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ABSTRACT

The aim of inverse reinforcement learning (IRL) is to infer an agent’s preferences
from their behaviour. Usually, preferences are modelled as a reward function, R,
and behaviour is modelled as a policy, π. One of the central difficulties in IRL is
that multiple preferences may lead to the same behaviour. That is, R is typically
underdetermined by π, which means that R is only partially identifiable. Recent
work has characterised the extent of this partial identifiability for different types of
agents, including optimal agents and Boltzmann-rational agents. However, work
so far has only considered agents that discount future reward exponentially. This
is a serious limitation, for instance because extensive work in the behavioural
sciences suggests that humans are better modelled as discounting hyperbolically.
In this work, we characterise the partial identifiability in IRL for agents that use
non-exponential discounting. Our results are relevant for agents that discount hy-
perbolically, but they also more generally apply to agents that use other types of
discounting. We show that IRL, in these cases, is unable to infer enough informa-
tion about R to identify the correct optimal policy. This suggests that IRL alone
is insufficient to adequately characterise the preferences of such agents.

1 INTRODUCTION

Inverse reinforcement learning (IRL) is a subfield of machine learning that aims to develop tech-
niques for inferring an agent’s preferences based on their actions. Preferences are typically mod-
elled as a reward function, R, and behaviour is typically modelled as a policy, π. An IRL algorithm
must additionally have a behavioural model that describes how π is computed from R. By inverting
this model, an IRL algorithm can then deduce R from π. There are many motivations for IRL: for
example, it can be used in imitation learning (e.g. Hussein et al., 2017), or it can be used as a tool for
preference elicitation (e.g. Hadfield-Menell et al., 2016). In this paper, we are primarily concerned
with IRL in the context of preference elicitation.

One of the central challenges in IRL is that a given sequence of actions typically can be explained
by many different goals. That is, there may be multiple reward functions that would produce the
same policy under a given behavioural model. This means that the goals of an agent are only par-
tially identifiable. The nature of this partial identifiability in turn depends on the behavioural model.
For some behavioural models, the partial identifiability has been studied (Ng & Russell, 2000; Dvi-
jotham & Todorov, 2010; Cao et al., 2021; Kim et al., 2021; Skalse et al., 2022; Schlaginhaufen &
Kamgarpour, 2023; Metelli et al., 2023). However, this existing work has focused on a small number
of behavioural models that are popular in the current IRL literature. For other plausible behavioural
models, the issue of partial identifiability has largely not been studied.

One of the most important parts of a behavioural model is the choice of the discount function. In a
sequential decision problem, different actions may lead the agent to receive more or less reward at
different points in time. In these cases, it is common to let the agent discount future reward, so that
reward which will be received sooner is given greater weight than reward which will be received
later. There are multiple reasons for doing this. Some reasons are very practical; discounting typi-
cally leads to more stable behaviour, and it can be used to ensure that the preferences of an agent are
well-defined even over infinite time horizons. Other reasons are more philosophical in nature; a plan
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is always generated within some model of the environment, and there is always a risk that this model
is wrong. The longer a plan is, the greater is the risk that a mistaken assumption in the model will
force the plan to be revised. This uncertainty can be accounted for using discounting. In the context
of IRL, there is also an empirical motivation; human preferences are generally well-described as
involving discounting of future reward. People are impatient, and all other things being equal, it is
better to receive a benefit sooner rather than later (“a bird in the hand is worth two in the bush”). For
a more in-depth overview, see e.g. Frederick et al. (2002).

Discounting can be done in many different ways. The two most prominent and widely discussed
forms of discounting are exponential discounting, according to which reward received at time t is
given weight γt, and hyperbolic discounting, according to which reward received at time t is given
weight 1/(1 + kt). Here γ ∈ (0, 1] and k ∈ (0,∞) are two parameters. At the moment, most
work on IRL assumes that the observed agent discounts exponentially. The main reason for this
is that exponential discounting has many convenient theoretical properties. For example, it can be
computed recursively, and it leads to preferences that are consistent over time (an issue we will
return to later). However, there is extensive work in the behavioural sciences which suggests that
humans (and many other animals) are better modelled as using hyperbolic discounting (e.g. Thaler,
1981; Mazur, 1987; Green & Myerson, 1996; Kirby, 1997; Frederick et al., 2002). It is therefore a
significant limitation that IRL primarily uses behavioural models with exponential discounting. If
humans discount hyperbolically, then these models are misspecified (Skalse et al., 2022).

