S: rankm(S), sepm(S) & deltam(S), assessed over
every walk W ∈ S in all SEGs in the TS2 dataset to score a metric. They’re defined as:

1Although this benchmark has 14 pairs of images per prompt, each pair is separately annotated. With no way
to compare between pairs, the effective number of images per prompt is 2, with many repeated prompts.
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2.1 Ordering score over walks: rankm

We use Spearman’s rank correlation coefficient ρ [26] between image-level error count and metric-
assigned score over every walk on a SEG to assess how a metric’s faithfulness score aligns to our
objective structure error counts. Spearman’s ρ is the PCC of the rank order of variables X,Y :

ρ(X,Y ) =
cov(R(X), R(Y ))

σR(X)σR(Y )

; R(X) =
{ ∑

xi∈X

1(xi < x)
∣∣ xi ∈ X

}
(1)

Thus, in our case the SEG-level rank order score rankm(S) for scoring model m is defined as:

rankm(S) =
1

|S|
∑
W∈S

rs({m(I, P )|(I, P,N) ∈ W}, {N |(I, P,N) ∈ W}) (2)

One limitation of Spearman’s ρ for characterizing scores is that it is undefined if one set R(U)
exclusively contains identical elements, as σR(U) = 0. For tractability in these scenarios we define
ρ(·, R(U)) := 0. If a metric assigns identical scores to all examples across different error levels, it
presents no discernible relationship between error severity and score for that image set.

2.2 Statistical separation of error populations score: sepm

We assess the two-sample Kolmogorov–Smirnov statistic [27] pairwise between the populations
of metric m’s scores assigned to each sample between two error nodes ni and nj as populations.
The Kolmogorov–Smirnov statistic is a non-parametric measure of the separation between two
distributions [39, 40], defined as the maximum vertical difference between their empirical cumulative
distribution functions FX(s):

DKS(X,Y ) = sup
x∈Rm

|FX(x)− FY (x)| (3)

Where FX(x) is proportion of samples in population X for which the metric-assigned score m(i) ≤ x,
(see fig. 8 for a visual depiction). We compute DKS for every pair of adjacent error nodes in each
tree walk W 2, and report the average over all of these as the SEG separation score sepm(S):

sepm(S) =
1

|S|
∑
ni∈S

DKS({m(P, I)|(P, I) ∈ ni}, {m(P, I)|(P, I) ∈ ni+1}) (4)

2.3 Separation of nodes within dynamic range: deltam

While sepm nonparametrically estimates whether pairs of nodes are drawn from different distributions
(and thereby distinguished), it provides no information about the distance by which they are separated
within the metric’s dynamic range. This measure gives an alternative look at separation between
nodes: the more separation a metric provides between nodes, the less severe slight variations in
assigned score will be to ignoring errors in generated images. We assess it as:

deltam(S) =
1

|S|σm(∀S)

∑
Ni∈W

avg({m(P, I)|(P, I) ∈ Ni})− avg({m(P, I)|(P, I) ∈ Ni+1}) (5)

Where σm(∀S) is the standard deviation of scores from metric m on all images in all SEGs in TS2.
Our score is the average distance between the mean metric score of all adjacent nodes in all SEGs,
rescaled by the standard deviation of the score to normalize against the metric’s dynamic range.

3 The T2IScoreScore Dataset

We now turn to describing the TS2 dataset collection process. We use three different semantic error
graph collection procedures to produce a diverse set of SEGs. Each contains one prompt and between
4 and 76 images assigned to error nodes. Each node usually contains more than one image, though
for simplicity in presentation we only show one image assigned to each node in this section.

2We use individual nodes ni ∈ S containing pairs of prompt, image (P, I) ∈ ni to make this equation easier
to read.
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Figure 2: The three semantic error graph production procedures. Synth. (images generated from
multiple prompts written to populate a SEG), Nat. (natural images populate a SEG), and Real (real
errors from image generation attempts from one prompt populate a SEG).

3.1 Dataset Collection Procedure

Figure 2 depicts the three procedures by which we produce and populate SEGs with images: synthetic
images from a synthetic graph (Synth), graph from natural images (Nat), and graph from real errors of
synthetic images (Real), differentiated by prompt source, image source, and the order of production.

Synth. Synthetic SEGs are produced “graph first.” From an initial prompt we list all entities and
properties it contains, then ablate them to produce an error graph. We then manually write prompts
describing each node, generate their images, and manually check image-node faithfulness. For
example, in the left panel of fig. 2, the initial prompt “a Christmas tree with lights and a teddy bear”
is converted to error prompts such as “a Christmas tree with lights.”

Nat. The natural error trees exclusively contain real images sourced from the free stock image
repository Pexels. We generate SEGs in “image, graph, prompt” order. We source sets of natural
images that share objects and models. We organize them by relation graphs describing how the
images differ by objects, actions, attributes, and composition. We then select a head node in this
relation graph and write a “prompt” describing this head node (eg., fig. 2 center panel). We produced
SEGs of natural images to assess whether distributional differences between synthetic images and real
images might lead to measurable impacts on performance for the faithfulness metrics that typically
use base models pretrained exclusively on natural images [41].

