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ABSTRACT

Combinatorial online learning is a fundamental task for selecting the optimal ac-
tion (or super arm) as a combination of base arms in sequential interactions with
systems providing stochastic rewards. It is applicable to diverse domains such as
robotics, social advertising, network routing, and recommendation systems. In
many real-world scenarios, we often encounter rising rewards, where playing a
base arm not only provides an instantaneous reward but also contributes to the
enhancement of future rewards, e.g., robots improving through practice and social
influence strengthening in the history of successful recommendations. Crucially,
these enhancements may propagate to multiple super arms that share the same base
arms, introducing dependencies beyond the scope of existing bandit models. To
address this gap, we introduce the Combinatorial Rising Bandit (CRB) framework
and propose a provably efficient and empirically effective algorithm, Combinato-
rial Rising Upper Confidence Bound (CRUCB). We empirically demonstrate the
effectiveness of CRUCB in realistic deep reinforcement learning environments and
synthetic settings, while our theoretical analysis establishes tight regret bounds.
Together, they underscore the practical impact and theoretical rigor of our approach.

1 INTRODUCTION

Combinatorial online learning studies how to select an optimal action (super arm) composed of
multiple sub-actions (base arms). This formulation captures the structure of many practical decision-
making problems, including robotics (Xu et al., 2025; Wakayama & Ahmed, 2024), social advertising
(Ge et al., 2025), automatic machine learning (Huang et al., 2021), network routing (Lagos et al.,
2025), and recommendation systems (Atalar & Joe-Wong, 2025; Zhu & Van Roy, 2023).

However, previous studies of combinatorial online learning have largely neglected the presence of
a rising reward nature in practice, where pulling a base arm not only yields an immediate reward
but also enhances future rewards. For example, in robotic planning, hierarchical approaches tackle
complex tasks by decomposing them into low-level skills, such as grasping and lifting, which act as
sub-actions, while the full sequence of these skills constitutes an action. As these low-level skills are
reused across different plans, their performance improves (Jansonnie et al., 2024; Mao et al., 2025),
reflecting the rising reward nature. Additional real-world scenarios are presented in Appendix A.

A complementary line of work studies rising bandits, where the expected reward of an arm enhances
each time the arm is pulled (Fiandri et al., 2024a; Genalti et al., 2024; Heidari et al., 2016; Metelli
et al., 2022). However, these studies consider only non-combinatorial settings and, therefore, ignore
the structural dependencies that arise when different super arms share base arms. Such overlap
couples reward dynamics and makes the problem substantially more complex: while repeatedly
pulling a single arm is optimal in the non-combinatorial setting (Heidari et al., 2016), characterizing
an optimal policy in the combinatorial regime is far more intricate. A detailed comparison with
existing rising bandit formulations is provided in Appendix B.

To model such scenarios, we propose the Combinatorial Rising Bandit (CRB) framework. In this
framework, (i) the policy selects a super arm (a set of base arms), and (ii) the outcome of each base
arm follows a (rested) rising nature such that the expected outcome of a base arm increases after
pulling it as part of the selected super arm. We emphasize that CRB addresses a unique problem that
combinatorial bandits (Chen et al., 2013) and rising bandits (Heidari et al., 2016; Metelli et al., 2022)
cannot address. While individual base arms behave like rising bandits, super arms do not: shared
base arms create dependencies across super arms, leading to partially shared enhancement. Figure 1
shows an illustrative example. As depicted in Figure 1d, our proposed algorithm, CRUCB, rapidly
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Figure 1: Toy example for online shortest path planning. (a) Graph: two paths from s to g, an early
peaker path ({shared edge, early peaker}) and a late-bloomer path ({shared edge, late bloomer}). (b)
Outcome functions: a shared edge rises slowly; early peaker starts high but flattens; a late bloomer
starts low but rises quickly, eventually surpassing the early peaker, so the late bloomer path is optimal
for long horizon T . The reward is the sum of the outcomes of the base arms. (c) Cumulative regret
under three algorithms: CRUCB (ours); SW-CUCB (Chen et al., 2021) (combinatorial bandits); R-
ed-UCB (Metelli et al., 2022) (rested rising bandits). CRUCB becomes nearly flat, while SW-CUCB
and R-ed-UCB accumulate linear regret. (d) Empirical number of pulls of each edge: CRUCB pulls
entirely the late bloomer, SW-CUCB the early peaker, and R-ed-UCB splits pulls roughly evenly.

converges to selecting the late bloomer path, whereas SW-CUCB (Chen et al., 2021), a combinatorial
bandit algorithm, consistently selects the early peaker path due to its inability to account for the rising
nature. R-ed-UCB (Metelli et al., 2022), a rising bandit algorithm that ignores the combinatorial
structure, splits pulls between both paths because it incorrectly interprets cumulative increments
from repeatedly pulling the shared arm as immediate growth, causing it to hallucinate ongoing
potential in the early peaker path. This partially shared enhancement distinguishes CRB from prior
formulations, introducing fundamentally new challenges. Indeed, this difference also leads to a
different characterization of optimality in CRB.

To address the challenges introduced by the partially shared enhancement in CRB, we propose
Combinatorial Rising UCB (CRUCB), a provably efficient algorithm. CRUCB employs a Future-
UCB index that optimistically estimates the future outcome of each base arm by combining its
recent mean, slope, and uncertainty term, and then solves a combinatorial optimization problem
using these estimates of future rewards to select the super arm. On the theoretical side, we derive a
regret upper bound for CRUCB and a regret lower bound for CRB, and show that these bounds are
close, demonstrating the near-optimal efficiency of our approach. On the empirical side, we conduct
extensive experiments comparing CRUCB with a set of baselines in both synthetic environments and
deep reinforcement learning tasks, training a neural agent for navigation. These results consistently
highlight the superiority of CRUCB and its ability to handle challenges that existing approaches
cannot. Therefore, our study positions CRUCB at the intersection of theory and practice: it not
only provides provable guarantees but also exposes the limitations of prior methods in realistic
environments and demonstrates how CRUCB effectively overcomes them.

Our main contributions are summarized as follows:

• We introduce the Combinatorial Rising Bandit (CRB) framework in Section 2 to formalize rising
reward dynamics in combinatorial settings. Furthermore, we analyze the structure of optimal
policies, highlighting that CRB differs from prior frameworks and makes the characterization of
optimality both intractable and more intricate in Section 3.

• We propose Combinatorial Rising UCB (CRUCB), a provably efficient algorithm for CRB in
Section 4, and provide a regret upper bound that nearly matches a corresponding regret lower
bound, demonstrating its theoretical tightness in canonical settings in Section 5.

• We extensively validate CRUCB in both synthetic and deep reinforcement learning environments
in Section 6. It confirms that CRUCB effectively overcomes the difficulties of the combinatorial
rising structure left unsolved by prior methods, while maintaining robustness in practical settings
beyond theoretical assumptions.

2 PROBLEM FORMULATION

We study the Combinatorial Rising Bandit (CRB) problem, where the mean outcome of each base
arm increases with the number of plays. Let K be the number of base arms, [K] := {1, . . . ,K}, and
S ⊆ 2[K] the set of valid super arms. At each round t, a super arm St ∈ S is chosen, and each i ∈ St
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yields an outcome Xi(t) drawn independently from a distribution Di(Ni,t−1), where Ni,t−1 is the
number of past plays of arm i up to t− 1. We assume that Di(n) is σ2-subgaussian with known σ,
and define µi(n) := EX∼Di(n)[X] , where µi(n) ∈ [0, 1] for all i, n. The rising condition requires:

γi(n) := µi(n+ 1)− µi(n) ≥ 0, ∀i ∈ [K], n ≥ 1. (1)

Given a chosen super arm St and the outcome vector Xt = {Xi(t) : i ∈ St}, the reward is
Rt := R(St,Xt), where R is a fixed function. We consider a canonical setting of semi-bandit
feedback at time t, i.e., π selects super arm St based on history Ft−1 := {(St′ ,Xt′) : t

′ ∈ [t− 1]}.
For analytical tractability, we assume the concavity of µi as in Heidari et al. (2016):
Assumption 1. (Concavity of µi) For each i ∈ [K] and n ≥ 1, we have γi(n) ≥ γi(n+ 1).

We further assume the monotonicity of the reward function, which is canonical in combinatorial
bandit literature (Chen et al., 2016; Wang & Chen, 2018; Wang et al., 2023):
Assumption 2 (Monotone reward). For each super arm S ∈ S , the expected reward can be expressed
as a function of the mean outcomes of its base arms. Formally, there exists a function r such that

E[R(S,X)] = r(S,µ), µ = {µi : i ∈ S}, (2)

where X denotes the outcome vector. Moreover, r is monotone: for any S ∈ S and vectors µ,µ′

with µi ≤ µ′
i for all i ∈ S, we have r(S,µ) ≤ r(S,µ′). Additionally, we assume r(S,0) = 0.