In this paper, we study the issue of partial identifiability in IRL with non-exponential discounting.
Specifically, we introduce a number of behavioural models for agents with non-exponential dis-
counting, and characterise the partial identifiability of these models. Moreover, we show that IRL
in these cases is unable to infer enough information about R to identify the correct optimal policy.
This suggests that IRL alone is insufficient to adequately characterise the preferences of an agent
that uses non-exponential discounting. All our results apply to agents that discount hyperbolically,
but most of our results also apply to agents that use other types of (non-exponential) discounting.

1.1 RELATED WORK

The issue of partial identifiability in IRL has been studied for many behavioural models. In particu-
lar, Ng & Russell (2000) study optimal policies with state-dependent reward functions, Dvijotham &
Todorov (2010) study regularised MDPs with a particular type of dynamics, Cao et al. (2021) study
how the reward ambiguity can be reduced by combining information from multiple environments,
Skalse et al. (2022) study three different behavioural models and introduce a framework for rea-
soning about partial identifiability in reward learning, Schlaginhaufen & Kamgarpour (2023) study
ambiguity in constrained MDPs, and Metelli et al. (2023) quantify sample complexities for optimal
policies. However, all these papers assume exponential discounting.

Most IRL algorithms are designed for agents that discount exponentially, but some papers have
considered hyperbolic discounting (Evans et al., 2015; Chan et al., 2019; Schultheis et al., 2022).
However, these papers do not formally characterise the identifiability of R given their algorithms.

2 PRELIMINARIES

In this section, we give a brief overview of all material that is required to understand this paper,
together with our basic assumptions, and our choice of terminology.

2.1 REINFORCEMENT LEARNING

A Markov Decision Processes (MDP) is a tuple (S,A, τ, µ0, R, γ) where S is a set of states, A is a
set of actions, τ : S×A → ∆(S) is a transition function, µ0 ∈ ∆(S) is an initial state distribution,
R : S×A×S → R is a reward function, and γ ∈ (0, 1] is a discount rate. In this paper, we assume
that S and A are finite. A policy is a function π : (S×A)⋆ × S → ∆(A). If a policy π can be
expressed as a function S → ∆(A), then we say that it is stationary. We use R to denote the set of
all reward functions definable over S and A (i.e. RS×A×S ), and Π to denote the set of all policies
that can be defined over S and A (i.e. ∆(A)(S×A)⋆×S ).
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A trajectory ξ = ⟨s0, a0, s1 . . . ⟩ is a possible path in an MDP. The return function G gives
the cumulative discounted reward of a trajectory, G(ξ) =

∑∞
t=0 γ

tR(st, at, st+1), the value
function V π : S → R of a policy encodes the expected cumulative discounted reward from
each state when following that policy, and its Q-function Qπ : S×A → R is Qπ(s, a) =
ES′∼τ(s,a) [R(s, a, S′) + γV π(S′)]. The advantage function Aπ is Qπ − V π . The evaluation func-
tion J gives the expected trajectory return given a policy, J (π) = ES0∼µ0 [V

π(S0)]. If a policy π

satisfies that V π(s) ≥ V π′
(s) for all states s and all policies π′, then we say that π is an optimal

policy. Q⋆ denotes the Q-function of the optimal policies. This function is unique, even when there
are multiple optimal policies.

A state st is terminal if τ(st, a) = st and R(st, a, st) = 0 for all actions a. Moreover, an MDP
is episodic if has one or more terminal states, and every policy with probability 1 eventually enters
a terminal state. When talking about episodic MDPs, we implicitly restrict R to reward functions
such that R(st, a, st) = 0 for all terminal states.

When constructing examples of MDPs, it will sometimes be convenient to let the set of actions A
vary between different states. In these cases, we may assume that each state has a “default action”
(chosen from the actions available in that state), and that all action which are unavailable in that state
simply are equivalent to the default action. For terminal states, we omit the actions completely.

