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Summary
Prioritized experience replay, which improves sample efficiency by selecting relevant tran-

sitions to update parameter estimates, is a crucial component of contemporary value-based deep
reinforcement learning models. Typically, transitions are prioritized based on their temporal
difference error. However, this approach is prone to favoring noisy transitions, even when
the value estimation closely approximates the target mean. This phenomenon resembles the
noisy TV problem postulated in the exploration literature, in which exploration-guided agents
get stuck by mistaking noise for novelty. To mitigate the disruptive effects of noise in value
estimation, we propose using epistemic uncertainty to guide the prioritization of transitions
from the replay buffer. Epistemic uncertainty quantifies the uncertainty that can be reduced by
learning, hence reducing transitions sampled from the buffer generated by unpredictable ran-
dom processes. We first illustrate the benefits of epistemic uncertainty prioritized replay in two
tabular toy models: a simple multi-arm bandit task, and a noisy gridworld. Subsequently, we
evaluate our prioritization scheme on the Atari suite, outperforming quantile regression deep
Q-learning benchmarks; thus forging a path for the use of epistemic uncertainty prioritized
replay in reinforcement learning agents.

Contribution(s)
1. We introduce a new decomposition of uncertainties in reinforcement learning extending

previous formulations of epistemic and aleatoric uncertainty estimators (Clements et al.,
2020) to include a distance-to-target term. This decomposition better accounts for bias-
variance trade-offs in the underlying estimator.
Context: While Clements et al. (2020) start by defining total uncertainty estimator as the
variance over distributional and ensemble dimensions of the value estimate, we start instead
from the average square error to the target over distributional and ensemble dimensions.
Under the definitions given by Lahlou et al. (2022) in their Direct Epistemic Uncertainty
Prediction (DEUP) framework, this yields a modified epistemic uncertainty estimator that
we term the target epistemic uncertainty.

2. We propose using these measures of epistemic and aleatoric uncertainty in an information
gain criterion to prioritize experience replay in reinforcement learning. We call this priori-
tization scheme Uncertainty Prioritized Experience Replay (UPER).
Context: The de facto method for prioritizing replay in reinforcement learning has been the
absolute value of the temporal difference error since its introduction by Schaul et al. (2016).
However we argue that this can lead to sub-optimal behavior in noisy environments. We go
on to derive the information gain prioritization criterion from principled treatment of a toy
Bayesian problem.

3. We demonstrate the effectiveness of this prioritization scheme in two toy models (a bandit
and gridworld), as well as in a deep learning model on the Atari test suite. In the latter we
use an ensemble of distributional QR agents (Dabney et al., 2017) to estimate the relevant
uncertainty quantities.
Context: We provide a series of ablation studies in Atari that isolate the effect of the
prioritization variable (from architectural changes such as adding an ensemble), showing
that UPER could be a promising alternative to PER and other uncertainty measures like
plain ensemble disagreement.
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Abstract

Prioritized experience replay, which improves sample efficiency by selecting relevant
transitions to update parameter estimates, is a crucial component of contemporary
value-based deep reinforcement learning models. Typically, transitions are prioritized
based on their temporal difference error. However, this approach is prone to favoring
noisy transitions, even when the value estimation closely approximates the target mean.
This phenomenon resembles the noisy TV problem postulated in the exploration lit-
erature, in which exploration-guided agents get stuck by mistaking noise for novelty.
To mitigate the disruptive effects of noise in value estimation, we propose using epis-
temic uncertainty estimation to guide the prioritization of transitions from the replay
buffer. Epistemic uncertainty quantifies the uncertainty that can be reduced by learning,
hence reducing transitions sampled from the buffer generated by unpredictable random
processes. We first illustrate the benefits of epistemic uncertainty prioritized replay in
two tabular toy models: a simple multi-arm bandit task, and a noisy gridworld. Subse-
quently, we evaluate our prioritization scheme on the Atari suite, outperforming quantile
regression deep Q-learning benchmarks; thus forging a path for the use of uncertainty
prioritized replay in reinforcement learning agents.

1 Introduction

Deep Reinforcement Learning (DRL) has proven highly effective across a diverse array of problems,
consistently yielding state-of-the-art results in control of dynamical systems (Nian et al., 2020; De-
grave et al., 2022; Weinberg et al., 2023), abstract strategy games (Mnih et al., 2015; Silver et al.,
2016), continual learning (Khetarpal et al., 2022; Team et al., 2021), and multi-agent learning (Ope-
nAI et al., 2019; Baker et al., 2020). It has also been established as a foundational theory for
explaining phenomena in cognitive neuroscience (Botvinick et al., 2020; Subramanian et al., 2022).
Nonetheless, a significant drawback of these methods pertains to their inherent sample inefficiency
whereby accurate estimations of value and policy necessitate a substantial demand for interactions
with the environment.

Sample inefficiency has been mitigated through the use of, among other methods, Prioritized Expe-
rience Replay (PER) (Schaul et al., 2016). PER is an extension of Experience Replay (Lin, 1992),
which uses a memory buffer populated with past agent transitions to improve training stability
through the temporal de-correlation of data used in parameter updates. Subsequently, PER extends
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this approach by sampling transitions from the buffer with probabilities proportional to their abso-
lute Temporal Difference (TD) error, thereby allowing agents to prioritize learning from pertinent
data. PER has been widely adopted as a standard technique in DRL; however, despite significantly
better performance over uniform sampling in most cases, it is worth noting that PER can encounter
limitations under specific task conditions and agent designs. The most prominent example of such a
limitation is related to the so-called noisy TV problem (Burda et al., 2018), a thought experiment at
the heart of the literature around exploration in RL. Just as novelty-based exploration bonuses can
trap agents in noisy states, PER is susceptible to frequently replaying transitions involving high lev-
els of randomness (e.g. in reward or transition dynamics) even if they do not translate to meaningful
learning and thus are not useful for solving the task.

To combat this issue, we propose combining epistemic and aleatoric uncertainty estima-
tors (Clements et al., 2020; Alverio et al., 2022; Lahlou et al., 2022; Liu et al., 2023; Jiang et al.,
2023), originally used to promote exploration, under an information gain criterion for use in replay
prioritization. Epistemic uncertainty, the uncertainty reducible through learning, is the key quantity
of interest. However this need to be appropriately ‘calibrated’, which we show-both empirically, and
with justification from Bayesian inference-can be done effectively by dividing the epistemic uncer-
tainty estimate by an aleatoric uncertainty estimate (and taking the logarithm, i.e. the information
gain). Intuitively the need for this kind of calibration can be seen by considering the following game:
the aim is to estimate the mean of two distributions; the ground truth is that both distributions have
identical mean but different variance, and your current estimates for both distributions are the same
i.e. your epistemic uncertainty on the mean is the same for both distributions. However if I offer
you a new sample from either distribution to refine your estimate you would choose to sample the
distribution with lower variance since this is more likely to be informative. In addition to arguing
for this novel prioritization variable, we also provide candidate methods involving distributions of
ensembles (in the vein of Clements et al. (2020)) to estimate these quantities. A comprehensive
review of related literature is provided in App. B, with further details in SM 1.

Our primary contributions are as follows: (1) In Sec. 3, we present a novel approach for estimating
epistemic uncertainty, building upon an existing uncertainty formalization introduced by Clements
et al. (2020) & Jiang et al. (2023). This extension incorporates information about the target value that
the model aims to estimate thereby accounting for bias in the estimator; (2) We derive a prioritiza-
tion variable using estimated uncertainty quantities, finding a specific functional form derived from
a concept called information gain, showing that both, epistemic and aleatoric uncertainty should be
considered for prioritization; (3) In Sec. 4, we illustrate the advantages of our proposed epistemic un-
certainty prioritization scheme through two interpretable toy models, a bandit task and a grid world;
(4) In Sec. 5, we demonstrate the effectiveness of this method on the Atari-57 benchmark (Belle-
mare et al., 2013), where it significantly outperforms baseline models based on a combination of
PER, QR-DQN and ensemble agents.

2 Background

2.1 Reinforcement Learning

Consider an environment modelled by a Markov Decision Process (MDP), defined by (S,A,R, P, γ)
with state space S, action space A, reward function R, state-transition function P , and discount fac-
tor γ ∈ (0, 1). Given the agent policy π : S → ∆(A), where ∆(A) denotes the probability simplex
over A, the cumulative discounted future reward is denoted by Gπ(s, a) =

∑
t γ

tR(st, at) with
s0 = s and a0 = a, and transitions sampled according to at ∼ π(a|st) and st+1, rt ∼ P (s, r|st, at).
We denote the action-value function as Qπ(s, a) = E [Gπ(s, a)], and the corresponding state-action
return-distribution function as ηπ(s, a); and we recall that Qπ(s, a) = EG∼ηπ(s,a) [G]. In gen-
eral, the action value function is parameterized by ψ, such that Qψ can be trained by minimizing a
mean-squared temporal difference (TD) error E[δ2t ]. For example, in Q-Learning the error is given
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by
δt = rt + γmax

a′∈A
Qψ̄(st+1, a

′)−Qψ(st, at), (1)

for the transition at time t (st, at, rt, st+1), and where ψ̄ denotes the possibly time-lagged target
parameters (Watkins & Dayan, 1992; Mnih et al., 2015). Additionally, we will use policies that
are ϵ-greedy with respect to the currently estimated action-value function, that is for some ϵ ∈
[0, 1], the selected action from any state s is drawn as argmaxa∈AQψ(s, a) with probability 1 − ϵ
and uniformly over A otherwise. See Sutton & Barto (2018) for a more in-depth overview of RL
methods.

