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Summary
Prioritized experience replay, which improves sample efficiency by selecting relevant tran-

sitions to update parameter estimates, is a crucial component of contemporary value-based deep
reinforcement learning models. Typically, transitions are prioritized based on their temporal
difference error. However, this approach is prone to favoring noisy transitions, even when
the value estimation closely approximates the target mean. This phenomenon resembles the
noisy TV problem postulated in the exploration literature, in which exploration-guided agents
get stuck by mistaking noise for novelty. To mitigate the disruptive effects of noise in value
estimation, we propose using epistemic uncertainty to guide the prioritization of transitions
from the replay buffer. Epistemic uncertainty quantifies the uncertainty that can be reduced by
learning, hence reducing transitions sampled from the buffer generated by unpredictable ran-
dom processes. We first illustrate the benefits of epistemic uncertainty prioritized replay in two
tabular toy models: a simple multi-arm bandit task, and a noisy gridworld. Subsequently, we
evaluate our prioritization scheme on the Atari suite, outperforming quantile regression deep
Q-learning benchmarks; thus forging a path for the use of epistemic uncertainty prioritized
replay in reinforcement learning agents.

Contribution(s)
1. We introduce a new decomposition of uncertainties in reinforcement learning extending pre-

vious formulations of epistemic and aleatoric uncertainty (Clements et al., 2020) to include
a distance-to-target term. This decomposition better accounts for bias-variance trade-offs in
the underlying estimator.
Context: While Clements et al. (2020) start by defining total uncertainty as the variance
over distributional and ensemble dimensions of the value estimate, we start instead from the
average square error to the target over distributional and ensemble dimensions. Under the
definitions given by Lahlou et al. (2022) in their Direct Epistemic Uncertainty Prediction
(DEUP) framework, this yields a modified epistemic uncertainty that we term the target
epistemic uncertainty.

2. We propose using these measures of epistemic and aleatoric uncertainty in an information
gain criterion to prioritize experience replay in reinforcement learning. We call this priori-
tization scheme Uncertainty Prioritized Experience Replay (UPER).
Context: The de facto method for prioritizing replay in reinforcement learning has been the
absolute value of the temporal difference error since its introduction by Schaul et al. (2016).
However we argue that this can lead to sub-optimal behavior in noisy environments. We go
on to derive the information gain prioritization criterion from principled treatment of a toy
Bayesian problem.

3. We demonstrate the effectiveness of this prioritization scheme in two toy models (a bandit
and gridworld), as well as in a deep learning model on the Atari test suite. In the latter we
use an ensemble of distributional QR agents (Dabney et al., 2017) to estimate the relevant
uncertainty quantities.
Context: We provide a series of ablation studies in Atari that isolate the effect of the
prioritization variable (from architectural changes such as adding an ensemble), showing
conclusively that UPER is superior to PER and other uncertainty measures like plain en-
semble disagreement.
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Abstract
Prioritized experience replay, which improves sample efficiency by selecting relevant1
transitions to update parameter estimates, is a crucial component of contemporary2
value-based deep reinforcement learning models. Typically, transitions are prioritized3
based on their temporal difference error. However, this approach is prone to favoring4
noisy transitions, even when the value estimation closely approximates the target mean.5
This phenomenon resembles the noisy TV problem postulated in the exploration liter-6
ature, in which exploration-guided agents get stuck by mistaking noise for novelty. To7
mitigate the disruptive effects of noise in value estimation, we propose using epistemic8
uncertainty to guide the prioritization of transitions from the replay buffer. Epistemic9
uncertainty quantifies the uncertainty that can be reduced by learning, hence reduc-10
ing transitions sampled from the buffer generated by unpredictable random processes.11
We first illustrate the benefits of epistemic uncertainty prioritized replay in two tabular12
toy models: a simple multi-arm bandit task, and a noisy gridworld. Subsequently, we13
evaluate our prioritization scheme on the Atari suite, outperforming quantile regression14
deep Q-learning benchmarks; thus forging a path for the use of epistemic uncertainty15
prioritized replay in reinforcement learning agents.16

1 Introduction17

Deep Reinforcement Learning (DRL) has proven highly effective across a diverse array of problems,18
consistently yielding state-of-the-art results in control of dynamical systems (Nian et al., 2020; De-19
grave et al., 2022; Weinberg et al., 2023), abstract strategy games (Mnih et al., 2015; Silver et al.,20
2016), continual learning (Khetarpal et al., 2022; Team et al., 2021), and multi-agent learning (Ope-21
nAI et al., 2019; Baker et al., 2020). It has also been established as a foundational theory for22
explaining phenomena in cognitive neuroscience (Botvinick et al., 2020; Subramanian et al., 2022).23
Nonetheless, a significant drawback of these methods pertains to their inherent sample inefficiency24
whereby accurate estimations of value and policy necessitate a substantial demand for interactions25
with the environment.26