2.2 INVERSE REINFORCEMENT LEARNING

In IRL, we wish to infer a reward function R based on a policy π that has been computed from
R. To do this, we need a behavioural model that describes how π relates to R. One of the
most common models is Boltzmann Rationality (e.g. Ramachandran & Amir, 2007), given by
P(π(s) = a) ∝ eβQ

⋆(s,a), where β is a temperature parameter, and Q⋆ is the optimal Q-function
for exponential discounting with some fixed discount parameter γ. An IRL algorithm infers R from
π by inverting a behavioural model. There are many algorithms for doing this (e.g. Ng & Russell,
2000; Ramachandran & Amir, 2007; Haarnoja et al., 2017, and many others), but for the purposes
of this paper, it will not be important to be familiar with the details of how these algorithms work.

2.3 PARTIAL IDENTIFIABILITY

Following Skalse et al. (2022), we will characterise partial identifiability in terms of equivalence
relations on R. Let us first introduce a number of definitions:
Definition 1. A behavioural model is a function R → Π.

For example, we could consider a function bβ,τ,γ that, given a reward R, returns the Boltzmann-
rational policy with temperature β in the MDP ⟨S,A, τ, µ0, R, γ⟩. Note that we consider the envi-
ronment dynamics (i.e. the transition function, τ ) to be part of the behavioural model. This makes it
easier to reason about if and to what extent the identifiability of R depends on τ .
Definition 2. Given a behavioural model f : R → Π, we say that the ambiguity Am(f) of f is the
partition of R given by the equivalence relation ≡f , where R1 ≡f R2 if and only if f(R1) = f(R2).

Ambiguity partitions can be used to characterise the partial identifiability of different behavioural
models. To see this, let us first build an abstract model of an IRL algorithm. Let R⋆ be the true
reward function. We model the data source as a function f : R → Π, so that the learning algorithm
observes the policy f(R⋆). A reasonable learning algorithm should converge to a reward function
RH that is compatible with the observed policy, i.e. a reward such that f(RH) = f(R⋆). This means
that the invariance partition of f groups together all reward functions that the learning algorithm
could converge to.

Am(f) can, by itself, be abstract and difficult to interpret. Therefore, in order to contextualise the
partial identifiability of a given behavioural model, it is useful to relate it to other more familiar
equivalence relations on R. As such, we will introduce one more definition:
Definition 3. Given a behavioural model f : R → Π and a partition P of R, we say that f is
P -identifiable if f(R1) = f(R2) =⇒ R1 ≡P R2.

In other words, f is P -identifiable if the output of f allows us to identify the P -class of the true
reward function. To make this more intuitive, suppose P is the partitioning such that R1 ≡P R2
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when R1 and R2 have the same optimal policies in some environment. Suppose also that we have
some behavioural model f . In this case, f being P -identifiable means that if f(R1) = f(R2), then
R1 and R2 have the same optimal policies. Thus, if there is a true reward function R⋆, and we
learn a reward function RH such that f(R⋆) = f(RH), then we can be sure that RH has the same
optimal policies as R⋆. Similarly, P could also be replaced with other partitionings. In this way, we
can qualitatively characterise the ambiguity of f in terms of P -identifiability.

3 THE NON-EXPONENTIAL SETTING

In order to study IRL with non-exponential discounting, we must first generalise the basic RL setting.
We will allow a discount function to be any function d : N → [0, 1]. Some noteworthy examples
of discount functions include exponential discounting, where d(t) = γt, hyperbolic discounting,
where d(t) = 1/(1 + k · t), and bounded planning, where d(t) = 1 if t ≤ n, else 0. Here γ, k, and
n are parameters. In this paper, we are especially interested in hyperbolic discounting, but most of
our results apply to arbitrary discount functions.1

Many of the basic definitions in RL can straightforwardly be extended to general discount functions.
We consider an MDP to be a tuple ⟨S,A, τ, µ0, R, d⟩, where d may be any discount function, and we
define the trajectory return function as G(ξ) =

∑∞
t=0 d(t) ·R(ξt). We say that V π(ξ) is the expected

future discounted reward if you start at trajectory ξ and sample actions from π, and that Qπ(ξ, a) is
the expected future discounted reward if you start at trajectory ξ, take action a, and then sample all
subsequent actions from π. Similarly, J (π) = ES0∼µ0

[V π(S0)]. As usual, if π is stationary, then
we let V π and Qπ be parameterised by the current state, instead of the past trajectory.