2.2 Prioritized Experience Replay

Reinforcement learning algorithms are notoriously sample inefficient. A widely adopted practice
to mitigate this issue is the use of an experience replay buffer, which stores transitions in the form
of (st, at, rt, st+1) for later learning (Mnih et al., 2015). Loosely inspired by hippocampal replay
to the cortex in mammalian brains (Foster & Wilson, 2006; McNamara et al., 2014), its primary
conceptual motivation is to reduce the variance of gradient-based optimization by temporally de-
correlating updates, thereby improving sample efficiency. It can also serve to prevent catastrophic
forgetting by maintaining transitions from different time scales. The effectiveness of this buffer
can often be improved further by prioritising some transitions at the point of sampling rather than
selecting uniformly. Formally, when transition i is placed into replay, it is given a priority pi. The
probability of sampling this transition during training is given by:

P (i) =
pαi∑
k p

α
k

, (2)

where α is a hyper-parameter called prioritisation exponent (α = 0 corresponds to uniform sam-
pling). Schaul et al. (2016) introduced prioritized experience replay, which most often uses the
absolute TD-error |δi| of transition i, as pi = |δi| + ϵ where a small ϵ constant ensures transitions
with zero error still have a chance of being sampled1. Sampling transitions non-uniformly from the
replay buffer will change the observed distribution of transitions, biasing the solution of value esti-
mates. To correct this bias, the error used for each update is re-weighted by an importance weight of
the form wi ∝ (NP (i))

−β , where N is the size of the buffer and β controls the correction of bias
introduced by important sampling (β = 1 corresponds to a full correction).

The key intuition behind PER is that transitions on which the agent previously made inaccurate
predictions should be replayed more often than transitions on which the agent already has low error.
While this heuristic is reasonable and has enjoyed empirical success, TD-errors can be insufficiently
distinct from the irreducible aleatoric uncertainty; considering instead uncertainty measures more
explicitly, this form of prioritisation can be significantly improved.

2.3 Uncertainty Estimation in RL

Uncertainty is a fundamental concept in statistics, and a natural way to frame it is through the lens
of Bayesian methods (Lahlou et al., 2022; Narimatsu et al., 2023). In the context of reinforcement
learning (RL), uncertainty has been extensively studied in relation to exploration. This often involves
using proxies to encourage the agent to explore more uncertain states, through methods such as
optimistic reward estimates for unexplored states or actions, i.e., upper confidence bounds (Auer,
2002a; Lattimore & Szepesvári, 2020; Antonov et al., 2022), or by assigning intrinsic rewards for
visiting novel states (Bellemare et al., 2016b; Lobel et al., 2023). Various characteristics of the RL
setting, such as bootstrapping and non-stationarity, make accurate uncertainty estimation particularly
challenging. Nevertheless, uncertainty has played an increasingly important role in recent research,
including applications in generalization (Jiang et al., 2023), reward bonuses for exploration (Nikolov

1Another form of prioritization, known as rank-based prioritisation, is to use pi = 1/rank(i) where rank(i) is the rank of
the experience in the buffer when ordered by |δi|.
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et al., 2019), and guiding safe actions (Lütjens et al., 2019; Kahn et al., 2017). We discuss here
some of the key concepts around uncertainty relevant to this work, particularly those that address
the delineation between aleatoric and epistemic uncertainty. A more comprehensive overview of
related work around uncertainty in RL can be found in SM 1.

2.3.1 Bootstrapped DQN

The concept behind bootstrapping is to approximate a posterior distribution by sampling a predic-
tion from an ensemble of estimators, where each estimator is initialized randomly and observes a
distinct subset of the data (Tibshirani, 1994; Bickel & Freedman, 1981). In RL, Osband et al. (2016)
introduced a protocol known as bootstrapped DQN for deep exploration, whereby bootstrapping is
used to approximate the posterior of the action-value function, from which samples can be drawn.
Each agent within an effective ensemble, parameterized by ψ, is randomly initialized and trained
using a different subset of experiences via random masking. A sample estimate of the posterior
distribution, denoted as ψ ∼ P (ψ|D) (D being training data), is obtained by randomly selecting
one of the agents from the ensemble. In this work, we use extensions of the bootstrapped DQN idea
in our epistemic uncertainty measurements—notably the ensemble disagreement.

2.3.2 Distributional RL

Learning quantities beyond the mean return has been a long-standing programme of RL research,
with particular focus on the return variance (Sobel, 1982). A yet richer representation of the return
is sought by more recent methods known collectively as distributional RL (Bellemare et al., 2017),
which aims to learn not just the mean and variance, but the entire return distribution. We focus
here on one particular class of distributional RL methods: those that model the quantiles of the
distribution, specifically QR-DQN (Dabney et al., 2017). A broader treatment of the distributional
RL literature can be found in Bellemare et al. (2023).

In QR-DQN, the distribution of returns, for example from taking action a in state s and subsequently
following policy π, ηπ(s, a) is approximated as a quantile representation (Bellemare et al., 2023),
that is, as a uniform mixture of Diracs, and trained through quantile regression (Koenker & Hallock,
2001). For such a distribution, ν̂ = 1

m

∑m
i=1 δθτi , with learnable quantile values θτi and corre-

sponding quantile targets τi = 2i−1
2m , the quantile regression loss for target distribution ν is given

by

LQR =

m∑
i=1

EZ∼ν [ρτi(Z − θτi)], (3)

where ρτ (u) = u(τ − 1u<0) and 1 is the indicator function. By leveraging the so-called dis-
tributional Bellman operator and the standard apparatus of a DQN model, QR-DQN prescribes a
temporal difference deep learning method for minimizing the above loss function and learning an
approximate return distribution function via quantile regression.

Distributional RL in itself does not (so far) permit a natural decomposition of uncertainties into
epistemic and aleatoric (Clements et al., 2020; Chua et al., 2018; Charpentier et al., 2022); rather
the variance of the learned distribution will converge on what can reasonably be thought of as the
aleatoric uncertainty. In Sec. 3.1 we extend previous techniques that combine distributions with
ensembles to construct estimates of both epistemic and aleatoric uncertainties. Both of these tech-
niques to characterize epistemic uncertainty can be understood under an excess risk framework,
which we outline below.

2.3.3 Direct Epistemic Uncertainty Prediction

We employ a clear and formal representation of uncertainty, where total uncertainty is defined as the
sum of epistemic and aleatoric components such that the epistemic uncertainty can be interpreted as
the excess risk. This notion was introduced by Xu & Raginsky (2022) and later extended by Lahlou
et al. (2022); we adapt their framing to our setting here. Consider the total uncertainty U(s, a) of
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an action-value predictor Qψ(s, a), for a given state s and action a as:

U(Qψ, s, a) =
∫

(Θ(s′, r)−Qψ(s, a))2 P (s′, r|s, a)ds′dr, (4)

where Θ(s′, r) is the Q-learning target as in equation Eq. 1. Then, the aleatoric uncertaintyA(s, a),
is given by the total uncertainty (as defined above) of a Bayes-optimal predictorQ∗

ψ (see Lahlou et al.
(2022)):

A(s, a) = U(Q∗
ψ, s, a). (5)

Note that this quantity is independent of any learned predictor and is a function of the data only. The
epistemic uncertainty E(Qψ, s, a), which is computed for a given predictor, is defined as the total
uncertainty of the predictor minus the aleatoric uncertainty:

E(Qψ, s, a) = U(Qψ, s, a)−A(s, a), (6)

where E(Qψ, s, a) is the squared distance between the true mean and estimate mean as shown in SM
2. Concretely, this decomposition can be useful in instances where you want to estimate epistemic
uncertainty, but doing so directly is significantly more difficult than estimating total and aleatoric
uncertainty, which is often the case. In Sec. 3, we provide a way to estimate quantities in this manner,
which later we use to prioritize transitions in the replay buffer.

2.3.4 Ensembles of Distributions

Using an ensemble of distributional RL agents gives us a concrete prescription for computing epis-
temic uncertainty as well as aleatoric uncertainty. This approach was first formalized by Clements
et al. (2020), who define learned aleatoric and epistemic uncertainty quantities as a decomposition
of the variance of the estimation from the ensemble (here defined as total uncertainty Û) of distribu-
tional RL agents:

Û(s, a) = Vτ,ψ [θτ (s, a;ψ)] = Ê(s, a) + Â(s, a) (7)

where

Â(s, a) = Vτ [Eψ(θτ (s, a;ψ))], Ê(s, a) = Eτ [Vψ(θτ (s, a;ψ))], (8)

and s, a are state and action, ψ ∼ P (ψ|D) are the model parameters of each agent in the ensemble,
D denotes the data distribution, and θτ is the value of the τ th quantile. V and E are variance
and expectation operators respectively. The term Ê measures epistemic uncertainty as the expected
disagreement (variance) in the parameters (quantiles) across the ensemble, that is, it approximates
the variance of the posterior as sampled using the ensemble, which can be reduced by learning.
The aleatoric uncertainty Â is computed by first averaging the predictions across the ensemble to
obtain the average distribution estimated via quantile regression, and then taking the variance of this
average distribution, which cannot be reduced by learning. In other words, it captures the variance
of the estimated data distribution. The initial implementation by Clements et al. (2020) used a two-
sample approximation for the posterior (i.e., an ensemble of two agents). However, Jiang et al.
(2023) subsequently employed more explicit ensemble methods, which we also adopt in this work.

