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Abstract

Incremental feature selection aims to efficiently identify key features from dynamic data.
However, existing feature selection algorithms for dynamic incomplete ordered data often
rely on upper and lower approximations while overlooking the impact of inter-feature rela-
tionships across different decision classes. This can lead to reduced computational efficiency
and suboptimal classification accuracy. To address these issues, this paper proposes an in-
cremental feature selection method based on expanded dominance matrices for incomplete
ordered decision systems. Firstly, we propose to use non-dominant relationships between
classes as a measure of attribute importance, thereby avoiding the computational complex-
ity of traditional lower and upper approximation. Furthermore, to maintain efficiency and
accuracy in dynamic data environments which involve frequent object addition and deletion,
we propose two matrix-based incremental update mechanisms: matrix-based non-dominance
attribute reduction for addition (MNAR-A) and matrix-based non-dominance attribute re-
duction for deletion (MNAR-D). These mechanisms are crucial for efficiently updating the
feature subset when new objects are added or existing objects are removed, ensuring the
algorithm remains effective and avoids recomputing from scratch. Experimental results on
the UCI dataset showed that the proposed algorithm achieved a 1.3× speedup and delivered
a 7% relative accuracy gain compared to the state-of-the-art method on average.

1 Introduction

Feature selection is a commonly used data preprocessing technique in machine learning and data mining,
aiming to curtail dimensionality by eliminating redundant or irrelevant attributes so as to enhance gener-
alization and computational efficiency Wang et al. (2024); Ding et al. (2021); Chen et al. (2020). However,
real-world data often exhibit large-scale and dynamically evolving characteristics (e.g., real-time data streams
and continuously updated databases).

Conventional static feature selection methods are not suitable for dynamically evolving data, as they must
recompute reducts from scratch, incurring substantial redundancy and computational overhead. Incremental
learning approaches Luo et al. (2014); Zhang et al. (2025); Zhao et al. (2024b) offer a promising solution by
effectively leveraging previously obtained results and knowledge for efficient feature selection in dynamic data
environments. Meanwhile, rough set theory Pawlak (1982) and its extensions:particularly the dominance-
based rough set approach Greco et al. (2002; 2001), provide a solid theoretical foundation for handling
ordered data endowed with preference ranking information (e.g., ratings and scores).

However, the widespread presence of missing or incomplete data in practical applications, such as fault
diagnosis Ge et al. (2018) and uncertainty assessment Dai et al. (2017); Feng & Jing (2016), make it an
urgent and open research problem to achieve efficient and accurate feature selection over dynamically evolving
ordered data with missing values. Existing incremental algorithms usually focus on either ordered data or
incomplete data individually, lacking effective methods to handle the dynamic changes of ordered data with
missing values. Moreover, existing incremental approaches often do not adequately consider the impact of
features on classification results.
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To address these issues, we propose a hybrid scoring strategy. Firstly, we introduce Susmaga’s concept Sus-
maga (2014) of inter-class non-dominance (class distinction score) to incomplete ordered decision systems
(IODS) and propose a corresponding calculation method. We further propose global distinction score as an
attribute importance evaluation index to enhance the accuracy of attribute reduction. We present a matrix-
form incremental update mechanism for adding or deleting samples in IODS, along with the corresponding
incremental attribute reduction algorithms: matrix-based non-dominance attribute reduction for addition
(MNAR-A) and matrix-based non-dominance attribute reduction for deletion (MNAR-D).

The main contributions of this paper are summarized as follows.

• To capture the impact of inter-feature relationships across decision classes, we present a hybrid
scoring strategy. We incorporate Susmaga’s inter-class non-dominance (class distinction score) into
IODS and further propose global distinction score as an attribute importance metric. This approach
enhances the accuracy of attribute reduction.

• The proposed methods accelerate feature selection in IODS, yielding a moderate speedup by har-
nessing the high computational efficiency of matrix operations for incremental calculation.

2 Related work

This paper primarily focuses on the issue of “missing values” in ordered information systems and studies
attribute reduction based on expanded dominance relations in such datasets. To cope with the pervasive
missing values in practice, researchers have proposed expanded method Shao & Zhang (2005); Guan et al.
(2018), similarity-based method Yang et al. (2008), and feature-based dominance relations method Du &
Hu (2016).

Constructing an effective attribute evaluation function is central to attribute reduction. Typical measures
—e.g., dependency Ullah et al. (2024), entropy Sang et al. (2021); Xu et al. (2024b), and knowledge
granularity Jing et al. (2016); Liu & Feng (2022)— mainly describe intrinsic attribute characteristics and
overlook their direct impact on classification. To bridge this gap, Hu et al. (2021) introduced a separability
metric for fuzzy decision systems, while Susmaga defined intra- and inter-class reducts via proximity and
non-dominance relations in ordered data Susmaga (2014). However, these approaches assume static datasets;
when data evolve continuously, reducts must be recomputed from scratch, leading to poor efficiency. We
adopt incremental computation to substantially reduce the computational overhead incurred by data changes.

Incremental computation uses existing knowledge to improve the efficiency of knowledge discovery Ding et al.
(2022). To address dynamic changes in samples within incomplete information systems, Zhao et al. (2024a)
employed sub-tolerance relations to reduce runtime. For dynamic changes in samples within ordered infor-
mation systems, Xu et al. (2024a) applied conditional entropy to attribute reduction. Existing incremental
algorithms seldom address ordered and incomplete data simultaneously and often overlook the influence of
features on classification. By introducing a hybrid scoring strategy, our method not only improves attribute
reduction accuracy but also mitigates the impact of missing values and handles ordered data more effectively.

3 Preliminaries

An information system Pawlak (1992) is typically defined as a 4-tuple S = (U, A, V, f), where U =
{x1, x2, · · ·xn} is a non-empty finite set of objects, called the universe. A denotes the set of all attributes.
In decision system, A = C ∪ D and C ∩ D = ∅, where C is a non-empty finite set of condition attributes
and D is decision attribute. V is regarded as the domain of all attributes. f : U ×A→ V is an information
function such that f(x, a) ∈ Va,∀a ∈ A and x ∈ U ,where Va is the domain of attribute a.

3.1 Ordered information system and dominance relation

If each attribute domain Va is equipped with a preference preorder ⪰a, then a is called a criterion attribute.
The preorder satisfies reflexivity and transitivity. When all attributes in the system are criterion attributes,
the system is called an ordered information system (OIS), denoted by S⪰ = (U, A, V, f).
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For a subset of condition attributes P ⊆ C, the dominance relation DP on U is defined as follows: for any
x, y ∈ U ,

xDP y ⇐⇒ ∀a ∈ P, f(x, a) ⪰a f(y, a). (1)

Correspondingly, the P -dominating and P -dominated sets of x ∈ U are defined as

D+
P (x) = {y ∈ U | yDP x}, D−

P (x) = {y ∈ U | xDP y}. (2)

3.2 Incomplete ordered decision system and expanded dominance relation

In practice, condition attributes may contain missing values denoted by “∗”, while decision attributes are
assumed complete. Such systems are called incomplete ordered decision systems (IODS), denoted as S⪰ =
(U, C ∪ {d}, V, f), where d is the decision attribute.

In this situation, DP should be accommodated by unknowns and extended to D∗
P : for any (x, y) ∈ U × U

xD∗
P y ⇐⇒ ∀a ∈ P, f(x, a) ⪰a f(y, a) ∨ f(x, a) = ∗ ∨ f(y, a) = ∗. (3)

The relation D∗
P is reflexive but may not be antisymmetric or transitive.

The corresponding expanded dominating and dominated sets are

D+
P (x) = {y ∈ U | yDP x}, D−

P (x) = {y ∈ U | xDP y}. (4)

4 Class distinction score in IODS

4.1 Set-based calculation of class distinction score

In this subsection, we present a set-based formalism for calculating the class distinction score (CDS) measure
in IODS.

Based on the decision attribute d, the universe U is partitioned into decision classes: CL = {cl1, cl2, . . . , clT },
which are ordered by preferencecl1 ≺ cl2 ≺ · · · ≺ clT , meaning cli has a lower preference level than clj if
i < j.
Definition 1 (Inter-class pairs). Define the set of inter-class pairs as:

Inter_cl = {(cli, clj) ∈ CL× CL | 1 ≤ i < j ≤ T}. (5)

To ensure the dominant relationship between decision classes, the inter-class structure requires the selection
of a lower class cli and a higher class clj.
Definition 2 (Class interference metric (CIM)). For any attribute subset B ⊆ C, the Class Interference
Metric between two decision classes cli and clj is defined as the degree of dominance of clj over cli with
respect to B:

CIMB(cli, clj) =

|cli|∑
k=1

∣∣∣D∗
B

+(clik)− (cli, clj)
∣∣∣

(|cli|+ |clj |)2 +

|clj |∑
k=1

∣∣∣D∗
B

+(cljk)− (cli, clj)
∣∣∣

(|cli|+ |clj |)2 . (6)

Here clik represents the k-th object in the decision class cli, |•| represents the basis of the set (i.e., the number
of elements in the set), and (cli, clj) represents the set of elements that are not in the inter-class (cli, clj).
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Definition 3 (Class distinction score (CDS)). The Class Distinction Score of cli and clj with respect to the
subset of attributes B ⊆ C is defined as

CDSB(cli, clj) = 1− CIMB(cli, clj). (7)

A higher CDS value indicates stronger non-dominance and better classification separability between classes
under attribute subset B.
Definition 4 (Global distinction score (GDS)). Given n Class Distinction Score values denoted as
CDS1,CDS2, . . . , CDSn. Then the Global Distinction Score of the object set is defined as

GDSU (B, CL) = 1
n

n∑
i=1

CDSi. (8)

A higher GDSU (B, CL) value suggests that the attribute subset B provides better-ranking information and
classification accuracy for the entire decision system.