Real. The real error, synthetic image SEGs are produced following a “prompt, image, graph” order.
From a seed prompt (both manually written and sourced from COCO or PartiPrompts) we simply
generate a large set of images using a T2I model, then annotate the errors in each generated image.
These error-labeled images are then organized into a final error graph for the SEG. This procedure is
documented in the right panel of fig. 2.

3.2 Dataset structure, size, and validity

Each of the 165 SEGs in TS2 is manually checked by three human annotators. The head node of
each SEG contains at least one image that has been assessed by the annotators to contain no errors of
verbal information (eg, entity in the image isn’t performing the described action), compositionality
(eg, object described as “on top” but is beneath object), missing objects, or incorrect object attributes.

Each edge on the SEG represents an error of one of the aforementioned types. Each node is labeled
with the number of edges along its shortest path back to node 0, representing its error count (fig. 1,
fig. 8). Each node contains at least one image which is erroneous according to the described errors.
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Figure 3: Overview of the distribution of sample types in TS2: (a) Where source images came from:
5% of images in the benchmark are real photographs from Pexels, while the remainder were generated
by Stable Diffusion (SD) or DALL-E variants. (b) Source of the eliciting prompt; either existing
resources or us (Manual). (c) Distribution of error types edges in all SEGs.

The synthetic images are generated with several T2I models—including DALL-E 2 [2], Stable
Diffusion 1.5 [3], 2.0, 2.1, and SDXL [42]. We use MS-COCO [43], PartiPrompt [35], and manually
written prompts in head nodes for the Synth and Real subsets. Image sources, prompt sources, and
error type statustics are documented in fig. 3.

The total number of images and prompts is roughly in line with previous benchmarks that have been
used to verify methods such as TIFA [16] and DSG [6] in their own papers, and permits significantly
more image comparisons-per-prompt than any prior benchmark (Table 1), which we submit is the
primary type of comparison required to verify that prompt-faithfulness assessments work.

4 Experiments

Using TS2 we evaluated three classes of T2I evaluation metrics: embedding-correlation (comparing
embeddings of prompt and image), QG/A (using VQA to check if requirement questions generated
from the prompt are satisfied) and caption-based (comparing captions extracted from the generated
images to the prompt). We evaluate these metrics with multiple backend VLMs (§A.2).

For each metric, we score every image against its SEG’s prompt. We report the results of our Ordering
and Separation metrics across all SEGs, as well as for our the Synth, Nat, and Real SEG subsets.

4.1 Embedding-correlation Metrics

CLIPScore [15] is a popular prompt faithfulness metric based on simple text-image similarity.
CLIPScore is computed as the cosine similarity of the L2-normalized CLIP-assessed [41] image and
text embeddings. Equations and details in §A.1.

ALIGNScore (not to be confused with the text-only AlignScore [44]) is a variant embedding-based
similarity score we produced using the ALIGN [45] embedding model rather than CLIP to embed the
prompt and image. Other than model it is equivalent to CLIPScore.

4.2 Question Generation & Answering (QG/A) Metrics

Question Generation & Answering Metrics use an LM MQG to produce a set of requirement
question/answer pairs (q, a) ∈ Q from prompt p, and then use a vision-language model MV L to
check each requirements against the image, reporting satisfaction rate as the image’s faithfulness
score. QG/A metrics vary by how questions are generated and relate to each other. Equations in §A.1.

TIFA [16] prompts an LM (GPT-3) to generate a set of multiple choice and yes-no questions and their
expected answers relative to the prompt. Then a vision language model MV L produces “free-form”
answers to each question, which are converted into multiple choice answers a′ using an SBERT
model. The TIFA score for a given image is then the rate of correct answers.
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Synth 75.0 77.6 72.6 79.2 79.2 80.2 78.8 44.5 83.6 74.6 80.1 81.6 85.1 81.6 35.4 82.6 50.2 61.6 42.5
Nat 58.0 70.2 66.9 62.8 64.0 65.1 62.2 23.5 61.6 65.3 65.9 68.8 70.7 71.6 20.5 73.7 36.2 44.4 22.4
Real 69.3 62.6 68.2 66.7 64.5 71.6 64.0 29.7 69.5 58.4 70.0 54.2 62.0 61.2 14.2 73.0 54.4 54.1 33.2

s
e
p
m

Avg 90.7 92.8 80.6 82.5 81.9 85.0 81.8 67.2 83.2 78.4 83.1 80.3 84.2 80.8 63.6 84.2 73.6 73.5 51.8
Synth 90.5 94.1 80.6 85.5 85.2 86.7 84.1 67.3 86.2 80.9 85.7 83.9 87.8 84.9 65.8 86.6 71.1 72.8 53.7
Nat 91.5 92.6 84.2 75.1 75.6 82.8 77.9 75.7 80.5 71.2 80.9 76.7 81.8 73.3 68.6 81.7 80.5 76.7 44.5
Real 90.3 87.9 77.4 76.8 74.4 80.5 76.4 59.3 73.7 75.1 74.5 69.4 71.9 70.8 50.3 76.6 77.3 73.6 50.7

d
e
l
t
a
m Avg 89.7 95.6 92.4 97.5 97.1 99.8 94.0 43.9 92.3 94.2 104.7 102.0 110.6 103.7 37.7 110.2 66.9 56.3 45.9

