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ABSTRACT

Molecule representation learning is crucial for understanding and predicting molec-
ular properties. However, conventional atom-centric models, which treat chem-
ical bonds merely as pairwise interactions, often overlook complex bond-level
phenomena like resonance and stereoselectivity. This oversight limits their pre-
dictive accuracy for nuanced chemical behaviors. To address this limitation, we
introduce DeMol, a dual-graph framework whose architecture is motivated by a
rigorous information-theoretic analysis demonstrating the information gain from
a bond-centric perspective. DeMol explicitly models molecules through paral-
lel atom-centric and bond-centric channels. These are synergistically fused by
multi-scale Double-Helix Blocks designed to learn intricate atom-atom, atom-bond,
and bond-bond interactions. The framework’s geometric consistency is further
enhanced by a regularization term based on covalent radii to enforce chemically
plausible structures. Comprehensive evaluations on diverse benchmarks, including
PCQM4Myv2, OC20 IS2RE, QM9, and MoleculeNet, show that DeMol establishes
a new state-of-the-art, outperforming existing methods. These results confirm the
superiority of explicitly modelling bond information and interactions, paving the
way for more robust and accurate molecular machine learning.

1 INTRODUCTION

Molecules, the fundamental building blocks of matter, govern the properties and behaviours of
everything from simple compounds to complex biological systems (Fan et al., 2025)). Their intricate
three-dimensional architectures and chemical interactions determine the functionality of drugs,
materials, catalysts, and biomolecules, making molecular understanding indispensable in fields such
as medicine (Li et al.l|2024])), energy (Wang et al., [2025)), and environmental science (Liu et al., 2025]).
Deciphering these relationships requires not only experimental techniques but also computational
approaches that can model and predict molecular behaviour at scale, which is a challenge that has
driven the rise of molecular representation learning.

Traditional methods for molecular analysis rely on

handcrafted descriptors (e.g., molecular fingerprints) ‘ng‘”“j"/ﬂ\c\/@)»ﬂ " .,
or physics-based simulations, which are labour- N & /lw - -
intensive and often limited in capturing complex ] )

structural dependencies (Duvenaud et all, 2015} Benzene (GoHa) 6 prorbitals defocalized

Collins & Bettens, [2015 ) With the 'advent of graph Figure 1: An example of the different bonds
neural netwprks (GNNS) in Al techniques, molecules e benzene (C6Hg). Formed by p-orbital over-
are now widely described as graphs, where atoms jap, the delocalized 7 system creates electron den-
(i.e., nodes) and bonds (i.e., edges) form intercon- sity above/below the ring plane, providing stability
nected networks, enabling end-to-end learning of and unique reactivity.

task-specific embeddings (Luo et al.} 2022} |Lu et al.,

2023)). Recent methods have shifted toward modelling molecules as 3D geometric graphs, leveraging
spatial coordinates of atoms to capture directional bonding patterns, steric effects, and non-covalent
interactions critical for accurate property prediction (Liao & Smidt, 2022} |[Lu et al., 2023; Hussain
et al., [2024).
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However, most existing methods treat atoms as primary entities, neglecting the rich information
embedded in chemical bonds themselves (Ying et al., 2021} Xia et al.| 2023} |Luo et al., 2022). Bonds
are not only pairwise interactions, but also carry attributes like bond order, length, and hybridisation
states that directly influence molecular reactivity and stability (Evans| |[2001). For instance, as Figure
[I] shown, the alternating single and double bonds on the benzene ring are not isolated but form
a delocalized m-electron system through inter-bond resonance. This collective behaviour cannot
be described by pairwise atomic interactions alone. Another critical yet underexplored aspect
of molecular modelling is the explicit capture of interactions between chemical bonds. While
bonds are typically treated as independent edges in graph-based models, real-world molecules
exhibit non-additive bond interactions that govern phenomena such as stereoselectivity and spatial
cooperativity (Ding et al.l 2019;|Weng et al.|[2021)). For example, as illustrated in Figure [Z], cisplatin
is an anticancer drug that belongs to the group of cell cycle non-specific drugs. It is therapeutically
effective against sarcomas, malignant epithelial tumours, lymphomas, and germ cell tumours. To be
specific, cisplatin is a platinum-containing compound in which two ammonia ligands and two chloride
ions bind to a central platinum atom in a cis configuration. This spatial arrangement enables cisplatin
to crosslink DNA strands, disrupting replication and inducing apoptosis in cancer cells (Dong et al.|
2019). In contrast, transplatin, the stereoisomer of cisplatin, possesses the same atomic composition
but features ligands in a trans configuration, rendering it pharmacologically ineffective. Therefore,
these striking differences arise not from changes in individual bond attributes (e.g., bond length or
hybridisation) but from the collective orientation of bonds relativ ’

.. . . cisplatin transplatin
To eliminate these limitations, we propose to model the

molecule bond interactions into the molecule representation Cly,, % ol

learning, thereby integrating the bond and interaction infor- g %

. 2 .. . cl % cl

mation for molecular property prediction. We first establish

the theoretical necessity of bond-centric graph in capturing ‘ )

bond-centric attributes and interactions in molecule represen- @) ﬁ r))

tation learning, as shown in Section[3.I] We propose a novel g 3 /‘ “J‘J

Dual-graph enhanced Multi-scale interaction framework for

Molecule representation learning, DeMol, which is a hierarchi- Figure 2: An example of bond-bond in-

cal multi-scale framework that explicitly models both atoms teractions in molecules that affect prop-

and bonds through dual-graph representations and geometric ctties. Left is the anticancer drug cis-
. . - - . platin, where two ammonia ligands and

constraints, including atom-centric channel and bond-centric g -

. P two chloride ions bind to a central plat-
channel and double-helix blopks. As shown in Elgure Bl two inum atom in a cis configuration. Right
channels encode a molecule into the atom-centric graph and i (ransplatin, which possesses the same
bond-centric graph, respectively. The double-helix blocks then  atomic composition but features ligands
facilitate information exchange and fusion between these two in a rrans configuration, rendering it
channels at multiple scales, enabling the model to capture intri- pharmacologically ineffective.
cate atom-atom, atom-bond, and bond-bond interactions for a
comprehensive understanding of the molecule. To ensure geometric consistency, we also introduce
bond prediction based on covalent radii as the regularisation term, as shown in Algorithm[I} which
enforces chemically plausible structures by penalising deviations from expected bonding distances.
Finally, we evaluate model performance on various molecular property prediction tasks. DeMol
outperforms the state-of-the-art methods on PCQM4Mv2, OC20 IS2RE, QM9, and MoleculeNet
datasets, which verifies the performance superiority of DeMol.

2 RELATED WORK

Graph-based Molecule Representation Learning. Molecule representation learning aims to encode
molecular structures into continuous vector spaces, capturing their chemical knowledge to facilitate
downstream tasks (Guo et al., [2022). GNNs and graph transformers encode atomic topological
information into molecule representations via message-passing (Gasteiger et al.,[2020; 2021} |Ying
et al., [2021}; Rampasek et al.| |2022). Various geometry-aware GNNs and equivariant neural networks
additionally learns molecular spatial geometry knowledge (Liu et al.,|2021b; |Liao & Smidt, [2022;
Zhou et al.| 2023 |Wang et al.| 2023b). Furthermore, some unified 2D/3D molecular representation
learning frameworks have also been proposed to make the best of topological and geometric features
integrally (Liu et al., 2021a; Luo et al., 2022; |Lu et al., 2023} Stirk et al.| 2022).



Under review as a conference paper at ICLR 2026

— Cross-Attention Layer — Graph Transformation
- Atom-centric Graph - Bond-centric Graph /| Structure-aware
[ \ €1 I, Module Self-Attention Layer
. @ & .
E‘ 3 Gaussian Layer T
MatMul A -
Softmax - MatMul
Linear |
) Softmax

—
.
]

|
? =
N

MatMul D |

d MatMul
Linear | | Linear m

\
m \ ) t
- A\ Li
s K S \ near | e )
T R/‘ Prediction Head \
\ }
\
q ! ! [ B
Atom-centric
Graph

Bond-centric
Graph Masked Atom Coordinate Bonding Property
Embedding Embedding Prediction Recovery | | Prediction | | Prediciton

Structure-aware Mask

Structure Encodings Structure-aware Mask

Scale
Scale

Structure Position Encoding Node Feature

v

Figure 3: DeMol integrates atom-centric and bond-centric channels via dual-graph representations. Cross-level
(atom-bond) interactions are enforced through double-helix blocks, ensuring geometric consistency.

Molecular Bond Modelling. In recent years, advances in 3D molecular representation learn-
ing have implicitly incorporated bond-related information to enhance atomic representations.
DimeNet (Gasteiger et al.,[2020) models interatomic distances and angles as structural constraints.
GemNet (Gasteiger et al.,|2021) involves dihedral angles in the geometric representation and message-
passing. Transformer-M (Luo et al.l [2022) integrates 3D distance encoding with the attention
mechanism. Meanwhile, there are individual pioneering studies that attempt to focus more on
chemical bonds. LEMON (Chen et al.|[2025)) employs line graphs as a contrast to molecule graphs,
and GEM (Fang et al., 2022)) encodes molecular geometries by modelling on bond-angle graphs.
These approaches have demonstrated the value of bond features, whether as auxiliary information or
independent modeling elements. However, despite the achieved success, existing molecule modelling
methods still suffer from unbalanced atom/bond modeling and geometric simplification. A coordi-
nated framework explicitly learning dynamic atom-atom, atom-bond, and bond-bond interactions
remains required for understanding more complete molecular semantics.