3 Uncertainty Prioritized Experience Replay

In this section we will introduce a new method for estimating epistemic uncertainty, which arises
from a decomposition of the total uncertainty as defined by the average error over both the ensemble
and quantiles. This decomposition is in the vein of Clements et al. (2020); however, it considers
distance from the target in addition to the disagreement within the ensemble, thereby allowing us to
handle, among others, model bias. We go on to derive an expression for prioritisation variables based
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on the concept of information gain, which trades off epistemic and aleatoric uncertainty with a view
to maximizing learnability from each sampled transition. We name this method Uncertainty Prior-
itized Experience Replay (UPER). Importantly, we are not changing the prioritize replay algorithm
itself, but just the variable pi used to prioritize in Eq. 2, replacing the TD-error by the information
gain.

3.1 Uncertainty from Distributional Ensembles

The definitions given in Eq. 7 arise from a decomposition of Vψ,τ [θτ (s, a;ψ)] considered as total
uncertainty in the original work (see Clements et al. 2020 for details). This quantity does not
explicitly consider how far estimates are from targets, but rather how consistent the estimates
are among the quantiles and members of the ensemble. We propose a modified concept of total
uncertainty Ûδ named target total uncertainty, simply defined as the average squared error to the
target Θ over the quantiles and ensemble, which can be decomposed as:

Ûδ = Eτ,ψ[(Θ(s′, r)− θτ (s, a;ψ))2] = δ2Θ(s, a) + Ê(s, a)︸ ︷︷ ︸
Êδ(s,a)

+Â(s, a); (9)

where δ2Θ(s, a) = (Θ(s′, r)−Eτ,ψ[θτ (s, a;ψ)])2, and we introduce the target epistemic uncertainty
Êδ(s, a) = δ2Θ(s, a) + Ê(s, a) (see proof of this decomposition in App. A). Note that in order to
construct ensemble disagreement estimates or estimates of the total uncertainty Ûδ , we assume in-
dependence among the ensemble, which is facilitated by masking and random initialization akin to
bootstrapped DQN. Through the lens of the DEUP formulation from Sec. 2.3.3, this decomposition
suggests a modified definition of epistemic uncertainty that considers the distance to the target δ2Θ as
well as the disagreement in estimation within the ensemble Ê from Clements et al. (2020) and Jiang
et al. (2023). To see why this extra term can be useful, consider the following pathological example:
all members of an ensemble are initialized equally, the variance among the ensemble, and the result-
ing epistemic uncertainty estimate without this additional error term, will be zero. A more subtle
generalization of this would be if inductive biases from other parts of the learning setup (architecture,
learning rule etc.) lead to characteristic learning trajectories in which individual members of the en-
semble effectively collapse with no variance. In essence, Ê assesses ensemble disagreement without
including the estimation offset. The use of pseudo-counts (Lobel et al., 2023) presents a similar prob-
lem: while epistemic uncertainty does scale with the number of visits to a state, it does not necessar-
ily encode the true distance between the estimation and target values. Pseudo-counts bear the addi-
tional disadvantage of being task agnostic, i.e. ignoring context, which makes them brittle under any
change in the underlying MDP. We provide a simulation where we show the advantage of using Êδ
instead of Ê to prioritize replay in Sec. 4. Note that given a target and an estimate from an ensemble
of distributional agents, the uncertainty decomposition in Eq. 9, and thus the information gain, can
be computed. This extends to other learning settings beyond RL, where even if squared loss is not
the optimization objective, the total uncertainty can serve as a surrogate for uncertainty estimation.

3.2 Prioritizing using Information Gain

Having arrived at suitable methods for estimating both epistemic and aleatoric uncertainty, it remains
to establish a functional form for the prioritization variable, denoted pi = h(E(si, ai),A(si, ai)).
The most straightforward approach is to directly use pi = Êδ; however, in practical applications,
this does not yield satisfactory results. One intuition for this, which will be made more concrete in
later passages, is that the magnitude of epistemic uncertainty does not in itself determine how easily
reducible that uncertainty is. It is informative therefore to also consider the aleatoric uncertainty,
since this indicates the fidelity of the data, and hence how readily it can be used to reduce the
epistemic uncertainty (this is demonstrated experimentally in Sec. 4.1 and SM 4, and expounded
upon in SM 3).

We take inspiration from the idea of information gain to determine h. For the purpose of this expla-
nation, consider a hypothetical dataset of points xi ∼ N (µx, σ

2
x). Our objective is to estimate the



Uncertainty Prioritized Experience Replay

posterior distribution P (ν|xi) ∝ P (xi|ν)P (ν) with a prior distribution ν ∼ N (µ, σ2). Following
the observation of a single sample xi, the posterior distribution becomes a Gaussian with variance
σ2
ν =

σ2σ2
x

σ2
x+σ

2 . To quantify the information gained by incorporating the sample xi when computing
the posterior, we measure the difference in entropy between the prior distribution and the posterior
as

∆H = H (P (ν))−H (P (ν|xi)) , (10)

From here, we consider σ2 = Êδ as a form of epistemic uncertainty, since the ensemble disagreement
is reduced by sampling more points, and σ2

x = Â as aleatoric uncertainty corresponding to the
variance of the ensemble average distribution, giving the irreducible noise of the data, obtaining a
prioritization variable

pi = ∆Hδ =
1

2
log

(
1 +
Êδ(s, a)
Â(s, a)

)
. (11)

For a detailed derivation of the information gain, an illustrative simulation demonstrating the use of
variance as an uncertainty estimate, and a comprehensive exploration of other functional forms of
prioritization variables based on uncertainty, please refer to SM 3.

4 Motivating Examples

We proceed to employ epistemic uncertainty estimators and the information gain criterion in simple
and interpretable toy models to highlight their potential as experience replay prioritization variables.

4.1 Conal Bandit

We devise a multi-armed bandit task in which each arm has the same expected reward but with
increasing noise level as per arm, forming a cone as shown from left to right in Fig. 1a. The memory
buffer in this experiment has one transition per arm, and after sampling one arm, the observed reward
is replaced in the buffer for the respective transition (as done in the toy example in the original
PER paper, Schaul et al. 2016). Specifically, let na denote the number of arms; then the reward
distribution r for arm a is defined as:

r(a) = r̄ + η · σ(a), σ(a) = a · σmax/(na − 1) + σmin; (12)

where r̄ represents the expected reward, σ(a) is the reward standard deviation associated with arm
a, σmax and σmin are constant, and η is sampled from a centered, unit-variance Gaussian.

The choice of employing noisy arms serves the purpose of demonstrating that the TD-errors will
inherently include the sample noise, regardless of whether the reward estimation for each arm
Q(a) = Ej [θj(a)] approximates the target value r̄. We depict results for the bandit task using
different variables to prioritize learning in Fig. 1b for na = 5, r̄ = 2, σmax = 2 and σmin = 0.1
(details in SM 4).

Four relevant prioritization schemes are shown in this section (see SM 4 for other prioritization
schemes): TD-error (standard PER): pi = 1

Ne

∑
ψ |ri −Q(ai;ψ)|; Inverse count: pi = 1/

√
1 + C,

where C denotes the number of times an arm has been sampled to update the reward estimate;
Information gain (UPER): pi = ∆Hδ; True distance to target: pi = E∗ = |r̄ −Q(ai)|.
Prioritizing with epistemic uncertainty measures, such as UPER or inverse counts (a proxy for epis-
temic uncertainty), leads to improved training speed and final true Mean Squared Error (true MSE,
averaged across all arms, between the estimated reward and the true mean reward), compared to
pi = |δi| (PER), as illustrated in Fig. 1b. Throughout the paper, we highlight that the TD-error in-
cludes aleatoric uncertainty, corresponding to the arm variance in this scenario, which is irreducible
through learning (see SM 2.1 for more details). Therefore, the TD-error tends to over-sample arms
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Figure 1: Conal Bandit. (a) multi-armed bandit task constructed such that each arm has identical
mean payoff but increasing variance. (b) true MSE (average error across arms, between estimated
reward and the true reward mean) over 200 iterations (each of 1000 steps) using different quantities
to prioritise transitions from the replay buffer: absolute value of the TD error |δ| (PER), inverse
counts (C being the number of visits to the respective arm), information gain ∆Hδ (UPER), and an
oracle epistemic uncertainty E∗ measured as the distance from the estimated mean to the true mean,
shaded area is one standard deviation. (c) arm replaying selection probabilities for the stablest
(dashed) and noisiest (solid) arms in the conal bandit; the key intuition is that prioritising by TD-
error over-samples noisier arms, while prioritising using UPER places importance on learn-ability
and leads to greater selection of stable arms. Results averaged across 10 seeds. Noisy Gridworld.
(d) 300 seeds return on a test episode throughout training of an agent on the noisy gridworld, with the
shaded region being one standard error on the mean. (e) in the Map, blue denotes the starting state,
green is the goal state, and yellow are the non-zero variance immediate rewards. Below, sampling
heatmaps where yellows are highly sampled and blues are scarcely sampled: uniform experience
replay (ER) leads to sampling more from early parts of a trajectory since these fill the buffer first;
replay based on TD error (PER) leads to a pathological sampling of the noisy part of the gridworld;
replay using UPER leads to greater sampling of later parts of the trajectory.

with high variance compared with UPER, to the cost of not sampling the low variance arm. This is
demonstrated in Fig. 1c.