Synth 89.9 95.6 92.5 97.6 97.3 99.9 93.9 44.6 92.5 94.4 104.7 102.1 110.7 103.6 37.8 110.1 67.2 56.7 46.7
Nat 92.5 98.6 94.4 98.7 98.8 101.1 95.5 46.1 93.9 96.0 105.5 103.0 111.6 104.6 39.3 111.5 66.2 56.4 46.6
Real 95.1 100.8 96.0 100.5 100.4 102.6 96.9 46.9 95.9 97.3 106.8 104.2 113.0 105.9 39.4 113.0 65.0 56.0 46.3

FLOP/run 604M 688M 224T 224T 224T 224T 224T 224T 1.66P 140T 140T 140T 140T 140T 140T 860T 7.01T 7.01T 2.6T

Table 2: Spearman ordering score rankm, and Kolmogorov–Smirnov separation score sepm, average
dynamic range delta deltam, (all reported as % for readability) and estimated FLOPs to score an
image for each model. Best bold, within 2% of best underlined, top four colored by type (emb-based,
TIFA, DSG, caption-based). See §A.3 for information on how we estimate compute costs.

DSG (Davidsonian scene graph) [6] shares the QA structure of TIFA, but generates a set of require-
ment questions which are non-overlapping, have exclusively yes/no answers, and sit on a directed
acyclic graph such that a question is only satisfied if it and all its parent questions are answered yes.

Backend VLMs. All QG/A metrics rely on the use of a generative vision-language model (VLM)
either for performing question answering (MV L in §4.2) or captioning (MC in §4.3). Thanks to
the simple decomposable framework of the QG/A methodologies, we were able to efficiently test
the performance of both TIFA and DSG using several VLMs as visual question-answering backends
MVLMV L. We used mPLUG, LLaVA, BLIP, InstructBLIP, Fuyu, and GPT-4V as VLM backends
for the QG/A metrics. Details and reference for each VLM is provided in appendix §A.2.

4.3 Caption-comparison Metrics

LLMScore [17] captures the fine-grained similarity between the image and text with rationales
by leveraging the visual details understanding capability from vision experts and the reasoning
capability of LLMs. The visual information is parsed in hierarchical scene descriptions with global
and local captions. Then the text-only LLM (we use GPT3) will compare the multi-granularity visual
descriptions with the input text prompt to give a score according to the evaluation guideline prompt.

VIEScore [18] rates aspects of semantic consistency (SC) and perceptual quality (PQ) ultimately
providing a rating score on a scale of 0 and 10. We use 0-shot LLaVA-1.5 as the backbone MLLM to
evaluate how successfully the image follows the text-to-image prompt.

5 Results

Table 2 shows the results for the Ordering feature rankm and Separation features sepm and
deltam for each metric we assessed, on average for all SEGs (Avg), and the three SEG subsets, as
well as an approximate FLOP cost per run for each metric (§A.3).

We found that the Synth set consisting of hand-designed (and probably more obvious) errors was the
easiest subset for all metrics to correctly order. The average rankm score for Synth across all metrics
was 70%, for Nat 55% and for Real 56%. However, different subsets were hard for different classes
of metrics. For the QG/A metrics, Real was hardest, while Nat was harder for the other classes.

As the embedding-correlation metrics came first, TIFA [16], DSG [6], LLMScore [17], and VIEScore
[18] all compare themselves against a CLIPScore baseline [15]. Despite the superiority these metrics
supposedly held on their respective ad-hoc evaluations, the computationally cheaper CLIPScore and
ALIGNScore are Pareto-optimal in most cases (Figure 4), sharing the optimality frontier with DSG or
TIFA with GPT-4V, methods that are ≈ 6 orders of magnitude more computationally expensive.