We note that this assumption is verified by various choices of reward functions such as the additive
function (Combes et al., 2015; Kveton et al., 2015) and k-MAX function (Wang et al., 2023).

Regret minimization For a policy π, its expected cumulative reward over horizon T is
Eπ

[∑
t∈[T ] Rt

]
. Let π∗ := argmaxπ Eπ

[∑
t∈[T ] Rt

]
be the optimal policy. Then the regret

of π is defined as:

Reg(π, T ) := Eπ∗

∑
t∈[T ]

Rt

− Eπ

∑
t∈[T ]

Rt

 , (3)

where we want to design π minimizing this.

3 CHARACTERIZATION OF OPTIMALITY

We first study the structure of the optimal policy for CRB. Our key finding is that although the optimal
policy is complex in general, a constant policy, which constantly plays the same super arm, can often
serve as an effective and even optimal strategy under mild assumptions. We begin with a formal
definition of optimal constant policy, which is the best among all possible constant policies.
Definition 1 (Optimal constant policy). For any super arm S ∈ S , let πS denote the constant policy
that selects S at every round, i.e., πS(t) = S, for each t ∈ [T ]. The optimal constant policy is
π∗
const := πS∗

const , where S∗
const = argmaxS∈S EπS [

∑
t∈[T ] Rt].

We note that π∗
const is optimal in non-combinatorial rising settings (Heidari et al., 2016), which are

special instances of CRB such that S = {{1}, {2}, ..., {K}}. However, we found that in general,
π∗

const is not (exactly) optimal:
Theorem 1. Under Assumption 1 & 2, there exists an instance of CRB in which π∗

const is not optimal.

The proof is provided in Appendix C.1. As shown in the proof, the optimal policy may begin with
a combination of early peakers and late bloomers (as introduced in Figure 1), before eventually
selecting a pure combination of late bloomers to maximize long-term rewards. This implies the
optimal policy can be more complex than constant policies due to the partially shared enhancement.

As such, π∗
const is not exactly optimal in CRB. However, it can still serve as a good approximation

under mild assumptions. In particular, if the reward function satisfies additive-bounded reward
assumption, which encompasses important reward functions such as additive and k-MAX rewards,
π∗

const achieves a cumulative reward close to that of the overall optimal policy.
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Theorem 2. Assume that the reward function r is bounded above and below by an additive function
for each super arm S ∈ S and any µ ∈ [0, 1]|S|:

BL

∑
i∈S

µi ≤ r(S,µ) ≤ BU

∑
i∈S

µi, (4)

where BL and BU are non-negative constants.

Then, under Assumptions 1 and 2, the cumulative reward ratio of the optimal constant policy π∗
const to

the optimal policy π∗ is bounded as

Eπ∗

[∑
t∈[T ] Rt

]
Eπ∗

const

[∑
t∈[T ] Rt

] ≤ BU

BL
. (5)

We can interpret the ratio BU

BL
as a degree of how far the reward function r deviates from the additivity.

Then, Theorem 2 implies that the optimal constant policy can be optimal when the reward function is
effectively additive. Indeed, when the reward function is additive, i.e., BU = BL, the exact optimality
of optimal constant policy π∗

const is guaranteed:
Corollary 1. Given an additive reward r, π∗

const is exactly optimal.

The proof of Theorem 2 is provided in Appendix C.2.

4 PROPOSED METHOD: CRUCB

We propose the Combinatorial Rising UCB (CRUCB) algorithm, presented in Algorithm 1. At
each round, CRUCB proceeds in two stages: (i) it estimates the potential of each base arm using
Future-UCB index based on the recent average outcome, the estimated rate of improvement and
an exploration bonus, and then (ii) it calls Solver to select the best super arm after solving a
combinatorial optimization problem over the estimated indices.

Algorithm 1 Combinatorial Rising UCB (CRUCB)

Input Ni,0 ← 0 for all i ∈ [K], Sliding window parameter ε.
Initialize Play an arbitrary super arm including base arm i twice for each i ∈ [K].
for t ∈ (2K + 1, . . . , T ) do

Calculate Future-UCB µ́i(t) for each base arm, where µ́i(t) is defined in equation 6.
St ← Solver(µ́1(t), µ́2(t), · · · , µ́K(t)).
Play St and observe reward Rt.
Update Ft and Ni,t.

end for

Estimation At each time t, for each base arm i, the Future-UCB index µ́i(t) is estimated as follows
to predict the potential of base arm i:

µ́i(t) :=
1

hi

Ni,t−1∑
l=Ni,t−1−hi+1

Xi(l)︸ ︷︷ ︸
(i) recent average

+
1

hi

Ni,t−1∑
l=Ni,t−1−hi+1

(t−l)Xi(l)−Xi(l−hi)

hi︸ ︷︷ ︸
(ii) predicted upper bound of improvement

+ σ (t−Ni,t−1+hi−1)
√

10 log t3

h3
i︸ ︷︷ ︸

(iii) exploration bonus

, (6)

where σ is the standard deviation and hi is the size of the sliding window governing a bias-variance
trade-off between employing few recent observations (less biased), compared to many past observa-
tions (less variance). Specifically, we define the window size adaptively as hi = ϵNi,t−1, making it
grow proportionally with the number of pulls. This design is crucial for balancing initial agility with
long-term statistical stability. The hyperparameter ϵ tunes this bias-variance trade-off: a smaller ϵ
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uses a shorter, more recent history, resulting in a less biased but higher-variance estimate that is more
agile in detecting changes. Conversely, a larger ϵ averages over a longer history, providing a more
stable, lower-variance estimate that is slower to adapt to the rising reward dynamics.

The index µ́i(t) consists of three parts:

(i) recent average: It is the mean of most recent hi outcomes from playing base arm i, and
indicates the expected immediate outcome of playing base arm i.

(ii) predicted upper bound of improvement : Xi(l)−Xi(l−hi)
hi

is the estimated slope by finite

difference method. Then, by linear extrapolation, (t− l)Xi(l)−Xi(l−hi)
hi

is an estimate of
improvement in the average outcome when playing i for (t−Ni,t−1) times. By the concavity
Assumption 1, the expectation of this term is always optimistic compared to the true value.

(iii) exploration bonus: It accounts for uncertainty and encourages exploration of arms that have
not been sufficiently often. The exploration bonus used here is intentionally larger than typical
bonuses in UCB-based algorithms for stationary bandit settings (Auer et al., 2002), because
CRUCB predicts future rewards in a rising setting, where uncertainty is inherently greater.

Solver After estimating the potential of each base arm, CRUCB employs Solver, which solves a
combinatorial optimization problem. Solver takes the estimated Future-UCB indices of the base
arms µ́ = [µ́1(t), · · · µ́K(t)] as input and selects the super arm with the highest expected reward, i.e.,
Solver(µ́) = argmaxS r(S, µ́). This use of a problem-specific optimization oracle is a standard
convention in the combinatorial bandit literature (Chen et al. (2013)).The Solver is an interchangeable
component, and its implementation depends on the specific combinatorial structure of the task. For
example, in the online shortest path problem, Solver can be instantiated as Dijkstra’s algorithm
(Dijkstra, 1959).

5 REGRET ANALYSIS

5.1 REGRET UPPER BOUND OF CRUCB

We establish an upper bound on the regret of CRUCB and analyze how it adapts to different levels
of problem difficulty. To characterize the difficulty of a CRB instance, we introduce a cumulative
increment Υ(M, q) :=

∑
l∈[M−1] maxi∈[K]{γi(l)q} (Metelli et al., 2022). Intuitively, Υ(M, q)

quantifies the difficulty of a CRB instance by measuring the overall outcome growth in expected
outcomes. Using Υ(M, q), we establish a regret upper bound for CRUCB as follows:
Theorem 3. Assume that the reward function satisfies Lipschitz assumption:

|r(S,µ)−r(S,µ′)|≤B
∑
i∈S

|µi−µ′
i| , (7)

where B is a Lipschitz constant. Let πε be CRUCB with hi = εNi,t. Under Assumptions 1&2, for
T > 0, q ∈ [0, 1], and ε ∈ (0, 1

2 ), we have the following regret upper bound:

Reg(πε, T )≤
(
2+

Lπ2

3

)
K+

BKT q

1−2ε
Υ

(
(1−2ε)LT

K
, q

)
︸ ︷︷ ︸

(i)

+
3K

ε

(
(2BσT )

2
3 (6 log 4T )

1
3

)
︸ ︷︷ ︸

(ii)

, (8)

where L := maxS∈S |S| is the maximum size of a super arm.

Term (i) captures the regret caused by the inherent difficulty of the CRB problem, which is related
to the rising nature of expected outcomes and the size of a super arm. First, when outcomes
of base arms evolve continuously, i.e., Υ is large, identifying the optimal super arm becomes
significantly more difficult, since early observations may not reflect the long-term value of each
base arm, making it harder to distinguish the optimal super arm without extensive exploration.
Second, when the maximum super arm size L is large, the complexity of accurately estimating
the combined reward increases, making it harder to confidently identify the optimal super arm.
These challenges are quantified by term (i) via the cumulative increment Υ and L, which scales as

5
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O(KT qΥ(LT
K , q)). Term (ii) captures the regret due to randomness in observed outcomes and scales

as O(KT 2/3(log T )1/3).