Using inverse counts as the prioritization variable (similar to Lobel et al. (2023)), outperforms TD-
error (as designed in the task) but not UPER. The reason is the fact that, although each initial
estimated Q-values per arm are equidistant from the true mean, the learning speed for each arm
diminishes with the variance of the respective arm. Inverse counts do not account for this variance-
dependent decay in learning speed, so the number of updates per arm will not reflect the distance of
the estimation to the true target, whereas UPER (prioritizing by Êδ and inverse Â) tends to sample
arms with high aleatoric uncertainty less frequently, and is also based on the distance to the targets
as defined in Eq. 9.

The distance between the estimated mean and the true mean, denoted as E∗ (accessible due to the
task design), is equivalent to the epistemic uncertainty in the DEUP formulation, as derived in SM 2.
This distance is the ideal prioritization variable to which we do not have access in general. Notably,
using UPER, which prioritizes based on information gain, yields results comparable to prioritizing
directly based on the true distance. These results show UPER as a promising modification to TD-
error-based prioritized replay.

To emphasize the significance of incorporating the target value when utilizing the target epistemic
uncertainty Êδ for replay prioritization, we introduced modifications to the conal bandit task by as-
signing distinct mean rewards per arm, denoted as r̄ → r̄(a) (see simulation details in SM 4, Fig. 6).
In the original conal bandit task, all arms shared the same mean reward r̄, resulting in an equal
initial distance expectation from Q(a) to each arm. This uniformity dampened the performance im-
provement when considering the target distance δΘ in Êδ with respect to Ê . By introducing varying
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Figure 2: (Left) Comparing Uncertainty Prioritized Experience Replay (UPER) with Prioritized
Experience Replay (PER) and QR-DQN on the full Atari-57 benchmark. Median human normalized
score for UPER is significantly higher than baselines throughout the learning trajectory. (Right)
Example of per-game performance, with vastly superior performance on e.g. Asterix and Chopper
Command; cases in which UPER is worse are far less extreme, for instance Breakout and Krull (this
is shown graphically in Fig. 14 and Fig. 15). All results are averages over 3 seeds. The shaded
region indicates two standard deviations..

mean rewards per arm, denoted as r(a), the relevance of information about the target value becomes
important. This adjustment highlights the advantage of employing our proposed target epistemic
uncertainty Êδ over merely considering ensemble disagreement Ê .

4.2 Noisy Gridworld

In order to move toward the full RL problem, we consider in this section a tabular gridworld. We
take inspiration from ideas in planning within dynamic programming methods (Moore & Atke-
son, 1993) to probe uncertainty-guided prioritized replay. Typically under this framework, ‘direct’
reinforcement learning on interactions with the environment (sometimes referred to as control) is
supplemented with ‘indirect’ learning of a model from stored experiences (sometimes referred to as
planning). In our case, we learn purely model-free but retain these ideas of offline vs. online learn-
ing. In some ways these methods are the precursor to the use of experience replay buffers in DRL.
When making updates on stored data offline (for planning or otherwise), the same questions around
criteria for prioritization arise. Notably, prioritized sweeping (preference over high error samples in
memory) was an early extension to the Dyna models that exemplify this learning protocol (Sutton,
1991). In Fig. 1e Map, we construct a gridworld where the agent can encounter a set of very noisy
states with random rewards early on in the episode while a single deterministic state with a much
larger reward is at the end of the maze. Fig. 1d shows that this simple task can be solved without
the additional planning steps, but ER (sampling uniformly) helps improve sample efficiency. This
is improved further by PER (prioritizing using TD), but even more so by UPER where we prioritize
using the information gain criterion and the inverse of state visitation counts (a good proxy for epis-
temic uncertainty in this tabular setting). As shown by the heatmaps in Fig. 1e, PER over-samples
noisy states while UPER prioritizes on novel states towards the end of the trajectory. Full details of
the experimental setup and hyper-parameters can be found in SM 5.

5 Deep RL: Atari

In our final set of experiments we apply our insights in a DRL setting, specifically the Atari bench-
mark (Bellemare et al., 2013). Our agent is an ensemble of QR-DQN distributional predictors
(N=10), in which experience replay is prioritized using the information gain (UPER in Sec. 3.2).
We compare this method to a vanilla QR-DQN agent (Dabney et al., 2017) with uniform prioriti-
zation and the original PER agent (Schaul et al., 2016). To show that the gain in performance is
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not due to either the quantile regression method, nor the ensemble, we trained a QR-DQN agent
with TD-error prioritization (QR-PER), and an ensemble of QR agents with TD-error prioritization
(QR-ENS-PER). A summary of our empirical results is shown in Fig. 2, with further ablations and
details in SM 6.

Except for the additional hyper-parameters associated with the ensemble of distributional prediction
heads and a more commonly used configuration for the Adam optimizer (ϵ = 0.01/(batch_size)2),
the network architecture and all hyper-parameters in UPER are identical to QR-DQN (Dabney et al.,
2017). Likewise PER, QRDQN, and QR-PER baselines follow the implementations of Dabney et al.
(2017) and Schaul et al. (2016) respectively, while QR-ENS-PER is identical to UPER except for
the prioritization variable which is TD-error. Concretely for the UPER agent, we compute the target
epistemic uncertainty using Êδ(s, a) = Ûδ(s, a) − Â(s, a). Then for a given transition i the total
uncertainty is given by

Ûδ = Eτ,τ ′,ψ

[(
ri + γθτ ′(s′i, a

′
i; ψ̄)− θτ (si, ai;ψ)

)2]
, (13)

where τ (τ ′) are the quantiles of the online (target) network ψ (ψ̄). The aleatoric uncertainty estimate
is given by Â(s, a) in Eq. 8. From these estimates we construct UPER priority variable using the
uncertainty ratio discussed in Sec. 3.2, i.e. Eq. 11. Since UPER and QR-ENS-PER are ensemble
agents, we store a random maskm ∈ RN for each transition in the buffer wheremi ∼ B(0.5). When
the transition is sampled for learning, gradients are only propagated for heads whose corresponding
element in the mask is 1. This follows the proposal of (Osband et al., 2016) and serves to de-correlate
the learning trajectories of the ensemble members, which is integral to the validity of our uncertainty
estimates.

As depicted in Fig. 2, the median UPER performance across games is better than other prioritization
schemes, showing that the performance improvement is not due to either the quantile regression
technique or the ensemble alone. Importantly, UPER demonstrates performance improvement
compared to its closest comparison QR-ENS-PER, whose only difference with UPER is the prior-
itization using TD-error (see Fig. 14). In most games where UPER does not improve performance,
such as Krull, Q∗bert or H.E.R.O., the difference in performance is not significant. This is shown
in the panels per game in Fig. 15 and the asymmetry of the bar plots in SM 6.

6 Discussion and Conclusions

In this study, we propose using epistemic uncertainty measures to guide the prioritization of tran-
sitions from the replay buffer. We demonstrate both via mathematical analysis and careful exper-
iments that the typically applied TD-error criterion can include aleatoric uncertainty, and lead to
over-sampling of noisy transitions. Prioritizing by a principled function of epistemic and aleatoric
uncertainty in the form of the information gain mitigates these effects. To construct this function, we
expand the concept of epistemic uncertainty from Clements et al. (2020) to incorporate the distance
to the target, achieving performance advantages in toy settings and complex problems such as the
Atari 57 benchmark. In estimating these auxiliary quantities, one concern may be the increased com-
putational cost in the deep learning setting. However, sharing of the lower level representation over
multiple heads alongside efficient implementations can significantly mitigate this burden. To demon-
strate this, we conducted an experiment on a lower-capacity GPU comparing the training times of
DQN, QR-DQN, and QR-DQN + ensemble networks in the Pong environment. The time per itera-
tion is presented in Table 1. The comparable training times can be attributed to effective batch pro-
cessing facilitated by GPU parallelization. In our implementation, each agent in the ensemble is rep-
resented by a distinct output head in the network architecture. By extending the batch dimension to
(batch, action, quantiles, ensemble), we leverage the parallelization capacity of the GPU, which still
operates within capacity for the QR-DQN ensemble network. Further details of this experiment and
the computer architecture used are presented in SM 6.2. Note that this analysis does not aim to eval-
uate or compare the computational cost of sampling with a priority variable vs. uniform sampling.
This is already addressed in the original PER paper and has negligible impact (Schaul et al., 2016).
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Table 1: Computational Cost
(seconds per iteration with one standard deviation for 20 runs each)

Architecture CPU GPU
QR-DQN-ENS 28.40 ± 0.26 20.74 ± 0.43

QR-DQN 17.80 ± 0.13 18.49 ± 0.68
DQN 18.34 ± 0.09 18.39 ± 0.56

While we focus our implementation on distributional RL—a widely used set of methods, exploring
other forms of uncertainty estimation in RL such as pseudo-counts (Lobel et al., 2023), in combi-
nation with different functional forms outside information gain, is a promising research path both
for different prioritization schemes and related parts of the RL problem like exploration (see SM 3
and SM 4).

The framework of combining epistemic and aleatoric uncertainties in an information gain intro-
duced in this work is not restricted to reinforcement learning. In principle, these concepts can
be extrapolated to other learning systems. A substantial body of literature exists on the efficient
selection of datapoints to enhance learning in other paradigms such as supervised (Hüllermeier &
Waegeman, 2021; Zhou et al., 2022), continual (Henning et al., 2021; Li et al., 2021), or active
learning (Nguyen et al., 2022). In addition, our work has the potential to offer alternative insights
into replay events in biological agents (Daw et al., 2005; Mattar & Daw, 2018; Liu et al., 2019;
Schiffer, 2019; Antonov et al., 2022; Wittkuhn et al., 2025).