7



107 1010 1013 1016

Estimated per-image cost (FLOPs)

0.0

0.2

0.4

0.6

0.8

1.0

O
rd

er
in

g
S

co
re

(r
a
n
k

m
)

ALIGNScore
DSG-GPT4V

TIFA-FuyuVIEScore

(All)

107 1010 1013 1016

Estimated per-image cost (FLOPs)

0.0

0.2

0.4

0.6

0.8

1.0

O
rd

er
in

g
S

co
re

(r
a
n
k

m
)

ALIGNScore
DSG-GPT4V

TIFA-FuyuVIEScore

(Nat)

107 1010 1013 1016

Estimated per-image cost (FLOPs)

0.0

0.2

0.4

0.6

0.8

1.0

O
rd

er
in

g
S

co
re

(r
a
n
k

m
)

CLIPScore
DSG-GPT4V

TIFA-Fuyu
VIEScore

(Real)

(a) Ordering (rankm) vs estimated cost/image (FLOPs), all metrics

107 1010 1013 1016

Estimated per-image cost (FLOPs)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

S
ep

ar
at

io
n

S
co

re
(d
e
l
t
a

m
)

ALIGNScore

DSG-GPT4V

TIFA-FuyuVIEScore

(All)

107 1010 1013 1016

Estimated per-image cost (FLOPs)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

S
ep

ar
at

io
n

S
co

re
(d
e
l
t
a

m
)

ALIGNScore

DSG-GPT4V

TIFA-FuyuVIEScore

(Nat)

107 1010 1013 1016

Estimated per-image cost (FLOPs)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

S
ep

ar
at

io
n

S
co

re
(d
e
l
t
a

m
)

CLIPScore

DSG-GPT4V

TIFA-FuyuVIEScore

(Real)

(b) Separation (deltam) vs estimated cost/image (FLOPs)

0.00 0.25 0.50 0.75 1.00

Separation Score (sep m)

0.0

0.2

0.4

0.6

0.8

1.0

O
rd

er
in

g
S

co
re

(r
a
n
k

m
) DSG-GPT4V

VIEScore

(All)

0.00 0.25 0.50 0.75 1.00

Separation Score (sep m)

0.0

0.2

0.4

0.6

0.8

1.0

O
rd

er
in

g
S

co
re

(r
a
n
k

m
)

ALIGNScore

TIFA-Fuyu

(Nat)

0.00 0.25 0.50 0.75 1.00

Separation Score (sep m)

0.0

0.2

0.4

0.6

0.8

1.0

O
rd

er
in

g
S

co
re

(r
a
n
k

m
)

CLIPScore

TIFA-Fuyu

(Real)

(c) Ordering (rankm) vs Separation (sepm)

Figure 4: Plots of ordering and separation scores against estimated per-image metric evaluation costs
in FLOPs and each other. For all analyses, the Pareto optimal metrics are DSG and TIFA with GPT-4,
and the vastly less expensive embedding-correlation ALIGNScore and CLIPScore.

6 Discussion

The headline takeaway from our findings is that, contrary to claims of superiority leveled in their own
papers, for all the QG/A and caption-comparison metrics [6, 16–18], the cheap embedding-correlation
metrics such as CLIPScore are sufficient or even preferable at capturing objective semantic errors
relative to fixed prompts. We view this capacity to accurately discriminate similar images relative to
a prompt as the core feature a good prompt faithfulness metric must possess.

T2IScoreScoreis effectively evaluating T2I metrics as relative score regressors—functions that
are predicting a specific score for an image. However, there are additional desirable elements to a
Human aesthetic preferences are—by design—ignored in TS2 meta-evaluation. Though the QG/A
and caption-comparison metrics fail to meaningfully outperform the cheap embedding-correlation
metrics, they may have advantages that are not captured by TS2, such as in modeling human aesthetic
preferences. Paired with a standalone benchmark of human aesthetic preferences over error-free
images, a metric’s error assessment and aesthetic fidelity could be measured independently.
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As the first objective evaluation of faithfulness metrics based on structural semantic errors, TS2 en-
ables more fine-grained measurement of metric desiderata, leading researchers to build better metrics,
and empowering developers to make trade off-informed metric choices.

6.1 Pareto frontiers with compute cost

Why do we care about compute cost? When evaluating T2I models at release, compute costs are not
very important—an evaluation only has to be run on a small set of images from benchmark prompts.

However, during training or in online monitoring, compute cost for faithfulness metrics becomes
quite important. Faithfulness metrics could be used as reward signals while training a T2I model
(or prompt generator), or called repeatedly during validation passes. Faithfulness metrics could be
deployed in applications to guide an online prompt refinement system, to trigger a second call in
user-facing applications, or to analyze prompt corpora to surface challenging examples for further
training or analysis. In all of these settings, a performant, low-cost model such as CLIPScore is
valuable. TS2 demonstrates that the performance premium for the expensive metrics is quite small.

6.2 Considering error graphs enables objective evaluation

Previous evaluations of coherence metrics have evaluated metrics as human preference score regres-
sors over single images, or over image pairs. The challenge with such an evaluation is that human
preferences are not objective—especially when provided by a small pool of annotators, correlation to
such scores is an unclear signal.

However, by instead evaluating walks over error counts in SEGs, the TS2 captures a more objective
notion of correctness, by ignoring the subjective relationships between pairs of unconnected nodes.