3 METHODOLOGY

We first establish the theoretical necessity of a bond-centric graph in capturing bond-centric attributes
and interactions in molecular representation learning. This theoretical foundation motivates our
DeMol framework, which explicitly models atom—atom, atom-bond, and bond-bond interactions to
achieve a more comprehensive understanding of molecular structures.

Problem Formulation and Notations. As shown in Figure[3] a molecule M is represented by two
graphs. For the atom-centric graph G = (V, €), node v; € V represents atoms with feature x; € R,
and edge ¢;; € € encode bond attributes e;; € R%. For bond-centric graph £(G) = (V’, €’), node
vg ;€ \4 represents bonds from G, with features derived from e;;, and edge e’( i) Gk € & connect
bonds sharing a common atom j, encoding angular relationships 6;;; and torsional angles ¢; ;.
We define the dual graph representation learning objective as mapping (G, £(G)) — (H(® H®)),
where H(®) € RN*d is the atom-level embeddings derived from G and H(®) € RM*% is the
bond-level embeddings derived from £(G). Our goal is to maximise mutual information between
representations and molecular properties while preserving geometric consistency.

3.1 THEORETICAL MOTIVATION AND RATIONALE

Proposition 1 (Information Gain from Edge Adjacency Patterns). For non-trivial graphs G, the
entropy of L(G) satisfies:

H(L(G)) = H(G) + H(E'|E) with Alegge-suucture > 0-

Al edge-structure
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This demonstrates that while the bond-centric graph is derived from the original graph, it encodes
unique structural information absent in the original. The justification can be found in Appendix [A.T]
To leverage this distinct source of information, we designed DeMol with two parallel processing
streams. Instead of treating bonds merely as edges in an atom-centric graph, we create a dedicated
bond-centric channel that processes £(G) as a first-class entity. This dual-channel design ensures
that the unique structural information inherent to both atoms and bonds is independently captured
and refined from the outset.

Proposition 2 (Mutual Information Decomposition). For any molecular graph G and its dual-graph
representation (H(®)  H(®)), the mutual information satisfies:

1(6,£(9);HY H") = 1(g;:H") +1(£(9);HYH)+1(g;HY|L£(9),H).

Atom-Centric Information Bond-Centric Information Residual Atomic Dependency

@

This decomposition demonstrates that dual-graph learning retains strictly more information than
single-graph approaches when I(£(G); H®[H(®) > 0 and I(G;H®|£(G),H®) > 0. The
justification can be found in Appendix Proposition 2 decomposes the total mutual information,
revealing that a dual-graph representation can capture strictly more information than either graph alone
by combining atom-centric information, bond-centric information, and their residual dependencies.
This highlights that the ultimate predictive power lies not in the separate representations, but in
their effective fusion. A simple concatenation of features would fail to capture the complex cross-
dependencies between atoms and bonds. To achieve a true synergistic fusion, we introduce the
Double-Helix Blocks. This mechanism employs a bidirectional cross-attention module that facilitates
a dynamic interaction between the atom and bond representations at multiple scales. This allows the
model to explicitly learn and integrate complex atom-atom, bond-bond, and atom-bond interactions,
directly optimising the information fusion highlighted as essential by our analysis.

Proposition 3 (Geometric Information Gain). Let 0;;;, denote bond angles and p;ji; denote
dihedral angles. If L(G) encodes angular relationships through E', the bond modelling gain
satisfies:

(Oijks Pijii h; (@), hj(a)7 hy @, 1y ()

3)
P(Oijr, Pijrl)

Al = I1(£(G);HP|G;HW) x E; 1, |log ¥

Proposition 3 reveals that the bond-centric graph is the natural domain for representing complex
geometric relationships like bond angles (6;;1) and dihedral angles (;;x;), which are only implicitly
captured in an atom-centric view. The structure of £(G), where bonds are nodes, makes relationships
between adjacent bonds (angles) and pairs of bonds (dihedrals) explicit. The justification can be found
in Appendix [A.3] To directly harness this geometric advantage, we introduce a torsion encoding
matrix (P}°"%) specifically within the bond-centric channel. By incorporating bond angles and inter-
bond dihedral angles as an attention bias in this channel, we inject critical 3D information where it is
most naturally represented. This targeted design choice, guided by our theoretical insight, ensures
that the model can more effectively learn from the molecule’s full geometric conformation.

Proposition 4 (Dual-Graph Information Bottleneck). For molecular property prediction Y, the
optimal encoder ® minimizes:

min | 7(G, £(G); H® H")) — BI(H<“>,H<”>;Y)] : “)

Proposition 4 applies the Information Bottleneck principle to our dual-graph setup. It suggests that
the optimal model must learn to compress the rich information from both graphs into a minimal
representation that is maximally predictive of the target property. The richer input from a dual-
graph system provides a tighter bound on this optimisation, but also increases the risk of learning
from spurious or non-physical correlations. This motivates our end-to-end learning approach, which
culminates in a final Prediction Head that leverages the fused atom-bond representations. Furthermore,
to ensure the model achieves an effective information-bottleneck trade-off, we introduce two key
regularisation and efficiency mechanisms: Bond Prediction based on Covalent Radii and Structure-
aware Mask.
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Our theoretical analysis establishes that dual-graph representations (atom-centric graph and bond-
centric graph) retain strictly more information than single-graph approaches (Proposition 1 and 2)
and improve geometric consistency by explicitly encoding angular relationships (Proposition 3). The
optimal encoder balances information compression with task-relevant prediction (Proposition 4).

3.2 PROPOSED FRAMEWORK

The previous theoretical foundation motivates our proposed dual-graph enhanced multi-scale interac-
tion framework (DeMol), as shown in Figure To model both G and £(G), DeMol employs dual
encoding channels that activate atom-centric and bond-centric representations in parallel.

Atom-centric Channel on G. This channel processes the atom-centric graph G to learn atom

embeddings {hi(a)}. Firstly, raw atom feature x; are embedded into h;(*? € R, Similar
to previous works, we use structure encoding to encode the 3D spatial and 2D graph positional
information (Zhou et al.l [2023; |Luo et al., 2022). As for 3D structure encodings, we encode
the Euclidean distance to reflect the spatial relation between any pair of atoms in the 3D space.
For each atom pair (¢, j), we first process their Euclidean distance with Gaussian Basis Kernel
function (Scholkopf et al.l [1997)

K 1 1 agpllt =5l + Bug — "
L= —= . : k={1,2,...,K 5
(b(z,]) /727T|0'k| €x ( 2( |O‘k| ) )7 { 3 4y ) }7 ( )

where K is the number of Gaussian Basis kernels. The input 3D coordinate of the i-th atom is
represented by r; € R3. a(;,5) and f3; ;) are learnable scalars indexed by the pair of atom types,
and p*, o* are predefined constants. Specifically, ¥ = w x (k — 1)/K and o* = w/K, where

the width w is a hyper-parameter. Then, the 3D distance encoding can be calculated as @?fj) =

GELU((ﬁ(l)])Wﬁ)W[Q), where (,25(17]) = [(]5%17]), NN ¢57J)]T, Wé S RKXK, W% S RKXl are
learnable parameters. Denote &% as the matrix form of the 3D distance encoding, whose shape is
N x N. As for 2D graph structure encodings, we encode the shortest path distance (SPD) between
two atoms to reflect their spatial relation. Let q)f,P D denotes the SPD encoding between atom 7 and ;.
For most molecules, there exists only one distinct shortest path between any two atoms. Denote the
edges in the shortest path from i to j as SP;; = (s1, s2,...,en) and O3PD ¢ RNXN 45 the matrix
from the SPD encoding. Combined above, the structure encoding is denoted as & = ®%st 4 $SPD,

For each atom ¢, the update process contains a self-attention and a feed-forward network (FFN) layer.
The attention weights and the atom representations are updated as

(Wi i) T (WVh{"")
Vi

00) B NG+ Y QD WORE), ©)
JEV(i)

az(? = Softmax; (

where W, Wj,, W, € R%*dn are learnable parameters.

Bond-centric Channel on £(G). Similar to G, we process the bond-centric graph £(G) to learn
bond embeddings {hg)} We first encode bond feature e;; as hgf)jo) € R%. Similarly, we use
3D spatial and 2D graph positional information to obtain structure encodings. Denote @577 and
@ﬁismme as the SPD encoding and 3D distance encoding between bond ¢;; and e;;, respectively,
which are shape M x M. Specifically, we use the coordinates of the midpoint of two atoms as
the coordinate of the bond r;; = $(r; + r;). In addition to this, we propose a new 3D structure
positional encoding for bond-centric, named torsion encoding ®;°"¢, which denoted as the shape
M x M matrix of bond angles 0;;;, and dihedral angles ¢;;;. If two bonds share one atom, the
bond angle can be computed as cos(f;;) = <. Otherwise, the dihedral angles can be

Teo sl Similar to the atom-centric channel, we process torsion
3 s

encoding with a Gaussian Basis Kernel function. Combined above, the structure encoding is denoted
as @, = ®fist 4 §FPD + dlors. For each bond ij, the attention weights and the bond representations
are updated as

- [
computed as cos(@;jr1) = A 1
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(WPRG)T(WiPh")
2 J
Vi

(b,1+1) _ (b,1) ) (1), (b,1)
hiy ™Y = FEN(Y + > By Wi ), ®)
keV/ (ij)

+ol), )

@ —
Biiiyeimy = Softmax ;) (

where W, W;, W, € R%*dx gre learnable parameters.