Sample inefficiency has been mitigated through the use of—among other methods—Prioritized Ex-27
perience Replay (PER) (Schaul et al., 2016). PER is an extension of Experience Replay (Lin, 1992),28
which uses a memory buffer populated with past agent transitions to improve training stability29
through the temporal de-correlation of data used in parameter updates. Subsequently, PER extends30
this approach by sampling transitions from the buffer with probabilities proportional to their abso-31
lute Temporal Difference (TD) error, thereby allowing agents to prioritize learning from pertinent32
data. PER has been widely adopted as a standard technique in DRL; however, despite significantly33
better performance over uniform sampling in most cases, it is worth noting that PER can encounter34
limitations under specific task conditions and agent designs. The most prominent example of such a35
limitation is related to the so-called noisy TV problem (Burda et al., 2018), a thought experiment at36
the heart of the literature around exploration in RL. Just as novelty-based exploration bonuses can37
trap agents in noisy states, PER is susceptible to frequently replaying transitions involving high lev-38
els of randomness (e.g. in reward or transition dynamics) even if they do not translate to meaningful39
learning and thus are not useful for solving the task.40
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To combat this issue, we propose combining epistemic and aleatoric uncertainty measures (Clements41
et al., 2020; Alverio et al., 2022; Lahlou et al., 2022; Liu et al., 2023; Jiang et al., 2023), originally42
used to promote exploration, under an information gain criterion for use in replay prioritization.43
Epistemic uncertainty, the uncertainty reducible through learning, is the key quantity of interest.44
However this need to be appropriately ‘calibrated’, which we show-both empirically, and with jus-45
tification from Bayesian inference-can be done effectively by dividing the epistemic uncertainty46
estimate by an aleatoric uncertainty estimate (and taking the logarithm, i.e. the information gain).47
Intuitively the need for this kind of calibration can be seen by considering the following game: the48
aim is to estimate the mean of two distributions; the ground truth is that both distributions have49
identical mean but different variance, and your current estimates for both distributions are the same50
i.e. your epistemic uncertainty on the mean is the same for both distributions. However if I offer51
you a new sample from either distribution to refine your estimate you would choose to sample the52
distribution with lower variance since this is more likely to be informative. In addition to arguing53
for this novel prioritization variable, we also provide candidate methods involving distributions of54
ensembles (in the vein of Clements et al. (2020)) to estimate these quantities. A comprehensive55
review of related literature is provided in App. B, with further details in SM 1.56

Our primary contributions are as follows: (1) In Sec. 3, we present a novel approach for estimating57
epistemic uncertainty, building upon an existing uncertainty formalization introduced by Clements58
et al. (2020) & Jiang et al. (2023). This extension incorporates information about the target value that59
the model aims to estimate thereby accounting for bias in the estimator; (2) We derive a prioritiza-60
tion variable using estimated uncertainty quantities, finding a specific functional form derived from61
a concept called information gain, showing that both, epistemic and aleatoric uncertainty should be62
considered for prioritization; (3) In Sec. 4, we illustrate the advantages of our proposed epistemic un-63
certainty prioritization scheme through two interpretable toy models—a bandit task and a grid world;64
(4) In Sec. 5, we demonstrate the effectiveness of this method on the Atari-57 benchmark (Belle-65
mare et al., 2013), where it significantly outperforms baseline models based on a combination of66
PER, QR-DQN and ensemble agents.67

2 Background68

2.1 Reinforcement Learning69

Consider an environment modelled by a Markov Decision Process (MDP), defined by (S,A,R, P, γ)70
with state space S, action space A, reward function R, state-transition function P , and discount fac-71
tor γ ∈ (0, 1). Given the agent policy π : S → ∆(A), where ∆(A) denotes the probability simplex72
over A, the cumulative discounted future reward is denoted by Gπ(s, a) =

∑
t γ

tR(st, at) with73
s0 = s and a0 = a, and transitions sampled according to at ∼ π(a|st) and st+1, rt ∼ P (s, r|st, at).74
We denote the action-value function as Qπ(s, a) = E [Gπ(s, a)], and the corresponding state-action75
return-distribution function as ηπ(s, a); and we recall that Qπ(s, a) = EG∼ηπ(s,a) [G]. In gen-76
eral, the action value function is parameterized by ψ, such that Qψ can be trained by minimizing a77
mean-squared temporal difference (TD) error E[δ2t ]. For example, in Q-Learning the error is given78
by79

δt = rt + γmax
a′∈A

Qψ̄(st+1, a
′)−Qψ(st, at), (1)

for the transition at time t (st, at, rt, st+1), and where ψ̄ denotes the possibly time-lagged target80
parameters (Watkins & Dayan, 1992; Mnih et al., 2015). Additionally, we will use policies that81
are ϵ-greedy with respect to the currently estimated action-value function, that is for some ϵ ∈82
[0, 1], the selected action from any state s is drawn as argmaxa∈AQψ(s, a) with probability 1 − ϵ83
and uniformly over A otherwise. See Sutton & Barto (2018) for a more in-depth overview of RL84
methods.85
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2.2 Prioritized Experience Replay86

Reinforcement learning algorithms are notoriously sample inefficient. A widely adopted practice87
to mitigate this issue is the use of an experience replay buffer, which stores transitions in the form88
of (st, at, rt, st+1) for later learning (Mnih et al., 2015). Loosely inspired by hippocampal replay89
to the cortex in mammalian brains (Foster & Wilson, 2006; McNamara et al., 2014), its primary90
conceptual motivation is to reduce the variance of gradient-based optimization by temporally de-91
correlating updates, thereby improving sample efficiency. It can also serve to prevent catastrophic92
forgetting by maintaining transitions from different time scales. The effectiveness of this buffer93
can often be improved further by prioritising some transitions at the point of sampling rather than94
selecting uniformly. Formally, when transition i is placed into replay, it is given a priority pi. The95
probability of sampling this transition during training is given by:96