It is important to note that q is not a hyperparameter of the algorithm but a purely analytical tool used
in our proof. The algorithm’s implementation is completely independent of q. Its sole purpose in
our analysis is to provide a single, unified regret bound that holds across a wide spectrum of reward-
growth patterns by summarizing the cumulative effect of rising rewards. Thus, our theorem guarantees
CRUCB’s performance uniformly, while the algorithm itself operates without any knowledge of q.
The proof of Theorem 3 is provided in Appendix C.3.

The dominant term in the regret bound depends on the difficulty of the instance. When Υ is large,
corresponding to more difficult instances, term (i) becomes dominant, potentially leading to linear
regret O(T ). To characterize the effect of problem difficulty on the regret bound, we present the
following corollary, which refines the analysis by assuming an explicit upper bound on the slope γi.
Corollary 2. For a non-increasing function f , assume γi(n) ≤ f(n) for each i ∈ [K] and n ≥ 1.
For T ≥ 0, q ∈ [0, 1], and ε ∈ (0, 1/2), the regret of CRUCB πε is bounded as follows:

Reg(πε, T )=O

(
max

(
KT

2
3 (log T )

1
3 ,KT q

∫ (1−2ε)LT
K

1

f(n)qdn

))
. (9)

In particular, we instantiate the regret upper bound with a set of f with various learning difficulties:

If f(n) = exp(−n), Reg(πε, T ) = O(T
2
3 logKT

1
3 ) . (10)

If f(n) = (n+ 1)−c and c ≤ 1, Reg(πε, T ) = O(T ) . (11)

If f(n) = (n+ 1)−c and c > 1, Reg(πε, T ) = O
(
max

(
T

2
3 logKT

1
3 , T

1
c log LT

K

))
. (12)

To make the role of problem difficulty more explicit, Corollary 2 reformulates the regret bound in
terms of f(n). This allows the cumulative increment to be explicitly bounded in terms of f(n),
enabling an analytical characterization of the regret.

0 50 100
n

0.0

0.5

1.0

i(n
)

f(n) = exp( n)
f(n) = (n + 1) 1.2

f(n) = (n + 1)0

Figure 2: Growth of outcomes.
µi(n) induced by γi(n)=Cf(n),
with C as a normalizing constant.

The regret bounds given in Corollary 2 reflect how the difficulty
of the CRB instance varies with the choice of f(n), as illus-
trated in Figure 2. When f(n) = exp(−n), outcomes saturated
rapidly, making it feasible to disregard the rising nature and re-
sulting in sub-linear regret. In contrast, when f(n) = (n+1)−c

with c ≤ 1, outcomes change gradually, necessitating sustained
exploration, and consequently resulting in linear regret. An in-
teresting intermediate regime appears when f(n) = (n+ 1)−c

with c > 1, where the regret upper bound explicitly depends on
the problem difficulty (parameter c), highlighting adaptivity of
CRUCB. This adaptivity will become clearer through the regret
lower bound analysis in next section with Figure 3.

5.2 REGRET LOWER BOUND OF CRB

In this section, we establish regret lower bounds for CRB. Our results highlight two key findings.
First, without any additional assumptions, the regret lower bound is Ω(T ), reflecting the intrinsic
difficulty of CRB. Second, given restricted outcome growth, the regret lower bound can be sub-linear.
To analyze the regret across a class of CRB instances, we make the dependence on the instance ν
explicit and write the regret as Regν(π, T ) in this section.

We begin with a general class of CRB without any structural assumptions on the slope γi.
Theorem 4. (Regret lower bound over a general class) Fix sufficiently large time T . Let I be the set
of all available CRB instances. Then, any policy π suffers regret:

min
π

max
ν∈I

Regν(π, T ) = Ω(LT ) , (13)

where L is the maximum size of super arms.

6
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Theorem 4 establishes that, without any structural assumptions, no algorithm can achieve sub-linear
regret. However, as seen in the regret upper bound analysis of CRUCB (Corollary 2), not all instances
necessarily incur linear regret. This discrepancy motivates a finer analysis: by considering a more
fine-grained instance class, we can distinguish between instances that are inherently difficult and
those that allow efficient learning, which the regret lower bound becomes sub-linear. The proof of
Theorem 4 is provided in Appendix C.4.
Theorem 5. (Regret lower bound over a fine-grained class) Fix sufficiently large T . For an arbitrary
constant 1 < c < 2, define a fine-grained set of CRB instances Ac as follows:

Ac :=
{
ν : γi(n)≤(n+1)−c, i∈ [K], n∈ [T−1]

}
. (14)

Then, for any policy π incurs regret:

min
π

max
ν∈Ac

Regν(π, T ) = Ω
(
max

{
L
√
T ,LT 2−c

})
, (15)

where L := maxS∈S |S| is the maximum size of a super arm.

Theorem 5 characterizes how the regret lower bound varies with a parameter c. As also reflected in
the upper bound, c serves as a structural separator between easy and difficult instances: a larger c
leads to slower outcome growth and a smaller regret lower bound, while smaller c result in faster
growth and higher regret lower bound. The proof of Theorem 5 is provided in Appendix C.5.

0 1 3/2
c

0

1/2

2/3

1

Or
de

r o
f r

eg
re

t b
ou

nd

Upper bound (Cor. 2)
Lower bound (Thm. 4&5)

Figure 3: Regret bound gap. The
regret lower bound of CRB and
the regret upper bound of CRUCB
when f(n)=(n+1)−c. For c ≤ 1,
both the upper and lower bounds
are equal to 1. Specifically, for
1<c<1.5, the lower bound (2−c)
and the upper bound

(
1
c

)
are of sim-

ilar order, indicating that the regret
bounds closely match.

As a final remark for Section 5, our CRUCB achieves a regret
upper bound that closely matches the regret lower bound of the
CRB (see Figure 3). In particular, without requiring any prior
knowledge about the difficulty of the problem instance (e.g.,
the outcome growth parameter c), CRUCB effectively adapts
to varying problem difficulties, ensuring robustness of CRUCB
across diverse scenarios. To the best of our knowledge, this
represents the first explicit and rigorous comparison between
regret upper and lower bounds in the rising bandit literature,
highlighting a key theoretical contribution of our work.

6 EXPERIMENTS

We evaluate the performance of CRUCB against existing state-
of-the-art algorithms for rising and non-stationary bandits on
the online shortest path planning, in both synthetic environ-
ments (Section 6.1) and realistic deep reinforcement learning
applications (Section 6.2). Unlike prior works that mainly fo-
cus on simplified rising bandit settings, our evaluation further
considers realistic deep RL scenarios, underscoring the practical relevance and robustness of CRUCB.
Additional results on diverse combinatorial tasks, including maximum weighted matching, minimum
spanning tree, and the k-MAX problem are provided in Appendix F.

Baselines We consider the following baseline algorithms:

• R-ed-UCB (Metelli et al., 2022) is a non-combinatorial algorithm for rising bandits, combining
a sliding window with UCB-based estimation designed for rising rewards.

• SW-UCB (Garivier & Moulines, 2011) and SW-TS (Trovo et al., 2020) are non-stationary
non-combinatorial bandit algorithms that use a sliding-window approach with UCB and Thomp-
son Sampling, respectively.

• SW-CUCB (Chen et al., 2021) and SW-CTS are non-stationary combinatorial bandit algo-
rithms that use a sliding-window approach with UCB and Thompson Sampling, respectively.

Detailed pseudocode and descriptions of the baselines are provided in Appendix D. For CRUCB,
we set the window size parameter ϵ = 0.125 in our main experiments. We found this to be a robust
choice, and a detailed sensitivity analysis on the impact of ϵ is provided in Appendix F.4.
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(d) Outcome functions
Figure 4: Online shortest path planning task. (a, c) Graphs used to evaluate CRUCB and baselines.
(b, d) Corresponding outcome functions for each task.
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(b) Path-complex
Figure 5: Cumulative regret in synthetic environments. Regret curves for (a) Path-easy and (b)
Path-complex. Lines show average; shaded areas indicate 99% confidence intervals over 5 runs.

6.1 SYNTHETIC ENVIRONMENTS

We conduct experiments on the online shortest path task using the graph structures shown in Figures 4a
and c, each containing two types of edges: early peakers and late bloomers, as illustrated in Figures 4b
and d, respectively. In these experiments, we assume the additive reward setting in which the reward
of a super arm is defined as the sum of the outcomes of constituent base arms. In this setting,
Corollary 1 implies that the optimal policy is a constant policy repeatedly selecting a fixed path (super
arm), which in our experiments corresponds to a path composed solely of late bloomers.