A Total Error Decomposition

Here we extend the notion of uncertainty proposed by Clements et al. (2020) by replacing the vari-
ance of the estimation as total uncertainty, instead using the averaged square error to the target Θ
over the quantiles and ensemble as total uncertainty, which we call target total uncertainty. Quantiles
and ensemble are indexed by τ and ψ respectively, hence the target total uncertainty can be written
as Ûδ = Eτ,ψ[(Θ(s′, r) − θτ (s, a;ψ))2], dropping the dependency on the transition (s′, r, s, a) for
simplicity, it can be decomposed into:

Eτ,ψ[(Θ− θτ (ψ))2] =
∫
ψ

1

N

N∑
τ

(Θ− θτ (ψ))2P (ψ|D)dψ, (14)

(15)

we add and subtract Eψ(θτ (ψ)) in the squared term

Eτ,ψ[(Θ− θτ (ψ))2] =
∫
ψ

1

N

N∑
τ

[Θ− θτ (ψ)± Eψ(θτ (ψ))]2 P (ψ|D)dψ, (16)

=

∫
ψ

1

N

N∑
τ

[
(Θ− Eψ(θτ (ψ)))2 + (Eψ(θτ (ψ))− θτ (ψ))2 (17)

+2 (Θ− Eψ(θτ (ψ))) (Eψ(θτ (ψ))− θτ (ψ))]P (ψ|D)dψ,
(18)

=

∫
ψ

1

N

N∑
τ

(Θ− Eψ(θτ (ψ)))2 P (ψ|D)dψ (19)

+
1

N

N∑
τ

∫
ψ

(Eψ(θτ (ψ))− θτ (ψ))2 P (ψ|D)dψ︸ ︷︷ ︸
Ê in Eq. 8

, (20)
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the term in Eq. 18 is zero when integrating over ψ. Finally, the term in Eq. 19 is

∫
ψ

1

N

N∑
τ

(Θ− Eψ(θτ (ψ)))2 P (ψ|D)dψ = Θ2 − 2Eψ,τ (θτ (ψ)) + Eτ
(
Eψ [θτ (ψ)]

2
)

(21)

= (Θ− Eψ,τ [θτ (ψ)])2︸ ︷︷ ︸
Distance to the target δ2Θ

+Vτ (Eψ [θτ (ψ)])︸ ︷︷ ︸
Â in equation 7

, (22)

obtaining our proposed uncertainty decomposition

Ûδ = Eτ,ψ[(Θ(s′, r)− θτ (s, a;ψ))2] = δ2Θ(s, a) + Ê(s, a) + Â(s, a); (23)

B Related Work

Exploration. While UPER is not explicitly promoting exploration through a reward bonus to unex-
plored or uncertainty states, we borrow methods from this field to estimate epistemic and aleatoric
uncertainty (Clements et al., 2020) to prioritize transitions from the replay buffer based on the in-
formation gain. A fundamental dilemma faced by RL agents is the exploration-exploitation trade-
off (Osband et al., 2016; O’Donoghue, 2023), in which agents must balance competing objectives
for action selection, between uncovering new information about the environment (exploration) and
accumulating as much reward as they currently can (exploitation). Replay sampling and exploration
strategies both affect the data used to enhance the estimation of the value function. The former
controls the experiences used for value estimation updates, while the latter selects experiences that
will end up populating the replay buffer. Many exploration strategies have been built around ideas
of intrinsic reward (Oudeyer & Kaplan, 2007) and episodic memory (Savinov et al., 2019; Badia
et al., 2020). These are susceptible to pathological behavior induced by the noisy TV, and later vari-
ants are designed partly with this problem in mind; as a result they are frequently concerned with
reliable and meaningful estimates of counts and novelty (Ostrovski et al., 2017b; Bellemare et al.,
2016b; Burda et al., 2018; Lobel et al., 2023), dynamics (Stadie et al., 2015; Pathak et al., 2017),
uncertainty (Mavor-Parker et al., 2022), and related quantities, many of which are relevant to our
problem of constructing suitable measures for replay prioritization.

PER. Various efforts have been made to understand and improve upon aspects of prioritized expe-
rience replay since its introduction by Schaul et al. (2016). Integration of information related to
uncertainty has often been in conjunction with strategies for managing the exploration-exploitation
trade-off. For instance, in Sun et al. (2020), frequently visited states are sampled more frequently to
reduce uncertainty around known states. Conversely, Alverio et al. (2022) approach is prioritizing
uncertain states to encourage exploration, utilizing epistemic uncertainty estimated as the standard
deviation across an ensemble of next-state predictors. This technique is combined with other meth-
ods to enhance sample efficiency.

Another method, presented in Lobel et al. (2023), employs a pseudo-count approximation to gauge
state visits, fostering exploration as an intrinsic reward. In training the pseudo-count network they
prioritize transitions according to the counts themselves; they do not however go as far as performing
this prioritization for learning the actual value network, as is the focus of our work. The method of
Lobel et al. (2023) allows estimation of epistemic uncertainty independent of the sparsity or density
of the reward signal, making it especially appealing in sparse-reward environments. However, using
pseudo-counts for epistemic uncertainty can also be poorly aligned with uncertainty about the actual
value estimation problem (Osband et al., 2018). As described in Sec. 4.1, the number of visits to a
specific state-action does not necessarily describe the error between the mean estimates to the true
one. In addition to this, as explained in Sec. 3.2 and shown by simulation in Sec. 4.1, both epistemic
and aleatoric uncertainty should be considered to build a proper prioritization scheme.
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SM 1 Further Related Work

In the main text we focus primarily on related work in uncertainty estimation for reinforcement
learning that is specific to the epistemic vs. aleatoric dichotomy. Here we give an extended discus-
sion on uncertainty estimation methods more generally.

SM 1.1 Direct Variance Estimation

Distributional RL provides a framework for computing statistics of the return beyond the mean.
Efforts to compute such quantities in RL date back to Sobel (1982), who derived Bellman-like
operators for higher order moments of the return in MDPs that can be used to indirectly estimate
variance. This has since been extended to a greater set of problem settings and models (Prashanth
& Ghavamzadeh, 2016; Tamar et al., 2016; White & White, 2016). More recently methods have
also been developed to directly estimate variance (Tamar et al., 2012); arguably the simplest such
scheme for TD(0) learning is the following update rule for the action-value variance Â(s, a) at state
s, a (re-estated from Sherstan et al. (2018) for state and action):

Ât+1(s, a)← Ât(s, a) + ᾱδ̄t, (24)

where

δ̄t ← r̄t+1 + γ̄t+1Ât(s′, a′)− Ât(s, a), (25)

r̄t+1 ← δ2t , (26)

γ̄t+1 ← γ2t+1; (27)

δt is the temporal difference error of on the mean value estimate, and ᾱ is the variance learning rate.
r̄ can be thought of as a ‘meta’ reward for the variance estimate. This update corresponds to simply
regressing on the square of the mean estimate error in a standard regression problem (single state,
no concept of discounting) like in the bandit experiments shown in Sec. 4. This form of estimating
aleatoric uncertainty does not require quantile regression, but

SM 1.2 Bayesian methods

A more comphrehensive Bayesian approach to the reinforcement learning problem can be formu-
lated via so-called Bayes-adaptive Markov decision processes (BAMDPs) (Martin, 1967), where an
agent continuously updates a belief distribution over underlying Markov decision processes. So-
lutions to BAMDPs are Bayes’ optimal in the sense that they optimally trade off exploration and
exploitation to maximise expected return. However, in all but the smallest environments and set-
tings, learning over this entire belief distribution is intractable (Brunskill, 2012; Asmuth & Littman,
2012).

Posterior sampling, which can be viewed as the analogue of Thompson sampling for MDPs, has
been a popular method to approximate the full Bayesian posterior e.g. via ensembles (Osband et al.,
2016) or dropout (Gal & Ghahramani, 2016); extensions include provision of pseudo priors (Osband
et al., 2018; 2021). While these approaches have been successful in some settings, they have few
guarantees. A different line of work includes using methods such as meta-learning to reason on and
train the approximate posterior (Zintgraf et al., 2019; Humplik et al., 2019).

With regards to the discussions on epistemic and aleatoric uncertainty, the above methods can give
the model access to a distribution over parameters that can be sampled and operated on (e.g. to
calculate variance). They do not however—Bayes optimal or not—lead per se to a decomposition
into epistemic and aleatoric uncertainty.
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SM 1.3 Counts

Another category of methods that are frequently used in reinforcement learning and related
paradigms like bandits is based around notions of counts e.g. of state visitation. Such counts can be
used to construct intervals/bounds on confidence of learned quantities. This is the foundation of well
established exploration methods in tabular settings called upper confidence bounds (Auer, 2002b;a).
In function approximation settings, much of the focus has been on constructing accurate pseudo
counts that incorporate state similarities (Bellemare et al., 2016a; Ostrovski et al., 2017a; Tang et al.,
2017). Despite the well demarcated distinction between count-based methods and those that address
the Bayesian posterior above, with access to any mean-zero unit-variance distribution, an ensemble
of mean-predictors of that distribution can be used to estimate pseudo-counts (Lobel et al., 2023).
As a result, it is generally possible to convert a Bayesian posterior into pseudo-counts.