However, other concepts are less straightforward to extend to the RL setting with general discount
functions. To start with, for exponential discounting where γ < 1, we have that

∑∞
t=0 γ

t < ∞. This
ensures that V π always is strictly finite for any choice of R and τ . However, if

∑∞
t=0 d(t) diverges,

then V π will also diverge for some R and τ , which of course is problematic for policy selection.
Therefore, it could be reasonable to impose the requirement that

∑∞
t=0 d(t) < ∞ as a condition on

d. Unfortunately, this would rule out the relevant hyperbolic discount function. Since this function
is of particular interest, we will instead impose conditions on the transition function τ . In particular,
if τ is episodic, then V π is always finite, regardless of which discount function is chosen.
Proposition 1. In any episodic MDP, |V π(s)| < ∞ for all policies π and all states s.

All proofs can be found in the Appendix. Since episodic environments have convergent policy values
for all discount functions, our results will assume that the environment is episodic.

An important property of general discount functions is that they can lead to preferences that are
inconsistent over time. To understand this, consider the following example:
Example 1. Let Gym be the MDP ⟨S,A, τ, µ0, R, γ⟩ where S = {s0, s1, s2, s3}, A =
{buy, exercise, enjoy, go home}, µ0 = s0, and the transition function τ is the deterministic func-
tion given by the following labelled graph:

s0start

s1 s2

s3

bu
y

go home

exercise

go home

enjoy

The discount function d is the hyperbolic discount function, d(t) = 1/(1 + t), and R is the reward
function given by R(buy) = −1, R(exercise) = −16, R(enjoy) = 30, and R(go home) = 0.

This is a deterministic, episodic environment with four states {s0, s1, s2, s3}, where s0 is initial and
s3 is terminal. In state s0, the agent can choose between either buying a gym membership, or going

1Note that average-reward reinforcement learning (Mahadevan, 1996) is not covered by this setting. Aver-
aging the rewards is not a form of discounting, but is instead an alternative to discounting.
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home. If it buys the gym membership, then it gets to choose between exercising at the gym, or going
home. If it exercises, then it gets to enjoy the benefits of exercise, after which the episode ends.
Similarly, if the agent ever goes home, the episode also ends.

We can calculate the value of each trajectory from the initial state s0; G(go home) = 0,
G(buy, go home) = −1, and G(buy, exercise, enjoy) = 1. This means that the most valuable
trajectory from s0 involves buying a gym membership, and then exercising. However, if we calcu-
late the value of each trajectory from state s1, we (paradoxically) find that G(go home) = 0 and
G(exercise, enjoy) = −1. This means that the agent at state s0 would prefer to buy a gym member-
ship, and then exercising. However, after having bought the gym membership, the agent now prefers
to go home instead of exercising. In other words, the agent has preferences that are inconsistent over
time. We can formalise this as follows.
Definition 4. A discount function d is temporally consistent if for all sequences {xt}∞t=0, {yt}∞t=0,∑∞

t=0 d(t) · xt <
∑∞

t=0 d(t) · yt implies that
∑∞

t=0 d(t+ n) · xt <
∑∞

t=0 d(t+ n) · yt for all n.

Intuitively, if a discount function d is temporally consistent, and at some time n, it prefers a sequence
of rewards {xt}∞t=0 over another sequence {yt}∞t=0, then this is also true at every other time n. On
the other hand, if d is not temporally consistent, then it may change its preference as time passes. We
can see this in the MDP from Example 1.It is easy to show that exponential discounting is temporally
consistent, and Example 1 demonstrates that hyperbolic discounting is not temporally consistent.2
What about other discount functions? As it turns out, exponential discounting is the only form of
discounting that is temporally consistent. This means that all other discount functions can lead to
preferences that are not consistent over time.
Proposition 2. d is temporally consistent if and only if d(t) = αγt for some α, γ ∈ [0, 1].

For a proof of Proposition 2, see Strotz (1955) or Lattimore & Hutter (2014). This result indirectly
implies that there no longer is an unamibiguous notion of what it means for a policy to be “better”
than another policy in the setting with non-exponential discounting. For instance, in Example 1,
should the best policy choose to exercise at s1, or should it choose to go home? There are multiple
ways to answer this question, which in turn means that there are multiple ways to formalise what it
means for an agent to “use” hyperbolic discounting (or other non-exponential discount functions).
In the next section, we explore several ways of dealing with this issue.