As shown in Figure 5a, CRUCB demonstrates lower regret compared to all baselines in the Path-easy
task. R-ed-UCB underperforms despite the simplicity of the graph structure, due to the partially
shared enhancement described earlier in Figure 1. In the more complex Path-complex task, CRUCB
continues to outperform all baselines, with the gap between CRUCB and R-ed-UCB becomes
significantly larger, as shown in Figure 5b.

This is because the effects of the partially shared enhancement are amplified as the overlap of
edges (base arms) among paths (super arms) increases. Interestingly, across both environments,
non-combinatorial and non-stationary algorithms (SW-UCB, SW-TS) consistently outperform their
combinatorial counterparts (SW-CUCB, SW-CTS), with the gap becoming more pronounced in the
complex task. This occurs because the increased number of paths promotes broader exploration, al-
lowing non-combinatorial algorithms sufficient time to explore late bloomers, whereas combinatorial
algorithms tend to focus exploitation on early peakers, thereby restricting the opportunities for late
bloomers to enhance their full reward potential.

6.2 DEEP REINFORCEMENT LEARNING

We conduct experiments on the online shortest path problem using hierarchical reinforcement learn-
ing in AntMaze environments (Yoon et al., 2024), as illustrated in Figure 7. It divides tasks into
high-level and low-level policies. The high-level policy makes abstract decisions, such as the path
from start to goal, while the low-level policy executes these decisions by controlling the specific
movements of the robot. In our setup, the high-level policy plays a role similar to the CRB frame-
work by selecting paths as super arms, where each edge corresponds to a base arm. As training
progresses, the improvements in the low-level policy lead to the rising outcomes for the high-level
policy. We consider two tasks: AntMaze-easy and AntMaze-complex (Figures 7a and b). In
AntMaze-easy, the policy can choose among three paths: an impossible path using edge (e1), a
shortcut path (e2, e3, e7) that is short but contains a bottleneck edge e3 requiring more episodes to
train, and a detour path (e2, e4, e5, e6, e7) composed solely of wide edges but requiring more steps.
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(c) AntMaze-complex

Figure 6: Cumulative regret in deep reinforcement learning environments. (a) Observed outcomes
for each edge with respect to the number of pulls. Regret curves for (b) AntMaze-easy and (c)
AntMaze-complex. Lines show average; shaded areas indicate 99% confidence intervals over 5 runs.

The key challenge in this task is to recognize the rising outcome of the bottleneck edge and efficiently
exploit the shortcut path despite its initial difficulty. In AntMaze-complex, the environment has a
complex graph structure with extensive paths from start to goal. The large number of paths increases
combinatorial complexity, making exploration and identification of the optimal path challenging.
Each task aims at a distinct challenge: AntMaze-easy focuses on capturing the rising reward na-
ture, whereas AntMaze-complex emphasizes robustness against growing combinatorial complexity.
Detailed descriptions of the environments and reward structures are provided in Appendix E.2.

𝑒𝑒1

𝑒𝑒7 𝑒𝑒6
𝑒𝑒5𝑒𝑒3

𝑒𝑒2 𝑒𝑒4

(a) AntMaze-easy

(b) AntMaze-complex

Figure 7: Deep RL environ-
ments. An ant robot navigates
the shortest path from start to
goal via intermediate nodes, en-
countering three types of edges
in (a): impossible edge (e1),
bottleneck edge (e3), and wide
edge (e2, e4, e5, e6, e7). (b) Fo-
cus on impossible edges and
wide edges in a complex map.

As depicted in Figure 6a, the outcomes exhibit non-concave behav-
ior due to an extended zero-reward period before the first success;
however, the outcome growth appears roughly concave once the re-
wards increase. Despite this violation of the concavity assumption
(Assumption 1), Figures 6b and c show that CRUCB outperforms
the baselines, highlighting its robustness in settings where theo-
retical assumptions are not strictly satisfied. In AntMaze-easy,
CRUCB and R-ed-UCB outperform other baselines, as shown in
Figure 6b. Given the simplicity of the environment, which includes
only three paths, most algorithms successfully identify the detour
path. However, non-stationary bandit algorithms tend to exploit
the detour path once found and limit further exploration. In con-
trast, rising bandit algorithms continue to explore the bottleneck
path, eventually identifying the optimal path and resulting in lower
cumulative regret.

As depicted in Figure 8, existing algorithms fail to capture both
the combinatorial structure and the rising nature simultaneously.
Figure 8a shows thick traces around blocked walls, indicating that
the agent repeatedly attempts the same impossible edges. This
behavior stems from the agent’s evaluation, where it perceives
a single impossible edge as more optimistic path than a detour
path composed of multiple low-reward edges. Conversely, R-
ed-UCB performs uniform exploration as illustrated in Figure
8b. This broad search is an unavoidable consequence of initially
treating all 178 possible paths as independent super arms. Even
after a sufficient amount of time, its inability to leverage partially
shared enhancements leads to incorrect estimations, causing the
agent to continue exploring various paths instead of converging on
the optimal path. In contrast, CRUCB, as depicted in Figure 8c,
integrates both perspectives: it avoids repeated trials on impossible paths, efficiently exploits shared
improvements, and quickly concentrates on the optimal path. These observations confirm that the
limitations of existing approaches highlighted in Section 1 arise in practice and demonstrate that
CRUCB successfully overcomes them.
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7 CONCLUSION
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Figure 8: Heatmap of visit
frequencies in AntMaze-
complex. We visualize the
visit frequencies of SW-CUCB,
R-ed-UCB, and CRUCB at time
steps 500 and 3000 to highlight
their respective exploration
patterns. Visualizations of
other baselines are provided in
Appendix G.

In this work, we introduced the Combinatorial Rising Bandit
(CRB) framework, modeling combinatorial online learning scenar-
ios wherein selecting a super arm enhances the future rewards of its
constituent base arms. By highlighting the novel challenges from
the partially shared enhancement in Figure 1, we established that
CRB fundamentally differs from classical bandit formulations.To
address this challenge, we developed Combinatorial Rising UCB
(CRUCB), a provably efficient algorithm. Our extensive exper-
iments across synthetic and deep RL environments demonstrate
that CRUCB robustly handles the combinatorial rising structure
where prior methods fail. At the same time, our theoretical analysis
establishes tight regret bounds, showing that the algorithm is nearly
optimal from an analytical standpoint. Taken together, these results
highlight that CRUCB offers both tangible benefits in practice and
solid guarantees in theory. While our analysis relies on simplifying
assumptions, such as a fixed set of base arms and a static combi-
natorial structure, these are often reasonable in domains where the
action space is pre-defined. However, in certain applications, such
as robotic systems that involve skill discovery, the set of feasible
actions may evolve over time. Extending CRB to handle such
dynamic structures is a promising direction for future research.
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Yiliu Wang, Wei Chen, and Milan Vojnović. Combinatorial bandits for maximum value reward
function under max value-index feedback. arXiv preprint arXiv:2305.16074, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yu Xia, Fang Kong, Tong Yu, Liya Guo, Ryan A Rossi, Sungchul Kim, and Shuai Li. Which llm to
play? convergence-aware online model selection with time-increasing bandits. In Proceedings of
the ACM on Web Conference 2024, pp. 4059–4070, 2024.

Lily Xu, Bryan Wilder, Elias Boutros Khalil, and Milind Tambe. Reinforcement learning with combi-
natorial actions for coupled restless bandits. In The Thirteenth International Conference on Learn-
ing Representations, 2025. URL https://openreview.net/forum?id=DhH3LbA6F6.

Youngsik Yoon, Gangbok Lee, Sungsoo Ahn, and Jungseul Ok. Breadth-first exploration on adaptive
grid for reinforcement learning. In Forty-first International Conference on Machine Learning,
2024.

Chuanyang Zheng, Zhengying Liu, Enze Xie, Zhenguo Li, and Yu Li. Progressive-hint prompting
improves reasoning in large language models. arXiv preprint arXiv:2304.09797, 2023.

Zheqing Zhu and Benjamin Van Roy. Scalable neural contextual bandit for recommender sys-
tems. In Proceedings of the 32nd ACM International Conference on Information and Knowledge
Management, pp. 3636–3646, 2023.

12

https://openreview.net/forum?id=DhH3LbA6F6


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

This material provides proof of theorems, details of environments and baselines, and additional
experimental results:

• Appendix A: Motivating applications of CRB.
• Appendix B: Comparison with existing rising bandit studies.
• Appendix C: Proofs of Theorem 1, 2, 3, 4, and 5.
• Appendix D: Detailed description and pseudocode of the baselines in Section 6.
• Appendix E: Detailed description of the environments in Section 6.
• Appendix F: Additional experiments on other combinatorial tasks.
• Appendix G: Further analysis of exploration on the deep RL environment.
• Appendix H: The use of Large Language Models.