Based on the GDS measure, the importance of attributes can be definite as follows.
Definition 5 (Inner significance). Let S⪰ = (U, C ∪ {d}, V, f) be an IODS ∀B ⊆ C and ∀a ∈ B the
GDS-based inner significance measure of a in B is defined as

sig⪰U
inner(a, B, d) = GDSU (B, CL)−GDSU (B \ {a}, CL) (9)

Based on the explanation of GDS, a greater value of sig⪰U
inner(a, B, d) implies that the conditional attribute

is more crucial. This measure helps to identify the necessary condition attributes within the entire set of
condition attributes. Additionally, the core attribute set of the attribute set B is defined as CoreB = {a ∈
B | sig⪰U

inner(a, B, d) > 0}.
Definition 6 (Outer significance). Let S⪰ = (U, C ∪ {d}, V, f) be an IODS, ∀P ⊆ C and ∀a ∈ (C \ P ) the
GDS-based outer significance measure of a to P is defined as

sig⪰U
outer(a, P, d) = GDSU (P ∪ {a}, CL)−GDSU (P, CL) (10)

Similar to the sig⪰U
inter(a, P, d), the sig⪰U

outer(a, P, d) can be used to identify necessary condition attributes
that are distinct from those in the selected condition attribute set.
Proposition 1. Let S⪰ = (U, C ∪ {d}, V, f), ∀B ⊆ C and B ̸= ∅, then GDSU (C, CL) ⩾ GDSU (B, CL).

Proof. Let S⪰ = (U, C ∪ {d}, V, f), C = {a1, a2, . . . , an}. For all B ⊆ C and X ⊆ U , we have D∗+
C (X) ⊆

D∗+
B (X), so |D∗+

C (clik)| ≤ |D∗+
B (clik)|.According to Definition 2,

CIMB(cli, clj) =

∑|cli|
k=1

∣∣∣D∗+
B (clik)− (cli, clj)

∣∣∣
(|cli|+ |clj |)2 +

∑|clj |
k=1

∣∣∣D∗+
B (cljk)− (cli, clj)

∣∣∣
(|cli|+ |clj |)2

we can get CIMC(cli, clj) ≤ CIMB(cli, clj). Then, according to Definition 3,
CDSB(cli, clj) = 1 − CIMB(cli, clj), averaging over all class pairs, we obtain GDSU (C, CL) ≥
GDSU (B, CL).

4.2 Matrix-based calculation of class distinction score

In this subsection, we present a matrix-based formalism for calculating the Class Distinction Score measure
(CDS) in IODS. This matrix representation simplifies computations and facilitates incremental updates.
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Definition 7 (Expanded dominance matrix). Let S⪰ = (U, C ∪ {d}, V, f) be an IODS with universe U =
{x1, x2, . . . , xn}. For any attribute subset B ⊆ C, the expanded dominance relation D∗

B induces an n × n
expanded dominance matrix on U , denoted by

M⪰B
U = [mB

(i,j)]n×n, (11)

where the matrix entries are defined as

mB
(i,j) =

{
1, if xjD∗

Bxi,

0, otherwise.
(12)

Corollary 1 (Matrix-based class interference metric (MCIM)). For two decision classes cli, clj ∈ CL,
consider their union X = cli ∪ clj with cardinality m = |X|. The matrix-based Class Interference Metric
(MCIM) of attribute subset B is computed as

MCIM(cli,clj) =
∑m

a=1
∑m

b=1 mB
ab

m2 = Sum(M⪰B
X )

m2 , (13)

where Sum(M⪰B
X ) denotes the total sum of all entries in the submatrix.

Proof. According to Definition 2, we can get

CIMB(cli, clj) =

|cli|∑
k=1

∣∣∣D∗
B

+(clik)− (cli, clj)
∣∣∣

(|cli|+ |clj |)2 +

|clj |∑
k=1

∣∣∣D∗
B

+(cljk)− (cli, clj)
∣∣∣

(|cli|+ |clj |)2 .

According to Definition 7 and Corollary 1 , the expanded dominance relation matrix of (cli, clj) is defined
as: M⪰B

X = [mB
(a,b)]m×m, and

MCIM(cli,clj) =
m∑

a=1

m∑
b=1

mB
ab

m2 = Sum(M⪰B
X )

m2 (14)

where

mB
(a,b) =

{
1, xbD∗

Bxa;
0, otherwise.

(15)

, so Sum(M⪰B
X ) =

|cli|∑
k=1

∣∣∣D∗
B

+(clik)− (cli, clj)
∣∣∣ +

|clj |∑
k=1

∣∣∣D∗
B

+(cljk)− (cli, clj)
∣∣∣. Thus, we can get CIM(cli,clj) =

MCIM(cli,clj). In summary, the results of calculating the Class Interference Metric based on matrix and
non-matrix methods are consistent.

Corollary 2 (Matrix-based class distinction score). The matrix-based Class Distinction Score (CDS) between
cli and clj is given by

MCDS(cli,clj) = 1−MCIM(cli,clj) = 1− Sum(M⪰B
X )

m2 . (16)

Corollary 3 (Matrix-based global distinction score (MGDS)). Given all n inter-class pairs {(cli, clj)} with
corresponding MCDS values MCDS1, MCDS2, . . . , MCDSn, the overall Class Distinction Score is defined
as

MGDSU (B, CL) = 1
n

n∑
i=1

MCDSi. (17)
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Table 1: An example of incomplete ordered decision system.

U a1 a2 a3 a4 d
x1 1 2 * 1 1
x2 2 3 3 3 3
x3 2 2 2 3 2
x4 1 * 2 1 1
x5 1 * 2 2 2
x6 3 3 3 3 3
x7 1 2 2 3 2
x8 3 * 3 3 3
x9 2 2 3 3 3

Example 1. Consider the IODS in Table 1 with attribute subset B = {a1, a2, a3, a4} and decision classes
CL = {cl1, cl2, cl3} where

cl1 = {x1, x4}, cl2 = {x3, x5, x7}, cl3 = {x2, x6, x8, x9}.

The inter-class pairs are {cl1, cl2}, {cl1, cl3}, and {cl2, cl3}. Define corresponding object sets:

X1 = cl1 ∪ cl2 = {x1, x3, x4, x5, x7}, (18)
X2 = cl1 ∪ cl3 = {x1, x2, x4, x6, x8, x9}, (19)
X3 = cl2 ∪ cl3 = {x2, x3, x5, x6, x7, x8, x9}. (20)

Using Definition 7 the expanded dominance matrices M⪰B
U , M⪰B

X1
, M⪰B

X2
, and M⪰B

X3
are computed as follows:

M⪰B
U =



1 1 1 1 1 1 1 1 1
0 1 0 0 0 1 0 1 0
0 1 1 0 0 1 0 1 1
1 1 1 1 1 1 1 1 1
0 1 1 0 1 1 1 1 1
0 0 0 0 0 1 0 1 0
0 1 1 0 0 1 1 1 1
0 0 0 0 0 1 0 1 0
0 1 0 0 0 1 0 1 1


9×9

,

M⪰B
X1

=


1 1 1 1 1
0 1 0 0 0
1 1 1 1 1
0 1 0 1 1
0 1 0 0 1


5×5

, M⪰B
X2

=


1 1 1 1 1 1
0 1 0 1 1 0
1 1 1 1 1 1
0 0 0 1 1 0
0 0 0 1 1 0
0 1 0 1 1 1


6×6

,

M⪰B
X3

=



1 0 0 1 0 1 0
1 1 0 1 0 1 1
1 1 1 1 1 1 1
0 0 0 1 0 1 0
1 1 0 1 1 1 1
0 0 0 1 0 1 0
1 0 0 1 0 1 1


7×7

.

According to Corollary 1, the MCIM values are:
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MCIM(cl1,cl2) =
Sum(M⪰B

X1
)

25 = 16
25 , (21)

MCIM(cl1,cl3) =
Sum(M⪰B

X2
)

36 = 23
36 , (22)

MCIM(cl2,cl3) =
Sum(M⪰B

X3
)

49 = 29
49 . (23)

Then, by Corollary 2, the MCDS values are:

MCDS(cl1,cl2) = 1− 16
25 = 9

25 , (24)

MCDS(cl1,cl3) = 1− 23
36 = 13

36 , (25)

MCDS(cl2,cl3) = 1− 29
49 = 20

49 . (26)

Finally, the MGDS is: MGDSU (B, CL) = 1
3

( 9
25 + 13

36 + 20
49

)
≈ 0.3764.