4 BEHAVIOURAL MODELS

We wish to construct behavioural models for agents that use non-exponential discounting. To do
this, we must first decide what it means for a policy to be “optimal” in this setting. Because of
temporal inconsistency, the ordinary notion of optimality does not automatically apply, and there
are multiple ways to extend the concept. Accordingly, we introduce three new definitions:
Definition 5. A policy π is weakly resolute if there is no policy π′ such that J (π) < J (π′). It is
strongly resolute if there is no π′ or ξ such that V π(ξ) < V π′

(ξ).

A resolute policy maximises expected reward as calculated from the initial state. In other words, it
effectively ignores the fact that its preferences are changing over time, and instead always sticks to
the preferences that it had at the start. In Example 1, a resolute policy would buy a gym membership,
and then exercise. The difference between a strongly resolute policy and weakly resolute policy is
analogous to the difference between an optimal policy and a policy that maximises J . A strongly
resolute policy is always weakly resolute, but a weakly resolute policy may not be strongly resolute
if (for example) it would take a sub-optimal action in a state visited with probability zero.
Definition 6. A policy π is naı̈ve if for each trajectory ξ, if a ∈ supp(π(ξ)), then there is a policy
π⋆ such that π⋆ maximises V π⋆

(ξ) and a ∈ supp(π⋆(ξ)).

A naı̈ve policy ignores the fact that its preferences may not be temporally consistent. Rather, in each
state, it computes a policy that is resolute from that state, and then takes an action that this policy

2Note that this behaviour is an important reason for why hyperbolic discounting is considered to be a good
fit for human data. Under experimental conditions, humans can exhibit preference reversals in a way that is
consistent with hyperbolic discounting (see e.g. Frederick et al., 2002).
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would have taken, without taking into account that it may not actually follow this policy later. In
Example 1, a naı̈ve policy would buy a gym membership, but then go home without exercising.
Definition 7. A policy π is sophisticated if supp(π(ξ)) ⊆ argmaxQπ(ξ, a) for all trajectories ξ.

A sophisticated policy is aware that its preferences are temporally inconsistent, and acts accordingly.
Specifically, π is sophisticated if it only takes actions that are optimal given that all subsequent
actions are sampled from π. In Example 1, a sophisticated policy would choose to not exercise in
state s1. In state s0, it realises that it in s1 would choose to go home instead of exercising. Since
it in s0 prefers to go home over buying a gym membership and then going home, it chooses to go
home without buying a membership.

If d(t) = γt, then Definitions 5-7 are all essentially equivalent to optimality. Formally:
Theorem 1. In an MDP with exponential discounting, the following are equivalent: (1) π is optimal,
(2) π is strongly resolute, (3) π is naı̈ve, and (4) π is sophisticated. Moreover, (5) π is weakly resolute
and (6) π maximises J (π) are also equivalent, and (1)-(4) imply (5)-(6).

However, while Definitions 5-7 are all equivalent under exponential discounting, they can be quite
different if other forms of discounting are used, as already discussed for Example 1. As such, each of
these definitions give us a reasonable way to extend the notion of an “optimal” policy to the setting
with general discount functions. In the coming sections, we will discuss each type of policy in turn,
and show how to use them to define new behavioural models.

4.1 RESOLUTE POLICIES

In this section, we will show how to construct behavioural models based on resolute policies. First
of all, we note that any episodic MDP is guaranteed to have a resolute policy, regardless of what
discount function it uses. Moreover, there is always at least one resolute policy that is deterministic.
Theorem 2. In any episodic MDP, there exists a deterministic strongly resolute policy.

However, while an exponentially discounted MDP always has an optimal policy that is stationary,
there may not be any stationary resolute policy. Note that this is a consequence of the fact that
non-exponential discounting can lead to preferences that are not temporally consistent.
Proposition 3. There are episodic MDPs with no stationary (strongly or weakly) resolute policies.

To be well-defined, a behavioural model must pick a unique policy π for each reward function R.
However, there are reward functions for which multiple policies are resolute,3 and so we need a
criterion for choosing between them. Fortunately, this can be done in a relatively straightforward
way. First, we need to define the “resolute Q-function”. Note that since resolute policies may have
to be non-stationary, this Q-function must depend on the current time (in addition to the state):
Definition 8. Given an episodic MDP, the resolute Q-function QR : S ×N×A → R is defined by
letting QR(s, t, a) equal maxπ,ξ V

π(ξ) given that ξ has length t and ends in s, and that π(ξ) = a.