P (i) =
pαi∑
k p

α
k

, (2)

where α is a hyper-parameter called prioritisation exponent (α = 0 corresponds to uniform sam-97
pling). Schaul et al. (2016) introduced prioritized experience replay, which most often uses the98
absolute TD-error |δi| of transition i, as pi = |δi| + ϵ where a small ϵ constant ensures transitions99
with zero error still have a chance of being sampled1. Sampling transitions non-uniformly from the100
replay buffer will change the observed distribution of transitions, biasing the solution of value esti-101
mates. To correct this bias, the error used for each update is re-weighted by an importance weight of102
the form wi ∝ (NP (i))

−β , where N is the size of the buffer and β controls the correction of bias103
introduced by important sampling (β = 1 corresponds to a full correction).104

The key intuition behind PER is that transitions on which the agent previously made inaccurate105
predictions should be replayed more often than transitions on which the agent already has low error.106
While this heuristic is reasonable and has enjoyed empirical success, TD-errors can be insufficiently107
distinct from the irreducible aleatoric uncertainty; considering instead uncertainty measures more108
explicitly, this form of prioritisation can be significantly improved.109

2.3 Uncertainty Estimation in RL110

Uncertainty is a fundamental concept in statistics. Within machine learning, it has predominately111
been studied in supervised learning, particularly with Bayesian methods (Lahlou et al., 2022; Nari-112
matsu et al., 2023). Various aspects of the task setting such as bootstrapping and non-stationarity113
make uncertainty estimation a significantly more challenging problem in RL; nevertheless, it has114
featured more prominently in recent work, including for use in generalization (Jiang et al., 2023), as115
reward bonuses in exploration (Nikolov et al., 2019), and to guide safe actions (Lütjens et al., 2019;116
Kahn et al., 2017). We discuss here some of the key concepts around uncertainty relevant to this117
work, particularly those that address the delineation between aleatoric and epistemic uncertainty. A118
more comprehensive overview of related work around uncertainty in RL can be found in SM 1.119

2.3.1 Bootstrapped DQN120

The concept behind bootstrapping is to approximate a posterior distribution by sampling a predic-121
tion from an ensemble of estimators, where each estimator is initialized randomly and observes a122
distinct subset of the data (Tibshirani, 1994; Bickel & Freedman, 1981). In RL, Osband et al. (2016)123
introduced a protocol known as bootstrapped DQN for deep exploration, whereby bootstrapping is124
used to approximate the posterior of the action-value function, from which samples can be drawn.125
Each agent within an effective ensemble, parameterized by ψ, is randomly initialized and trained126
using a different subset of experiences via random masking. A sample estimate of the posterior127
distribution, denoted as ψ ∼ P (ψ|D) (D being training data), is obtained by randomly selecting128

1Another form of prioritization, known as rank-based prioritisation, is to use pi = 1/rank(i) where rank(i) is the rank of
the experience in the buffer when ordered by |δi|.
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one of the agents from the ensemble. In this work, we use extensions of the bootstrapped DQN idea129
in our epistemic uncertainty measurements—notably the ensemble disagreement.130

2.3.2 Distributional RL131

Learning quantities beyond the mean return has been a long-standing programme of RL research,132
with particular focus on the return variance (Sobel, 1982). A yet richer representation of the return133
is sought by more recent methods known collectively as distributional RL (Bellemare et al., 2017),134
which aims to learn not just the mean and variance, but the entire return distribution. We focus135
here on one particular class of distributional RL methods: those that model the quantiles of the136
distribution, specifically QR-DQN (Dabney et al., 2017). A broader treatment of the distributional137
RL literature can be found in Bellemare et al. (2023).138

In QR-DQN, the distribution of returns, for example from taking action a in state s and subsequently139
following policy π, ηπ(s, a) is approximated as a quantile representation (Bellemare et al., 2023),140
that is, as a uniform mixture of Diracs, and trained through quantile regression (Koenker & Hallock,141
2001). For such a distribution, ν̂ = 1

m

∑m
i=1 δθτi , with learnable quantile values θτi and corre-142

sponding quantile targets τi = 2i−1
2m , the quantile regression loss for target distribution ν is given143

by144

LQR =

m∑
i=1

EZ∼ν [ρτi(Z − θτi)], (3)

where ρτ (u) = u(τ − 1u<0) and 1 is the indicator function. By leveraging the so-called dis-145
tributional Bellman operator and the standard apparatus of a DQN model, QR-DQN prescribes a146
temporal difference deep learning method for minimizing the above loss function and learning an147
approximate return distribution function via quantile regression.148

Distributional RL in itself does not (so far) permit a natural decomposition of uncertainties into149
epistemic and aleatoric (Clements et al., 2020; Chua et al., 2018; Charpentier et al., 2022); rather150
the variance of the learned distribution will converge on what can reasonably be thought of as the151
aleatoric uncertainty. In Sec. 3.1 we extend previous techniques that combine distributions with152
ensembles to construct estimates of both epistemic and aleatoric uncertainties. Both of these tech-153
niques to characterize epistemic uncertainty can be understood under an excess risk framework,154
which we outline below.155

2.3.3 Direct Epistemic Uncertainty Prediction156

We employ a clear and formal representation of uncertainty, where total uncertainty is defined as the157
sum of epistemic and aleatoric components such that the epistemic uncertainty can be interpreted as158
the excess risk. This notion was introduced by Xu & Raginsky (2022) and later extended by Lahlou159
et al. (2022); we adapt their framing to our setting here. Consider the total uncertainty U(s, a) of160
an action-value predictor Qψ(s, a), for a given state s and action a as:161