SM 1.4 Model-Based

A set of methods that is further removed from those used in our work, but are often motivated by
similar questions consists of learning a model of the environment. Downstream quantities like the
prediction error of the environment model can be used as proxies for uncertainty or novelty e.g. for
exploration bonuses. Much of this work falls under the domain of intrinsic motivation (Barto, 2013).
Some of the methods in this area e.g. curiosity (Pathak et al., 2017) attempt implicitly to make the
distinction between epistemic uncertainty and aleatoric uncertainty to avoid the noisy TV problem.

SM 1.5 Beyond the prioritisation variable

Altering the prioritized experience replay is not confined to changing the prioritization variable.
In Zha et al. (2019), the replay policy is adapted through gradient optimization. Balaji et al. (2020)
introduces a regularization technique, enhancing continual learning by storing a compressed network
activity version for replay. Additional methods encompass the utilization of sub-buffers storing
transitions at multiple time scales (Kaplanis et al., 2020), replay for sparse rewards (Andrychowicz
et al., 2017; Nair et al., 2018), and employing diverse sampling strategies (Pan et al., 2022). Further
endeavors are aiming to understand the effects of PER in RL (Liu & Zou, 2017; Fedus et al., 2020).

SM 1.6 Information Directed Sampling

A closely related method is information-directed sampling (IDS, Russo & Van Roy 2018; Kirschner
et al. 2021; Neu et al. 2024), which relies on a similar notion of information gain to the one defined
in Sec. 3.2. In IDS, the action policy minimizes a quantity called the information ratio Ψt(π), and
the policy induced by IDS, πIDS

t , is defined as

πIDS
t = argmin

π

{
Ψt(π) =

∆t(π)

gt(π)

}
, (28)

where t denotes the time index, ∆t(π) is the expected regret averaged across a given policy π, and
gt(π) is the expected information gain across all actions.

The information ratio minimized by IDS measures the cost per unit of information acquired by
following a certain policy, effectively inducing a policy that selects actions with high information
gain (i.e., informative actions) while avoiding those with high regret. This ratio explicitly formulates
the exploration–exploitation trade-off: information gain versus regret/reward.

Importantly, the information gain for a given action is defined as

gt(a) = E [H(αt)−H(αt+1) | Tt, At = a] , and gt(π) =
∑
a∈A

π(a)gt(a), (29)

with αt denoting the best possible policy before observing the outcome of action a at time t in tra-
jectory Tt, and αt+1 denoting the best possible policy after observing the outcome of that action. In
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other words, this information gain is analogous to ours in that it quantifies how much information
a new observation provides. In our case (UPER), observations are the transitions used to improve a
value estimate, while in IDS the focus is on reducing uncertainty about the optimal policy after ob-
serving the outcome of an action. Another important difference is that IDS is used to sample actions
for exploration, whereas UPER samples transitions from the buffer. Nevertheless, both methods
could in principle be used for exploration and prioritization. Future work could explore their rela-
tionship and how both approaches could be leveraged for prioritization and intrinsic motivation to
promote exploration.

SM 2 DEUP decomposition

Consider the total uncertainty as defined in Lahlou et al. (2022) (but adapted for RL), which can be
decomposed into epistemic uncertainty (distance between the mean estimation and true mean) and
aleatoric uncertain (target variance) as:

U(Qψ, s, a) =
∫

(Θ(s′, r)−Qψ(s, a))2 P (s′, r|s, a)ds′dr (30)

= Es′,r
[
(Θ(s′, r)−Qψ(s, a))2

]
(31)

= Es′,r
[
Θ(s′, r)2

]
− 2Qψ(s, a)Es′,r [Θ(s′, r)] +Qψ(s, a)

2 (32)

= Vs′,r [Θ(s′, r)] + Es′,r [Θ(s′, r)]
2 − 2Qψ(s, a)Es′,r [Θ(s′, r)] +Qψ(s, a)

2 (33)

= Vs′,r [Θ(s′, r)]︸ ︷︷ ︸
aleatoric A(s,a)

+(Qψ(s, a)− Es′,r [Θ(s′, r)])
2︸ ︷︷ ︸

epistemic E(Qψ,s,a)

(34)

SM 2.1 Uncertainty decomposition in quantile regression

Here we provide some extra intuition on the difference between MSE curves when prioritising by to-
tal uncertainty U , td-error |δ|, estimated epistemic uncertainty Êδ and true epistemic uncertainty E∗.
Let’s start by considering a single agent trained using quantile regression as explained in Sec. 2.3.2.
Consider the expected squared error of all quantiles indexed by τ and the target distribution Z, also
defined in Sec. 3.1 as U :

U2 = Eτ,r∼Z
[
(r − θτ )2

]
= Er

[
r2
]
− 2Er[r]Eτ [θτ ] + Eτ

[
θ2τ
]
, (35)

= Vr [r] + r̄2 − 2r̄Q(a) +Q(a)2 + Vτ [θτ ] , (36)

= (r̄ −Q(a))2︸ ︷︷ ︸
(E∗)2

+ Vr [r]︸ ︷︷ ︸
Target variance

+ Vτ [θτ ]︸ ︷︷ ︸
Estimation variance

. (37)

The first term is the true epistemic uncertainty E∗, second term and third term are the variance from
the target, and the estimation variance. When using the total uncertainty as priority variable pi = U ,
the target and estimation uncertainty will be considered in the priority, therefore oversampling the
noisiest arm as shown in the sampling probabilities depicted in Figures 7 and 8. When using the
TD-error pi = |δi|, consider the expected squared TD-error

Er
[
δ2
]
=
[
(r − Eτ [θτ ])2

]
, (38)

= (r̄ −Q(a))2︸ ︷︷ ︸
(E∗)2

+ Vr [r]︸ ︷︷ ︸
Target variance

. (39)

Therefore, the TD-error does not prioritise by estimation variance, but it includes the target variance.
Eventually, the target variance will be equal to the estimation variance, but from the start of the train-
ing, this is not true. Hence, the TD-error will also oversample the noisiest arm, but less compared
to prioritising by total uncertainty U . In practice, we do not have direct to Vr [r], in fact this is a
quantity we are trying to estimate by using quantile regression. We have implicit access to the true
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distance E∗ (epistemic uncertainty) through the decomposition U = E +A as explain in Sec. 2.3.3,
which is used to estimate epistemic uncertainty as in Sec. 3. Prioritising using information gain
achieve similar results compare to the direct use of E∗ to prioritise replay. For further discussion
about epistemic uncertainty ratios, refer to SM 3.3.

SM 3 Prioritisation Quantities based on Uncertainty

SM 3.1 Information gain derivation

Given the setup in Sec. 3.2, consider a hypothetical dataset of points xi ∼ N (µx, σ
2
x).

Our objective is to estimate the posterior distribution of the mean after observing one sample
P (ν|xi) ∝ P (xi|ν)P (ν) with a prior distribution of the mean ν ∼ N (µ, σ2). Following the ob-
servation of a single sample xi, the posterior distribution is Gaussian with variance σ2

ν =
σ2σ2

x

σ2
x+σ

2 .
Knowing that the entropy of a Gaussian random variable isH(P (ν)) = 1/2 log(2πeσ2), we proceed
to compute the information gain (or entropy reduction) of the posterior distribution as

∆H = H(P (ν))−H(P (ν|xi)) (40)

=
1

2
log
(
2πeσ2

)
− 1

2
log

(
2πe

(
σ2σ2

x

σ2
x + σ2

))
(41)

=
1

2
log

(
1 +

σ2

σ2
x

)
. (42)

We consider σ2 = Êδ as a form of epistemic uncertainty that can be reduced by sampling more
points, and σ2

x = Â as aleatoric uncertainty, which is the underlying irreducible noise of the data,
giving a prioritisation variable

pi = ∆Hδ =
1

2
log

(
1 +
Êδ(s, a)
Â(s, a)

)
. (43)

As discussed in the main text, other form of priority variables pi can be effective in some settings.
We extend the discussion about uncertainty ratios in the following sections, and show empirical
results in the arm bandit task in SM 4. This form of information gain is related to the Information
Directed Sampling (IDS) described in SM 1.6.

SM 3.2 Variance as Uncertainty Estimation

To justify our choice of σ2 = Ê and σ2
x = Ê in the information gain described in Eq. 11, we train an

ensemble of distribution regressors to learn the mean from Gaussian samples (µx = 2, σx = 1). This
ensemble is compared to the Bayesian posterior distribution of the mean (Gaussian prior, likelihood,
and posterior) as detailed in Sec. 3.2. The ensemble, composed of 50 distribution quantile regressors,
is initialized with the same prior as the Bayesian model – a unit variance Gaussian centered at 0 – by
sampling 50 values from this prior and setting the initial mean of each quantile regressor accordingly.
Both the ensemble and Bayesian models are trained using samples from the data distribution. The
ensemble training process follows the method described in the paper, and where each regressor is
updated with a probability of 0.5 to introduce ensemble variability. The updates are performed using
quantile regression as outlined in Sec. 2.3.2. At each time step, the ensemble’s estimated posterior
is computed by averaging the means of all regressors and calculating the variance of these means.