Proposition 4. In any episodic MDP, the resolute Q-function QR exists and is unique.

QR(s, t, a) is the greatest amount of expected cumulative discounted reward (as evaluated from time
0) obtainable from state s at time t, conditional on first taking action a. Any policy that always takes
an action that maximises QR(s, t, a) when it visits state s at time t, is (strongly) resolute.

Since QR is unique, it can be used to define behavioural models for resolute agents. A natural choice
would be to always mix uniformly among all actions that maximise QR, but we could also break
ties using some fixed rule. Alternatively, if we want a noisily resolute agent, then we could apply
the softmax function to QR, or we could let the agent take a random action with probability ϵ, etc.
To capture all of these options, we introduce the following definition:
Definition 9. The resolute advantage function AR : S × N × A → R is given by AR(s, t, a) =
QR(s, t, a)−maxa′ QR(s, t, a′). A behavioural model f : R → Π is regularly resolute if f(R1) =
f(R2) whenever AR

1 = AR
2 .

Most natural ways to specify policies for the resolute objective will satisfy Definition 9.
3For example, every policy is (strongly) resolute for the reward function that is 0 everywhere.
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4.2 NAÏVE POLICIES

Here, we show how to construct behavioural models based on naı̈ve policies. We begin by noting
that any episodic MDP is guaranteed to have a naı̈ve policy that is both deterministic and stationary:
Theorem 3. In any episodic MDP, there exists a stationary, deterministic, naı̈ve policy.

A behavioural model must pick a unique policy for each reward function, and there can be multiple
naı̈ve policies.4 Therefore, we need a criterion for choosing between them. As for resolute policies,
this can fortunately be done in a straightforward way. We first define the “naı̈ve Q-function”:
Definition 10. The naı̈ve Q-function QN : S×A → R is defined as QN(s, a) = QR(s, 0, a).
Proposition 5. In any episodic MDP, the naı̈ve Q-function QN exists and is unique.

QN(s, a) is the greatest amount of reward obtainable from state s, conditional on first taking action
a. Any policy which in each state s takes an action that maximises QN(s, a) is naı̈ve.

Since QN is unique, it can be used to define behavioural models for resolute agents. For example,
we can mix uniformly among all actions that maximise QN, or we could apply the softmax function
to QN, etc. To capture all these options, we introduce the following definition:
Definition 11. The naı̈ve advantage function AN : S ×A → R is given by AN(s, a) = QN(s, a)−
maxa′ QN(s, a′). A behavioural model f : R → Π is regularly naı̈ve if f(R1) = f(R2) whenever
AN

1 = AN
2 .

Most natural ways to specify policies for the naı̈ve objective will satisfy Definition 11.

4.3 SOPHISTICATED POLICIES

In this section, we will show how to construct behavioural models based on sophisticated policies.
We begin by noting that any episodic MDP always has a stationary sophisticated policy:
Theorem 4. In any episodic MDP, there exists a stationary sophisticated policy.

However, while there is always a stationary sophisticated policy, there are environments where all
sophisticated policies are nondeterministic. Intuitively, this is again a consequence of temporal
inconsistency (if an agent wishes to do one thing on its first visit to a state s, and a different thing on
subsequent visits to s, then this may compel it to randomise its actions at s).
Proposition 6. There exists episodic MDPs in which every sophisticated policy is nondeterministic.

A behavioural model must pick a unique policy for each reward function, and there can be multiple
sophisticated policies.5 Therefore, we need a criterion for choosing between them. Unfortunately,
this is less straightforward for sophisticated policies than it is for resolute and naı̈ve policies. The
reason for this is that there is no unique “sophisticated Q-function”:
Proposition 7. There exists episodic MDPs M with policies π1, π2 such that both π1 and π2 are
sophisticated in M , but Qπ1 ̸= Qπ2 .