U(Qψ, s, a) =
∫

(Θ(s′, r)−Qψ(s, a))2 P (s′, r|s, a)ds′dr, (4)

where Θ(s′, r) is the Q-learning target as in equation Eq. 1. Then, the aleatoric uncertaintyA(s, a),162
is given by the total uncertainty (as defined above) of a Bayes-optimal predictorQ∗

ψ (see Lahlou et al.163
(2022)):164

A(s, a) = U(Q∗
ψ, s, a). (5)

Note that this quantity is independent of any learned predictor and is a function of the data only. The165
epistemic uncertainty E(Qψ, s, a), which is computed for a given predictor, is defined as the total166
uncertainty of the predictor minus the aleatoric uncertainty:167

E(Qψ, s, a) = U(Qψ, s, a)−A(s, a), (6)
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where E(Qψ, s, a) is the squared distance between the true mean and estimate mean as shown in SM168
2. Concretely, this decomposition can be useful in instances where you want to estimate epistemic169
uncertainty, but doing so directly is significantly more difficult than estimating total and aleatoric170
uncertainty, which is often the case. In Sec. 3, we provide a way to estimate quantities in this manner,171
which later we use to prioritize transitions in the replay buffer.172

2.3.4 Ensembles of Distributions173

Using an ensemble of distributional RL agents gives us a concrete prescription for computing epis-174
temic uncertainty as well as aleatoric uncertainty. This approach was first formalized by Clements175
et al. (2020), who define learned aleatoric and epistemic uncertainty quantities as a decomposition176
of the variance of the estimation from the ensemble (here defined as total uncertainty Û) of distribu-177
tional RL agents:178

Û(s, a) = Vτ,ψ [θτ (s, a;ψ)] = Ê(s, a) + Â(s, a) (7)

where179

Â(s, a) = Vτ [Eψ(θτ (s, a;ψ))], Ê(s, a) = Eτ [Vψ(θτ (s, a;ψ))], (8)

and s, a are state and action, ψ ∼ P (ψ|D) are the model parameters of each agent in the ensemble,180
D denotes the data distribution, and θτ is the value of the τ th quantile. V and E are variance and181
expectation operators respectively. Intuitively, Ê measures epistemic uncertainty as the expected182
disagreement (variance) in quantile estimations across the ensemble, while Â takes the average183
estimation across the ensemble for each quantile of the distribution, and computes the variance184
of this averaged distribution. Clements et al. (2020) stop short of using a bona fide ensemble to185
estimate these quantities, opting instead for a two-sample approximation in the agent they present.186
However Jiang et al. (2023) go on to use ensemble methods more explicitly, as we do in this work.187

3 Uncertainty Prioritized Experience Replay188

In this section we will introduce a new method for estimating epistemic uncertainty, which arises189
from a decomposition of the total uncertainty as defined by the average error over both the ensemble190
and quantiles. This decomposition is in the vein of Clements et al. (2020); however, it considers191
distance from the target in addition to the disagreement within the ensemble, thereby allowing us192
to handle—among others—model bias. We go on to derive an expression for prioritisation vari-193
ables based on the concept of information gain, which trades off epistemic and aleatoric uncertainty194
with a view to maximizing learnability from each sampled transition. We name this method Uncer-195
tainty Prioritized Experience Replay (UPER). Importantly, we are not changing the prioritize replay196
algorithm itself, but just the variable pi used to prioritize in Eq. 2, replacing the TD-error by the197
information gain.198

3.1 Uncertainty from Distributional Ensembles199

The definitions given in Eq. 7 arise from a decomposition of Vψ,τ [θτ (s, a;ψ)], where ψ and τ index200
the quantile and ensemble respectively (see Clements et al. (2020) for details). This quantity does201
not explicitly consider how far estimates are from targets, but rather how consistent the estimates202
are among the quantiles and members of the ensemble. We propose a modified concept of total203
uncertainty Ûδ named target total uncertainty, simply defined as the average squared error to the204
target Θ over the quantiles and ensemble, which can be decomposed as:205

Ûδ = Eτ,ψ[(Θ(s′, r)− θτ (s, a;ψ))2] = δ2Θ(s, a) + Ê(s, a)︸ ︷︷ ︸
Êδ(s,a)

+Â(s, a); (9)
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where δ2Θ(s, a) = (Θ(s′, r)−Eτ,ψ[θτ (s, a;ψ)])2, and we introduce the target epistemic uncertainty206
Êδ(s, a) = δ2Θ(s, a) + Ê(s, a) (see proof of this decomposition in App. A). Note that in order to207
construct ensemble disagreement estimates or estimates of the total uncertainty Ûδ , we assume in-208
dependence among the ensemble, which is facilitated by masking and random initialization akin to209
bootstrapped DQN. Through the lens of the DEUP formulation from Sec. 2.3.3, this decomposition210
suggests a modified definition of epistemic uncertainty that considers the distance to the target δ2Θ211
as well as the disagreement in estimation within the ensemble Ê from Clements et al. (2020) and212
Jiang et al. (2023). To see why this extra term can be useful, consider the following pathological213
example: all members of an ensemble are initialized equally, the variance among the ensemble—214
and the resulting epistemic uncertainty estimate without this additional error term—will be zero.215
A more subtle generalization of this would be if inductive biases from other parts of the learning216
setup (architecture, learning rule etc.) lead to characteristic learning trajectories in which individual217
members of the ensemble effectively collapse with no variance. In essence, Ê assesses ensemble218
disagreement without including the estimation offset. The use of pseudo-counts (Lobel et al., 2023)219
presents a similar problem: while epistemic uncertainty does scale with the number of visits to220
a state, it does not necessarily encode the true distance between the estimation and target values.221
Pseudo-counts bear the additional disadvantage of being task agnostic, i.e. ignoring context, which222
makes them brittle under any change in the underlying MDP. We provide a simulation where we223
show the advantage of using Êδ instead of Ê to prioritize replay in Sec. 4.224