Fig. 3 (a) and (b) illustrate the posterior evolution of both models from the same starting prior, given
more samples. Both posteriors exhibit similar trends (the Bayesian model converges faster to the
mean, due to the use of TD-updates with a smaller learning rate in the ensemble). In the Bayesian
model, posterior sharpness is quantified by its variance, σ2

ν , whereas for the ensemble, it corre-
sponds to the epistemic uncertainty Ê from Eq. 8. Both measures converge to zero, but at different
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Figure 3: Variances in the information gain can be approximated by epistemic and aleatoric
uncertainty in the information gain: (a) and (b) Evolution during training of the posterior of the
mean using an ensemble (gaussian fitted to members of the ensemble at each step) and an ideal
Gaussian respectively, as described in Sec. 3.2. Training progresses from purple to yellow. (c): Fit-
ted ensemble quantiles to true data distribution. (d): Ensemble disagreement (equivalent to variance
of the posterior estimated with ensemble as Ê in Eq. 8) and true posterior variance σ2

ν from ideal
Gaussian. (e): Distance to the target true value δΘ. (f): Data variance σ2

x approximated with A
in Eq. 8. Training time was scaled to show a match between Gaussian posterior and uncertainty
measures.

rates Fig. 3d. The aleatoric uncertainty of the data, by definition the variance σ2
x, is well approxi-

mated by Â from Eq. 8, and shown in Fig. 3f. The slight underestimation of the variance is a known
issue in quantile regression, as quantiles often fail to capture lower probability regions (Fig. 3c),
leading to an underestimation of the distribution’s variance. Our contribution to prioritization in-
volves incorporating the distance to the target δΘ from Eq. 23 (Fig. 3e). This approach prioritizes
transitions not only based on the reduction in posterior variance but also on the regressor’s proximity
to the target.

SM 3.3 Uncertainty Ratios

Having arrived at various methods for estimating epistemic and aleatoric uncertainty using distribu-
tional reinforcement learning, we now consider how to construct prioritisation variables from these
estimates. Naively, one might consider prioritising directly using the epistemic uncertainty esti-
mate; but neglecting the inherent noise or aleatoric uncertainty entirely ignores the ‘learnability’ of
the data. Many methods in related learning domains can be interpreted as incorporating both un-
certainties, including Kalman learning Welch et al. (1995); Gershman (2017), active learning Cohn
et al. (1996), weighted least-squares regression Greene (2000), and corresponding extensions in
deep learning and reinforcement learning Mai et al. (2022). To gain an intuition on how the choice
of functional form might impact our particular use-case of prioritisation for various magnitudes of
epistemic and aleatoric uncertainty.

E/A has desirable properties. For instance under Bayesian learning of Gaussian distributions,
log(1 + E/A) maximises information gain (see Sec. 3.2), but discontinuities around very low noise
must be dealt with—for instance by adding small constants to the denominator. Normalising instead
with the total uncertainty is another way of handling the discontinuities. E2/U in particular corre-
sponds to maximising reduction in variance under Bayesian learning in the same Gaussian setting.
Both of these forms have the advantage over e.g. E/A of preferring low epistemic uncertainty for
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equal ratios of epistemic and aleatoric uncertainties, i.e. they are not constant along the diagonal of
the phase diagram. More generally, it is difficult to say a priori which functional form is optimal.
Many factors, including the data distributions, model and learning rule will play a role. Further
discussion on these considerations can be found in Sec. SM 3.4. These trade-offs are also borne out
empirically in the experimental Sec. 4 & Sec. 5 below.

SM 3.4 Bias as Temperature

Lahlou et al. (2022) and others make an equivalence between excess risk and epistemic uncertainty.
Concretely, if f∗(x) is the Bayes optimal predictor, the excess risk is defined as:

ER(f, x) = R(f, x)−R(f∗, x), (44)

where R is the risk and R(f∗, x) can be thought of as the aleatoric uncertainty.

One possible issue arises in overstating the connection between excess risk and epistemic uncer-
tainty. Consider the case where there is model mis-specification, and f∗ is not in the model class;
then assuming the model class is fixed (as is standard), then the lower bound of ER(f, x) is non-
zero. Stated differently, it is not fully reducible, which is often viewed as a central property of
epistemic uncertainty. For some applications this distinction may not be important; there is some
non-zero lower bound to the epistemic uncertainty but the ordering and correlations are intact un-
der this equivalence. But it could also play a significant role. For us in particular, adopting this
equivalence has two related consequences:

1. The model mis-specification acts as a temperature for our prioritisation distribution;

2. The ratio, or more generally the functional form of our prioritisation variable, can offset this
temperature.

To make the above equation fully reducible, we would need to further subtract a term capturing the
difference between the Bayes predictor, and the best predictor in the model class i.e. the model bias
or mis-specification term. Let us denote this term by C, and assume it constant over the domain.
And let us denote the fully reducible uncertainty by η. In the case where we use the excess risk, the
prioritisation of sample i is given by

[Vanilla] pi =
ηi + C∑
i(ηi + C)

=
ηi + C

NC +
∑
i ηi

. (45)

It is easy to see how C acts as a temperature. In the limit of large C we get a uniform distribution
over samples. Similarly if C = 0 we recover the ‘true’ distribution for reducible uncertainty.

It is of course hard to measure this model mis-specification term. In large networks we can assume
the capacity is unlikely to be restrictive, but perhaps other parts of the training regime could play a
part. Importantly, the above holds true not just for model mis-specification, but also if there is any
systematic error in the epistemic uncertainty estimate (i.e. think of C as an error on the epistemic
uncertainty estimate).

SM 3.5 Prioritisation Distribution Entropy

Assuming the above effect is significant, might a different functional form (as discussed in Sec. SM
3.3) for prioritisation alleviate the impact? Consider the following additional options:

[E/U] pi =

ηi+C
ηi+C+βi∑
i

ηi+C
ηi+C+βi

; (46)

[E2/U] pi =

(ηi+C)2

ηi+C+βi∑
i

(ηi+C)2

ηi+C+βi

; (47)
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Figure 4: Ratios can reduce entropy of distribution under bias.

and more generally,

[Em/U] pi =

(ηi+C)m

ηi+C+βi∑
i
(ηi+C)m

ηi+C+βi

. (48)

In the limit of large C all of these forms tend to a uniform distribution. However, at what rate? And
is there anything else interesting we can say?

Consider the following toy problem:

• Populate “replay” buffer with N samples;

• Each sample’s reducible uncertainty is sampled from ρη;

• Each sample’s reducible uncertainty is sampled from ρβ ;

• C is constant over the samples.

We can plot as a function of C the entropy of the prioritisation distribution for the functional forms
above. Such a plot is shown for various choices of ρη , ρβ in Fig. 4. Clearly, as C increases the
entropy in the distribution increases and saturates at some maximum entropy. There is some vari-
ation in the entropy ordering depending on the exact ρη , ρβ distributions; in some instances the
vanilla form is lower entropy than E/U , but in general the entropy remains lower for longer (as a
function of C) when the exponent in the nominator is higher. This is not a particularly surprising
result, but lends support to the idea that a higher order function of E in a ratio form is desirable for
prioritisation.

SM 3.6 Relation to E under 0 Bias

Now let us consider a more interesting measure. Ordinarily, or naively—in the sense that this is the
first order approach—we want our prioritisation variable to be the vanilla prescription; and ideally
we would want C to be 0. We can measure the difference, which we denote δi to this ideal for each
functional form as a function of C. This plot is show for various choices of ρη , ρβ in Fig. 5.

In general, the standard E/U ratio is poor, it has systematically higher mean and variance of error.
Beyond that, a clear trade-off emerges: as you increase the exponent m, then for high C there is
lower deviation from the ‘correct’ distribution for priority. This is related to maintaining lower
entropy and tending to a uniform distribution more slowly. However, for lower C you are likely to
be more wrong, catastrophically so. This trade-off for m = 3 is effectively crossed when the red
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Figure 5: E2/U closely approximates E for non-trivial bias.

line intersects with the blue in these plots. The point at which this intersection happens will be a
function of various things, primarily the underlying distributions—in this case ρη , ρβ .

Interestingly however, for m = 2 there is very fast convergence of E2/U and E as a function of C.
So while m = 3 has a very stark trade-off, m = 2 is less extreme: For low C it may make you more
wrong but generally you will have very similar average error by this metric to the vanilla case; all the
while the entropy of the distribution will be much lower and more informative (as shown in Fig. 4).
This toy model is clearly very simplistic, not least the lack of variation in C over the samples; but
future work could be dedicated to understanding these trade-offs more formally in the context of
prioritized replay.

SM 3.7 Off-setting Bias with TD Term

Leaving aside the ratio forms, the consequences of the temperature effect may differ depending on
the choice of epistemic uncertainty estimate we use. The methods we discuss in Sec. 2 & Sec. 3
all effectively use the equivalence of excess risk and epistemic uncertainty, and so do not explicitly
consider the possibility of model bias. The possible exception is the method resulting from the
expansion of the average error over the quantiles and ensemble in Sec. 3.1. The main difference
between this decomposition and that of Clements et al. (2020) is a term that encodes the distance
from the target:

δ2Θ = (Θ− Eψ,i [θi(ψ)])2 . (49)

This term could guard against two possible shortcomings of the decomposition in Clements et al.
(2020):

1. Consider the pathological case in which each ensemble is initialised identically, then each quan-
tile will have zero variance and the epistemic uncertainty measure from Clements et al. (2020)
will be zero. Even if there is independence at initialisation, there may be characteristic learn-
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ing trajectories or other systematic biases that push the ensemble together and lead to an un-
derestimate in epistemic uncertainty. Here, the term above—if treated as part of the epistemic
uncertainty—can continue to drive learning in ways we want.