A REAL-WORLD APPLICATIONS OF THE CRB FRAMEWORK

The CRB framework, which addresses a regret minimization problem, naturally arises in real-
world scenarios where complex actions are composed of reusable sub-actions that improve through
repetition. We can consider following applications:

Network Routing optimizes performance metrics such as latency or throughput by selecting
network paths (super arms) composed of individual links (base arms). Frequent utilization of specific
links enables routing protocols to adapt and improve via better congestion estimation and traffic-
pattern learning. Thus, network routing naturally aligns with regret minimization as it balances
exploiting known effective routes and exploring potentially better alternatives.

Crowdsourcing aims to find optimal task assignments by combining annotators (base arms) with
datasets, which can be framed as an online combinatorial regret minimization problem (Chen et al.,
2016). Annotators’ skill levels improve over repeated tasks, increasing their annotation accuracy. CRB
effectively addresses regret minimization here by dynamically reallocating tasks among annotators to
leverage their rising skills, thereby optimizing overall annotation quality and cost-effectiveness.

LLM-based Planning decomposes complex tasks into simpler subtasks (base arms), akin to the
Chain-of-Thought (CoT) approach (Wei et al., 2022). Iterative prompting, where previous outputs
refine future ones (Zheng et al., 2023), enhances model performance over time (rising reward). By
applying CRB to decompose tasks into subtasks, we expect improved performance by exploiting the
rising reward structure in these iterative reasoning tasks.

B COMPARISON WITH EXISTING RISING BANDIT STUDIES

The rising bandit problem has been widely studied in non-combinatorial settings (Fiandri et al.,
2024a;b; Heidari et al., 2016; Metelli et al., 2022; Mussi et al., 2024; Patil et al., 2022; Xia et al.,
2024; Amichay & Mansour, 2025), where each base arm evolves independently over pulls. In this
work, we consider a combinatorial extension of the rising bandit problem, where each action is a set
of base arms. This generalization introduces new challenges that fundamentally differ from previous
work.

In previous work (Heidari et al., 2016), a constant policy is optimal in the rising setting. However
in Section 3, we demonstrate that in the combinatorial setting, constant policies are generally not
optimal. Furthermore, (Metelli et al., 2022) focus primarily on establishing worst-case regret lower
bounds, showing that regret is linear (Ω(T )), highlighting the inherent difficulty of the problem. In
contrast, we show that under a more fine-grained instance class where reward growth is bounded, the
regret lower bound can be sublinear. Moreover, we illustrate that this lower bound is tight, nearly
matching it with the regret upper bound of our proposed algorithm, CRUCB.

A recent study (Genalti et al., 2024) investigates rising bandits with structured dependencies among
arms, introducing a graph-triggered mechanism in which pulling an arm increases the rewards of
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its neighboring arms. While conceptually related to our work, their approach assumes uniform
enhancement across neighbors, without modeling the nuanced structure of overlapping actions. In
contrast, our CRB framework models partially shared enhancement, preserving the combinatorial
structure. This distinction makes CRB a more general and unified framework for capturing rising
reward dynamics in combinatorial settings.
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C PROOF OF THEOREMS

C.1 PROOF OF THEOREM 1

It suffices to show that there exists a CRB instance such that the constant policy is not the optimal
policy. We consider k-MAX problem, where reward function is given as follows:

r(S,µ) := max
i∈S

(µi) . (16)

Note that equation 16 satisfies all assumptions. Consider µ such that:

µ1(n) =

{
10
T n n < T

10

1 n ≥ T
10

, (17)

µ2(n) =

{
0.1 n = 1

0.9 n > 1
, (18)

µ3(n) = 0.5 . (19)

Let K = 3, S = {(1, 2), (1, 3), (2, 3)}, T ≫ 100. For simplicity, when a base arm is pulled for
n-th times, then the outcome is µi(n) without considering randomness. In this problem instance, the
optimal constant policy is selecting the super arm (1, 2) continuously. For the best constant policy, it
receives 0.1 for t = 1, and 10t

T for 1 < t ≤ 9T
10 and 1 for t > 9T

10 . However, if (2, 3) is firstly selected
once and (1, 2) for the remaining time, it receives 0.3 more rewards than the best constant policy.
This is because selecting (2, 3) initially yields an immediate gain of 0.4 from first selecting, but later
results in a loss of 0.1 due to not playing optimal super arm (1, 2). Consequently, the total reward is
higher than that of the best constant policy, which suffices to complete proof.

C.2 PROOF OF THEOREM 2

For proof, we first consider a specific case: additive reward.
Lemma 1. Given an additive reward r(S,µ) =

∑
i∈S µi, π∗

const is exactly optimal.

Set up. Since we consider additive reward function, the cumulative reward is invariant with respect
to permutations of the order of selecting super arms, which means that a policy can be represented as
the vector of number of pulling each super arm, that is, a policy π can be represented as follows:

π 7→
(
Tπ
1 , T

π
2 , · · · , Tπ

|S|

)
, (20)

where Tπ
S denotes the number of pulling a super arm S until time T by the policy π, which satisfies∑

S∈S Tπ
S = T . Let Nπ

i,T denote the number of selecting a base arm i until time T by π. Then, Nπ
i,T

can be represented as follows:

Nπ
i,T =

∑
S∈S

Tπ
S 1 {i ∈ S} , (21)

where 1 denotes the indicator function. Let π∗ be the optimal policy given µ and T . We show that if
π∗ pulls at least two different super arms, then a constant policy can be constructed so that generates
larger than or equal to the expected cumulative reward as the one produced by π∗, which suffices to
conclude.

Assume that π∗ selects m distinct super arms, denoted by super arms as S1, S2, . . . , Sm. Define a
subset of base arms Bc and Bj for each j ∈ [m] as follows:

Bc := {i ∈ [K] : i ∈ Sj , ∀j ∈ [m]} , (22)
Bj := Sj \Bc . (23)

Bc represents the subset of the common base arms included in every selected super arm by the
optimal policy π∗ and Bj represents the subset of base arms included in the super arm Sj except for
Bc.
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Claim 1.
∑

i∈Bj
µi(N

π∗

i,T ) is equal for all j ∈ [m].

Proof. To establish Claim 1, we consider two arbitrary distinct super arms S1 and S2, with-
out loss of generality. We observe

∑
i∈B1\B2

µi(N
π∗

i,T ) ≥
∑

i∈B2\B1
µi(N

π∗

i,T ). If not, that is,∑
i∈B1\B2

µi(N
π∗

i,T ) <
∑

i∈B2\B1
µi(N

π∗

i,T ), we can construct new policy π1 as follows:

Tπ1

S =


Tπ∗

S1
− 1 S = S1

Tπ∗

S2
+ 1 S = S2

Tπ∗

S otherwise.
(24)

Then, Nπ1

i,T is given by:

Nπ1

i,T =


Nπ∗

i,T − 1 i ∈ B1 \B2

Nπ∗

i,T + 1 i ∈ B2 \B1

Nπ∗

i,T otherwise .

(25)

The difference between the expected cumulative reward of π∗ and π1 is given by:

∑
i∈[K]

 ∑
n∈[Nπ∗

i,T ]

µi(n)−
∑

n∈[N
π1
i,T ]

µi(n)

 (26)

=
∑

i∈B1\B2

µi(N
π∗

i,T )−
∑

i∈B2\B1

µi(N
π∗

i,T + 1) (27)

< 0 , (28)

which indicates that the cumulative reward of π1 is larger than that of π∗. However, it is
contradicting with the assumption that π∗ is optimal and thus we have

∑
i∈B1\B2

µi(N
π∗

i,T ) ≥∑
i∈B2\B1

µi(N
π∗

i,T ). By applying the same logic, we can also derive that
∑

i∈B1\B2
µi(N

π∗

i,T ) ≤∑
i∈B2\B1

µi(N
π∗

i,T ). Combing these results, we have
∑

i∈B1\B2
µi(N

π∗

i,T ) =
∑

i∈B2\B1
µi(N

π∗

i,T ).
By adding

∑
i∈B1∩B2

µi(N
π∗

i,T ), we can derive that
∑

i∈B1
µi(N

π∗

i,T ) =
∑

i∈B2
µi(N

π∗

i,T ). Since we
can apply the same logic to any arbitrary super arm pair, we conclude the claim.

Claim 2.
∑

i∈Bj\Bj′
µi(N

π∗

i,T − Tπ∗

S1
+ 1) =

∑
i∈Bj\Bj′

µi(N
π∗

i,T ) for any j, j′ ∈ [m] .

Proof. Similar to Claim 1, we consider S1 and S2, without loss of generality. Given
that

∑
i∈B1\B2

µi(N
π∗

i,T ) ≤
∑

i∈B2\B1
µi(N

π∗

i,T ) from preceding analysis, we observe∑
i∈B1\B2

µi(N
π∗

i,T − Tπ∗

S1
+ 1) ≥

∑
i∈B2\B1

µi(N
π∗

i,T ). Otherwise, that is,
∑

i∈B1\B2
µi(N

π∗

i,T −
Tπ∗

S1
+ 1) <

∑
i∈B2\B1

µi(N
π∗

i,T ), we can construct new policy π2 such that:

Tπ2

S =


0 S = S1

Tπ∗

S1
+ Tπ∗

S2
S = S2

Tπ∗

S otherwise.
(29)

Then, Nπ2

i,T is given by:

Nπ2

i,T =


Nπ∗

i,T − Tπ∗

S1
i ∈ B1 \B2

Nπ∗

i,T + Tπ∗

S1
i ∈ B2 \B1

Nπ∗

i,T otherwise .