3.2 Prioritizing using Information Gain225

Having arrived at suitable methods for estimating both epistemic and aleatoric uncertainty, it remains226
to establish a functional form for the prioritization variable, denoted pi = h(E(si, ai),A(si, ai)).227
The most straightforward approach is to directly use pi = Êδ; however, in practical applications,228
this does not yield satisfactory results. One intuition for this, which will be made more concrete in229
later passages, is that the magnitude of epistemic uncertainty does not in itself determine how easily230
reducible that uncertainty is. It is informative therefore to also consider the aleatoric uncertainty,231
since this indicates the fidelity of the data, and hence how readily it can be used to reduce the232
epistemic uncertainty (this is demonstrated experimentally in Sec. 4.1 and SM 4, and expounded233
upon in SM 3).234

We take inspiration from the idea of information gain to determine h. For the purpose of this expla-235
nation, consider a hypothetical dataset of points xi ∼ N (µx, σ

2
x). Our objective is to estimate the236

posterior distribution P (ν|xi) ∝ P (xi|ν)P (ν) with a prior distribution ν ∼ N (µ, σ2). Following237
the observation of a single sample xi, the posterior distribution becomes a Gaussian with variance238

σ2
ν =

σ2σ2
x

σ2
x+σ

2 . To quantify the information gained by incorporating the sample xi when computing239
the posterior, we measure the difference in entropy between the prior distribution and the posterior240
as241

∆H = H (P (ν))−H (P (ν|xi)) , (10)

From here, we consider σ2 = Êδ as a form of epistemic uncertainty, since the ensemble disagreement242
is reduced by sampling more points, and σ2

x = Â as aleatoric uncertainty corresponding to the243
variance of the ensemble average distribution, giving the irreducible noise of the data, obtaining a244
prioritization variable245

pi = ∆Hδ =
1

2
log

(
1 +
Êδ(s, a)
Â(s, a)

)
. (11)

For a detailed derivation of the information gain, an illustrative simulation demonstrating the use of246
variance as an uncertainty estimate, and a comprehensive exploration of other functional forms of247
prioritization variables based on uncertainty, please refer to SM 3.248
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Figure 1: Conal Bandit. (a) multi-armed bandit task constructed such that each arm has identical
mean payoff but increasing variance. (b) true MSE (average error across arms, between estimated
reward and the true reward mean) over 200 iterations (each of 1000 steps) using different quantities
to prioritise transitions from the replay buffer: absolute value of the TD error |δ| (PER), inverse
counts (C being the number of visits to the respective arm), information gain ∆Hδ (UPER), and
an oracle epistemic uncertainty E∗ measured as the distance from the estimated mean to the true
mean. (c) arm replaying selection probabilities for the stablest (dashed) and noisiest (solid) arms in
the conal bandit; the key intuition is that prioritising by TD-error over-samples noisier arms, while
prioritising using UPER places importance on learn-ability and leads to greater selection of stable
arms. Results averaged across 10 seeds. Noisy Gridworld. (d) 300 seeds return on a test episode
throughout training of an agent on the noisy gridworld, with the shaded region being stared error
on the mean. (e) in the Map, blue denotes the starting state, green is the goal state, and yellow
are the non-zero variance immediate rewards. Below, sampling heatmaps where yellows are highly
sampled and blues are scarcely sampled: uniform experience replay (ER) leads to sampling more
from early parts of a trajectory since these fill the buffer first; replay based on TD error (PER) leads
to a pathological sampling of the noisy part of the gridworld; replay using UPER leads to greater
sampling of later parts of the trajectory.

4 Motivating Examples249

We proceed to employ epistemic uncertainty estimators and the information gain criterion in simple250
and interpretable toy models to highlight their potential as experience replay prioritization variables.251

4.1 Conal Bandit252

We devise a multi-armed bandit task in which each arm has the same expected reward but with253
increasing noise level as per arm, forming a cone as shown from left to right in Fig. 1a. The memory254
buffer in this experiment has one transition per arm, and after sampling one arm, the observed reward255
is replaced in the buffer for the respective transition (as done in the toy example in the original256
PER paper (Schaul et al., 2016)). Specifically, let na denote the number of arms; then the reward257
distribution r for arm a is defined as:258

r(a) = r̄ + η · σ(a), σ(a) = a · σmax/(na − 1) + σmin; (12)

where r̄ represents the expected reward, σ(a) is the reward standard deviation associated with arm259
a, σmax and σmin are constant, and η is sampled from a centered, unit-variance Gaussian.260

The choice of employing noisy arms serves the purpose of demonstrating that the TD-errors will261
inherently include the sample noise, regardless of whether the reward estimation for each arm262
Q(a) = Ej [θj(a)] approximates the target value r̄. We depict results for the bandit task using263
different variables to prioritize learning in Fig. 1b for na = 5, r̄ = 2, σmax = 2 and σmin = 0.1264
(details in SM 4).265
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Four relevant prioritization schemes are shown in this section (see SM 4 for other prioritization266
schemes): TD-error (standard PER): pi = 1