For example, consider the SEG presented in Figure 1, where two different single-error nodes are
shown. Given the prompt “a bot in a green shirt poses with some fruit,” one of these nodes contains
images without fruit, and the other contains boys wearing a blue shirt, rather than green. Which of
these types of images are actually worse with respect to the prompt? This is a subjective decision—
some annotators may find the missing fruits more important than the incorrectly colored shirt.
TS2 ignores this distinction, as no nodes of equivalent error counts are connected in any SEG. While
the difference between those nodes is subjective, the difference between both of these nodes and their
shared child node—one where fruits are missing and the shirt is incorrectly colored—is objective.

6.3 Human baselines and metric ignorance of ranking task

It is also important to note that metrics under test are not aware of the implicit ranking task in TS2, as
they are evaluated as score regressors. Objective human annotation was only possible because the
annotators were aware that relative ranking was the goal.

If human performance were judged on the task of simple Likert scoring of image-prompt accuracy
without instructions, humans may not significantly outperform the metrics. However, if the human
annotators were instructed to count the number of errors, we suspect they would perform quite well,
even without the other images for comparison over which the ranking task is performed.

Though we provide no human baseline, we do not think this is a significant weakness—human per-
formance on the inherently synthetic task of image quality scoring is not as important as performance
on ranking along objective errors.

6.4 Systematic advantages for some metrics

One disadvantage of using Spearman’s ρ is that it “expects” ties to be the same in both distributions.
For example, if a set of images has error count (0, 1, 1, 2), the ordering (1, 0.5, 0.5, 0) will have
a perfect ρ = 1, while the ordering (1, 0.51, 0.49, 0) will be penalized, despite it also presenting
a correct ordering. This means that our Ordering score rankm systematically punishes the
embedding-based metrics relative to the VLM-based ones, as the embedding-correlation metrics
CLIPScore and ALIGNScore can take continuous values, whie TIFA, DSG, LLMScore, and VIEScore
have a discrete range. In light of this systematic disadvantage for embedding-correlation metrics, it is
even more striking that CLIP/ALIGNScore still are so performant and on the optimality frontier.
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6.5 Near-perfect performance on rankm and sepm possible

Although the scores of many models on our metric are high, this meta-evaluation is far from “solved.”
In principle it should be possible to get much closer to 100 on average for both meta-metrics than we
find. We view use of TS2 as a necessary secondary evaluation for any new proposed T2I faithfulness
metric; if it has high correlation to subjective human judgements but does not perform well on
T2IScoreScore, skepticism might be warranted.

6.6 Impact of future VLM advances

Ultimately, all image coherence evaluation metrics stand to improve from further advances in
general VLM quality. As a considerably more performant model than LLaVA, mPLUG, etc, it
was unsurprising that GPT4-V worked much better as a backbone for TIFA and DSG than the
aforementioned. However, there do appear to be diminishing returns, as the order of magnitude going
from mPLUG- to GPT4-V-based evaluation yielded a sub-1% improvement in rankm performance
on the most difficult and construct-valid Real set. Better constraint-generating processes may be
required to push VLM-based evaluation metrics further.

7 Conclusion

We introduced T2IScoreScore, a first-of-its kind objective evaluation for text-to-image faithfulness
metrics that utilizes a high image-to-prompt ratio to organize its reference images along semantic error
graphs, through which a faithfulness metric can be assessed by our novel graph-based meta-metrics.
Our study reveals a surprising finding: more expensive and recent “state of the art” VLM-metrics
actually only have modest gains in performance over simpler and cheaper embedding-based metrics
at best. Indeed, these cheap metrics such as CLIPScore and ALIGNScore are actually Pareto optimal
along with the vastly more expensive and slightly more performant GPT-4V-based QG/A metrics,
even when strictly comparing ordering and separation capabilities (leaving compute cost aside).

This underscores the necessity for a more nuanced approach to benchmarking and developing metrics
capable of capturing the subtle semantic nuances between prompts and generated images. The
establishment of T2IScoreScore as a benchmarking tool is a significant step forward, offering a
structured way to rigorously test and improve T2I prompt faithfulness metrics, ensuring they can
more accurately reflect the semantic coherence between prompts and generated images, thereby
facilitating the development of more reliable and effective T2I models.

Limitations, ethical considerations, and impact

Limitations to our work are discussed throughout. For example, in §6.4 we discuss how our meta-
metrics are limited by intrinsic biases of rank-correlation metrics among ties (many of which occur
when multiple images occupy one node on a SEG). Additionally, compared to other evaluation sets,
our total number of prompts is modest (this is required to achieve a high image-to-prompt ratio,
however, which is a core strength of our work). Finally, due to its secretive nature, we are only able
to produce rough estimates of the compute cost of GPT-3 and GPT-4 based metrics. We estimate
them to the best of our ability using third-party information (§A.3).