(30)
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The difference between the cumulative rewards of π∗ and π2 is given by:

∑
i∈[K]

 ∑
n∈[Nπ∗

i,T ]

µi(n)−
∑

n∈[N
π2
i,T ]

µi(n)

 (31)

=
∑

i∈B1\B2

Nπ∗
i,T∑

n=Nπ∗
i,T−Tπ∗

S1
+1

µi(n)−
∑

i∈B2\B1

Nπ∗
i,T+Tπ∗

S1∑
n=Nπ∗

i,T+1

µi(n) (32)

=
∑

l∈[Tπ∗
S1

]

 ∑
i∈B1\B2

µi(N
π∗

i,T − Tπ∗

S1
+ l)−

∑
i∈B2\B1

µi(N
π∗

i,T + l)

 (33)

≤

 ∑
i∈B1\B2

µi(N
π∗

i,T − Tπ∗

S1
+ 1)−

∑
i∈B2\B1

µi(N
π∗

i,T )

 (34)

+ (Tπ∗

S1
− 1)

 ∑
i∈B1\B2

µi(N
π∗

i,T )−
∑

i∈B2\B1

µi(N
π∗

i,T )


<0 , (35)

where equation 34 holds since µi(N
π∗

i,T − Tπ∗

S1
+ l) ≤ µi(N

π∗

i,T ) and µi(N
π∗

i,T + l) > µi(N
π∗

i,T ) for
any l ∈ [2, Tπ∗

S1
] for any base arm i by the definition of combinatorial rising bandit. It indicates

that the cumulative reward of π2 is larger than that of π∗, which is a contradiction with assumption
that π∗ is optimal. Therefore, we have

∑
i∈B1\B2

µi(N
π∗

i,T − Tπ∗

S1
+ 1) ≥

∑
i∈B2\B1

µi(N
π∗

i,T ).
Combining this observation with the previous observation, we have

∑
i∈B1\B2

µi(N
π∗

i,T −Tπ∗

S1
+1) =∑

i∈B1\B2
µi(N

π∗

i,T ). This result implies that rewards of all base arms in S1 are flat after pulling for
Nπ∗

i,T − Tπ∗

S1
times. Since we can apply the same logic to any arbitrary super arm pair, we conclude

the claim.

Induction. Lastly, we construct constant policy inductively. As before, we choose two arbitrary
two super arm and consider S1 and S2 without loss of generality. we revisit π2. By Claim 1 and
Claim 2 the difference between π∗ and π2 equals 0, which means that π2 is also an optimal policy.
We remark that π2 plays m− 1 distinct super arms. Applying preceding logic inductively, we can
construct the optimal policy pulls only one super arm, which completes proof for Lemma 1.

Then, we are ready to prove Theorem 2.

Proof. For the proof, we define S′
const and π′

const as follows:

S′
const := argmax

S

∑
t∈[T ]

∑
i∈S

µi(t− 1) , (36)

S∗
const := argmax

S

∑
t∈[T ]

r(S,µS(t− 1)) , (37)

π′
const(t) := S′

const ∀t ∈ [T ] , (38)
π∗

const(t) := S∗
const ∀t ∈ [T ] , (39)

where µS(t − 1) := {µi(t − 1) : i ∈ S}. Intuitively, π′
const indicates the optimal constant policy

when the reward function is additive and π∗
const indicates the optimal constant policy when the reward

function is given r(·).
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Let π∗ be optimal policy, and denote the selected super arm and expectation of base arm at time t
under π∗ as S∗

t and µ∗
t respectively. Then, we have:

Eπ∗

∑
t∈[T ]

Rt

 =
∑
t∈[T ]

r(S∗
t ,µ

∗
t−1) (40)

=
∑
t∈[T ]

(
r(S∗

t ,µ
∗
t−1)− r(S∗

t ,0) + r(S∗
t ,0)

)
(41)

≤ BU

∑
t∈[T ]

∑
i∈S∗

t

µ∗
i (t− 1) (42)

≤ BU

∑
t∈[T ]

∑
i∈S′

const

µi(t− 1) . (43)

From Lemma 1, we know that the reward under the optimal policy is bounded by the reward under a
constant arm selection, which leads to the inequality in equation 43.

Now, consider the reward of π′
const. Then, we have:

Eπ′
const

∑
t∈[T ]

Rt

 =
∑
t∈[T ]

r(S′
const,µS′

const
(t− 1)) (44)

=
∑
t∈[T ]

(
r(S′

const,µS′
const

(t− 1))− r(S′
const,0) + r(S′

const,0)
)

(45)

≥ BL

∑
t∈[T ]

∑
i∈S′

const

µi(t− 1) . (46)

From the inequalities equation 43 and equation 46, we can derive the following ratio:

Eπ∗

[∑
t∈[T ] Rt

]
Eπ∗

const

[∑
t∈[T ] Rt

] ≤ BU

∑
t∈[T ]

∑
i∈S′

const
µi(t− 1)

BL

∑
t∈[T ]

∑
i∈S′

const
µi(t− 1)

(47)

=
BU

BL
. (48)

Since S∗
const is defined to maximize the reward we have the inequality:

Eπ∗
const

∑
t∈[T ]

Rt

 > Eπ′
const

∑
t∈[T ]

Rt

 . (49)

Finally, combining all the inequalities, we conclude:

Eπ∗

[∑
t∈[T ] Rt

]
Eπ∗

const

[∑
t∈[T ] Rt

] ≤ Eπ∗

[∑
t∈[T ] Rt

]
Eπ′

const

[∑
t∈[T ] Rt

] ≤ BU

BL
. (50)
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C.3 PROOF OF THEOREM 3

Proof. We rewrite the regret as follows.

Reg(π, T ) =
∑
t∈[T ]

Eπ∗ [Rt]−
∑
t∈[T ]

Eπ [Rt] (51)

=
∑
t∈[T ]

r(Sπ∗

t ,µSπ∗
t
)−

∑
t∈[T ]

Eπ

[
r(Sπ

t ,µSπ
t
)
]

(52)

=
∑
t∈[T ]

Eπ

[
r(Sπ∗

t ,µSπ∗
t
)− r(Sπ

t ,µSπ
t
)
]
, (53)

where equation 52 holds since in semi-bandit feedback setting, the optimal policy is characterized as
a deterministic policy.

To define well-estimated event, we define µ̂i(t) and µ̃i(t) as follows:

µ̂i(t) :=
1

hi

Ni,t−1∑
l=Ni,t−1−hi+1

(
Xi(l) + (t− l)

Xi(l)−Xi(l − hi)

hi

)
(54)

µ̃i(t) :=
1

hi

Ni,t−1∑
l=Ni,t−1−hi+1

(
µi(l) + (t− l)

µi(l)− µi(l − hi)

hi

)
(55)

βi(t) := σ (t−Ni,t−1 + hi − 1)

√
10 log t3

h3
i

(56)

µ́i(t) := µ̂i(t) + βi(t) . (57)

We define well-estimated event Et as follows:

Ei,t := {|µ̂i(t)− µ̃i(t)| ≤ βi(t)} , (58)
Et := ∩i∈[K]Ei,t . (59)

We decompose the regret with well-estimated event Et as follows:

Eπ

[
r(Sπ∗

t ,µSπ∗
t
)− r(Sπ

t ,µSπ
t
)
]

(60)

=Eπ

[(
r(Sπ∗

t ,µSπ∗
t
)− r(Sπ

t ,µSπ
t
)
)
1{¬Et}

]
︸ ︷︷ ︸

(A)

+Eπ

[(
r(Sπ∗

t ,µSπ∗
t
)− r(Sπ

t ,µSπ
t
)
)
1{Et}

]
︸ ︷︷ ︸

(B)

.

(61)

Firstly, we bound term (A):

Eπ

[(
r(Sπ∗

t ,µSπ∗
t
)− r(Sπ

t ,µSπ
t
)
)
1{¬Et}

]
≤ L

∑
t∈[T ]

Eπ [1{¬Et}] (62)

= L
∑
t∈[T ]

P(¬Et) (63)

≤
∑
t∈[T ]

2LK

t2
(64)

≤ LKπ2

3
. (65)

where equation 64 holds by Lemma 2 and equation 65 holds since
∑∞

t=1
1
t2 = π2

6 .