Ne

∑
ψ |ri −Q(ai;ψ)|; Inverse count: pi = 1/

√
1 + C,267

where C denotes the number of times an arm has been sampled to update the reward estimate;268
Information gain (UPER): pi = ∆Hδ; True distance to target: pi = E∗ = |r̄ −Q(ai)|.269

Prioritizing with epistemic uncertainty measures, such as UPER or inverse counts (a proxy for epis-270
temic uncertainty), leads to improved training speed and final true Mean Squared Error (true MSE,271
averaged across all arms, between the estimated reward and the true mean reward), compared to272
pi = |δi| (PER), as illustrated in Fig. 1b. Throughout the paper, we highlight that the TD-error in-273
cludes aleatoric uncertainty, corresponding to the arm variance in this scenario—which is irreducible274
through learning (see SM 2.1 for more details). Therefore, the TD-error tends to over-sample arms275
with high variance compared with UPER, to the cost of not sampling the low variance arm. This is276
demonstrated in Fig. 1c.277

Using inverse counts as the prioritization variable (similar to Lobel et al. (2023)), outperforms TD-278
error (as designed in the task) but not UPER. The reason is the fact that, although each initial279
estimated Q-values per arm are equidistant from the true mean, the learning speed for each arm280
diminishes with the variance of the respective arm. Inverse counts do not account for this variance-281
dependent decay in learning speed, so the number of updates per arm will not reflect the distance of282
the estimation to the true target, whereas UPER (prioritizing by Êδ and inverse Â) tends to sample283
arms with high aleatoric uncertainty less frequently, and is also based on the distance to the targets284
as defined in Eq. 22.285

The distance between the estimated mean and the true mean, denoted as E∗ (accessible due to the286
task design), is equivalent to the epistemic uncertainty in the DEUP formulation, as derived in SM 2.287
This distance is the ideal prioritization variable to which we do not have access in general. Notably,288
using UPER, which prioritizes based on information gain, yields results comparable to prioritizing289
directly based on the true distance. These results show UPER as a promising modification to TD-290
error-based prioritized replay.291

To emphasize the significance of incorporating the target value when utilizing the target epistemic292
uncertainty Êδ for replay prioritization, we introduced modifications to the conal bandit task by as-293
signing distinct mean rewards per arm, denoted as r̄ → r̄(a) (see simulation details in SM 4, Fig. 6).294
In the original conal bandit task, all arms shared the same mean reward r̄, resulting in an equal295
initial distance expectation from Q(a) to each arm. This uniformity dampened the performance im-296
provement when considering the target distance δΘ in Êδ with respect to Ê . By introducing varying297
mean rewards per arm, denoted as r(a), the relevance of information about the target value becomes298
important. This adjustment highlights the advantage of employing our proposed target epistemic299
uncertainty Êδ over merely considering ensemble disagreement Ê .300

4.2 Noisy Gridworld301

In order to move toward the full RL problem, we consider in this section a tabular gridworld. We302
take inspiration from ideas in planning within dynamic programming methods (Moore & Atke-303
son, 1993) to probe uncertainty-guided prioritized replay. Typically under this framework, ‘direct’304
reinforcement learning on interactions with the environment (sometimes referred to as control) is305
supplemented with ‘indirect’ learning of a model from stored experiences (sometimes referred to as306
planning). In our case, we learn purely model-free but retain these ideas of offline vs. online learn-307
ing. In some ways these methods are the precursor to the use of experience replay buffers in DRL.308
When making updates on stored data offline (for planning or otherwise), the same questions around309
criteria for prioritization arise. Notably, prioritized sweeping (preference over high error samples in310
memory) was an early extension to the Dyna models that exemplify this learning protocol (Sutton,311
1991). In Fig. 1e Map, we construct a gridworld where the agent can encounter a set of very noisy312
states with random rewards early on in the episode while a single deterministic state with a much313
larger reward is at the end of the maze. Fig. 1d shows that this simple task can be solved without314
the additional planning steps, but ER (sampling uniformly) helps improve sample efficiency. This315
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Figure 2: (Left) Comparing Uncertainty Prioritized Experience Replay (UPER) with Prioritized
Experience Replay (PER) and QR-DQN on the full Atari-57 benchmark. Median human normalized
score for UPER is significantly higher than baselines throughout the learning trajectory. (Right)
Example of per-game performance, with vastly superior performance on e.g. Asterix and Chopper
Command; cases in which UPER is worse are far less extreme, for instance Breakout and Krull (this
is shown graphically in Fig. 14 and Fig. 15). All results are averages over 3 seeds.

is improved further by PER (prioritizing using TD), but even more so by UPER where we prioritize316
using the information gain criterion and the inverse of state visitation counts (a good proxy for epis-317
temic uncertainty in this tabular setting). As shown by the heatmaps in Fig. 1e, PER over-samples318
noisy states while UPER prioritizes on novel states towards the end of the trajectory. Full details of319
the experimental setup and hyper-parameters can be found in SM 5.320

5 Deep RL: Atari321

In our final set of experiments we apply our insights in a DRL setting, specifically the Atari bench-322
mark (Bellemare et al., 2013). Our agent is an ensemble of QR-DQN distributional predictors323
(N=10), in which experience replay is prioritized using the information gain (UPER in Sec. 3.2).324
We compare this method to a vanilla QR-DQN agent (Dabney et al., 2017) with uniform prioriti-325
zation and the original PER agent (Schaul et al., 2016). To show that the gain in performance is326
not due to either the quantile regression method, nor the ensemble, we trained a QR-DQN agent327
with TD-error prioritization (QR-PER), and an ensemble of QR agents with TD-error prioritization328
(QR-ENS-PER). A summary of our empirical results is shown in Fig. 2, with further ablations and329
details in SM 6.330