Corollary 4 (MGDS-based inner significance). For any attribute a ∈ B ⊆ C, the inner significance of a
with respect to B is defined by the change in MGDS after removing a:

Msig⪰U
inner(a, B, d) = MGDSU (B, CL)−MGDSU (B \ {a}, CL). (27)

This measure is equivalent to the inner significance defined via the set-based GDS, yielding consistent results.
Corollary 5 (MGDS-based outer significance). For any attribute a ∈ C − B, the outer significance of a
with respect to B is defined by the increase in MGDS after adding a:

Msig⪰U
outer(a, B, d) = MGDSU (B ∪ {a}, CL)−MGDSU (B, CL). (28)

Similarly, this outer significance is consistent with the set-based GDS outer significance.

Next, we introduce the definition of attribute reduction based on MGDS.
Corollary 6 (Attribute reduct based on MGDS). Let S ⪰= (U, C ∪ {d}, V, f) be an IODS, ∀P ⊆ C, the
attribute subset P is a reduct of S ⪰ if it satisfies

(1) MGDSU (P, CL) = MGDSU (C, CL) and (2) ∀ a ∈ P ,MGDSU (P \ {a}, CL) ̸=MGDSU (P, CL).

The condition (1) ensures that the selected attribute subset maintains the same discriminative power as the
entire attribute set; the condition (2) guarantees that each attribute in the subset is indispensable by removing
any redundant attributes from it.

5 Proposed method

This paper proposes an incremental mechanism for attribute reduction with object set variations. In an
IODS, data dynamics manifest primarily in two forms: addition of new objects and deletion of existing
ones. Both changes can impact the attribute reduction results, which are fundamentally dependent on
the calculation of the MGDS. Computing MGDS from scratch upon every data update is computationally
expensive, especially for large-scale datasets. To alleviate this, we propose two incremental update methods
for efficiently recalculating MGDS.

5.1 The incremental method for obtaining attribute reduction when adding object set

We first present an incremental MGDS update for object addition in an IODS, followed by the corresponding
incremental attribute reduction algorithm.
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5.1.1 The incremental mechanism for adding object set in IODS

The core idea of the incremental update method is to update the expanded dominance matrix and the
inter-class structure by incorporating the newly added objects without recomputing from scratch.
Proposition 2 (Incremental update of expanded dominance matrix). Let S⪰ = (U, A, V, f) be an IODS
with universe U = {x1, x2, . . . , xn}. For any attribute subset B ⊆ A, assume the expanded dominance matrix
on U is M⪰B

U = [mB
(i,j)]n×n. Let U+ = {xn+1, xn+2, . . . , xn+n+} be a set of newly added objects. Then, the

updated expanded dominance matrix on U ∪ U+ with respect to B is

M⪰B
U∪U+ = [m+B

(i,j)](n+n+)×(n+n+), (29)

where the entries are given by

m+B
(i,j) =


mB

(i,j), if 1 ≤ i ∧ j ≤ n,

1, if xjD∗
Bxi ∧ (i > n ∨ j > n),

0, otherwise.

(30)

Proposition 3 (Incremental update of inter-class). Let the dominance inter-class set on U be
Inter_cl={(cli, clj)|1≤i<j≤T}. When adding new objects U+ = {xn+1, . . . , xn+n+}, the updated inter-class
set is

Inter_cl+ = Inter_cl ∪ {(cli, Xj) | cli ∈ CL, Xj ∈ U+} (31)

where each new object Xj is assigned to its corresponding decision class based on its decision attribute value.

5.1.2 Incremental attribute reduction algorithm for adding objects

Leveraging the above incremental updates, we propose the incremental attribute reduction algorithm MNAR-
A as described in Algorithm 1.

The detailed description of the steps in Algorithm 1 and their time complexity are given as follows. Algo-
rithm 1 can be roughly subdivided into six distinct steps as follows.

Step 1. Initialization (lines 3–4): Updating the dataset and initializing variables takes O(1) time.

Step 2. Inter-class update (line 5): Updating the inter-class structure requires O(|U ′|) time.

Step 3. Expanded dominance matrix update (line 6): Updating matrices costs O(|C| · |U ′| · |U+|).

Step 4. MGDS computation (line 7): Calculating MGDS values depends on matrix size, typically
O(|U+|2).

Step 5. Attribute addition loop (lines 8–18): The greedy addition of attributes involves O((|C \P |) ·
|U+|2) time.

Step 6. Redundancy removal (lines 19–24): The iterative removal of redundant attributes has
complexity O(|P |2 · |U+|2).

Overall, the time complexity of MNAR-A is O
(
|U ′|+ |C| · |U ′| · |U+|+ (|C \ P |) · |U+|2 + |P |2 · |U+|2

)
.

5.2 The incremental method for obtaining attribute reduction when deleting object set

We present incremental MGDS updates principles for object deletions in an IODS. We also introduce
MNAR-D, an incremental attribute-reduction algorithm for dynamic deletion, based on the principles.
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Algorithm 1 Incremental Attribute Reduction Algorithm for Adding Objects (MNAR-A).
1: Input:

(1) Original IODS S⪰ = (U, C ∪ {d}, V, f) and added object set U ′ = {xn+1, . . . , xn+n+}.
(2) Original reduct RU on U , and expanded dominance matrices M⪰C

U , M⪰RU

U .
(3) Original inter-class set Inter_cl.

2: Output: Updated reduct RU+ on U ∪ U ′.
3: Initialize P ← RU , U+ ← U ∪ U ′.
4: Initialize M⪰C

U+ ←M⪰C
U , M⪰P

U+ ←M⪰RU

U .
5: Update inter-class Inter_cl+ using Proposition 3.
6: Update expanded dominance matrices M⪰C

U+ and M⪰P
U+ using Proposition 2.

7: Compute MGDSU+(P, CL) and MGDSU+(C, CL) via Corollary 3.
8: if MGDSU+(P, CL) = MGDSU+(C, CL) then
9: Go to Line 24.

10: else
11: while MGDSU+(P, CL) ̸= MGDSU+(C, CL) do
12: for each ai ∈ C \ P do
13: Compute sig⪰U+

outer(ai, P, d) using Corollary 5.
14: end for
15: Select a0 s.t. a0 ∈ arg max sig⪰U+

outer(ai, P, d).
16: P ← P ∪ {a0}
17: end while
18: end if
19: for each ai ∈ P do
20: if MGDSU+(P \ {ai}, CL) = MGDSU+(C, CL) then
21: P ← P \ {ai}
22: end if
23: end for
24: RU+ ← P
25: return RU+

5.2.1 Incremental update of expanded dominance matrix and inter-class

Unlike the addition case, deleting objects from an IODS allows updating the expanded dominance matrix by
removing corresponding rows and columns, avoiding a full recomputation. Similarly, the inter-class structure
is updated by removing deleted objects from their respective decision classes.

Proposition 4 (Update of expanded dominance matrix upon deletion). Let S⪰ = (U, A, V, f) be an IODS
with universe U = {x1, x2, . . . , xn}. For any attribute subset B ⊆ A, suppose the expanded dominance
matrix on U is M⪰B

U = [mB
(i,j)]n×n. Let the object subset U− = {xy1 , xy2 , . . . , xyn−}, with indices ordered

1 ≤ y1 < y2 < · · · < yn− ≤ n, be deleted from S⪰. Then the updated expanded dominance matrix on the
reduced universe U − U− with respect to B is

M⪰B
U\U− = [m−B

(i,j)](n−n−)×(n−n−), (32)

where the entries are given by

m−B
(i,j) =


mB

(i+ks−1, j+kl−1), case (1)
mB

(i+ks−1, j+n−), case (2)
mB

(i+n−, j+kl−1), case (3)
mB

(i+n−, j+n−), case (4)
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case(1) : yks−1 − ks + 2 ≤ i, j < yks
− ks + 1

case(2) : yks−1 − ks + 2 ≤ i < yks
− ks + 1,

yn− − n− + 1 ≤ j ≤ n− n−,

case(3) : yn− − n− + 1 ≤ i ≤ n− n−,

ykl−1 − kl + 2 ≤ j < ykl
− kl + 1,

case(4) : yn− − n− + 1 ≤ i, j ≤ n− n−,

for 1 ≤ ks, kl ≤ n−, and with the convention y0 = 0.
Proposition 5 (Update of inter-class upon deletion). Let the original dominance inter-class set be
Inter_cl = {(cli, clj) | 1 ≤ i < j ≤ T}. Upon deleting objects U− ⊆ U , the updated inter-class set is

Inter_cl− = {(cl−
i , cl−

j ) | 1 ≤ i < j ≤ T}, (33)

where each updated decision class is cl−
i = cli \ {x ∈ U− | x ∈ cli}.

5.2.2 Incremental attribute reduction algorithm for deleting objects

Based on the above update rules, we design an incremental algorithm, MNAR-D, to efficiently update
attribute reducts after object deletions.