This research will steer the development of more effective faithfulness metrics, which in turn will
guide T2I model development. T2I models are inherently dual-use: they can be used to produce
misinformation and other harmful content in addition to useful and entertaining imagery. Any work
that contributes to improving their overall performance necessarily drives a small amount of both
positive and deleterious impact in this way.
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A Supplementary Details

A.1 Equations for evaluated metrics

Embedding correlation metrics CLIPScore and ALIGNScore are computed using positive cosine
similarity between text and image features, from feature extractor model M as:

clip-s(p, i) = max(cos(MI(i),MT(p)), 0) (6)

VQA metrics VLM-VQA metrics like TIFA and DSG are assessed by a multiple choice question
assessment model (MB and a vision-language model MV L over questions Q generated by an LLM
based on the prompt p.

tifa-s(p, i) =
1

|Q|
∑

(q,a)∈Q

1(MB(MV L(i, q)) = a) (7)

A.2 VLM details

mPLUG is a class of vision-language models that use skip connections between visual encoder
embedding layers between cross-modal attention blocks in the transformer stack [46]. We use the
mPLUG-OWL [47] 7b checkpoint which uses LLaMA 7b [48] as the pretrained text encoder.

LLaVA is a fine-tune of Vicuna [49] (decoder-only transformer model) that uses a learned MLP
“vision-language connector” layer to map a single input image’s CLIP encodings into a shared
embedding space [50, 51]. We use LLaVA 1.5 13b. Because LLaVA was instruction fine-tuned for
chat applications, we experiment with a variant system prompt that requests concise answers from
the system. We mark this alternate option LLaVa 1.5 (alt) in plots and figures.

BLIP is a jointly-trained self-attention ViT trained with cross attention to multiple transformer
encoder and decoder pipelines with different tasks [52]. We use the BLIP encoder/causal LM
decoder combination as a transformer encoder-decoder model to produce VQA answers from the
blip-vqa-base checkpoint.

InstructBLIP extends BLIP by including an instruction fine-tuned “Q-Former” that selects salient
instruction-related visual features from a frozen ViT for input to a frozen LLM that answers the query
conditioned on the selected features [53]. We use instructblip-flan-t5-xl.

Fuyu is a decoder-only VLM that splits an input image into a sequence of patches that are separately
projected directly into the transformer embedding space, which jointly learns ViT and LM behaviors
[54]. We use Fuyu-8b.

GPT4-V is the largest state-of-the-art VLM provided by OpenAI [55]. It is expensive to run!

A.3 Compute cost estimates

Estimating FLOPs per inference pass for each model. We use OpenAI’s estimate [56] of ≈ 2N
OPs per forward pass for a large transformer model, where N is the total number of parameters.

Obtaining parameter count estimates for closed models. TIFA, DSG, and LLMScore use some
combination of GPT3 and GPT4, whose exact parameter counts and FLOP/inference costs haven’t
been publicly disclosed. We use estimates from SemiAnalysis to get an approximate FLOP cost.
While these numbers are likely imperfect, their orders of magnitude are as accurate as we can get.

Obtaining metric FLOP cost per single image eval. Given FLOP/forward pass estimates for each
model, our estimates of the FLOP cost to evaluate an image is a function of the number of model calls
and estimated tokens per call. The embedding-correlation metrics require 2 calls to an embedding
model, matmul and sum operations to get the cosine similarity. TIFA requires on average 8 questions,
with GPT-3 question-generating calls of average 40 tokens, and VQA model calls of average length
20 tokens. For DSG these numbers are 5, 40, 15. The costs of calling the freeform-to-multiple
choice model are negligible. We estimate that LLMScore and VIEScore both require approximately
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50 tokens of LLM or VLM compute to score an image. LLMScore’s use of mPLUG to caption is
negligible alongside the cost of running GPT-3.

Total compute cost of our study. In total, we estimate our study took 9.89× 1018 FLOPs, mostly
through OpenAI’s service, but also on lab-owned NVIDIA Titan-X and A-100 GPUs.

A.4 Semantic Error Graph Structure

For more information on the structure of the semantic error graphs (SEGs), we provide examples
here. SEG 85 is one example with a more interesting topology than the example in Figure 1. Figure 5
has a structure including two-error edges, single-parent nodes, single-child nodes, multi-parent nodes,
and multi-child nodes in the same graph, corresponding to prompt “guy with umbrella hat sitting at a
table with another person with a hat under a red umbrella.”

0

1

2

3a

3b

3c

4a

4c

No Errors

No 
other 
person

No other person, no hat

No table, 
no other person,
no hat

No other person, 
no hat,
no umbrella

No other person, no table,
no umbrella

SEG 85:“guy with umbrella hat sitting at a table with another person with a hat under a red umbrella.

No guy, no table,
no other person, no hat

4b No other person, no table, 
no umbrella, no hat

No guy, no other person,
no hat, no table

Figure 5: Example of a SEG (85) with a more complex structure. Some nodes have multiple child
nodes, and some edges correspond to more than one error (dark red).