Cross-Graph Interaction via Double-Helix Blocks. To align atom and bond representations, we
introduce Double-Helix Blocks that enforce multi-scale consistency through cross-attention. For
atom i, cross-attention over its incident bonds {ij}:

W(l)h(‘a’?l) T W(,l)h(-b.’l)
D OB | a0 o)~ mEN G 4 3 2 W)
g kev(i)

%(lz) ;= Softmax;;; (

®

For bond 77, cross-attention over its atoms 4, j:

(W) T (W h{"")
Vi

s = Softmax; (

i7,%

+ o), b Y = FEN(SY + DT 60, WR(M).
ke{i,g}

10
Bond Prediction based on Covalent Radii. To ensure geometric consistency in molecular repre-
sentation learning, DeMol explicitly models atom and bond interactions through a bond prediction
module grounded in covalent radii constraints. Given a molecule M with atoms {a;}¥ ;, their 3D
coordinates {p; = (x4, i, 2;) }¥,, and a dictionary of covalent radii R, our algorithm (Appendix
[B] Algorithm|[T) predicts bonds by comparing interatomic distance to a threshold derived from covalent
radii. According to (Lu & Chen, |2012), we set the bond threshold factor « to 1.15. The Bond
Prediction based on Covalent Radii module acts as a regularisation term, penalising the model for
generating geometrically inconsistent structures and ensuring the learned representations adhere to
fundamental chemical principles.

Structure-aware Mask. Due to the introduction of bond-centric channel on £(G) and cross-graph
interaction blocks, the time complexity of the model could increase, see the Appendix [C|for a detailed
time complexity analysis. Whereupon, we introduce a structure-aware mask to mitigate this through
sparse attention masks derived from a chemical valency rule, where bond lengths between atoms
of covalent molecules are generally less than 3 A (Nikolaienko et al.,[2019). Considering that there
are still some weak interaction forces between the atoms, we take the interatomic distance less than
5 A as the basis for masking or not. Unlike using the adjacency matrix as a mask, the structure-
aware mask both preserves the adjacent interconnectivity of the atoms and captures the potential
long-range forces between the atoms. As for the bond structure-aware mask, we only consider the
adjacency and conjugacy relations to enhance the ability of capturing the conjugacy relations between
edges (Nikolaienko et al.,[2019).

4 EXPERIMENTS

In this section, we empirically study the performance of DeMol. First, we pre-train our model
on the training set of PCQM4Myv2, which is derived from OGB Large-Scale Challenge (Hu et al.|
2021). Then, we evaluate our model in various downstream tasks through fine-tuning, including the
PCQM4Myv2, Open Catalyst 2020 IS2RE, QM9, and MoleculeNet. Finally, we conduct a series of
experiments to investigate the key designs of our model for ablation studies.

Pretraining Dataset. The pertaining dataset PCQM4Mv2 (Hu et al.l |2021) is designed to facilitate
the development and evaluation of machine learning models for predicting quantum chemical (QC)
properties of molecules, specifically the target property known as the HOMO-LUMO gap. This
property represents the difference between the energies of the highest occupied molecular orbital
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(HOMO) and the lowest unoccupied molecular orbital (LUMO). The dataset, consisting of 3.37
million molecules represented by SMILES notations, offers HOMO-LUMO gap labels for the training
and validation sets. Furthermore, the training set encompasses the DFT equilibrium conformation,
which is not included in the validation sets. On this benchmark, models are required to utilize
SMILES notation, without DFT equilibrium conformation, to predict the HOMO-LUMO gap during
inference.

PCQM4Mv2. After pre-training, we evaluate DeMol on the PCQM4Mv?2 validation set. The
task involves predicting the HOMO-LUMO energy gap, with Mean Absolute Error (MAE) as the
evaluation metric. Since our pre-training objectives already include the HOMO-LUMO gap prediction,
we evaluate the model without additional fine-tuning. For comparison, we select diverse baselines
including both graph neural networks (GNNs) and Transformer variants. Detailed descriptions of
settings and baselines are presented in Appendix [D.2]

Table 1: Performance on PCQM4MV2 val- - Table[T| presents the comparative results, where DeMol es-
idation set (Hu et al., 2021). Bold values  (;plishes a new state-of-the-art with an MAE of 0.0603 eV,
indicate the best performance. reflecting a substantial leap in capturing molecular graph

Model | # param. | MAE ({) information with higher precision. Concretely, DeMol rep-
MLP-Fingerprint | 16.IM | 0.1735 resents a 0.0068 eV (10.1%) improvement over the pre-
gg\? ggm 8'%?;2 vious best model (TGT-At, 0.0671 eV) and significantly
GINE-yx 132M | 01167 outperforms other approaches like Transformer-M (0.0772
GCN-yx 49M | 0.1153 eV) and GraphGPSpggp (0.0852 eV). Notably, while prior
GIN-w 6.7M | 0.1083 top-performing models relied on extensive ensembles (e.g.,
DeeperGCN-vn 25.5M | 0.1021 s . .
GraphGPS 6oM | 00938 GPS++’s 112-model ensemble), DeMol achieves superior
p SMALL R . . . . .
TokenGT 48.5M | 0.0910 performance using only a single model, demonstrating its
GRPEgase 46.2M | 0.0890 inherent robustness and generalisation ability.
EGT 89.3M | 0.0869
GRPE; ArGE 46.2M | 0.0867 Open Catalyst 2020 IS2RE. In the Open Catalyst 2020
gizg:gglser ?g‘im g'gzgg Challenge (Chanussot et all, 2021)), machine learning ap-
GraphGPS,on | 13.8M | 0.0852 proaches are required to predict molecular adsorption en-
GEM-2 32.IM | 0.0793 ergies on catalyst surfaces. Specifically, we focus on the
GPS++ 44.3M | 0.0778 IS2RE (Initial Structure to Relaxed Energy) task, which
Transformer-M 6OM 0.0772 . . .
Unimol+ 7™M | 0.0693 comprises .approx1.m.at.ely 460K samples. In this task, the
TGT-At 203M | 0.0671 model is given an initial DFT structure of both the crystal
DeMol | 186M | 0.0603 and the adsorbate. These components interact during relax-

ation, and the model’s goal is to predict the system’s final
relaxed energy. Moreover, while DFT equilibrium confirmations are provided for training, they cannot
be used during inference. Appendix [D.3|contains detailed descriptions of settings and baselines.

Table 2] compares model performance on the OC20 IS2RE validation set using two key metrics:
Energy Mean Absolute Error (MAE) in electron volts (eV) and the percentage of Energies within a
Threshold (EwT), where lower MAE and higher EwT indicate better performance. DeMol achieves
state-of-the-art results, surpassing all baselines in both metrics. Specifically, DeMol obtains the lowest
average energy MAE (0.3879 eV), representing 5.1% and 3.7% improvements over Unimol+ (0.4088
eV) and TGT-At (0.4030 eV), respectively. In terms of EwT, DeMol demonstrates a significant lead
with an average 9.23%, compared to 8.61% for Unimol+ and 8.82% for TGT-At. Notably, DeMol
consistently achieves the highest EwT values across all categories, including In-Domain (ID), Out-of-
Domain Adsorption (OOD Ads.), Out-of-Domain Catalysis (OOD Cat.), and Out-of-Domain Both
(OOD Both). This consistent superiority highlights DeMol’s robustness in handling both in-domain
and diverse out-of-domain scenarios.

QM. We use the QM9 dataset (Ramakrishnan et al., 2014) to evaluate our model on molecular tasks
in the 3D format. QM9 is a quantum chemistry benchmark consisting of 134k stable small organic
molecules. These molecules correspond to the subset of all 133,885 species out of the GDB-17
chemical universe of 166 billion organic molecules. Each molecule is associated with 12 prediction
targets covering its energetic, electronic, and thermodynamic properties. The 3D geometric structure
of the molecule is used as the model’s input. Following (Tholke & De Fabritiis| 2022), we randomly
choose 10,000 and 10,831 molecules for validation and test evaluation, respectively. The remaining
molecules are used to fine-tune our DeMol model. The details of baselines and experiment settings
are presented in Appendix [D.4]
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Table 2: Performance on OC20 IS2RE validation set. NN refers to "Noisy Nodes" (Godwin et al.,[2021). Bold
values indicate the best performance.

Energy MAE (eV) | EwT (%) T

Model ID OOD Ads. OOD Cat. OOD Both  AVG. ID  OOD Ads. OOD Cat. OOD Both AVG.
SchNet 0.6465 0.7074 0.6475 0.6626 0.6660| 2.96  2.22 3.03 238 2.65
DimeNet++ 0.5636 0.7127 0.5612 0.6492 0.6217| 425 248 4.40 256 342
GemNet-T 0.5561 0.7342 0.5659 0.6964 0.6382| 451 224 4.37 238 3.38
SphereNet 0.5632 0.6682 0.5590 0.6190 0.6024| 456  2.70 4.59 270 3.64
Graphormer-3D |0.4329 0.5850 0.4441 0.5299 0.4980| - - - - -

GNS 0.54 0.65 0.55 0.59 0.5825| - - - - -

GNS+NN 0.47 0.51 0.48 046 0.4800| - - - - -

DRFormer 0.4222 0.5420 04231 04754 0.4657|7.23  3.77 7.13 410 5.56
EquiFormer+NN | 0.4156 0.4976 0.4165 0.4344 0.4410| 747 4.64 7.19 484 6.04
DRFormer 0.4187 0.4863 0.4321 0.4332 0.4425| 839 542 8.12 544  6.84
Unimol+ 0.3795 0.4526 04011 0.4021 0.4088|11.15 6.71 9.90 6.68 8.61
TGT-At 0.3813 0.4454 03917 0.3936 0.4030|11.15 6.87 10.47 6.80 8.82
DeMol [0.3663 0.4302 0.3746 0.3804 0.3879|12.04 6.98 10.86 7.01 9.23

Table 3: Results on QM9. The evaluation metric is the Mean Absolute Error (MAE). We report the official
results of baselines from Appendix@] Bold values indicate the best performance.