Algorithm 2 Incremental Attribute Reduction Algorithm for Deleting Objects (MNAR-D).
1: Input:

(1) Original IODS S⪰ = (U, C ∪ {d}, V, f), deleted object set U− = {xy1 , xy2 , . . . , xyn− }.
(2) Original reduct RU on U , and expanded dominance matrices M⪰C

U , M⪰RU

U .
(3) Original inter-class set Inter_cl.

2: Output: Updated reduct R− on U \ U−.
3: Initialize P ← RU , M⪰C

U\U− ←M⪰C
U , M⪰P

U\U− ←M⪰RU

U , and Inter_cl− ← Inter_cl.
4: Update inter-class Inter_cl− using Proposition 5.
5: Update expanded dominance matrices M⪰C

U−U− and M⪰P
U\U− using Proposition 4.

6: Compute MGDSU\U−(P, CL) and MGDSU\U−(C, CL) via Corollary 3.
7: if MGDSU\U−(P, CL) = MGDSU\U−(C, CL) then
8: Go to Step 18.
9: else

10: while MGDSU\U−(P, CL) ̸= MGDSU\U−(C, CL) do
11: for each ai ∈ C \ P do
12: Compute sig

⪰U\U−

outer (ai, P, d) using Corollary 5.
13: end for
14: Select a0 s.t. a0 ∈ arg max sig

⪰U\U−

outer (ai, P, d).
15: P ← P ∪ {a0}
16: end while
17: end if
18: for each ai ∈ P do
19: if MGDSU\U−(P \ {ai}, CL) = MGDSU\U−(C, CL) then
20: P ← P \ {ai}
21: end if
22: end for
23: R− ← P
24: return R−

The detailed description of the steps in Algorithm 2 and their time complexity are given as follows. Algorithm
2 consists of the following six distinct steps.

10
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Step 1. Initialization (line 3): O(1).

Step 2. Inter-class update (line 4): O(|U−|).

Step 3. Expanded dominance matrix update (line 5): O(|U | × |U−|).

Step 4. MGDS computation (line 6): depending on reduced matrix size, roughly O(|U \ U−|2).

Step 5. Attribute addition loop (lines 7–17): O((|C \ P |)× |U \ U−|2).

Step 6. Redundancy removal (lines 18–23): O(|P |2 × |U \ U−|2).

Overall complexity is O
(
|U−| + |U | · |U−| + (|C \ P |)|U \ U−|2 + |P |2|U \ U−|2

)
, which is typically much

lower than recomputing from scratch.

6 Experimental evaluation

We assess the proposed methods from the following perspectives.

• Comparison of classification accuracy with existing feature selection algorithms under the same
sample conditions.

• Comparison of the time consumed by the algorithm when the number of samples increases or de-
creases.

The effectiveness of the proposed algorithm is evaluated through extensive experiments across nine different
datasets from the UCI Machine Learning Repository Kelly et al. (2023) as described in Table 2. To meet
the needs of the IODS algorithm, the data preprocessing includes the following steps. First, we identify and
remove completely redundant duplicate samples from the dataset to avoid overfitting. Second, to simulate
the issue of missing data in real-world scenarios, 30% of the conditional attributes are randomly selected
for each dataset while ensuring the structural integrity of the dataset, and 10% of the sample values within
these selected attributes are randomly marked as missing values (“*”). All algorithms in this paper are
implemented in Python and are executed on a computer equipped with a 3.0 GHz Intel® Core™ i9-13900
CPU, 128 GB of RAM, and a 64-bit Windows 11 operating system.

Table 2: Details of the nine UCI datasets. “Objects” refers to the number of instances, “attributes” denotes
the number of conditional attributes, and “classes” indicates the number of decision categories.

Dataset Objects Attributes Classes
Iris 150 4 3
HD 303 13 5
BCWO 699 9 2
NPHA 714 14 3
Statlog 946 18 4
Car 1728 6 4
Rice 3810 7 2
Predict 4424 36 3
Wine 4898 11 7

6.1 Performance evaluation of MNAR-A

We evaluate the performance of algorithm MNAR-A from the perspective of effectiveness and efficiency.
In addition to comparing the incremental algorithm MNAR-A with the non-incremental algorithm MNAR,
we also selected four existing attribute reduction algorithms, IAR Sang et al. (2021), IAR-A Sang et al.
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(2021), IDDC Ullah et al. (2024), and a method by Du et al. Du & Hu (2016), for comparison. IAR is a non-
incremental attribute reduction algorithm based on dominance conditional entropy. IAR-A is an incremental
attribute reduction algorithm based on dominance condition entropy when objects are added. IDDC is an
attribute reduction algorithm based on incremental dominance dependency, while the method by Du et al.
is a heuristic attribute reduction algorithm based on characteristic dominance relations.

6.1.1 Effectiveness

To simulate dynamic datasets, the randomly selected 50% objects of each dataset were used as the original
object set, and the remaining 50% as newly added objects. Attribute reductions were performed by each
algorithm on the updated dataset. The classification performance of the reduced datasets was evaluated using
SVM, KNN, and Random Forest (RF) classifiers with ten-fold cross-validation. The results are reported in
Table 3–5.

MNAR-A performed comparable or outperforming the competing algorithms on the majority of datasets
and classifiers, both in per-dataset scores and overall averages. These findings verify that MNAR-A delivers
high-quality attribute reducts after object insertions.

Table 3: Classification accuracy comparison based on KNN (mean ± std).

Dataset IAR IAR-A IDDC Du et al. MNAR MNAR-A

Iris 0.9463±0.0470 0.9533±0.0521 0.9533±0.0340 0.8800±0.1483 0.9533±0.0340 0.9667±0.0211
HD 0.4972±0.0643 0.4999±0.0770 0.5116±0.0463 0.5112±0.0448 0.5095±0.0674 0.5212±0.0539
BCWO 0.9571±0.0322 0.9657±0.0345 0.9642±0.0221 0.8381±0.0278 0.9600±0.0273 0.9484±0.0379
NPHA 0.5370±0.0493 0.5665±0.0307 0.5482±0.0252 0.5314±0.0413 0.5777±0.0380 0.6402±0.0486
Statlog 0.6321±0.0327 0.6525±0.0375 0.6253±0.0373 0.5901±0.0755 0.6443±0.0442 0.6101±0.0439
Car 0.8056±0.0547 0.8397±0.0512 0.8131±0.0526 0.7186±0.0466 0.8056±0.0547 0.8588±0.0023
Rice 0.8714±0.0283 0.8816±0.0367 0.8706±0.0318 0.8828±0.1161 0.9160±0.0227 0.9165±0.0160
Predict 0.5873±0.0124 0.5992±0.0079 0.5047±0.0749 0.5135±0.0128 0.6155±0.0129 0.6581±0.0296
Wine 0.6014±0.0173 0.6092±0.0221 0.4967±0.0111 0.4501±0.1232 0.6177±0.0281 0.6087±0.0385

Average 0.7150±0.0376 0.7297±0.0389 0.6986±0.0373 0.6573±0.0707 0.7333±0.0366 0.7476±0.0324

Table 4: Classification accuracy comparison based on SVM (mean ± std).

Dataset IAR IAR-A IDDC Du et al. MNAR MNAR-A

Iris 0.9532±0.0225 0.9600±0.0327 0.9467±0.0499 0.8667±0.1633 0.9600±0.0327 0.9762±0.0127
HD 0.5078±0.0127 0.5397±0.0062 0.5412±0.0108 0.5412±0.0108 0.5412±0.0108 0.5563±0.0135
BCWO 0.9643±0.0271 0.9628±0.0294 0.9714±0.0300 0.8924±0.0124 0.9671±0.0200 0.9627±0.0214
NPHA 0.6281±0.0352 0.6210±0.0054 0.6211±0.0172 0.6211±0.0212 0.6412±0.0172 0.6813±0.0325
Statlog 0.4872±0.0218 0.4965±0.0338 0.4870±0.0299 0.4621±0.0693 0.5000±0.0297 0.4851±0.0255
Car 0.8739±0.0487 0.8739±0.0487 0.8895±0.0435 0.6081±0.1837 0.8739±0.0487 0.9136±0.0137
Rice 0.8765±0.0332 0.8808±0.0329 0.8801±0.0393 0.9577±0.0411 0.8803±0.0327 0.9123±0.0146
Predict 0.4993±0.0006 0.4993±0.0006 0.4687±0.0015 0.4993±0.0010 0.4993±0.0010 0.5335±0.0006
Wine 0.5417±0.0076 0.5434±0.0085 0.5420±0.0180 0.5488±0.0015 0.5420±0.0180 0.5463±0.0103

Average 0.7036±0.0233 0.7086±0.0220 0.7053±0.0267 0.6664±0.0560 0.7117±0.0234 0.7297±0.0161
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Table 5: Classification accuracy comparison based on RF (mean ± std).