As such, there are MDPs with multiple sophisticated policies, and where none of them can rea-
sonably be said to be “more canonical” than the others. This makes it more difficult to say how
sophisticated agents should pick their policies. Intuitively speaking, we want it to be the case that if
R1 and R2 are sufficiently similar, then f(R1) = f(R2). We can capture this intuitive requirement
with the following condition:
Definition 12. A behavioural model f : R → Π is regularly sophisticated if there for each reward
R1 exists a policy π1 such that if R2 is a reward with Aπ1

2 = Aπ1
1 , then f(R1) = f(R2).

Let us briefly unpack this definition. Here π1 is intended to be a policy that is sophisticated under
R1 (but our later results will not rely on the assumption that this is the case). As such, Definition 12
roughly says that if f prefers π1 for R1, and π1 has the same advantage function under R2 as it
does for R1, then f should also prefer π1 for R2. Also note that Definition 12 permits, but does not
require, that f(R1) = π1. This means that Definition 12 can capture behavioural models that select
noisy policies (by applying the softmax function to Aπ , for example).

4For example, every policy is naı̈ve for the reward function that is 0 everywhere.
5For example, every policy is sophisticated for the reward function that is 0 everywhere.
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5 IDENTIFIABILITY

We have shown how to define behavioural models for inverse reinforcement learning with non-
exponential discounting. In this section, we analyse whether or not these models are identifiable.
To do this, we must first select an appropriate equivalence relation on R. We have chosen to carry
out our analysis in terms of the equivalence relation ≡OPTτ,γ , according to which R1 ≡OPTτ,γ R2

if the (exponentially discounted) MDPs (S,A, τ, µ0, R1, γ) and (S,A, τ, µ0, R2, γ) have the same
optimal policies.6 We assume that ≡OPTτ,γ and the behavioural model fτ is defined in terms of the
same transition function τ , and that γ ∈ (0, 1]. In other words, this means that we will consider a
behavioural model to be indentifiable if the policy that this model computes in a given environment
is always sufficient to determine what policy would be optimal in that same environment.

This choice may not be obvious – if we observe a policy that is computed with non-exponential
discounting, why should we assume that the goal is to compute a policy that is optimal under expo-
nential discounting? As we see it, there are several considerations that make this a natural choice.
First of all, as we have noted, exponential discounting is the only discount function that always
leads to temporally consistent preferences (see Proposition 2). This makes the exponential discount
function a canonical choice. Secondly, since we assume that the environment is episodic, we can
allow γ = 1. This means that the undiscounted case is included as a special case of exponential
discounting, which is also a canonical choice.

Moreover, as we have noted before, we are especially interested in the hyperbolic discount function.
This discount function, in turn, limits to exponential discounting. Specifically, the further away in
time a choice is, the more “patient” a hyperbolically discounting agent becomes, until it eventually
starts to behave like an undiscounting agent. Moreover, this is also true for an exponentially dis-
counting agent, as γ → 1. To state this formally, let Jd be the policy evaluation function that uses
discount function d. We then have:
Theorem 5. Assume we have an episodic MDP, let u(t) = 1, and let π1 and π2 be policies such
that Ju(π1) > Ju(π2). Then if h(t) = 1/(1 + k · t), then there exist an N ∈ N such that for all
n ≥ N , if h+n(t) = h(t+n), we have Jh+n(π1) > Jh+n(π2). Moreover, there is a γ ∈ (0, 1) such
that, for all γ′ ∈ [γ, 1), if e(t) = γ′t, then we have that Je(π1) > Je(π2).

Note that Ju(π) is the undiscounted value of π. Theorem 5 thus tells us that if the undiscounted
value of π1 is higher than the undiscounted value of π2, then a hyperbolically discounting agent will
eventually prefer π1 over π2. Moreover, this is also true of an exponentially discounting agent, if γ
is sufficiently close to 1. This can be interpreted as saying that a hyperbolically discounting agent
wants to eventually discount exponentially, but that it may give in to temptations in the short term.

We first show that no regularly resolute, regularly naı̈ve, or regularly sophisticated behavioural
model is OPTτ,γ-identifiable for all τ , unless d is equivalent to exponential discounting:
Theorem 6. Let d be a discount function, and let fτ,d be a behavioural model that is regularly
resolute, regularly naı̈ve, or regularly sophisticated, for transition function τ and discount d. Then
for any γ ∈ (0, 1], unless there is an α ∈ (0, 1] such that d(t) = αγt for all t ≤ |S| − 2, there exists
a transition function τ such that fτ is not OPTτ,γ-identifiable.