Model I a egoro €vmo Ae  R* ZPVE U, U H G C, Avg. Rank #
EdgePred 0.039  0.086 374 319 582 0.112 1.81 147 142 148 145 0.038 17.33
AttrMask 0.020 0.072 31.3 37.8 50.0 0423 190 10.7 108 114 11.2 0.062 13.92
InfoGraph 0.041 0.099 48.1 38.1 722 0.114 169 164 149 145 16.5 0.030 17.46
GraphCL 0.027  0.066 26.8 229 455 0.095 142 9.6 9.7 9.6 102 0.028 8.71
GPT-GNN 0.039 0.103 35.7 28.8 54.1 0.158 1.75 12.0 24.8 14.8 12.2 0.032 16.67
GraphM VP 0.031 0.070 28.5 263 469 0.082 1.63 102 103 104 11.2 0.033 10.88
GEM 0.034  0.081 33.8 277 521 0.089 1.73 134 12.6 13.3 13.2 0.035 14.71
3D Infomax 0.034 0.075 29.8 25.7 488 0.122 1.67 127 125 124 13.0 0.033 13.63
PosPred 0.024  0.067 25.1 209 40.6 0.115 146 102 103 10.2 109 0.035 9.88
3D-MGP 0.020 0.057 21.3 182 37.1 0.092 138 86 86 87 93 0.026 5.96
SchNet 0.033 0.235 41 34 63 0.073 1.7 14 19 14 14 0.033 16.00
PhysNet 0.0529 0.0615 329 247 425 0765 139 8.15 834 842 94 0.028 10.21
Cormorant 0.038  0.085 34 38 61 0961 2.027 22 21 21 20 0.026 18.33
DimeNet++ 0.0297 0.0435 24.6 19.5 32,6 0331 121 632 628 6.53 7.56 0.023 5.50
PaiNN 0.012  0.045 27.6 204 457 0.066 128 585 583 598 7.35 0.024 4.00
LieTF 0.041 0.082 33 27 51 0448 2.10 17 16 17 19 0.035 17.88
TorchMD-Net | 0.011 0.059 20.3 17.5 36.1 0.033 184 6.15 638 6.16 7.62 0.026 4.75
EGNN 0.029 0.071 29 25 48 0.106 1.55 11 12 12 12 0.031 11.58
NoisyNode 0.025 0.052 20.4 18.6 28.6 0.70 116 7.30 7.57 7.43 8.30 0.025 5.79
Transformer-M | 0.037  0.041 17.5 162 274 0.075 1.18 9.37 941 939 9.63 0.022 5.52

DeMol | 0024 0042 164 15.7 26.8 0.101 1.16 624 6.1 635 6.29 0.021 2.58

Evaluation results are presented in Table [3] demonstrating that our DeMol achieves competitive
performance against strong baselines. In particular, DeMol achieves state-of-the-art performance on
HOMO, LUMO, HOMO-LUMO gap, ZPVE, G, and C,, predictions. These findings suggest that
DeMol successfully captures essential quantum mechanical information through its modelling of
atomic and bond interactions, leading to accurate predictions across diverse molecular properties.
It highlights the effectiveness of DeMol’s architecture in learning transferable representations for
multiple quantum chemistry tasks.

MoleculeNet. After the model is pre-trained, we evaluate our DeMol on the MoleculeNet bench-
mark (Wu et al.,[2018), which involves eight widely-used binary classification datasets. These datasets
span diverse domains, including quantum chemistry, physical chemistry, biophysics, and physiology,
providing a comprehensive resource for cheminformatics modelling. Following established practice,
we employ scaffold splitting (Ramsundar et al.| 2019) to split the molecules according to their
structures, ensuring the evaluation that better reflects real-world use cases. The details of baselines
and experiment settings are presented in Appendix [D.5]

Figure [ and Appendix Table [5] compares the performance of molecular representation learning
methods across eight MoleculeNet benchmark datasets, evaluated using ROC-AUC scores under
scaffold splitting with 10 random seeds. Our DeMol achieves state-of-the-art performance with
an average ROC-AUC score of 79.96, surpassing all existing baselines. The model demonstrates
superior performance on 7 out of 8 benchmark datasets (BBBP, Tox21, SIDER, ClinTox, MUYV,
HIV, and BACE). Meanwhile, DeMol maintains competitive performance on the ToxCast datasets
compared to GEM (Fang et al.| 2022) and Uni-Mol (Zhou et al., [2023)). Specifically, compared to
Galformer (Bai et al., 2023), LEMON (Chen et al.| [2025), and GEM (Fang et al., 2022)), which
employ bond-centric graphs as well, DeMol achieves superior performance across all molecular
property prediction benchmarks. These results demonstrate DeMol’s superiority and robustness
across diverse chemical and biological properties. Moreover, its advantages are gained not only
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Figure 4: Results on molecular property classification tasks. The table version is Appendix Table

from its bond-centric graph representation but also from its explicit modelling of bond-bond and
atom-bond interactions, which collectively enhance molecular property prediction accuracy.

4.1 ABLATION STUDY

Table 4: Ablation study on the impact of ev-
ery component. Experiments are conducted

on the PCQM4Myv2 dataset.

Atom- Bond- Coval. Tors. Struc. Bond- Bond-

centric centric Radii Angle aware bond

Val.

atom MAEC(])

Graph Graph Pred. Posit. Mask Att.  Att. (meV)
- v - v - v - 89.9
v - - - - - - 712
v - v - v - - 76.4
v - - v - - - 75.5
v v 4 v - v - 65.4
v v v v v v - 64.8
v v - v v v v 61.1
v v v v - v v 61.7
v v v v v v v 60.3

We conduct a systematic ablation study to evaluate the
key components of DeMol using the PCQM4Mv?2 dataset,
with MAE (meV) as the evaluation metric (Table ). For
a fair comparison, all hyperparameters are kept the same
as the setting in the Appendix [D.2} The results demon-
strate that: (1) Using only the bond-centric graph achieves
a MAE of 89.9 meV, while using only the atom-centric
graph reduces to 77.2 meV. (2) Combining atom-centric
graph and torsional angle position encoding further im-
provement to 75.5 meV, whereas incorporating a prelim-
inary combination of the atom-centric and bond-centric
graphs, significantly reduces the MAE to 65.4 meV. This

highlights the complementary nature of the two graph representations. (3) Incorporating covalent radii
prediction, torsional angle encoding and structure-aware masks enables explicit modelling of angular
relationships and prunes non-physical interactions, leading to enhanced geometric consistency. (4)
The bond-bond and bond-atom attention mechanisms provide additional gains by capturing explicit
chemical bond interactions and cross-level atom-bond relationships. These findings collectively
validate that each component contributes uniquely to the model’s performance. The dual-graph archi-
tecture provides fundamental atom/bond representations, while geometric constraints and attention
mechanisms refine these through physical plausibility enforcement and interaction modelling.

5 CONCLUSION

In this paper, we propose DeMol, a dual-graph enhanced multi-scale interaction framework for
molecular representation learning, to address the critical gap in explicitly modelling chemical bonds
and their interactions. Extensive experiments demonstrate that DeMol achieves state-of-the-art
performance on diverse molecular property prediction tasks across PCQM4Mv2, OC20 IS2RE, QM9,

and MoleculeNet datasets.
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A JUSTIFICATION

A.1 JUSTIFICATION OF PROPOSITION 1

Proposition 1 (Information Gain from Edge Adjacency Patterns) For non-trivial graphs G, the
entropy of L(G) satisfies:
H(‘C(g)) = H(g) + H(6I|8) with AIe:dg,ff:-structure > 0.
——

Al edge-structure

Justification: In information theory, the information content of a graph G can be quantified via its
structural entropy. For the atom-centric graph G = (V, £), its entropy is decomposed as:

H(G) = H(V) + H(E|V), (11)
where H(V) is the entropy of the node distribution (e.g., entropy of degree distribution). H(E|V) is
the conditional entropy of edge connections given the vertex distribution, reflecting the randomness
of edge placements. The bond-centric graph £(G) elevated edges £ of G to nodes and encodes
adjacency relations between edges. Its entropy is:

H(L(G)) = H(E) + H(E'|€), (12)
where H(E) is the entropy of the original edge distribution (e.g., diversity of edge weights), H(E’|E)

is the conditional entropy of edge adjacency patterns in £(G), reflecting the complexity of edge-to-
edge connections.