A.5 Scoring within SEGs

Figure 7 exemplifies why we choose to only score rank order along walks of the graph, rather than
between all pairs of nodes. A priori there’s no reason the beach-less images should be worse than the
umbrellas, yet metrics consistently rate the beach error more severe.

B Supplementary Results

B.1 Comparing DSG question evaluation using DSG and TIFA score accumulation methods

The first few steps of TIFA [16] and Davidsonian Scene Graph (DSG) [6] scoring methods are nearly
identical: an LLM generates a set of requirements as questions, and a VQA system answers them.
However, the two methods differ chiefly in how the answers are combined into a single image-level
score. TIFA simply scores images by the correct answer rate, while DSG uses the graph structure of
the requirements to build in some robustness: if an upstream requirement is not met (e.g., is there
a boy? : no), then downstream requirements are all also assessed as not being met, regardless of
answer. In the example provided, if the question “is the boy’s shirt green?” were answered yes, the
DSG accumulation technique would still score this requirement as being not met, due to the upstream
requirement, while the TIFA accumulation method would score it as being met.
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Figure 6: Example of a SEG (109) with a simpler structure. We show multiple images for each of the
three nodes in this SEG.
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No umbrellas

Avg Scores:
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TIFA-mP: .    85
DSG-L:        .78
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LLM-EC:    0.33
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CLIPScore: .37
TIFA-L:       .15
TIFA-mP:    .24

DSG-L:         .20
DSG-mP:     .30
LLM-EC:     5.2

Figure 7: Examples from SEG 71 (The beach is crowded with red and white umbrellas). Even though
both nodes 1a and 1b have the same error count (1) they systematically differ across all metrics:
all metrics punish the images where the umbrellas are just in water (no beach, 1b) more than they
penalize an empty beach with no umbrellas (1a).
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Figure 8: Examples of scores assigned by three metrics to examples from an easy (a) and hard (b)
semantic error graph (left). Computation of the separation score sepm(S) for two metrics is depicted
at the right. Color coding of each cell corresponds to the metric’s score for the image being better
(blue) or worse (red); more correlated measures (presenting a higher rank order score rankm(S))
will show the same progression from red to blue (a), while harder-to-rank examples will not (b).
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Real 58.4 70.0 54.2 62 61.2 14.2 56.4 69.6 55.9 65.8 62.8 10

Se
p.

Avg 78.4 83.1 80.3 84.2 80.8 63.6 75.5 82.5 80.5 84.3 80.6 66
Synth 80.9 85.7 83.9 87.8 84.9 65.8 77.1 85.5 83.8 88.8 84.1 68.7
Nat 71.2 80.9 76.7 81.8 73.3 68.6 70.6 75.1 77.2 81.5 75.1 71
Real 75.1 74.5 69.4 71.9 70.8 50.3 73.1 76.8 70.6 68.9 71.4 50.8

Table 3: Comparing how using DSG vs TIFA-style accumulation for scoring each image by DSG
questions impacts performance along both our metrics. The right half of this table is identical to the
DSG section in Table 2, and bold, italic, and highlighting follows the same rules, except cells in the
TIFA half are marked as if they were replacing the right half cells in the DSG section in Table 2.

As a supplementary experiment, we compare how accumulating the DSG questions using the
DSG technique compares to accumulating them with the TIFA technique in Table 3. Interstingly,
the impact of this change differs between strong and weak VLMs, between ordering and and
separation scores, and between the easier and harder subsets. For example, switching from the
DSG to TIFAstyle acculumation consistently improves ordering performance for mPLUG, while it
worsens performance for LLaVA, InstructBLIP, and BLIP1. For Fuyu, the weakest model, DSGstyle
accumulation significantly improves performance over TIFA. This strengthens the claim from [6]
that using the scene graph to check requirements adds robustness; it makes a lot of sense that this
robustness benefits the lowest-performing VQA systems the most.

For separation scores, TIFA accumulation improves performance of more models. In particular, TIFA
accumulation pushes InstructBLIP into the top 3 for separation on the Synth subset, while no DSG
metric using DSG accumulation breaks into the top 3 (red highlighted cell).

B.2 Modelwise Spearman Ordering Score Histograms

Here we provide full histograms for our Spearman Ordering and Kolmogorov–Smirnov Separation
scores, across every SEG, for all metrics we assessed.
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Here we provide line plots for a set of metrics and SEGs. Note that for normalized_rank, higher
is worse (more errors). High-correlation is assessed when the metric lines (higher better) go down as
the metric lines go up.
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C Supplementary Analysis

Another interesting weakness of the QG/A metrics is that many unlucky situations where the VLM
backend presents a mix of true and false positives that cause incorrect rankings or poor separation
(DSG fails to order samples while CLIPScore succeeds in fig. 9) to occur. However, these VLM
failures cases are interpretable and can be targeted; T2IScoreScore will hopefully drive future
work in making LMs more robust to these sorts of errors for VQA to mitigate this issue. In addition
to these interpretability advantages, the more sophisticated VLM-based metrics still do present better
subjective human preference correlation than CLIPScore [6, 16–18]. By focusing exclusively on
objective similar-image ordering and separation, TS2 is effectively orthogonal to these preference
evals.