This theorem is saying that, under mild assumptions, there is an environment with reward functions
R1 and R2 such that fτ,d(R1) = fτ,d(R2), but R1 and R2 have different optimal policies. There-
fore, none of the behavioural models we have defined give us enough information about the reward
function to determine the optimal policy.

Note that Theorem 6 says that there exists some transition function τ under which fτ,d is not
OPTτ,γ-identifiable. This does, by itself, not rule out the possibility that it might be OPTτ,γ-
identifiable for most typical transition functions. Therefore, our next result demonstrates that fτ,d
can be shown to not be OPTτ,γ-identifiable under very mild assumptions on τ , given that fτ,d is
regularly resolute, naı̈ve, or regularly sophisticated. We say that a state s′ is controllable if there is a
non-terminal state s and actions a1, a2 such that P(τ(s, a1) = s′) ̸= P(τ(s, a2) = s′), and that τ is
non-trivial if it has at least one controllable state. Moreover, we say that τ is acyclic if no path that
is possible under τ contains a cycle.

6Note that the set of optimal policies does not depend on the initial state distribution, and so ≡OPTτ,γ does
not need to be parameterised by µ0.
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Theorem 7. Let d be a discount function, let τ be a non-trivial acyclic transition function, and let
fτ,d be a behavioural model that is regularly resolute, regularly naı̈ve, or regularly sophisticated,
for transition function τ and discount d. Then for any γ ∈ (0, 1], unless γ = d(1)/d(0), we have
that fτ,d is not OPTτ,γ-identifiable.

Nearly all transition functions are non-trivial, so Theorem 7 applies very broadly. Note that The-
orem 6 makes weaker assumptions about the discount function but stronger assumptions about the
transition function, whereas Theorem 7 makes stronger assumptions about the discount function but
weaker assumptions about the transition function. In the appendix, we also discuss the question of
how to strengthen Theorem 6 and 7.

6 DISCUSSION AND FURTHER WORK

In this paper, we analyse partial identifiability in IRL with non-exponential discounting, including
(but not limited to) hyperbolic discounting. To this end, we have introduced three types of policies
(resolute policies, naı̈ve policies, and sophisticated policies) that generalise the standard notion of
optimality to non-exponential discount functions, and shown that these policies always exist in any
episodic MDP. We have then analysed the identifiability of these models, and found that each of
them, for any discount function, can be too ambiguous to identify the correct optimal policy.

Our results suggest that the preferences of a hyperbolically-discounting agent cannot be completely
inferred from their actions alone. IRL always leaves a certain irreducible ambiguity, that persists
even in the limit of infinite information – this is true regardless of what type of policy the observed
agent uses. However, if the observed agent is optimal or Boltzmann Rational, then this ambiguity is
not fundamentally problematic, since all reward functions in the feasible set produce the same opti-
mal policies (e.g. Skalse et al., 2022). By contrast, our results suggest that the ambiguity for agents
that use non-exponential discounting is more problematic, in that we may be unable to identify the
correct optimal policy even in the limit of infinite information. This imposes certain limitations on
the scope of IRL as a tool for preference elicitation.

There are a several ways that our work can be extended to. Improving our understanding of iden-
tifiability in IRL is of crucial importance, if we want to use IRL (and similar techniques) as a tool
for preference elicitation. Moreover, this analysis must consider behavioural models that are ac-
tually realistic: here we have considered hyperbolic discounting, since this is widespread in the
behavioural sciences, but there are also many other ways to make our models more plausible. For
example, it would be interesting to incorporate models of human risk-aversion, such as prospect
theory (Kahneman & Tversky, 1979).

To be informative, the ambiguity of a behavioural model must generally be related to some relevant
property of the reward function, i.e., an equivalence relation on R. Under this assumption, we have
chosen to examine whether or not our models are too ambiguous to identify the optimal policy of
the true reward function. However, there might be other equivalence relations that would also be
informative: hence, finding other appropriate equivalence relations by which to judge the ambiguity
of behavioural models would thus be another interesting direction for further work.

Finally, there are a few ways that our technical results could be made more complete. In particular, it
would be interesting to strengthen Theorem 7 by removing the acyclicity assumption – this is topic
of ongoing work.
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