Mutual information I(G; £(G)), which measures shared information between G and £(G), is
defined as:

1(G;£(9)) = H(G) + H(L(9)) — H(G; £(9)). (13)
Since £(G) is fully constructed from G, H(G; £(G)) = H(L(G)), leading to:
1(G;£(9)) = H(L(9))- (14)

This indicates that the entropy of £(G) originates entirely from G. However, the unique information
in £(G) lies in its conditional entropy H(E’|E), which captures edge adjacency patterns not explicitly
encoded in G. Thus, for non-trivial graphs G, the entropy of £(G) satisfies:

H(L(G)) =H(G) + H(E'|E) with Alegge-structure > 0.
——

A Iedge-slrucmre

H(E’|E) quantifies the randomness of edge adjacency patterns in G, introducing higher-order
structural information absent in G. This guarantees A leqge-sructure > 0.
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A.2 JUSTIFICATION OF PROPOSITION 2

Proposition 2 (Mutual Information Decomposition) For any molecular graph G and its dual-
graph representation (H(“) ,H®), the mutual information satisfies:

1(G,£(G); H® H®) = 1(g;HY) + 1(£(G); HV|H) +1(G;H® |£(G), H®).

Atomic Information ~ Bond-centric graph Information Residual Atomic Dependency

Justification:

Lemma 1 (Chain rule of mutual information) (Cover et al., 1991)

I(X,2;Y)=1(X;Y)+ I(Z;Y|X)

p(z,y,2)
I(X,Z;Y)=FE,s.» log ——————
( ) p(z, ,y)[ gp(y)p(z,x)}

p(z,y)  plz,ylz) (4
= Byta 2 [ los p(x)p(y) p(ZII)P(l/W)]
p(z,y) Pl vlo)

B,y [log 22V
s (108 s )

We start with the total mutual information 1(G, £(G); H®) , H(®) and apply the chain rule for
mutual information:

1(G,£(6):HW HY) = I(G, £(G): HW) + I(G, £(G); HV H®).

Since £(G) is a deterministic function of G, knowing G provides no additional information about
L(G). Therefore, I(£(G); H|G) = 0. This simplifies the first term:

(G, £(9); HY) = I(G:H') + 1(£(G); H|g) = I(G; H).
The second term, I(G, £(G); H® |H(®), can be expanded as:
1(G,£(G); HYHW) = 1(£(¢); HYH®Y) + I(g;HY |£(G), HY).
Combining these gives the full decomposition:

1(G,£(G); H® HY) = 1(g;H) + I(£(G); HY H™) + 1(g;HY) | £(G), H®).

This decomposition demonstrates that dual-graph learning retains strictly more information than
single-graph approaches when I(£(G); H®|H®) > 0 and I(G; H®|L£(G),H®) > 0.

A.3 JUSTIFICATION OF PROPOSITION 3

Proposition 3 (Geometric Information Gain) Let 0;;;, denote bond angles and ;1 denote

dihedral angles. If L(G) encodes angular relationships through E', the bond modelling gain
satisfies:

Oijk, i by (@ Ty (@) 1y ()
P(Oijks Pijii)

Al = I(£(G): H®|G:H®) x E,; ., |log P (16)
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Justification: This proposition provides a rationale for why incorporating a bond-centric graph
L(G) enhances the geometric richness of the learned molecular representations. The core of this
justification lies in connecting the structural properties of £(G) to its capacity for encoding higher-
order geometric information, which is then quantified using an information-theoretic framework.

1. Defining the Geometric Information Gain (A7): The term of interest, Al =
I(£(G); H®)|G; H(®), is a conditional mutual information. It quantifies the amount of
additional information that the bond-centric graph £(G) provides about the bond represen-
tations H(®), given that the atom-centric graph G and its corresponding atom representations
H() are already known. In the context of our framework, this term represents the marginal
information gain specifically attributable to the bond-centric perspective, which we posit is
predominantly geometric in nature.

2. Structural Suitability of £(G) for Geometric Encoding: The atom-centric graph G
explicitly models atomic connectivity (0-hop and 1-hop relationships). In contrast, the
bond-centric graph £(G) elevates bonds to nodes, thereby making relationships between
bonds explicit.

* A bond angle (6;;1) is fundamentally a property defined by two adjacent bonds sharing
a common atom. In £(G), this corresponds to a direct edge between two nodes.

* A dihedral angle (;;1;) describes the relationship across three consecutive bonds. In
L(G), this corresponds to a 2-hop path.

Therefore, the topology of £(G) is inherently better suited to explicitly represent these
higher-order geometric features than G, where such information is only implicit and must
be inferred.

3. Quantifying Information Gain via Predictive Power: A central tenet of representation
learning is that a high-quality embedding should capture the salient properties of the input
data. For molecules, 3D geometry is a fundamental property. Consequently, the quality of
the learned representations (H(a), H(b)) can be measured by their ability to reconstruct or
predict these geometric properties. The expression on the right-hand side of the proposition
is the Kullback-Leibler (KL) divergence, D1, (p(6, ©|H)||p(8, ¢)), averaged over the data
distribution. This KL divergence measures the reduction in uncertainty about the geometric
variables (6, ¢) after observing the learned representation H.

The structural nature of £(G) enables the model to learn a bond representation H®) that is more
richly infused with geometric information. The degree to which these representations have captured
geometric information is directly measured by their power to predict the true geometric parameters
(0ijk, ijii)- A more informative representation will lead to a posterior distribution p(6, ¢|H) that is
sharply peaked around the true values, resulting in a larger KL divergence from the uninformative
prior p(6, ¢). Thus, the geometric information gain, AI, derived from the bond-centric channel
is directly proportional to the model’s enhanced ability to predict these geometric quantities. This
justifies our architectural choice to integrate geometric features like torsional angles specifically
within the bond-centric channel of our framework.

A.4 JUSTIFICATION OF PROPOSITION 4

Proposition 4 (Dual-Graph Information Bottleneck) For molecular property prediction Y, the
optimal encoder ® minimizes:

min |1(G, £(G); H, HY) - ﬁI(H(@,H(b);Y)} . (17)

Justification: This proposition frames the task of learning molecular representations within the
Information Bottleneck (IB) principle. The objective is to demonstrate that a dual-graph input
provides a more advantageous starting point for solving the IB optimisation problem compared to a
single, atom-centric graph.

1. The Information Bottleneck Principle: The IB principle posits that an optimal representa-

tion (or encoding) of an input variable X for predicting a target variable Y should satisfy
two competing objectives:
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* Compression: It should compress the input X as much as possible, discarding non-
essential information. This is achieved by minimizing the mutual information I(X; Z)
between the input X and the representation Z.

* Prediction: It should retain as much information as possible about the target Y. This
is achieved by maximizing the mutual information I(Z;Y).

The Lagrangian multiplier 5 controls the trade-off between these two objectives.

2. Mapping the IB Principle to the DeMol Framework: In our context, the variables are
mapped as follows:

e The input X corresponds to the complete dual-graph description of the molecule:
(g7 E(g))'

* The learned representation Z corresponds to the set of atom and bond embeddings:
(H® H®),

* The target variable Y is the molecular property to be predicted.

Thus, the objective function in Proposition 4 is a direct application of the IB principle to our
framework, where the encoder ® learns the mapping from the dual-graph input to the latent
embeddings.

3. The Advantage of a Dual-Graph Input: The central argument for the superiority of the
dual-graph approach within the IB framework is that it provides a richer, more structured
input to the encoder.

* Richer Information Content: As established in Proposition 1, the dual-graph input
(G, L(G)) contains strictly more information than the atom-centric graph G alone,
particularly regarding explicit geometric and relational bond information.

* Improved Compression-Prediction Trade-off: By starting with a more informative
and structured input, the encoder @ s better positioned to find a more optimal solution
to the IB trade-off. The model can more effectively disentangle which aspects of the
molecular structure are predictive of the target property Y (e.g., a specific torsional
angle critical for bioactivity) from those that are merely structural artifacts. An encoder
operating only on G might be forced to retain more ambiguous structural information
because the critical geometric cues are only implicitly represented. The dual-graph
input allows the encoder to be more selective, potentially achieving a representation
that is simultaneously more compressive (by discarding redundant atomic information)
and more predictive (by focusing on the explicit bond-level features that matter). This
leads to a better trade-off, or a tighter bound, in the optimization process.

4. Connection to Architectural Choices: This theoretical motivation directly informs our
model’s design. The IB principle rationalizes not only the end-to-end learning objective
but also the necessity of regularization to achieve effective compression. The Structure-
aware Mask and the Bond Prediction based on Covalent Radii module can be interpreted
as forms of inductive bias that aid the compression objective. By enforcing chemical
and physical plausibility, these components guide the encoder to ignore vast regions of
the potential representation space that correspond to unrealistic molecular conformations,
thereby helping it find a more compact and meaningful representation.

In summary, Proposition 4 justifies our dual-graph framework by positioning it within the established
Information Bottleneck principle. The richer input provided by the dual-graph representation allows
for a more efficient and effective optimization of the compression-prediction trade-off, ultimately
leading to learned embeddings that are both concise and highly predictive of molecular properties.

B BOND PREDICTION BASED ON COVALENT RADII ALGORITHM

C TiIME COMPLEXITY ANALYSIS

In this section, we analyse the time complexity of the DeMol framework. This analysis helps to
understand the computational efficiency of our dual-graph architecture and provides insights into how
the proposed design choices affect scalability.

The DeMol framework operates on a dual-graph representation, consisting of:
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Algorithm 1: Bond Prediction based on Covalent Radii.

Input: List of N atoms of molecule M: A = {a1, az, ..., an }; Each atomic type (e.g., ‘H’, ‘C’, ‘O’): T}
3D coordinates: ' = (z,v, z); Covalent radii dictionary: Rco.; Bonding threshold factor:ac = 1.15.
Qutput: Predited Bonds B.