Except for the additional hyper-parameters associated with the ensemble of distributional prediction331
heads and a more commonly used configuration for the Adam optimizer (ϵ = 0.01/(batch_size)2),332
the network architecture and all hyper-parameters in UPER are identical to QR-DQN (Dabney et al.,333
2017). Likewise PER, QRDQN, and QR-PER baselines follow the implementations of Dabney et al.334
(2017) and Schaul et al. (2016) respectively, while QR-ENS-PER is identical to UPER except for335
the prioritization variable which is TD-error. Concretely for the UPER agent, we compute the target336
epistemic uncertainty using Êδ(s, a) = Ûδ(s, a) − Â(s, a). Then for a given transition i the total337
uncertainty is given by338

Ûδ = Eτ,τ ′,ψ

[(
ri + γθτ ′(s′i, a

′
i; ψ̄)− θτ (si, ai;ψ)

)2]
, (13)

where τ (τ ′) are the quantiles of the online (target) network ψ (ψ̄). The aleatoric uncertainty estimate339
is given by Â(s, a) in Eq. 8. From these estimates we construct UPER priority variable using the340
uncertainty ratio discussed in Sec. 3.2, i.e. Eq. 11. Since UPER and QR-ENS-PER are ensemble341
agents, we store a random maskm ∈ RN for each transition in the buffer wheremi ∼ B(0.5). When342
the transition is sampled for learning, gradients are only propagated for heads whose corresponding343
element in the mask is 1. This follows the proposal of (Osband et al., 2016) and serves to de-correlate344
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Table 1: Computational Cost (seconds per iteration)

Architecture CPU GPU
QR-DQN-ENS 28.40 ± 0.26 20.74 ± 0.43

QR-DQN 17.80 ± 0.13 18.49 ± 0.68
DQN 18.34 ± 0.09 18.39 ± 0.56

the learning trajectories of the ensemble members, which is integral to the validity of our uncertainty345
estimates.346

As depicted in Fig. 2, the median UPER performance across games is significantly better than347
other prioritization schemes, showing that the performance improvement is not due to either the348
quantile regression technique or the ensemble alone. Importantly, UPER demonstrates performance349
improvement compared to its closest comparison QR-ENS-PER, whose only difference with UPER350
is the prioritization using TD-error (see Fig. 14). In most games where UPER does not improve351
performance, such as Krull, Q∗bert or H.E.R.O., the difference in performance is not significant.352
This is shown in the panels per game in Fig. 15 and the asymmetry of the bar plots in SM 6.353

6 Discussion and Conclusions354

In this study, we propose using epistemic uncertainty measures to guide the prioritization of355
transitions from the replay buffer. We demonstrate both via mathematical analysis and careful356
experiments that the typically applied TD-error criterion can include aleatoric uncertainty, and357
lead to over-sampling of noisy transitions. Prioritizing by a principled function of epistemic and358
aleatoric uncertainty in the form of the information gain mitigates these effects. To construct this359
function, we expand the concept of epistemic uncertainty from Clements et al. (2020) to incorporate360
the distance to the target, achieving performance advantages in toy settings and complex problems361
such as the Atari 57 benchmark. In estimating these auxiliary quantities, one concern may be the362
increased computational cost in the deep learning setting. However, sharing of the lower level363
representation over multiple heads alongside efficient implementations can significantly mitigate364
this burden. To demonstrate this, we conducted an experiment on a lower-capacity GPU comparing365
the training times of DQN, QR-DQN, and QR-DQN + ensemble networks in the Pong environment.366
The time per iteration is presented in Table 1. The comparable training times can be attributed to367
effective batch processing facilitated by GPU parallelization. In our implementation, each agent in368
the ensemble is represented by a distinct output head in the network architecture. By extending the369
batch dimension to (batch, action, quantiles, ensemble), we leverage the parallelization capacity of370
the GPU, which still operates within capacity for the QR-DQN ensemble network. Further details of371
this experiment and the computer architecture used are presented in SM 6.2. Note that this analysis372
does not aim to evaluate or compare the computational cost of sampling with a priority variable vs.373
uniform sampling. This is already addressed in the original PER paper and has negligible impact.374

While we focus our implementation on distributional RL—a widely used set of methods, exploring375
other forms of uncertainty estimation in RL such as pseudo-counts (Lobel et al., 2023), in combi-376
nation with different functional forms outside information gain, is a promising research path both377
for different prioritization schemes and related parts of the RL problem like exploration (see SM 3378
and SM 4).379

The framework of combining epistemic and aleatoric uncertainties in an information gain introduced380
in this work is not restricted to reinforcement learning. In principle, these concepts can be extrap-381
olated to other learning systems. A substantial body of literature exists on the efficient selection of382
datapoints to enhance learning in other paradigms such as supervised (Hüllermeier & Waegeman,383
2021; Zhou et al., 2022), continual (Henning et al., 2021; Li et al., 2021), or active learning (Nguyen384
et al., 2022). In addition, our work has the potential to offer alternative insights into replay events385
in biological agents (Daw et al., 2005; Mattar & Daw, 2018; Liu et al., 2019; Antonov et al., 2022).386
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A Total Error Decomposition387