Lemma 2. (Metelli et al., 2022) For every round K < t < T , and window size 1 ≤ hi ≤ εNi,t−1,
we have:

P(¬Et) ≤
2K

t2
. (66)
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Next, we bound term (B). Firstly, we utilize Lipschitz continuity.

r(Sπ∗

t ,µSπ∗
t
)− r(Sπ

t ,µSπ
t
) (67)

=r(Sπ∗

t ,µSπ∗
t
)− r(Sπ

t ,µSπ
t
) + r(Sπ

t , µ́Sπ
t
)−r(Sπ

t , µ́Sπ
t
) + r(Sπ∗

t , µ́Sπ∗
t
)−r(Sπ∗

t , µ́Sπ∗
t
) (68)

≤− r(Sπ
t ,µSπ

t
) + r(Sπ

t , µ́Sπ
t
)− r(Sπ

t , µ́Sπ
t
) + r(Sπ∗

t , µ́Sπ∗
t
) (69)

≤r(Sπ
t , µ́Sπ

t
)− r(Sπ

t ,µSπ
t
) (70)

≤B
∑
i∈Sπ

t

|µ́i(t)− µi(t)| (71)

≤B
∑
i∈Sπ

t

µ̃i(t)− µi(t)︸ ︷︷ ︸
(B1)

+2B
∑
i∈Sπ

t

βi(t)︸ ︷︷ ︸
(B2)

, (72)

where equation 69 holds by Assumption 2 and equation 70 holds by definition of CRUCB and
equation 71 holds by Lipschitz assumption and equation 72 holds by well-estimated event Et.
We bound the term (B1) defining ti,n as the time step where the base arm i is pulled the nth time:

∑
t∈[T ]

∑
i∈Sπ

t

µ̃i(t)− µi(t) ≤ 2K +
∑
i∈[K]

Ni,t∑
n=3

min {µ̃i(ti,n)− µi(t), 1} (73)

≤ 2K +
∑
i∈[K]

Ni,t∑
n=3

min

{
1

2
(2ti,n−2n+ hi−1)γi(n−2hi + 1), 1

}
(74)

= 2K +
∑
i∈[K]

Ni,t∑
n=3

min {Tγi((1− 2ε)n), 1} (75)

≤ 2K + T q
∑
i∈[K]

Ni,t∑
n=3

γi((1− 2ε)n)q (76)

≤ 2K +KT q

(
1

1− 2ε

)
Υ

(
(1− 2ε)

LT

K
, q

)
, (77)

where equation 74 follows from the Lemma A.3, in (Metelli et al., 2022), equation 76 follows from
the fact min(s, 1) ≤ min(s, 1)q ≤ sq for q ∈ [0, 1], and equation 77 follows from the Lemma C.2.
in (Metelli et al., 2022). Now, we bound the term (B2).∑
t∈[T ]

∑
i∈Sπ

t

2Bmin {βi(t), 1} =
∑
t∈[T ]

∑
i∈St

2Bmin

{
σ (t−Ni,t−1 + hi − 1)

√
2 log 4t3

h3
, 1

}
(78)

≤
∑
t∈[T ]

∑
i∈Sπ

t

2Bmin

{
Tσ

√
6 log 4T

(ε⌊Ni,t⌋)3
, 1

}
(79)

=
∑
i∈[K]

∑
n∈[Ni,t]

2Bmin

{
Tσ

√
6 log 4T

(ε⌊n⌋)3
, 1

}
. (80)

Choose n′ = (2BσT )
2
3 (6 log(4T ))

1
3

ε . Then for n > n′

2BσT

√
6 log 4T

(ε⌊n⌋)3
≤ 1 . (81)
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Thus, we have:∑
i∈[K]

Ni,t∑
n=1

2Bmin

{
σT

√
6 log 4T

(ε⌊n⌋)3
, 1

}
≤
∑
i∈[K]

(
n′ +

T∑
n=n′+1

2BσT

√
6 log 4T

(ε⌊n⌋)3

)
(82)

≤ K

(
n′ + 2BσT

√
6 log 4T

ε3

∫ ∞

n′
x− 3

2 dx

)
(83)

≤ 3K

ϵ

(
(2BσT )

2
3 (6 log 4T )

1
3

)
, (84)

where equation 83 comes from the fact that the sum of monotone decreasing function can be upper
bounded. Combining the results from equation 65, equation 77, and equation 84, we conclude the
proof.

C.4 PROOF OF THEOREM 4

Proof. Firstly, we consider non-combinatorial case, which means that every super arm has only one
base arm. We construct two different problems and show that no policy can achieve sub-linear regret.

Lemma 3. Let I ′ be the set of all available two-armed rising bandit problem. For sufficiently large
time T , any policy π suffers regret:

min
π

max
µ∈I′

Regµ(π, T ) ≥
T

16
, (85)

Proof. For simplicity, we consider the deterministic problem, that is, σ = 0. Let Rewµ(π, T ) be
the cumulative reward of policy π up to time T with respect to the problem instance µ. Define two
problem µA and µB as follows:

µA
1 (n) = µB

1 (n) =
1

2

µA
2 (n) =

{
3n
2T if n ≤ 2T

3

1 otherwise

µB
2 (n) =

{
3n
2T if n ≤ T

3
1
2 otherwise

.

T
3

2T
3

T

1
2

1

n

µA
1

µA
2

T
3

2T
3

T

1
2

1

n

µB
1

µB
2

In this setting, we define S as follows:
S = {S1, S2} . (86)

The main idea of the proof is that for any arbitrary policy π′, the policy receives the same rewards for
both µA and µB at least until T

3 , indicating that:

RewµA

(
π′,

T

3

)
= RewµB

(
π′,

T

3

)
. (87)
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Fix some arbitrary policy π and define M as follows:

M := EµA,π[NS1,
T
3
] = EµB ,π[NS1,

T
3
] (88)

We compute the cumulative regret of policy π in µA and µB .

Problem (A) For µA, the optimal policy π∗
A selects S2 for every time. The corresponding cumula-

tive reward is given by:

RewµA(π∗
A, T ) =

⌈ 2T
3 ⌉∑

n=1

3n

2T
+

T

3
. (89)

For the given policy π, the cumulative reward is upper bounded as follows:

RewµA(π, T ) =
1

2
EµA,π[NS1,T ] +

T−EµA,π [NS1,T ]∑
n=1

µA
2 (n) (90)

≤ M

2
+

T−M∑
n=1

µA
2 (n) (91)

=
M

2
+

⌈ 2T
3 ⌉∑

n=1

3n

2T
+

(
T

3
−M

)
(92)

=

⌈ 2T
3 ⌉∑

n=1

3n

2T
+

T

3
− M

2
, (93)

where equation 91 holds since the cumulative reward is maximized as EµA,π[NS1,T ] minimized and
it is guaranteed that EµA,π[NS1,T ] ≥ EµA,π[NS1,

T
3
] = M .

The cumulative regret is lower bounded by:

RegµA(π, T ) ≥
⌈ 2T

3 ⌉∑
n=1

3n

2T
+

T

3
−

⌈ 2T
3 ⌉∑

n=1

3n

2T
+

T

3
− M

2

 (94)

=
M

2
. (95)

Problem (B) For µB , the optimal policy π∗
B is selecting S1, for every time. The corresponding

cumulative reward is given by:

RewµB (π∗
B , T ) =

T

2
. (96)

For the given policy π, the cumulative reward is upper bounded as follows:

RewµB (π, T ) =
1

2
EµB ,π[NS1,T ] +

T−EµB,π [NS1,T ]∑
n=1

µB
2 (n) (97)

≤
( 2T3 +M)

2
+

⌈T
3 −M⌉∑
n=1

µB
2 (n) (98)

=

⌈T
3 −M⌉∑
n=1

3n

2T
+

T

3
+

M

2
(99)

=
3

4T

(
T

3
−M

)(
T

3
−M + 1

)
+

T

3
+

M

2
(100)

=
3M2

4T
− 3M

4T
+

5T

12
+

1

4
, (101)
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where equation 91 holds since the cumulative reward is maximized as EµB ,π[NS1,T ] maximized and
it is guaranteed that EµB ,π[NS1,T ] ≤ 2T

3 + EµB ,π[NS1,
T
3
] = 2T

3 +M .

The cumulative regret is lower bounded by:

RegµB (π, T ) ≥ T

2
−
(
3M2

4T
− 3M

4T
+

5T

12
+

1

4

)
(102)

= −3M2

4T
+

3M

4T
+

T

12
− 1

4
(103)

≥ −3M2

4T
+

3M

4T
+

T

16
, (104)

where equation 104 holds since we assume sufficiently large T .

From previous results, the worst-case regret can be lower bounded as follows:

inf
π

sup
µ

Regµ(π, T ) ≥ inf
π

max
{

RegµA(π, T ),RegµB (π, T )
}

(105)

= inf
M∈[0,T3 ]

max

{
M

2
,−3M2

4T
+

3M

4T
+

T

16

}
(106)

≥ inf
M∈[0,T3 ]

−12M2 + (8T + 12)M + T 2

16T
(107)

≥ T

16
, (108)

where equation 107 holds since max(a, b) ≥ a+b
2 and equation 108 holds since it is easily verified

that equation 107 is minimized when M = 0, which completes the proof.