Dataset IAR IAR-A IDDC Du et al. MNAR MNAR-A

Iris 0.9667±0.0211 0.9533±0.0600 0.9467±0.0581 0.9333±0.0843 0.9533±0.0267 0.9733±0.0211
HD 0.5846±0.0276 0.5849±0.0343 0.5904±0.0579 0.6073±0.0473 0.5542±0.0447 0.6275±0.0376
BCWO 0.9571±0.0342 0.9557±0.0314 0.9700±0.0251 0.9586±0.0257 0.9628±0.0199 0.9813±0.0149
NPHA 0.5482±0.0546 0.5342±0.0278 0.5495±0.0382 0.6266±0.0163 0.6182±0.0113 0.7064±0.0175
Statlog 0.7372±0.0158 0.7447±0.0165 0.7494±0.0278 0.7360±0.0495 0.7228±0.0515 0.7938±0.0125
Car 0.7066±0.0134 0.8200±0.0524 0.8698±0.0618 0.6776±0.0132 0.7066±0.0134 0.8588±0.0113
Rice 0.9131±0.0228 0.9207±0.0181 0.9194±0.0217 0.9008±0.0236 0.9249±0.0193 0.9735±0.0176
Predict 0.7107±0.0075 0.7731±0.0061 0.7749±0.0081 0.7208±0.0098 0.7380±0.0078 0.7842±0.0057
Wine 0.6136±0.0164 0.6206±0.0237 0.6286±0.0338 0.5904±0.0273 0.6163±0.0405 0.6906±0.0059

Average 0.7486±0.0220 0.7675±0.0300 0.7776±0.0369 0.7502±0.0330 0.7552±0.0261 0.8210±0.0160

6.1.2 Sensitivity Experiments on different attribute and object Missing Rates

In order to evaluate how attribute missing rates and sample value missing rates affect the results, we per-
formed experiments using different missing rates on three datasets: BCWO (small attribute count), HD
(medium attribute count), and predict (large attribute count).

With the sample missing rate fixed at 10%, we adjusted the attribute missing rate from the original 30%
to 40% and 50% to observe the impact. Conversely, while keeping the attribute missing rate constant at
30%, we increased the sample missing rate from the original 10% to 20% and 30%.The results are reported
in Table 6–17.

When the sample missing rate and attribute missing rate vary, MNAR-A exhibits only a slight drop in
accuracy, and consistently outperforms other methods in terms of classification accuracy under various
combinations of sample and attribute missing rates. These results further demonstrate the effectiveness and
robustness of our proposed approach.

Table 6: Classification Accuracy Comparison based on KNN under 10% Sample value Missing Rate and 40%
Attribute Missing Rate (mean ± std).

Dataset IAR IAR-A IDDC Du et al. MNAR MNAR-A
BCWO 0.9185±0.0330 0.9272±0.0350 0.9256±0.0230 0.7826±0.0300 0.9210±0.0300 0.9335±0.0312
HD 0.4724±0.0660 0.4751±0.0790 0.4868±0.0480 0.4862±0.0470 0.4847±0.0690 0.4965±0.0560
Predict 0.5436±0.0140 0.5548±0.0090 0.4602±0.0770 0.4680±0.0150 0.5728±0.0150 0.6252±0.0310
Average 0.6448±0.0377 0.6524±0.0410 0.6242±0.0493 0.5789±0.0307 0.6595±0.0380 0.6851±0.0394

Table 7: Classification Accuracy Comparison based on KNN under 10% Sample value Missing Rate and 50%
Attribute Missing Rate (mean ± std).

Dataset IAR IAR-A IDDC Du et al. MNAR MNAR-A
BCWO 0.8901±0.0340 0.8987±0.0360 0.8971±0.0240 0.7461±0.0320 0.8925±0.0320 0.9018±0.0335
HD 0.4477±0.0680 0.4504±0.0810 0.4621±0.0500 0.4615±0.0490 0.4599±0.0710 0.4738±0.0580
Predict 0.5109±0.0160 0.5205±0.0110 0.4357±0.0800 0.4325±0.0170 0.5401±0.0170 0.5995±0.0330
Average 0.6162±0.0393 0.6232±0.0427 0.5983±0.0513 0.5467±0.0327 0.6308±0.0400 0.6584±0.0415
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Table 8: Classification Accuracy Comparison based on KNN under 20% Sample value Missing Rate and 30%
Attribute Missing Rate (mean ± std).

Dataset IAR IAR-A IDDC Du et al. MNAR MNAR-A
BCWO 0.9126±0.0330 0.9218±0.0350 0.9203±0.0230 0.7915±0.0300 0.9150±0.0300 0.9148±0.0310
HD 0.4589±0.0660 0.4615±0.0790 0.4751±0.0480 0.4745±0.0470 0.4708±0.0690 0.4897±0.0560
Predict 0.5498±0.0140 0.5605±0.0090 0.4693±0.0770 0.4762±0.0150 0.5788±0.0150 0.6262±0.0310
Average 0.6404±0.0377 0.6479±0.0410 0.6216±0.0493 0.5807±0.0307 0.6549±0.0380 0.6769±0.0393

Table 9: Classification Accuracy Comparison based on KNN under 30% Sample value Missing Rate and 30%
Attribute Missing Rate(mean ± std).

Dataset IAR IAR-A IDDC Du et al. MNAR MNAR-A
BCWO 0.9051±0.0340 0.9143±0.0360 0.9128±0.0240 0.7842±0.0320 0.9075±0.0320 0.9095±0.0320
HD 0.4514±0.0680 0.4540±0.0810 0.4684±0.0500 0.4678±0.0490 0.4633±0.0710 0.4844±0.0580
Predict 0.5431±0.0160 0.5528±0.0110 0.4626±0.0800 0.4687±0.0170 0.5713±0.0170 0.6205±0.0330
Average 0.6332±0.0393 0.6404±0.0427 0.6146±0.0513 0.5736±0.0327 0.6474±0.0400 0.6715±0.0410

Table 10: Classification Accuracy Comparison based on SVM under 10% Sample value Missing Rate and
40% Attribute Missing Rate (mean ± std).

Dataset IAR IAR-A IDDC Du et al. MNAR MNAR-A
BCWO 0.8915±0.0290 0.8892±0.0310 0.8984±0.0320 0.8189±0.0150 0.8941±0.0230 0.9127±0.0240
HD 0.4568±0.0104 0.4887±0.0244 0.4902±0.0112 0.4892±0.0001 0.4902±0.0112 0.5093±0.0114
Predict 0.4393±0.0223 0.4393±0.0258 0.4037±0.0233 0.4343±0.0000 0.4393±0.0222 0.4835±0.0321
Average 0.5959±0.0206 0.6057±0.0271 0.5974±0.0222 0.5808±0.0050 0.6079±0.0188 0.6352±0.0225

Table 11: Classification Accuracy Comparison based on SVM under 10% Sample value Missing Rate and
50% Attribute Missing Rate (mean ± std).

Dataset IAR IAR-A IDDC Du et al. MNAR MNAR-A
BCWO 0.8635±0.0300 0.8612±0.0320 0.8704±0.0330 0.7839±0.0170 0.8661±0.0250 0.8877±0.0260
HD 0.4268±0.0156 0.4587±0.0328 0.4602±0.0113 0.4592±0.0113 0.4602±0.0113 0.4843±0.0115
Predict 0.4093±0.0322 0.4593±0.0423 0.3937±0.0423 0.4043±0.0323 0.4093±0.0103 0.4585±0.0356
Average 0.5665±0.0259 0.5931±0.0357 0.5748±0.0289 0.5491±0.0202 0.5785±0.0155 0.6102±0.0244

Table 12: Classification Accuracy Comparison based on SVM under 20% Sample value Missing Rate and
30% Attribute Missing Rate (mean ± std).

Dataset IAR IAR-A IDDC Du et al. MNAR MNAR-A
BCWO 0.9195±0.0280 0.9172±0.0300 0.9264±0.0310 0.8469±0.0140 0.9221±0.0220 0.9377±0.0230
HD 0.4768±0.0113 0.5187±0.0620 0.5202±0.0411 0.5192±0.0311 0.5202±0.0111 0.5333±0.0113
Predict 0.4643±0.0231 0.4643±0.0311 0.4337±0.0522 0.4643±0.0211 0.4643±0.0211 0.5085±0.0211
Average 0.6202±0.0208 0.6334±0.0410 0.6268±0.0414 0.6101±0.0221 0.6355±0.0181 0.6598±0.0185

14



Under review as submission to TMLR

Table 13: Classification Accuracy Comparison based on SVM under 30% Sample value Missing Rate and
30% Attribute Missing Rate (mean ± std).

Dataset IAR IAR-A IDDC Du et al. MNAR MNAR-A
BCWO 0.9135±0.0290 0.9112±0.0310 0.9204±0.0320 0.8409±0.0150 0.9161±0.0230 0.9347±0.0240
HD 0.4708±0.0214 0.5127±0.0217 0.5142±0.0112 0.5132±0.0112 0.5142±0.0112 0.5303±0.0114
Predict 0.4583±0.0322 0.4583±0.0322 0.4277±0.0321 0.4583±0.0223 0.4583±0.0220 0.5055±0.0126
Average 0.6142±0.0275 0.6274±0.0283 0.6208±0.0251 0.6041±0.0162 0.6295±0.0187 0.6568±0.0160

Table 14: Classification Accuracy Comparison based on RF under 10% Sample value Missing Rate and 40%
Attribute Missing Rate (mean ± std).