B+ 0 > Initialize an empty set for bonds
fori < 1to N —1do
T; + type(a:); > Get atom type
i < Reoo[T3]: > Look up covalent radii
D (i, i, 23); > Get coordinate
for j <~ i+ 1to N do
T} « type(a;); > Get atom type
7 < Reou[T}]; > Look up covalent radii
Dy (T5,95,25)s > Get coordinate
Roum < ri + 153 > Calculate the sum of covalent radii
Dipreshold — & X Rsum; > Calculate the bonding distance threshold
Dij +/(zi — )2 + (yi — ;)% + (zi — 2;)% > Calculate the Euclidean distance
if Dij S Dthreshold then
| B+ BU{(i,j)} > Add the bond pair to the set
end
end
end
return B; > Return the set of predicted bonds

1. An atom-centric graph G = (V, &), where nodes represent atoms and edges represent
chemical bonds.

2. A bond-centric graph £(G), derived from G, where nodes represent bonds and edges encode
spatial or topological relationships between bonds.

Let |V| = N denote the number of atoms in a molecule and || = M the number of bonds. The
feature dimensions for atoms and bonds are denoted as d and dy, respectively. We assume the use of
multi-head attention with h heads and L layers for both the atom-centric and bond-centric channels.

Atom-Centric Graph. Each layer of the atom-centric graph processing involves a graph attention
mechanism. For a sparse molecular graph, the number of edges M ~ O(N). Hence, the time
complexity per layer is O(h - M - d). For L layers, the total complexity becomes O(L - h - N - d).

Bond-Centric Graph. The bond-centric graph has M nodes (one per bond), and its edge set £’
encodes adjacency between bonds. In the worst case, |€’| ~ O(|€|?), especially when considering
all possible spatial interactions between bonds. Therefore, each layer of the bond-centric channel
has a complexity of O(h - |&’| - dy) = O(h - |E]? - dy) = O(h - M? - dy). With L layers, the total
complexity becomes O(L - h - M? - dy).

Cross-level Attention. To align representations across graphs, DeMol employs cross-level attention
between atoms and bonds. This introduces additional pairwise attention computations. Assuming
full interaction between atoms and bonds, the complexity is O(h - N - M - d). This term dominates
the overall complexity in large molecules due to the quadratic growth in M and the product N - M.
Combining the above components, the overall time complexity of DeMol is O(Lh(Nd + M?d;, +
NMd)).

With Structure-aware Mask. To mitigate the high computational overhead, we introduce the
structure-aware mask, which restricts attention computation to only physically plausible atomic and
bond interactions based on chemical valency rules and covalent radii constraints.

Updated Complexity Components.

1. Atom-Centric Graph: With the mask applied, the number of edges remains linear in NV, so
the complexity stays at O(LhNd).
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2. Bond-Centric Graph: Due to the mask, the number of edges in the bond-centric graph is
reduced from O(|€|?) — O(|€|), yielding O(Lh|E|dy).

3. Cross-Level Attention. Similarly, the number of valid atom—bond interactions is now
proportional to |£] instead of N - |£|, leading to O(LhKd), where K < N - || denotes
the number of masked interactions.

Total Complexity. Under the structure-aware masking strategy, the overall time complexity of
DeMol becomes O(Lh(Nd + |E|dy) = O(Lh(Nd + Mdy). In fact, most of molecule graphs satisfy
the condition that the number of edges is 1.1 to 1.2 times the number of atoms, M =~ 1.2N. Then,
we get the total complexity O(Lh(Nd + Md,) = O(Lh(Nd + N2d, + N%d) = O(Lh(Nd + (d +
dp)N=)))-

D EXPERIMENT DETAILS

D.1 LARGE-SCALE PRE-TRAINING

Dataset. Our DeMol model is pre-trained on the training set of PCQM4Mv2 from the OGB
Large-Scale Challenge (Hu et al., 2021). PCQM4Mv?2 is a quantum chemistry dataset originally
curated under the PubChemQC project (Maho} 2015} Nakata & Shimazakil, 2017). The total number
of training samples is 3.37 million. Each molecule in the training set is associated with both 2D
graph structures and 3D geometric structures. The HOMO-LUMO energy gap of each molecule is
provided, which is obtained by DFT-based geometry optimization (Burkel 2012)). According to the
OGB-LSC (Hu et al., 2021}, the HOMO-LUMO energy gap is one of the most practically-relevant
quantum chemical properties of molecules since it is related to reactivity, photoexcitation, and charge
transport. Being the largest publicly available dataset for molecular property prediction, PCQM4Mv2
is considered to be a challenging benchmark for molecular models.

Settings. Similar to Graphormer (Ying et al., 2021), Transformer-M (Luo et al., 2022} and Uni-
mol (Zhou et al.|[2023)), DeMol comprises 12 layers with atom representation dimension of d, = 768
and bond representation dimension of d, = 768. The model employ 128 Gaussian kernels. We also
use AdamW (Diederik} |2014) as the optimizer and set its hyperparameter € to 1e-8 and (51, 32) to
(0.9,0.999). The gradient clip norm is set to 5.0. The peak learning rate is set to 2e-4. The batch size
is set to 1024. The model is trained for 1.5million steps with 150K warmup steps. We also utilized
exponential moving average (EMA) with a decay rate of 0.999. The training process required around
7 days, powered by 8 NVIDIA A6000 GPUs.

D.2 PCQM4Mv2

Baselines. We compare our DeMol with several competitive baselines. These models fall into two
categories: message passing neural network (MPNN) variants and Graph Transformers.

For MPNN variants, we include two widely used models, GCN (Jiang et al.;,[2019)) and GIN (Xu et al.,
2018), and their variants with virtual node (VN) (Gilmer et al., 2017} Jiang et al., 2019). Additianlly,
we compare GINE-yy (Brossard et al.|2020; |Gilmer et al.| 2017; Luo et al.;2022)) and DeeperGCN-
vn (Li et al.| [2020; |Luo et al.,[2022). GINE is the multi-hop version of GIN. DeeperGCN is a 12-layer
GNN model with carefully designed aggregators. The results of MLP-Fingerprint (Hu et al.| 2021) is
also reported.

We also compare several Graph Transformer models. Graphormer (Ying et al., 2021} developed
graph structural encodings and integrated them into a standard Transformer model. TokenGT (Kim
et al.| [2022)) adopted the standard Transformer architecture without graph-specific modifications.
GraphGPS (Rampasek et al., 2022)) proposed a framework to integrate the positional and structural
encodings, local message-passing mechanism, and global attention mechanism into the Transformer
model. GPS++ (Masters et al., 2022) optimsed hybrid MPNN/Transformer for molecular property
prediciton. GRPE (Park et al., 2022) proposed a graph-specific relative positional encoding and
considered both node-spatial and node-edge relations. EGT (Hussain et all) [2022) exclusively
used global self-attention as an aggregation mechanism rather than static localized convolutional
aggregation, and utilized edge channels to capture structural information. GEM-2Liu et al.| (2022a)
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models full-range many-body interactions in molecules, leveraging an axial attention mechanism to
efficiently capture complex quantum interactions.Transformer-M (Luo et al., [2022) integrated 2D
and 3D spatial encodings as the attention bias to enhance molecule representation. Unimol+ (Lu
et al., 2023)) proposed a molecule conformer update mechanism to accurately predict quantum
chemical properties. TGT (Hussain et al.| 2024) integrated triplet interactions to improve the graph
transformers.

D.3 OPEN CATALYST 2020 IS2RE

The Open Catalyst 2020 Challenge (Chanussot et al., [2021)) is aimed at predicting the adsorption
energy of molecules on catalyst surfaces using machine learning. We focus on the IS2RE (Initial
Structure to Relaxed Energy) task, where the model is provided with an initial DFT structure of the
crystal and adsorbate, which interact with each other to reach the relaxed structure when the relaxed
energy of the system is measured. It comprises approximately 460K training data points. While DFT
equilibrium confirmations are provided for training, they are not permitted for use during inference.

Settings. We use the default 12-layer setting for OC20 experiments. Firstly, since OC20 lacks graph
information, graph-related features are excluded from the model. We adopt the solution proposed
in (Shi et al.}[2022) to consider the periodic boundary condition, which pre-expands the neighbor
cells and then applies a radius cutoff to reduce the number of atoms. The AdamW optimizer was
employed during the training process, which lasted for 1.5 million steps, including 150K warmup
steps. The optimizer was configured with a learning rate of 2e-4, a batch size of 64, (1, B2) values
of (0.9,0.999), and a gradient clipping parameter of 5.0. The training process spanned approximately
14 days and make use of 8 NVIDIA A600 GPUs.