2. However, it could be that the ensemble behaves nicely and the metric over the ensemble
from Clements et al. (2020) is principally a good one, *but* that there is significant model bias.
This could also be captured by the term above but would need to be subtracted from the total
error in order to get a fully reducible measure for epistemic uncertainty (as per the argument
discussed above).

Which of the two problems is more pronounced is difficult to know a priori, and could be an avenue
for future work. Empirically, the performance of the UPER agent in Sec. 5 suggests that the former
is the greater effect—at least on the atari benchmark with the model architecture and learning setting
used.
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Figure 6: Comparison of MSE for different prioritisation scheemes. Left panel, shows ratios and
information gain based on epistemic uncertainty Ê proposed by Clements et al. (2020). Middle
panel, shows ratios and information gain based on our proposed target epistemic uncertianty Êδ .
Right panel, different in MSE between curves in the left panel and right panel for the shifted arm
task. For instance, ∆MSE(Êδ) = MSE(Ê)−MSE(Êδ), showing that our proposed Êδ is in general
better for prioritisation in the arm-bandit task. Averaged across 10 seeds.

SM 4 Arm-Bandit Task

The hyperparameters used in the Arm-Bandit Task shown in Sec. 4 are shown below:

• Number of train steps: 205

• Learning rate annealing: 0.005 · 2−iters/40000.

• Init variance estimation: uniformly sampled from to 0.1

• Number of agents in the ensemble: 30

• α = 0.7, β is annealing from 0.5 to 1 in 0.4 to 1 in proportional prioritisation as in the original
work by Schaul et al. (2016).

• n arms: na = 5, r̄ = 2, σmax = 2 and σmin = 0.1.

• Number of quantiles: 30.

• Quantiles initialized as uniform distribution between -1 and 1. For the main results in ??, θτ are
initialized randomly between -1 and 1, then sorted to describe a cumulative distribution.

• Each agent in the ensemble is updated with probability 1/2 on each step.

• For the shifted arm experiment, the mean reward per arm r̄(a) = 3, 2.75, 2.5, 2.25, 2 for arms
1, 2, 3, 4 and 5.

Fig. 6 show the mean squared error from the estimatedQ(a) = Ej,ψ [θj(ψ)] to the true mean, where
ψ denotes agents in the ensemble case. Fig. 8 and Fig. 8 show the probability of sampling each arm
from the memory buffer throughout the training, and the mean square error from the estimated arm
value Q(a) to the true arm value r̄ (the same for every arm). In addition, we depict the evolution of
uncertainty quantities for all prioritisation variables for the arm bandit task in Fig. 9.

SM 5 Gridworld Experiments

The hyperparameters used in Fig. 1 are listed below:

• Learning rate: 0.1

• Discount factor, γ: 0.9

• Exploration co-efficient, ϵ: 0.95

• Buffer capacity: 10,000

• Episode timeout: 1000 steps

• Random reward distribution: N (0, 2)



Uncertainty Prioritized Experience Replay

0 100 200
10−2

10−1

100

M
S

E
ar

m

Arm 0

Û
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Figure 7: Comparison of MSE for different prioritisation scheemes using Ê based prioritisation.
Total uncertainty U and TD-error prioritisation tend to oversample high variance arms compared to
epistemic uncertainty prioritisation.
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For every 10 steps of ‘direct’ interaction and learning from the environment, the agent makes 5
updates with ‘indirect’ learning from the buffer replay. The data shown in the plots consists of 100
repeats and is smoothed over a window of 10.
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Figure 9: Epistemic uncertainty Ê and target uncertainty δ2Θ decrease more rapidly for lower noise
arm (first column), for UPER compared to other methods. The inclusion of aleatoric uncertainty
in the prioritization variable, as utilized in the information gain formula, aims to sample transitions
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uncertainty with less learnable content. This rationale is reflected in the ratio presented in the de-
rived ∆Hδ , and shown its effect in the sampling probabilities plotted in Fig. 8. The TD-error tends
to oversample noisier transitions, resulting in less frequent updates for the least noisy arm, conse-
quently leading to higher levels of epistemic and target uncertainty for that arm.
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SM 6 Atari Experiments

Cumulated training improvement of UPER over PER, QRDQN, QR-PER and QR-ENS-PER
are shown in Fig. 11 to Fig. 14. The accumulate percent improvement CUPER/PER, (same for
CUPER/QRDQN and the rest), is computed as

CUPER/PER =

∑
t [UPERhuman(t)− PERhuman(t)]∑

t PERhuman(t)
· 100 (50)

where t indexes training time, and UPERhuman (same for PERhuman and QRDQNhuman) denotes hu-
man normalized performance.

For the baseline experiments we use the same implementations as those of the original papers,
including hyperparemeter specifications. For our UPER method, we performed a limited hyperpa-
rameter sweep over 3 key hyperparameters: learning rate and ϵ for the optimizer, and the priority
exponent. The sweep ranged 3×10−5 to 5×10−5 for the learning rate, 6.1×10−7 to 3.125×10−4

for ϵ and 0.6 to 1 for the priority exponent. We chose values for our final experiments based on av-
erage performance over 2 seeds across a sub-selection of 5 Atari games (chopper command, asterix,
gopher, space invaders, and battlezone).

SM 6.1 QR Models Ablation
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Figure 10: Comparison of ablated prioritization
variables. Median Human Normalized Score for
QR-DQN ensembles, where only the prioritiza-
tion variable is changed. UPER, PER, EPI, and
UNI use the information gain in Eq. 11, the TD-
error, target epistemic uncertainty in Eq. 13, and
uniform sampling, respectively.

To demonstrate the effectiveness of the infor-
mation gain prioritization, and to confirm that
the performance improvement stems from our
proposed prioritization variable, we compared
UPER to identical QR-DQN ensemble agents,
maintaining the same architecture but altering
only the prioritization variable. The results are
presented in Fig. 10. UPER outperforms al-
ternative approaches such as QR-DQN-PER,
which uses the TD-error to prioritize (as pre-
viously shown in Fig. 2), QR-ENS-EPI, which
directly prioritizes using epistemic uncertainty
as defined in Eq. 13, and QR-ENS-UNI, which
uses uniform sampling. These findings high-
light the significance of both epistemic uncer-
tainty and aleatoric uncertainty in prioritizing
replay, as included in the information gain term.
Additionally, these results confirm that the per-
formance improvement can be solely attributed
to the prioritization variable, as the QR-DQN
ensemble architecture employed in each agent
remains constant.

SM 6.2 Computational cost

For the main Atari-57 benchmark results, average clock time training for PER, QR-DQN, and UPER
(standard DQN, distributed RL agent, and ensemble of distributed RL agents) are ≈ 150 hours,
≈ 149 hours, and≈ 162 hours respectively, all implemented in JAX running in Tesla V100 NVIDIA
Tensor Cores.

To generate Table 1, we conducted experiments on a laptop equipped with an i5-10500H CPU
(2.50GHz) and a 6GB NVIDIA GeForce RTX 3060 Mobile/Max-Q (not the same architecture as
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the main results in the paper, which uses Tesla V100 NVIDIA Tensor Cores). We ran 40 iterations
of Pong for each model, using the last 20 iterations to avoid initialization and buffer filling times. The
experiments were conducted on both CPU and GPU using different network architectures. In each
iteration, the agent processed 1000 frames and performed one batch update of 64 transitions, with 4
frames per iteration. For all these runs, we used the publicly available implementation of DQN Zoo
by DeepMind. Table 1 shows the time it takes for each iteration (1000 frames and a batch update)
in seconds, along with standard deviations. There are two main conclusions from this experiment.
First, most of the time consumed during each iteration is spent running the game engine (the 1000
frames per iteration), which is typically run on the CPU. This is evident from the small difference in
time between QR-DQN and DQN in both the CPU and GPU cases. This difference could be larger
in favor of the GPU if the batch size is increased and the frames per iteration are reduced. Second,
we are significantly leveraging the parallelization capabilities of GPUs, as shown by the reduced
times for the QR-DQN-ENS model (the architecture needed for UPER) when comparing GPU to
CPU performance. The 2-second gap per iteration when comparing QR-DQN-ENS with QR-DQN
and DQN is further reduced by utilizing V100 GPUs, as demonstrated by the training times reported
in the main Atari-57 experiment.
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Figure 11: Cumulated training improvement of UPER over PER defined as CUPER/PER.

SM 7 C51

To help assess whether the UPER methodology would also work when used in conjunction with
other deep learning algorithms beyond QR-DQN, we performed a smaller scale set of experiments
using the C51 algorithm Bellemare et al. (2017). We selected 5 Atari games in which ablations
from Hessel et al. (2017) suggested vanilla PER was ineffective or even detrimental. Results on
these 5 games comparing an ensemble C51 agent with PER vs an ensemble C51 agent with UPER
are shown in Fig. 16. Our method is significantly better on 4 games and similar in the fifth.
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Figure 12: Cumulated training improvement of UPER over QR-DQN defined as CUPER/QR-DQN.
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Figure 13: Cumulated training improvement of UPER over QR-PER defined as CUPER/QR-PER.
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Figure 14: Cumulated training improvement of UPER over QR-ENS-PER defined as
CUPER/QR-ENS-PER.
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Figure 15: Average performance and corresponding standard deviation for all games across 3 seeds.
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Figure 16: Performance of an ensemble C51 agent with PER vs ensemble C51 agent with PER for
5 Atari games. Average across 2 seeds.