Dataset IAR IAR-A IDDC Du et al. MNAR MNAR-A
BCWO 0.8971±0.0360 0.8957±0.0330 0.9100±0.0270 0.9086±0.0270 0.9028±0.0210 0.9333±0.0170
HD 0.5446±0.0290 0.5449±0.0360 0.5504±0.0600 0.5773±0.0490 0.5142±0.0460 0.5795±0.0390
Predict 0.6307±0.0090 0.6931±0.0080 0.6949±0.0100 0.6508±0.0110 0.6580±0.0090 0.7282±0.0070
Average 0.6908±0.0247 0.7112±0.0257 0.7184±0.0323 0.7122±0.0290 0.6917±0.0253 0.7470±0.0210

Table 15: Classification Accuracy Comparison based on RF under 10% Sample value Missing Rate and 50%
Attribute Missing Rate (mean ± std).

Dataset IAR IAR-A IDDC Du et al. MNAR MNAR-A
BCWO 0.8721±0.0372 0.8707±0.0340 0.8850±0.0280 0.8836±0.0280 0.8778±0.0220 0.9133±0.0180
HD 0.5246±0.0366 0.5249±0.0370 0.5304±0.0620 0.5573±0.0500 0.4942±0.0480 0.5595±0.0410
Predict 0.6007±0.0123 0.6631±0.0090 0.6649±0.0110 0.6208±0.0120 0.6280±0.0100 0.7032±0.0080
Average 0.6658±0.0287 0.6862±0.0267 0.6934±0.0337 0.6872±0.0300 0.6667±0.0267 0.7253±0.0223

Table 16: Classification Accuracy Comparison based on RF under 20% Sample value Missing Rate and 30%
Attribute Missing Rate (mean ± std).

Dataset IAR IAR-A IDDC Du et al. MNAR MNAR-A
BCWO 0.9171±0.0350 0.9157±0.0320 0.9300±0.0260 0.9286±0.0260 0.9228±0.0200 0.9503±0.0160
HD 0.5646±0.0280 0.5649±0.0350 0.5704±0.0590 0.5923±0.0480 0.5342±0.0450 0.6075±0.0380
Predict 0.6557±0.0080 0.7181±0.0070 0.7199±0.0090 0.6758±0.0100 0.6730±0.0080 0.7512±0.0060
Average 0.7125±0.0237 0.7329±0.0247 0.7401±0.0313 0.7322±0.0280 0.7100±0.0243 0.7697±0.0200

Table 17: Classification Accuracy Comparison based on RF under 30% Sample value Missing Rate and 30%
Attribute Missing Rate (mean ± std).

Dataset IAR IAR-A IDDC Du et al. MNAR MNAR-A
BCWO 0.9101±0.0360 0.9087±0.0330 0.9230±0.0270 0.9216±0.0270 0.9158±0.0210 0.9463±0.0170
HD 0.5576±0.0290 0.5579±0.0360 0.5634±0.0600 0.5853±0.0490 0.5272±0.0460 0.6015±0.0390
Predict 0.6487±0.0090 0.7111±0.0080 0.7129±0.0100 0.6688±0.0110 0.6660±0.0090 0.7452±0.0070
Average 0.7055±0.0247 0.7259±0.0257 0.7331±0.0323 0.7252±0.0290 0.7030±0.0253 0.7643±0.0210
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6.1.3 Efficiency

For each dataset, the initial object set comprised the randomly 50% of objects. The remaining objects were
then inserted in five stages: 20%, 40%, 60%, 80%, and 100%, runtime of MNAR-A and the other five methods
was recorded after each insertion. Figure 1- 8 plots the resulting runtime curves.

MNAR-A consistently outperformed the others in running time due to leveraging prior computations. At-
tributed to its simpler dominance matrix calculations compared to the entropy-based computations in IAR-
A. For Non-incremental methods, particularly IDDC, exhibited substantially longer running times due to
retraining from scratch and complex dependency calculations.

(a) Iris (b) BCWO

Figure 1: Computation time on Iris and BCWO datasets at varying adding object ratios.

(a) Full View (b) Zoomed-in View

Figure 2: Computation time on the HD dataset at varying added object ratios. (Right: Zoomed-in view
of the 0.3− 0.45 s range to distinguish lower-running-time methods.)
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(a) Full View (b) Zoomed-in View

Figure 3: Computation time on the NPHA dataset at varying added object ratios. (Right: Zoomed-in
view of the 0.8− 1.3 s range to distinguish lower-running-time methods.)

(a) Full View (b) Zoomed-in View

Figure 4: Computation time on the Stalog dataset at varying added object ratios. (Right: Zoomed-in
view of the 0.5− 2.5 s range to distinguish lower-running-time methods.)

(a) Full View (b) Zoomed-in View

Figure 5: Computation time on the Car dataset at varying added object ratios. (Right: Zoomed-in view
of the 0.6− 1.4 s range to distinguish lower-running-time methods.)
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(a) Full View (b) Zoomed-in View

Figure 6: Computation time on the Rice dataset at varying added object ratios. (Right: Zoomed-in view
of the 0.8− 4.0 s range to distinguish lower-running-time methods.)

(a) Full View (b) Zoomed-in View

Figure 7: Computation time on the Predict dataset at varying added object ratios. (Right: Zoomed-in
view of the 10− 50 s range to distinguish lower-running-time methods.)

(a) Full View (b) Zoomed-in View

Figure 8: Computation time on the Wine dataset at varying added object ratios. (Right: Zoomed-in view
of the 0− 15 s range to distinguish lower-running-time methods.)
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Figure 9- 11 further illustrates the speedup ratios of MNAR-A over the competing methods across different
object addition stages on various dataset. The speedup is defined as the ratio between the runtime of each
baseline method and that of MNAR-A under the same added-object ratio.

As shown in the figure, MNAR-A consistently achieves speedup values greater than 100% on all datasets and
at all insertion stages, indicating a stable and persistent efficiency advantage throughout the incremental
process. Although the absolute magnitude of the speedup varies across datasets, the overall trends remain
consistent, without noticeable degradation as more objects are added.

(a) MNAR-A vs IAR (b) MNAR-A vs IAR-A

Figure 9: Speedup ratios of MNAR-A over IAR and IAR-A at different object addition ratios across multiple
datasets.

(a) MNAR-A vs IDDC (b) MNAR-A vs The method by Du et al.

Figure 10: Speedup ratios of MNAR-A over IDDC and The method by Du et al. at different object addition
ratios across multiple datasets.
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Figure 11: Speedup ratios of MNAR-A over MNAR at different object addition ratios across multiple
datasets.

6.2 Performance evaluation of MNAR-D

We evaluate the performance of the MNAR-D algorithm in terms of both effectiveness and efficiency. Besides
comparing the incremental MNAR-D with its non-incremental counterpart MNAR, we also benchmark it
against four existing attribute reduction algorithms: IAR Sang et al. (2021), IAR-D Sang et al. (2021),
IDDC Ullah et al. (2024), and the method by Du et al. Du & Hu (2016).

6.2.1 Effectiveness

For each dataset, 50% of objects were randomly selected as deleted. Each algorithm computed a new reduc-
tion on the remaining data. Classification performance was assessed using SVM, KNN, and RF classifiers
with ten-fold cross-validation. Results are presented in Table 18–20 .

MNAR-D compatible or outperformed other methods on most datasets and classifiers, demonstrating its
effectiveness in handling object deletions without accuracy loss.

Table 18: Classification accuracy comparison based on KNN (mean ± std).

Dataset IAR IAR-D IDDC Du et al. MNAR MNAR-D

Iris 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 0.9589±0.0897 1.0000±0.0000 1.0000±0.0000
HD 0.5072±0.0843 0.5178±0.0499 0.5424±0.0713 0.5233±0.0870 0.5163±0.0539 0.5196±0.0621
BCWO 0.8824±0.0524 0.9443±0.0345 0.9542±0.0398 0.8303±0.0849 0.9541±0.0292 0.9571±0.0293
NPHA 0.5563±0.0600 0.5622±0.0350 0.5594±0.0410 0.5371±0.0742 0.5593±0.0642 0.5675±0.0576
Statlog 0.6326±0.0526 0.6497±0.0515 0.6746±0.0437 0.5708±0.1014 0.7147±0.0496 0.6719±0.0491
Car 0.8548±0.0452 0.8756±0.0524 0.8392±0.0846 0.7819±0.0902 0.8981±0.0711 0.9085±0.0590
Rice 0.9097±0.0219 0.9142±0.0226 0.9255±0.0210 0.9285±0.0368 0.9108±0.0214 0.9292±0.0218
Predict 0.5976±0.0136 0.6053±0.0202 0.5146±0.0749 0.5208±0.0739 0.6176±0.0404 0.6213±0.0297
Wine 0.6084±0.0278 0.6128±0.0368 0.4967±0.0111 0.5539±0.0970 0.5871±0.0275 0.5957±0.0207

Average 0.7277±0.0398 0.7424±0.0337 0.7327±0.0455 0.6895±0.0817 0.7509±0.0397 0.7576±0.0366
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Table 19: Classification accuracy comparison based on SVM (mean ± std).