Here we extend the notion of uncertainty proposed by Clements et al. (2020) by replacing the vari-388
ance of the estimation as total uncertainty, instead using the averaged square error to the target Θ389
over the quantiles and ensemble as total uncertainty, which we call target total uncertainty. Quantiles390
and ensemble are indexed by τ and ψ respectively, hence the target total uncertainty can be written391
as Ûδ = Eτ,ψ[(Θ(s′, r) − θτ (s, a;ψ))2], dropping the dependency on the transition (s′, r, s, a) for392
simplicity, it can be decomposed into:393

Eτ,ψ[(Θ− θτ (ψ))2] =
∫
ψ

1

N

N∑
τ

(Θ− θτ (ψ))2P (ψ|D)dψ, (14)

=

∫
ψ

1

N

N∑
τ

[Θ− θτ (ψ)± Eψ(θτ (ψ))]2 P (ψ|D)dψ, (15)

=

∫
ψ

1

N

N∑
τ

[
(Θ− Eψ(θτ (ψ)))2 + (Eψ(θτ (ψ))− θτ (ψ))2 (16)

+2 (Θ− Eψ(θτ (ψ))) (Eψ(θτ (ψ))− θτ (ψ))]P (ψ|D)dψ,
(17)

=

∫
ψ

1

N

N∑
τ

(Θ− Eψ(θτ (ψ)))2 P (ψ|D)dψ (18)

+
1

N

N∑
τ

∫
ψ

(Eψ(θτ (ψ))− θτ (ψ))2 P (ψ|D)dψ︸ ︷︷ ︸
Ê in Eq. 8

, (19)

the term in Eq. 17 is zero when integrating over ψ. Finally, the term in Eq. 18 is394 ∫
ψ

1

N

N∑
τ

(Θ− Eψ(θτ (ψ)))2 P (ψ|D)dψ = Θ2 − 2Eψ,τ (θτ (ψ)) + Eτ
(
Eψ [θτ (ψ)]

2
)

(20)

= (Θ− Eψ,τ [θτ (ψ)])2︸ ︷︷ ︸
Distance to the target δ2Θ

+Vτ (Eψ [θτ (ψ)])︸ ︷︷ ︸
Â in equation 7

, (21)

obtaining our proposed uncertainty decomposition395

Ûδ = Eτ,ψ[(Θ(s′, r)− θτ (s, a;ψ))2] = δ2Θ(s, a) + Ê(s, a) + Â(s, a); (22)

B Related Work396

Exploration. While UPER is not explicitly promoting exploration through a reward bonus to unex-397
plored or uncertainty states, we borrow methods from this field to estimate epistemic and aleatoric398
uncertainty (Clements et al., 2020) to prioritize transitions from the replay buffer based on the in-399
formation gain. A fundamental dilemma faced by RL agents is the exploration-exploitation trade-400
off (Osband et al., 2016; O’Donoghue, 2023), in which agents must balance competing objectives401
for action selection, between uncovering new information about the environment (exploration) and402
accumulating as much reward as they currently can (exploitation). Replay sampling and exploration403
strategies both affect the data used to enhance the estimation of the value function. The former404
controls the experiences used for value estimation updates, while the latter selects experiences that405
will end up populating the replay buffer. Many exploration strategies have been built around ideas406
of intrinsic reward (Oudeyer & Kaplan, 2007) and episodic memory (Savinov et al., 2019; Badia407
et al., 2020). These are susceptible to pathological behavior induced by the noisy TV, and later vari-408
ants are designed partly with this problem in mind; as a result they are frequently concerned with409
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reliable and meaningful estimates of counts and novelty (Ostrovski et al., 2017b; Bellemare et al.,410
2016b; Burda et al., 2018; Lobel et al., 2023), dynamics (Stadie et al., 2015; Pathak et al., 2017),411
uncertainty (Mavor-Parker et al., 2022), and related quantities—many of which are relevant to our412
problem of constructing suitable measures for replay prioritization.413

PER. Various efforts have been made to understand and improve upon aspects of prioritized expe-414
rience replay since its introduction by Schaul et al. (2016). Integration of information related to415
uncertainty has often been in conjunction with strategies for managing the exploration-exploitation416
trade-off. For instance, in Sun et al. (2020), frequently visited states are sampled more frequently to417
reduce uncertainty around known states. Conversely, Alverio et al. (2022) approach is prioritizing418
uncertain states to encourage exploration, utilizing epistemic uncertainty estimated as the standard419
deviation across an ensemble of next-state predictors. This technique is combined with other meth-420
ods to enhance sample efficiency.421

Another method, presented in Lobel et al. (2023), employs a pseudo-count approximation to gauge422
state visits, fostering exploration as an intrinsic reward. In training the pseudo-count network they423
prioritize transitions according to the counts themselves; they do not however go as far as performing424
this prioritization for learning the actual value network—as is the focus of our work. The method of425
Lobel et al. (2023) allows estimation of epistemic uncertainty independent of the sparsity or density426
of the reward signal, making it especially appealing in sparse-reward environments. However, using427
pseudo-counts for epistemic uncertainty can also be poorly aligned with uncertainty about the actual428
value estimation problem (Osband et al., 2018). As described in Sec. 4.1, the number of visits to a429
specific state-action does not necessarily describe the error between the mean estimates to the true430
one. In addition to this, as explained in Sec. 3.2 and shown by simulation in Sec. 4.1, both epistemic431
and aleatoric uncertainty should be considered to build a proper prioritization scheme.432
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