Baselines. 'We compare our DeMol with several competitive baselines. The baselines are categorised
into two groups: 3d-based models and graph-based models. SchNet (Schiitt et al., 2017) proposed a
pioneering 3D convolutional neural network that uses continuous-filter convolutions to model atomic
interactions based on interatomic distances. DimeNet++ (Sriram et al.| [2022) incorporates directional
message passing to better capture angular dependencies between atoms. GemNet-T (Gasteiger et al.,
2021)) introduces a graph neural network designed to handle both geometric and electronic properties
of molecules, focusing on translational equivariance. SphereNet (Liu et al.l [2022b)) represents
molecules as spherical harmonics, enabling efficient computation of rotational equivariant features.
For grpah-based models, Graphormer-3D (Shi et al.| 2022)) combines transformer architectures with
3D graph representations to capture long-range dependencies in molecular structures. GNS (Godwin
et al.,|2021) uses a generative neural simulator that learns to predict molecular dynamics by modeling
interactions between atoms. DRFormer (Wang et al., |2023al) captures relational information in
molecular graphs for drug discovery. EquiFormer (Liao & Smidt, |2022)) proposes an equivariant
transformer architecture that preserves symmetries in molecular data while incorporating neural
network layers for enhanced performance. DRFormer (Wang et al., 2023al) is optimised for robustness
and efficiency in molecular property prediction. UniMol+ (Lu et al., |2023)) combines multiple
modalities (e.g., 3D coordinates and graph representations) to improve generalization across diverse
molecular datasets. TGT (Hussain et al.| 2024) integrated triplet interactions to improve the graph
transformers.

D.4 QM9

We use the QM9 dataset (Ramakrishnan et al., 2014) to evaluate our model on molecular tasks in the
3D data format. QM9 is a quantum chemistry benchmark consisting of 134k stable small organic
molecules. These molecules correspond to the subset of all 133,885 species out of the GDB-17
chemical universe of 166 billion organic molecules. Each molecule is associated with 12 targets
covering its energetic, electronic, and thermodynamic properties. The 3D geometric structure of the
molecule is used as input. Following (Tholke & De Fabritiis| [2022)), we randomly choose 10,000 and
10,831 molecules for validation and test evaluation, respectively. The remaining molecules are used
to fine-tune our DeMol model. We observed that several previous works used different data splitting
ratios or did not describe the evaluation details. For a fair comparison, we choose baselines that use
similar splitting ratios in the original papers.
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Settings. We fine-tune the pre-trained DeMol on the QM9 dataset. Following Transformer-M (Luo
et al.| |2022), we adopt the Mean Squared Error (MSE) loss during training and use the Mean Absolute
Error (MAE) loss function during evaluation. We also adopt label standardisation for stable training.
We use AdamW as the optimiser, and set the hyperparameter € to 1e-8 and (31, 82) to (0.9,0.999).
The gradient clip norm is set to 5.0. The peak learning rate is set to 7e-5. The batch size is set to 128.
The dropout ratios for the input embeddings, attention matrices, and hidden representations are set to
0.0,0.1, and 0.0, respectively. The weight decay is set to 0.0. The model is fine-tuned for 600k steps
with a 60K-step warmup stage. After the warmup stage, the learning rate decays linearly to zero. All
model are trained on 8§ NVIDIA A6000 GPUs.

Baselines. We comprehensively compare our DeMol with both pre-training methods and 3D
molecular models. First, we follow (Luo et al.l|[2022) to compare several pre-training methods.
AttrMask (Hu et al., 2019) proposed a strategy to pre-train GNNs via both node-level and graph-
level tasks. InfoGraph (Sun et al.l |2019) maximized the mutual information between graph-level
representations and substructure representations as the pre-training tasks. GraphCL (You et al.| 2020)
instead used contrastive learning to pre-train GNNs. There are also several works that utilise 3D
geometric structures during pre-training. GraphMVP (Jiang et al., |2019) maximized the mutual
information between 2D and 3D representations. GEM (Fang et al.| 2022) proposed a strategy to
learning spatial information by utilizing both local and global 3D structure. 3D Infomax (Stérk et al.
2022) used two encoder to capture 2D and 3D structural information separately while maximizing
the mutual information between 2D and 3D representations. PosPred (Jiao et al., 2023) adopted
an equivariant energy-based model and developed a node-level pertaining loss for force prediction.
We also follow (Tholke & De Fabritiis, |2022) to compare 3D molecular models. SchNet (Schiitt]
et al.,|2017) used continuous-filter convolution layers to model quantum interactions in molecule.
Cormorant (Anderson et al., 2019)) developed a GNN model equipped with activation functions being
covariant to rotations. DimeNet++ (Gasteiger et al., [2020) proposed directional message passing,
which uses atom-pair embeddings and utilizes directional information between atoms. PaiNN (Schiitt
et al.,2021)) proposed the polarizable atom interaction neural network that uses an equivariant message
passing mechanism. LieTF (Hutchinson et al.} 2021) built upon the Transformer model consisting of
attention layers that are equivariant to arbitrary Lie groups and other discrete subgroups. TorchMD-
Net (Tholke & De Fabritiis, [2022) also developed a Transformer variant with layers designed by
prior physical and chemical knowledge. EGNN (Satorras et al., 2021) proposed a model which
does not require computationally expensive high-order representations in immediate layers to keep
equivariance, and can be easily scaled to higher-dimensional spaces. NoisyNode (Godwin et al.|
2021)) proposed the 3D position denoising task and verified it on the Graph Network-based Simulator
(GPS) model (Masters et al.,|[2022). Transformer-M (Luo et al., |2022)) integrated 2D and 3D spatial
encodings as the attention bias to enhance molecule representation.

D.5 MOLECULENET

MoleculeNet (Wu et al.|[2018) is a popular benchmark for molecular property prediction, including
datasets focusing on different molecular properties, from quantum mechanics and physical chemistry
to biophysics and physiology. The details of the datasets we used are described below.

BBBP. The BBBP dataset is designed to predict whether a molecule can cross the blood-brain
barrier (BBB), a critical factor in drug delivery and efficacy. This dataset consists of 2,039 molecules,
where each molecule is labelled as either permeable or non-permeable based on experimental data.
The task involves binary classification, requiring models to identify structural features that influence
BBB permeability. The dataset is widely used to evaluate the ability of machine learning models to
capture subtle molecular properties that affect BBB penetration, making it a benchmark for tasks
related to drug discovery and pharmacokinetics.

Tox21. The Tox21 dataset focuses on predicting the toxicity of chemical compounds. It contains
over 8,000 molecules, each associated with 12 different toxicity endpoints, such as nuclear receptor
activation and stress response pathways. The dataset is derived from high-throughput screening
experiments conducted by the U.S. Environmental Protection Agency (EPA) and the National
Institutes of Health (NIH). Tox21 challenges models to accurately classify molecules based on their
potential toxic effects, emphasising the importance of understanding molecular interactions at a
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Table 5: Results on molecular property classification tasks. We report the (mean=standard deviation) ROC-AUC
score (higher is better) of 10 random seeds under scaffold splitting. The best results are highlighted in bold.

Methods | BBBP{ Tox211 ToxCast SIDER 1 ClinTox { MUV { HIVt BACE1 Avgt
AttrMask 65.0+£2.3 74.8+0.2 62.940.1 61.2+0.1 87.7+1.1 73.4+2.0 76.8+0.5 79.7+0.3 72.68
ContextPred | 65.74£0.6 74.24£0.0 62.5£0.3 62.240.5 77.2+0.8 75.3+1.5 77.14£0.8 76.0+2.0 71.28
GraphCL 69.7+£0.6 73.940.6 62.440.5 60.5+0.8 76.0+2.6 69.8+2.6 78.5+1.2 75.41.4 70.78
InfoGraph | 67.5+0.1 73.24£0.4 63.740.5 59.940.3 76.5+1.0 74.1+0.7 75.1£0.9 77.8+£0.8 70.98
GROVER  |70.0+0.10 74.3£0.1 65.4+0.4 64.840.6 81.24+3.0 67.3+1.8 62.5+0.9 82.6:£0.7 71.01
MoICLR 66.6£1.8 73.0+£0.1 62.940.3 57.5+1.7 86.1+0.9 72.5+2.3 76.2:£1.5 71.5£3.1 70.79
GraphMAE | 72.040.6 75.54+0.6 64.1+0.3 60.3+1.1 82.341.2 76.3+£2.4 77.2+1.0 83.1+£0.9 73.85
Mole-BERT | 71.9+1.6 76.8+0.5 64.3£0.2 62.841.1 78.94+3.0 78.6+1.8 78.2+0.8 80.8-1.4 74.04
MoleculeSDE| 71.8+0.7 76.8+0.3 65.040.2 60.84+0.3 87.0+0.5 80.9+0.3 78.8:0.9 79.5+2.1 75.07
3D InfoMax | 70.44+1.0 75.5+0.5 63.1+£0.7 64.140.1 89.841.2 72.841.0 74.9+0.3 80.7+0.6 73.91
Galformer | 71.6£0.9 75.7+0.8 64.0£0.4 64.3+0.5 84.7+0.9 73.4+1.1 75.6:£0.4 80.9+£1.0 74.02
GraphMVP | 71.5+1.3 76.1+£0.9 64.3+0.6 64.74+0.7 85.4+0.8 74.9+1.2 76.0+£0.6 81.5+1.2 74.86
MoleBlend | 73.0+£0.8 77.8+0.8 66.140.0 64.9+0.3 87.6+0.7 77.2+2.3 79.0+£0.8 83.7+1.4 76.16

LEMON 73.7£1.1 77.5£0.6 65.1+0.5 64.3+0.9 85.9+3.2 79.4+£4.3 79.3+1.1 87.84+1.4 76.62
GEM 72.4+£0.4 78.1£0.1 69.2+0.4 67.2+0.4 90.1+1.3 81.7£0.5 80.6+0.9 85.6-1.1 78.18
Uni-Mol 72.9£0.6 79.6£0.5 69.6+0.1 65.9+1.3 91.9+1.8 82.1£1.3 80.8+0.3 85.7+0.2 78.63
DeMol 75.1+0.6 80.9+0.4 69.3+0.5 68.4+0.3 92.61+0.7 82.5+1.4 81.2+0.9 89.0+1.1 79.96

biochemical level. Its diverse set of endpoints makes it a comprehensive resource for evaluating
toxicity prediction models.