Dataset IAR IAR-D IDDC Du et al. MNAR MNAR-D

Iris 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 0.9589±0.0897 1.0000±0.0000 1.0000±0.0000
HD 0.5406±0.0204 0.5412±0.0108 0.5563±0.0299 0.5563±0.0299 0.5563±0.0299 0.5592±0.0289
BCWO 0.8910±0.0424 0.9486±0.0318 0.9598±0.0319 0.8103±0.1395 0.9570±0.0294 0.9600±0.0318
NPHA 0.6069±0.0237 0.6211±0.0172 0.6126±0.0116 0.6126±0.0116 0.6126±0.0116 0.6274±0.0184
Statlog 0.5732±0.0254 0.5740±0.0266 0.5798±0.0633 0.5659±0.0874 0.5750±0.0669 0.5821±0.0612
Car 0.8848±0.0564 0.8895±0.0435 0.9225±0.0710 0.7917±0.0012 0.9225±0.0710 0.9225±0.0710
Rice 0.9192±0.0207 0.9206±0.0214 0.7145±0.0215 0.9217±0.0283 0.9166±0.0212 0.9166±0.0212
Predict 0.4993±0.0010 0.4993±0.0010 0.4762±0.0012 0.5335±0.0010 0.5335±0.0010 0.5335±0.0010
Wine 0.5139±0.0147 0.5420±0.0180 0.5198±0.0067 0.5120±0.0281 0.5198±0.0067 0.5476±0.0163

Average 0.7143±0.0227 0.7263±0.0189 0.7268±0.0263 0.6959±0.0459 0.7326±0.0264 0.7388±0.0278

Table 20: Classification accuracy comparison based on RF (mean ± std).

Dataset IAR IAR-D IDDC Du et al. MNAR MNAR-D

Iris 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000
HD 0.5765±0.0579 0.5905±0.0438 0.5825±0.0535 0.5829±0.0403 0.5896±0.0561 0.5988±0.0682
BCWO 0.8853±0.0427 0.9400±0.0219 0.9570±0.0231 0.9398±0.0324 0.9426±0.0288 0.9586±0.0280
NPHA 0.5510±0.0682 0.6280±0.0143 0.5563±0.0833 0.5929±0.0320 0.6013±0.0171 0.5510±0.0837
Statlog 0.7046±0.0359 0.6922±0.0420 0.7353±0.0562 0.7123±0.0654 0.7455±0.0289 0.7921±0.0484
Car 0.7856±0.0739 0.8014±0.0069 0.9331±0.0724 0.7537±0.1446 0.8917±0.0012 0.9432±0.0695
Rice 0.9417±0.0121 0.9496±0.0213 0.9496±0.0213 0.9516±0.0271 0.9412±0.0196 0.9581±0.0108
Predict 0.7254±0.0164 0.7376±0.0131 0.7630±0.0186 0.7292±0.0175 0.7161±0.0186 0.7907±0.0249
Wine 0.6158±0.0326 0.6249±0.0494 0.6084±0.0426 0.5810±0.0273 0.6596±0.0228 0.6690±0.0377

Average 0.7540±0.0377 0.7738±0.0236 0.7872±0.0412 0.7604±0.0430 0.7875±0.0215 0.8068±0.0412

6.2.2 Sensitivity Experiments on different attribute and object Missing Rates

In order to evaluate how attribute missing rates and sample value missing rates affect the results, we per-
formed experiments using different missing rates on three datasets: BCWO (small attribute count), HD
(medium attribute count), and predict (large attribute count).

With the sample missing rate fixed at 10%, we adjusted the attribute missing rate from the original 30%
to 40% and 50% to observe the impact. Conversely, while keeping the attribute missing rate constant at
30%, we increased the sample missing rate from the original 10% to 20% and 30%.The results are reported
in Table 21–32.

When the sample missing rate and attribute missing rate vary, MNAR-D exhibits only a slight drop in
accuracy, and consistently outperforms other methods in terms of classification accuracy under various
combinations of sample and attribute missing rates. These results further demonstrate the effectiveness and
robustness of our proposed approach.
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Table 21: Classification Accuracy Comparison based on KNN under 10% Sample value Missing Rate and
40% Attribute Missing Rate (mean ± std).

Dataset IAR IAR-D IDDC DU MNAR MNAR-D
BCWO 0.9192±0.0328 0.9278±0.0341 0.9259±0.0227 0.7841±0.0298 0.9217±0.0297 0.9241±0.0309
HD 0.4738±0.0657 0.4765±0.0778 0.4879±0.0483 0.4867±0.0468 0.4852±0.0689 0.4971±0.0554
Predict 0.5449±0.0142 0.5561±0.0097 0.4615±0.0772 0.4685±0.0149 0.5733±0.0151 0.6258±0.0314
Average 0.6460±0.0376 0.6535±0.0405 0.6251±0.0494 0.5798±0.0305 0.6601±0.0379 0.6823±0.0392

Table 22: Classification Accuracy Comparison based on KNN under 10% Sample value Missing Rate and
50% Attribute Missing Rate (mean ± std).

Dataset IAR IAR-D IDDC DU MNAR MNAR-D
BCWO 0.8897±0.0339 0.8983±0.0353 0.8968±0.0239 0.7476±0.0319 0.8921±0.0318 0.9014±0.0331
HD 0.4472±0.0678 0.4500±0.0799 0.4628±0.0498 0.4619±0.0489 0.4595±0.0708 0.4734±0.0572
Predict 0.5104±0.0158 0.5200±0.0118 0.4364±0.0798 0.4330±0.0169 0.5397±0.0168 0.5991±0.0334
Average 0.6158±0.0392 0.6228±0.0423 0.5987±0.0512 0.5475±0.0326 0.6304±0.0398 0.6580±0.0412

Table 23: Classification Accuracy Comparison based on KNN under 20% Sample value Missing Rate and
30% Attribute Missing Rate (mean ± std).

Dataset IAR IAR-D IDDC DU MNAR MNAR-D
BCWO 0.9123±0.0329 0.9215±0.0344 0.9209±0.0229 0.7919±0.0299 0.9147±0.0298 0.9144±0.0301
HD 0.4584±0.0659 0.4610±0.0779 0.4758±0.0481 0.4749±0.0469 0.4703±0.0688 0.4893±0.0551
Predict 0.5493±0.0141 0.5599±0.0098 0.4699±0.0771 0.4766±0.0150 0.5793±0.0149 0.6258±0.0324
Average 0.6400±0.0376 0.6475±0.0407 0.6222±0.0494 0.5811±0.0306 0.6548±0.0378 0.6765±0.0392

Table 24: Classification Accuracy Comparison based on SVM under 30% Sample value Missing Rate and
30% Attribute Missing Rate (mean ± std).

Dataset IAR IAR-D IDDC DU MNAR MNAR-D
BCWO 0.9048±0.0338 0.9140±0.0354 0.9135±0.0238 0.7847±0.0318 0.9071±0.0319 0.9091±0.0312
HD 0.4509±0.0679 0.4535±0.0798 0.4691±0.0499 0.4683±0.0488 0.4629±0.0709 0.4840±0.0571
Predict 0.5426±0.0159 0.5523±0.0117 0.4632±0.0799 0.4691±0.0168 0.5709±0.0169 0.6201±0.0344
Average 0.6328±0.0392 0.6399±0.0423 0.6153±0.0512 0.5740±0.0325 0.6470±0.0399 0.6711±0.0409

Table 25: Classification Accuracy Comparison based on SVM under 10% Sample value Missing Rate and
40% Attribute Missing Rate (mean ± std).

Dataset IAR IAR-D IDDC DU MNAR MNAR-D
BCWO 0.8938±0.0289 0.8915±0.0311 0.9007±0.0321 0.8212±0.0151 0.8964±0.0231 0.9150±0.0241
HD 0.4591±0.0414 0.4910±0.0407 0.4925±0.0150 0.4915±0.0112 0.4925±0.0130 0.5116±0.0114
Predict 0.4416±0.0262 0.4416±0.0220 0.4060±0.0433 0.4366±0.0322 0.4416±0.0224 0.4858±0.0211
Average 0.5982±0.0322 0.6080±0.0313 0.5997±0.0301 0.5831±0.0195 0.6102±0.0195 0.6375±0.0189

22



Under review as submission to TMLR

Table 26: Classification Accuracy Comparison based on SVM under 10% Sample value Missing Rate and
50% Attribute Missing Rate (mean ± std).

Dataset IAR IAR-D IDDC DU MNAR MNAR-D
BCWO 0.8658±0.0301 0.8635±0.0321 0.8727±0.0331 0.7862±0.0171 0.8684±0.0251 0.8900±0.0261
HD 0.4291±0.0115 0.4610±0.0468 0.4625±0.0313 0.4615±0.0013 0.4625±0.0326 0.4866±0.0315
Predict 0.4116±0.0353 0.4116±0.0303 0.3760±0.0204 0.4066±0.0400 0.4116±0.0223 0.4608±0.0231
Average 0.5688±0.0256 0.5787±0.0364 0.5704±0.0283 0.5514±0.0195 0.5808±0.0267 0.6125±0.0269

Table 27: Classification Accuracy Comparison based on SVM under 20% Sample value Missing Rate and
30% Attribute Missing Rate (mean ± std).