Given the documented biases LLMs have in directly outputting numbers [57, 58], it isn’t a surprise
that the technique which directly prompts VLMs to output a numerical preference value (VIEScore)
is at present the least robust.

In general it seems that the most successful methods that leverage VLMs (TIFA and DSG) still
ultimately produce scores using a deterministic algorithm. They use VLMs in a perceptual manner to
separately check each requirement, but the final score is the accuracy estimate from each separate
VQA question. This comports with the theories of LLM function that treat it as a “system 1” [59] ;
effectively TIFA and DSG are examples of VLM-modulo frameworks outperforming pure LLMs on
the task of prompt coherence scoring [60].

Yellow school
bus ✅
Blue car ✅
Red stop sign ✅

Q1: Is there a yellow school bus?
VQA: Yes there is a yellow school bus in
the image. (Correct, should be yes)
Q2: Is there a red stop sign?
VQA: No (Incorrect, should be yes)
Q3: Is there a blue car?
VQA: No (Incorrect, should be yes)

Correct DSG
Score DSG LLaVA CLIPScore

1 (3/3) 0.33 0.67

Target Score = 1 

Yellow school
bus ❌
Blue car ✅
Red stop sign ✅

Correct DSG
Score DSG LLaVA CLIPScore

0.67 (2/3) 0.33 0.56

Node 0

Target Score = 0.67 

Prompt: A yellow school bus and a red stop sign and
a blue car.

Node 1a

Q1: Is there a yellow school bus?
VQA: Yes there is a yellow school bus in
the image. (Incorrect, should be no)
Q2: Is there a red stop sign?
VQA: No (Incorrect, should be yes)
Q3: Is there a blue car?
VQA: No (Incorrect, should be yes)

SEG 143

Figure 9: Example of two images on nodes 0 and 1 from a hard SEG that are correctly separated
(and ranked) by CLIPScore but are not separated by DSG-LLaVA. VLM hallucinations are a key
hinderance to QG/A performance on TS2.
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Are the same SEGs hard for the same models? fig. 10 and fig. 11 present correlation plots between
SEG-wise rankm and sepm scores respectively between each pair of metrics. For both we show (a)
the correlations over all SEGs, and (b) the correlations between only SEGs in the Real subset. These
plots show that broadly, similar methods have similar “blind spot” SEGs, while different ones can
vary wildly in terms of which examples they succeed and fail at ordering and separating. Note that all
TIFA or DSG QG/A metrics have appreciable correlation to each other, provided they use a strong
enough VLM. The metrics employing weak VLMs such as Fuyu do not perform well. Similarly, the
two LLMScore metrics are highly correlated to each other; the pure VLM numerical rating methods
are not producing random noise. These correlations are stronger in the full set of SEGs (including
natural images and the easy, pre-designed Synth SEGs) than they are in the hardest Real set of SEGs.
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(d) Real SEGs only

Figure 10: Correlation between the Spearman correlation score for each prompt tree for each metric,
for all SEGs (a), for the synthetic error SEGs (b), for the natural image/synthetic error SEGs (c) and
for the real error subset (d).
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(d) Real SEGs only

Figure 11: Correlation between the K–S Separation score for each prompt tree for each metric, for all
SEGs (a), for the synthetic error SEGs (b), for the natural image/synthetic error SEGs (c) and for the
real error subset (d).
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Figure 12: Scatter plots comparing the two most correlated metrics (a, b) by Spearman correlation
Ordering score across the Synth, Nat, and Real populations, and the two least-correlated (c, d). Note
that the two highest-correlated metrics are both QG/A metrics using the same underlying VLM (DSG
and TIFA using BLIP1, (a); TIFA using LLaVA with two different system prompts, (b)).

Figure 12 and Figure 13 show scatter plots for the Ordering (Spearman) and Separation (KS statistic)
scores for every SEG between the most highly-correlated (a, b) and low-correlation (c, d) pairs of
metrics under evaluation, respectively.
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Figure 13: Scatter plots comparing the two most correlated metrics (a, b) by Kolmogorov–Smirnov
Separation score across the Synth, Nat, and Real populations, and the two least-correlated (c, d). Note
that the two highest-correlated metrics are both QG/A metrics using the same or related underlying
VLMs (DSG and TIFA using BLIP1, (a); TIFA using BLIP1 and InstructBLIP, (b)).

Both of these sets of figures confirm that similar underlying VLMs by-and-large “think” similarly in
terms of scoring models, even over different sets of questions (TIFA and DSG). This suggests that
development of overall better VLMs will generalize to many different types of VLM evaluations.
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15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects.
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