ToxCast. The ToxCast dataset is an extension of Tox21, providing a broader range of toxicity
predictions. It includes over 10,000 molecules and covers more than 600 different toxicity assays,
spanning various biological pathways and mechanisms. The dataset is designed to assess the potential
adverse effects of chemicals on human health and the environment. ToxCast is particularly useful
for evaluating models’ ability to generalise across multiple toxicity endpoints, given its extensive
coverage of biochemical interactions and diverse molecular structures.

SIDER. The ClinTox dataset is designed to predict clinical trial outcomes for drugs, specifically
focusing on toxicity and efficacy. It contains 1,478 drugs, each labelled with two binary classifications:
"toxic" or "non-toxic" during clinical trials, and "effective" or "ineffective" based on clinical results.
ClinTox is derived from publicly available sources, including the DrugBank database and clinical
trial records. The dataset is valuable for assessing models’ ability to predict both safety and efficacy,
which are critical factors in drug development.

MUYV. The MUYV dataset is a benchmark for virtual screening tasks, containing 150,000 molecules
across 17 different biological targets. Each molecule is labelled as active or inactive for a specific tar-
get, representing a binary classification problem. MUV is designed to evaluate models’ performance
in identifying potential drug candidates by distinguishing active compounds from inactive ones. The
dataset is particularly challenging due to its large size and the need to balance false positives and
false negatives, making it a standard for benchmarking molecular property prediction models.

HIV. The HIV dataset is focused on predicting the activity of compounds against HIV (Human
Immunodeficiency Virus). It contains 41,127 molecules, each labelled as active or inactive based
on its ability to inhibit HIV replication. The dataset is derived from high-throughput screening
experiments conducted by the Developmental Therapeutics Program (DTP) AIDS Antiviral Screen.
HIV is a binary classification task that requires models to identify structural features associated with
antiviral activity, making it essential for research in anti-HIV drug discovery.

BACE. The BACE (Beta-Secretase Cleavage Site) dataset is designed to predict the inhibition of the
Beta-secretase enzyme, which plays a key role in Alzheimer’s disease. It contains 1,513 molecules,
each labeled as active or inactive based on their ability to inhibit the enzyme. BACE is a binary
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classification task that evaluates models’ ability to identify molecules with therapeutic potential for
treating neurodegenerative diseases. The dataset is derived from experimental screens and is widely
used to benchmark models in the context of enzyme inhibition and drug discovery.

Settings. In our experiments, referring to previous work Uni-Mol (Zhou et al., [2023)), we use
scaffold splitting to divide the dataset into training, validation, and test sets in the ratio of 8:1:1.
Scaffold splitting is more challenging than random splitting as the scaffold sets of molecules in
different subsets do not intersect. This splitting tests the model’s generalization ability and reflects the
realistic cases (Wu et al.,|2018)). In all experiments, we choose the checkpoint with the best validation
loss, and report the results on the test-set run by that checkpoint. Referring to previous work, we use
a grid search to find the best combination of hyperparameters for the molecular property tasks. To
reduce the time cost, we set a smaller search space for the large datasets. The specific search space is
shown in Table @ For small dataset, we run them on a single NVIDIA A6000 GPU; for large datasets
and HIV, we run them on 4 NVIDIA A6000 GPUs.

Table 6: Search space for small datasets: BBBP, BACE, ClinTox, Tox21, Toxcast, SIDER, for large datasets:
MUYV and HIV.

Hyperparameter | Small | Large | HIV
Learning rate [Se-5, 8e-5, 1e-4, 4e-4, Se-4] | [2e-5, le-4] | [2e-5, S5e-5]
Batch size [32, 64, 128, 256] [128, 256] [128, 256]
Epochs [40 ,60, 80, 100] [20, 40] [2,5,10]
Pooler dropout [0.0,0.1, 0.2, 0.5] [0.0, 0.1] [0.0, 0.2]
Warmup ratio [0.0, 0.06, 0.1] [0.0, 0.06] [0.0,0.1]

E VISUALISATION FOR SELF-ATTENTION MAP

For better interpretability, we conduct a visualisation on the self-attention map on atom-centric
graph atom-atom attention and bond-centric graph bond-bond attention, respectively, as shown in
Figure[5] The top section of Figure [J]illustrates the self-attention weights for the atom-centric graph
representation. Each subfigure corresponds to one attention head, showing the pairwise attention
weights between atoms in the molecule. The bottom section of Figure [5]depicts the self-attention
weights for the bond-centric graph representation. Similar to the atom-centric case, each subfigure
corresponds to one attention head, showing the pairwise attention weights between bonds in the
molecule. By comparing the two sections of the figure, we observe that atom-centric attention tends
to exhibit more varied and complex patterns, reflecting the rich diversity of atomic interactions and
functional groups. Bond-centric attention, on the other hand, shows more structured and localised
patterns, emphasising the importance of bond-specific features in capturing molecular properties.
The model appears to effectively leverage both local and global structural information, as evidenced
by the combination of diagonal and off-diagonal attention patterns. The complementary nature of
these two representations suggests that combining atom-level and bond-level information can lead to
a more comprehensive understanding of molecular structures.

F LIMITATIONS AND FUTURE WORK

Limitations. While DeMol explicitly models atom-bond and bond-bond interactions through dual-
graph representations, the introduction of bond-centric channels and cross-level attention blocks
increases computational overhead. We mitigate this problem by structure-aware masks derived
from chemical valency rules, but further optimization is still required for real-time applications.
Besides, the current framework is primarily validated on organic molecules and simple inorganic
complexes. Its applicability to systems with unconventional bonding (e.g., metal-organic frameworks,
organometallic compounds) or dynamic covalent interactions (e.g., reversible bonds in supramolecular
assemblies) awaits further investigation.

Future Work. In the future, we can explore lightweight cross-attention designs (e.g., sparse
attention via learnable graph sparsification or kernelized approximations) to reduce computational
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Figure 5: Visualisation on self-attention map of multi-heads independently.

costs while preserving geometric consistency. Moreover, it’s promising to incorporate explicit
electronic descriptors (e.g., partial charges, orbital hybridization) and quantum mechanical constraints
(e.g., HOMO-LUMO gaps) into the bond-centric channel and explore hybrid models combining
DeMol with physics-informed neural networks to bridge classical and quantum representations.

G AN EXAMPLE OF THE TWO GRAPH REPRESENTATIONS

PN
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Figure 6: An example of the two graph representations of the methane molecule. Atom-Centric Graph:
Graph representation with atoms as nodes, which can explicitly encode structural information such as interatomic
distances. Bond-Centric Graph: Graph representation with bonds as nodes, which can explicitly encode
structural information such as inter-bond angles.

Figure[@]illustrates two distinct graph representations of the methane molecule (C'H,), highlighting the
complementary nature of atom-centric and bond-centric graph formulations. The figure is structured to
provide a comprehensive view of how these representations encode structural information, including
interatomic distances and inter-bond angles. The leftmost panel shows the chemical formula (C' Hy)
and its 2D and 3D structures, providing a visual reference for the methane molecule.
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In the atom-centric graph, atoms are represented as nodes (v1,vs,vs,vs,vs), with edges
(e1, €2, e3,€4) connecting them to reflect the molecular connectivity. This representation explic-
itly encodes structural information such as interatomic distances. The structure encoding includes
adjacency matrix, shortest path distance encodings, 3D distance encodings and so on. The adjacency
matrix provides a numerical representation of the graph’s connectivity. For example, the entry "1"
indicates a direct connection between two atoms, while "0" signifies no direct connection. A 2D graph
visualisation depicts the shortest path distances between atoms, emphasising the spatial relationships
within the molecule. Nodes are connected by edges whose lengths reflect the shortest paths between
them. On the far right, a 3D molecular model of methane is shown, with bonds highlighted in red.
This visualisation integrates geometric information, illustrating how the atom-centric graph can
capture three-dimensional spatial relationships.

The bond-centric graph shifts the focus from atoms to bonds, where bonds are treated as nodes
(e1,e2,e3,e4). Edges between these nodes represent the relationships between adjacent bonds,
enabling the explicit encoding of structural features such as inter-bond angles. Similar to the atom-
centric graph, a colour-coded matrix (Structure Encodings) is provided to visualise the adjacency
relationships between bonds. The matrix captures the connectivity patterns among bonds, reflecting
their spatial arrangement. The adjacency matrix for the bond-centric graph is presented. This matrix
numerically encodes the connectivity between bonds, with "1" indicating a direct relationship and "0"
indicating no direct relationship. A 2D graph visualisation shows the shortest path distances between
bonds, emphasising the topological relationships within the bond-centric graph. On the far right, a
3D molecular model of methane is again depicted, but this time with a focus on the angles between
bonds. Bonds are highlighted in red, and the visualisation emphasises how the bond-centric graph
can capture angular relationships in three-dimensional space.

H LLM USAGE DISCLOSURE

The authors utilized a large language model (LLM) solely as a tool to assist with the polishing and
refinement of the writing in this paper. The model was used exclusively for improving grammatical
fluency, sentence structure, and overall clarity of the manuscript. All ideation, theoretical development,
empirical research, and technical conclusions remain entirely the work of the authors. The authors
take full responsibility for all content generated by the LLM and presented in this work.
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