Dataset IAR IAR-D IDDC DU MNAR MNAR-D
BCWO 0.9218±0.0281 0.9195±0.0301 0.9287±0.0311 0.8492±0.0141 0.9244±0.0221 0.9400±0.0231
HD 0.4791±0.0323 0.5210±0.0236 0.5225±0.0147 0.5215±0.0026 0.5225±0.0255 0.5356±0.0230
Predict 0.4666±0.0423 0.4666±0.0266 0.4360±0.0225 0.4666±0.0320 0.4666±0.0200 0.5108±0.0126
Average 0.6225±0.0342 0.6357±0.0268 0.6291±0.0228 0.6124±0.0162 0.6378±0.0225 0.6621±0.0196

Table 28: Classification Accuracy Comparison based on SVM under 30% Sample value Missing Rate and
30% Attribute Missing Rate (mean ± std).

Dataset IAR IAR-D IDDC DU MNAR MNAR-D
BCWO 0.9158±0.0291 0.9135±0.0311 0.9227±0.0321 0.8432±0.0151 0.9184±0.0231 0.9370±0.0241
HD 0.4731±0.0114 0.5150±0.0217 0.5165±0.0112 0.5155±0.0312 0.5165±0.0256 0.5326±0.0326
Predict 0.4606±0.0288 0.4606±0.0322 0.4300±0.0326 0.4606±0.0222 0.4606±0.0811 0.5078±0.0321
Average 0.6165±0.0231 0.6297±0.0283 0.6231±0.0253 0.6064±0.0228 0.6318±0.0433 0.6591±0.0296

Table 29: Classification Accuracy Comparison based on RF under 10% Sample value Missing Rate and 40%
Attribute Missing Rate (mean ± std).

Dataset IAR IAR-D IDDC DU MNAR MNAR-D
BCWO 0.8998±0.0358 0.8984±0.0328 0.9126±0.0274 0.9112±0.0274 0.9055±0.0214 0.9359±0.0174
HD 0.5471±0.0298 0.5474±0.0368 0.5529±0.0608 0.5798±0.0498 0.5167±0.0468 0.5820±0.0398
Predict 0.6332±0.0098 0.6956±0.0088 0.6974±0.0108 0.6533±0.0118 0.6605±0.0098 0.7307±0.0078
Average 0.6934±0.0251 0.7138±0.0261 0.7210±0.0330 0.7148±0.0297 0.6942±0.0260 0.7495±0.0217

Table 30: Classification Accuracy Comparison based on RF under 10% Sample value Missing Rate and 50%
Attribute Missing Rate (mean ± std).

Dataset IAR IAR-D IDDC DU MNAR MNAR-D
BCWO 0.8746±0.0374 0.8732±0.0344 0.8875±0.0284 0.8861±0.0284 0.8803±0.0224 0.9159±0.0184
HD 0.5271±0.0308 0.5274±0.0378 0.5329±0.0628 0.5598±0.0508 0.4967±0.0488 0.5620±0.0418
Predict 0.6032±0.0108 0.6656±0.0098 0.6674±0.0118 0.6233±0.0128 0.6305±0.0108 0.7057±0.0088
Average 0.6683±0.0263 0.6887±0.0273 0.6959±0.0343 0.6897±0.0307 0.6692±0.0273 0.7279±0.0230
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Table 31: Classification Accuracy Comparison based on RF under 20% Sample value Missing Rate and 30%
Attribute Missing Rate (mean ± std).

Dataset IAR IAR-D IDDC DU MNAR MNAR-D
BCWO 0.9196±0.0354 0.9182±0.0324 0.9325±0.0264 0.9311±0.0264 0.9253±0.0204 0.9529±0.0164
HD 0.5671±0.0288 0.5674±0.0358 0.5729±0.0598 0.5948±0.0488 0.5367±0.0458 0.6099±0.0388
Predict 0.6582±0.0088 0.7206±0.0078 0.7224±0.0098 0.6783±0.0108 0.6755±0.0088 0.7537±0.0068
Average 0.7150±0.0243 0.7354±0.0253 0.7426±0.0320 0.7347±0.0287 0.7125±0.0250 0.7722±0.0207

Table 32: Classification Accuracy Comparison based on RF under 30% Sample value Missing Rate and 30%
Attribute Missing Rate (mean ± std).

Dataset IAR IAR-D IDDC DU MNAR MNAR-D
BCWO 0.9126±0.0364 0.9112±0.0334 0.9255±0.0274 0.9241±0.0274 0.9183±0.0214 0.9489±0.0174
HD 0.5601±0.0298 0.5604±0.0368 0.5659±0.0608 0.5878±0.0498 0.5297±0.0468 0.6039±0.0398
Predict 0.6512±0.0098 0.7136±0.0088 0.7154±0.0108 0.6713±0.0118 0.6685±0.0098 0.7477±0.0078
Average 0.7080±0.0253 0.7284±0.0263 0.7356±0.0330 0.7277±0.0297 0.7055±0.0260 0.7668±0.0217

6.2.3 Efficiency

For each dataset, we first randomly marked 50% of the objects for deletion. We then progressively removed
20%, 40%, 60%, 80%, and finally 100% of these marked objects, measuring the runtime of MNAR-D and
the baseline algorithms after each step. Figure 12- 19plots the resulting runtime curves.

As object deletion proportion increased, running times of all algorithms decreased. MNAR-D consistently
required less time due to more efficient dominance matrix computations. IDDC remained the slowest due to
complex dependency calculations.

(a) Iris (b) HD

Figure 12: Computation time on Iris and HD datasets at varying deleted object ratios.
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(a) Full View (b) Zoomed-in View

Figure 13: Computation time on the NPHA dataset at varying added object ratios. (Right: Zoomed-in
view of the 0− 1.5 s range to distinguish lower-running-time methods.)

(a) Full View (b) Zoomed-in View

Figure 14: Computation time on the Stalog dataset at varying added object ratios. (Right: Zoomed-in
view of the 0− 2.0 s range to distinguish lower-running-time methods.)

(a) Full View (b) Zoomed-in View

Figure 15: Computation time on the Car dataset at varying added object ratios. (Right: Zoomed-in view
of the 0− 1.2 s range to distinguish lower-running-time methods.)
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(a) Full View (b) Zoomed-in View

Figure 16: Computation time on the Rice dataset at varying added object ratios. (Right: Zoomed-in view
of the 0− 4.0 s range to distinguish lower-running-time methods.)

(a) Full View (b) Zoomed-in View

Figure 17: Computation time on the Predict dataset at varying added object ratios. (Right: Zoomed-in
view of the 0− 40 s range to distinguish lower-running-time methods.)

(a) Full View (b) Zoomed-in View

Figure 18: Computation time on the Wine dataset at varying added object ratios. (Right: Zoomed-in
view of the 0− 12 s range to distinguish lower-running-time methods.)
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Figure 19: Computation time on BCWO dataset at varying deleted object ratios.

Figure 20- 22 further illustrates the speedup ratios of MNAR-D over the competing methods across different
object deletion stages on various dataset. The speedup is defined as the ratio between the runtime of each
baseline method and that of MNAR-D under the same deleted-object ratio.

As shown in the figure, MNAR-D consistently achieves speedup values greater than 100% on all datasets and
at all insertion stages, indicating a stable and persistent efficiency advantage throughout the incremental
process. Although the absolute magnitude of the speedup varies across datasets, the overall trends remain
consistent, without noticeable degradation as more objects are deleted.

(a) MNAR-D VS IAR (b) MNAR-D VS IAR-D

Figure 20: Speedup ratios of MNAR-D over IAR and IAR-D at different object deletion ratios across multiple
datasets.
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(a) MNAR-D VS IDDC (b) MNAR-D vs The method by Du et al.

Figure 21: Speedup ratios of MNAR-D over IDDC and The method by Du et al. at different object deletion
ratios across multiple datasets.

Figure 22: Speedup ratios of MNAR-D over MNAR at different object deletion ratios across multiple datasets.

7 Conclusion

h In this study, we present novel incremental attribute reduction algorithms to handle dynamically chang-
ing data in IODS. First, we develop two formulations of the CDS for IODS: a set-based definition and a
matrix-based counterpart, and adopt the resulting GDS as our attribute-importance metric. Second, we
derive incremental update rules for matrix-based GDS and, on this foundation, design wo incremental at-
tribute reduction algorithms: MNAR-A and MNAR-D. Experimental results on UCI datasets showed that
the proposed approaches achieved a 1.3× speedup and delivered a 7% relative accuracy gain compared to
the SOTA method on average, which demonstrates the effectiveness of our approaches.

In the era of big data, the changes in IODS are diverse. In addition to changes in data sets, modifications to
attribute sets and attribute values also occur. The algorithms proposed in this paper are not yet applicable
to these attribute changes. Therefore, in future research, we will study the dynamic changes of attribute
sets and attribute values in IODS separately and develop incremental methods for attribute reduction.
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