Now, we expand Lemma 3 to general combinatorial setting. Let L be an arbitrary constant. We define
two problem µA,L and µB,L construct super arm set SL as follows:

µA,L
i (n) = µB,L

i (n) =
1

2
i ∈ [1, L] (109)

µA,L
i (n) =

{
3n
2T if n ≤ 2T

3

1 otherwise
i ∈ [L+ 1, 2L] (110)

µB,L
i (n) =

{
3n
2T if n ≤ T

3
1
2 otherwise

i ∈ [L+ 1, 2L] (111)

SL := {(a1, a2, . . . , aL) : ai ∈ {i, L+ i} i ∈ [L]} . (112)

Since it can be interpreted as solving L independent problems, we have:

inf
π

sup
µ

Regµ(π, T ) ≥
LT

16
. (113)

C.5 PROOF OF THEOREM 5

Proof. We apply similar logic given in the Appendix C.4 to show that for the worst-case lower bound
is Ω

(
max

{
L
√
T , LT 2−c

})
. Firstly, we consider non-combinatorial case.

Lemma 4. Let A′
c be the subset of two-armed rising bandit problem with constraints given in

equation 14 . For sufficiently large time T , any policy π suffers regret:

min
π

max
µ∈A′

c

Regµ(π, T ) ≥ LT 2−c , (114)
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Proof. For convention, we define µ(m) and F (m) as follows:

µ(m) :=

m∑
n=1

(n+ 1)−c (115)

F (m) :=

m∑
n=1

µ(n) . (116)

Let µA and µB be two rising bandit instances. which are defined as:

µA
1 (n) = µB

2 (n) = µ(P )− ε (117)

µA
2 (n) = µ(n) ; (118)

µB
2 (n) =

{
µ(n) if n ≤ P

µ(P ) otherwise
, (119)

where P = (2 − c)
1

c−1T and 0 < ε < µ(P ) will be specified later. In this setting, we define S as
follows:

S = {S1, S2} , (120)
where S1 = {1} and S2 = {2}. Similar to Theorem 4, we define:

M := EµA,π[NS1,P ] = EµB ,π[NS1,P ] (121)

We note that µA and µB belongs to A′
c. We firstly assume that the optimal super arm for µA is S2

and the optimal super arm for µB is S1. We will show that it is true after ε is specified.

P T

µ(P )− ε

1

n

µA
1

µA
2

P T

µ(P )− ε

1

n

µB
1

µB
2

The main idea of the proof is that for any arbitrary policy π′, the agent receives the same rewards for
both µA and µB at least until P , indicating that:

RewµA(π′, P ) = RewµB (π′, P ) . (122)

Problem (A) For µA, the optimal policy π∗
A is selecting S2, for every time. The corresponding

cumulative reward is given by:
RewµA(π∗

A, T ) = F (T ) . (123)
For the given policy π, the cumulative reward is upper bounded as follows:

RewµA(π, T ) = (µ(P )− ε)EµA,π[NS1,T ] +

T−EµA,π [NS1,T ]∑
n=1

µA
2 (n) (124)

≤ (µ(P )− ε)M + F (T −M), (125)
where equation 125 holds since the cumulative reward is maximized as EµA,π[NS1,T ] minimized
and it is guaranteed that EµA,π[NS1,T ] ≥ EµA,π[NS1,P ].

With The cumulative regret is lower bounded by:
RegµA(π, T ) ≥ F (T )− (µ(P )− ε)M − F (T −M) . (126)
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Problem (B) For µB , the optimal policy π∗
B is selecting S1, for every time. The corresponding

cumulative reward is given by:
RewµB (π∗

B , T ) = T (µ(P )− ε) . (127)
For the given policy π, the cumulative reward is upper bounded as follows:

RewµB (π, T ) = (µ(P )− ε)EµB ,π[NS1,T ] +

T−EµB,π [NS1,T ]∑
n=1

µB
2 (n) (128)

≤ (µ(P )− ε) (T − P +M) +

P−M∑
n=1

µB
2 (n) (129)

= (µ(P )− ε) (T − P +M) + F (P −M) , (130)
where equation 129 holds since the cumulative reward is maximized as EµB ,π[NS1,T ] maximized
and it is guaranteed that EµB ,π[NS1,T ] ≤ T − P + EµB ,π[NS1,P ] = T − P +M .

The cumulative regret is lower bounded by:
RegµB (π, T ) ≥ (µ(P )− ε)T − (µ(P )− ε) (T − P +M)− F (P −M) (131)

= (µ(P )− ε) (P −M)− F (P −M) . (132)

From previous results, the worst-case regret can be lower bounded as follows:
inf
π

sup
µ

Regµ(π, T ) (133)

≥ inf
π

max
{

RegµA(π, T ),RegµB (π, T )
}

(134)

= inf
M∈[0,P ]

max {F (T )−(µ(P )−ε)M−F (T−M), (µ(P )−ε) (P−M)−F (P−M)} (135)

≥ inf
M∈[0,P ]

F (T )− F (T −M)− F (P −M) + (µ(P )− ε) (P − 2M)

2
, (136)

where equation 136 holds since max(a, b) ≥ a+b
2 . We observe that equation 136 is unimodal over

P , which means that it increases to a maximum value and then decreases. More precisely, let
A(n) := F (T )− F (T − n)− F (P − n) + (µ(P )− ε)(P − 2n). Then, we have:
A(n+ 1)−A(n) = F (T − n)− F (T − n+ 1) + F (P − n)− F (P − n+ 1)− 2(µ(P )− ε)

(137)
= µ(T − n+ 1) + µ(P − n+ 1)− 2(µ(P )− ε), (138)

which means that A(n) is concave, which means that A(n) is unimodal. It implies that:

inf
M∈[0,P ]

(
F (T )− F (T −M)− F (P −M) + (µ(P )− ε)(P − 2M)

2

)
(139)

≥min

{
(µ(P )− ε)P − F (P )

2
,
F (T )− F (T − P )− (µ(P )− ε)P

2

}
. (140)

equation 140 consists of two terms: the first term is obtained by setting M = 0 and the second term
is obtained by setting M = P .

To calculate two terms, we use the property of monotone functions.

Proposition 1. If a and b are integers with a < b and f is some real-valued function monotone on
[a, b], we have:

min{f(a), f(b)} ≤
b∑

n=a

f(n)−
∫ b

a

f(t) dt ≤ max{f(a), f(b)} . (141)

Proposition 1 indicates that we can bound µ(n) and F (n) as follows:

µ(n) ≤
∫ n

x=1

(x+ 1)−cdx+ 2−c (142)

=
1

c− 1

(
21−c − (n+ 1)1−c

)
+ 2−c . (143)
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For simplicity, we denote (2− c)
1

c−1 by a so that P = aT . Then, we have:
(µ(P )− ε)P − F (P ) (144)

=P

P∑
n=1

(n+ 1)−c − Pε−
P∑

n=1

(P + 1− n)(n+ 1)−c (145)

=

P∑
n=1

(n− 1)(n+ 1)−c − Pε (146)

≥P 2−c − Pε (147)

=(aT )2−c − (aT )ε . (148)
Similarly, we have:

F (T )− F (T − P )− (µ(P )− ε)P (149)

=

T∑
n=1

(T + 1− n)(n+ 1)−c −
T−P∑
n=1

(T − P + 1− n)(n+ 1)−c − (µ(P )− ε)P (150)

=

T∑
n=T−P+1

(T + 1− n)(n+ 1)−c +

T−P∑
n=1

P (n+ 1)−c − (µ(P )− ε)P (151)

≥P (T + 1)−c + (T − P )P (T + P − 1)−c − (µ(P )− ε)P (152)

=aT (T + 1)−c + (T − aT )aT (T + aT − 1)−c −
(
21−c

c− 1
− (aT + 1)1−c

c− 1
+ 2−c − ε

)
aT

(153)

=c2T
2−c + o(T 2−c) + εaT , (154)

where Now, we define ε so that equation 148 equals equation 154:
2aTε = (c2 + a2−c)T 2−c + o(T 2−c) (155)

Then, by substituting ε to equation 148 and equation 154, we have:
Regµ(π, T ) ≥ Ω

(
T 2−c

)
. (156)

Now, we expand Lemma 4 to general combinatorial setting. Let L be an arbitrary constant. As before,
we define two problem µA,L and µB,L construct super arm set SL as follows:

µA,L
i (n) = µB,L

i (n) = µ(P )− ε, i ∈ [L], (157)

µA,L
i (n) = µ(n), i ∈ [L+ 1, 2L], (158)

µB,L
i (n) =

{
µ(n) if n ≤ P

µ(P ) otherwise
i ∈ [L+ 1, 2L] , (159)

SL := {(a1, a2, . . . , aL) : ai ∈ {i, L+ i} i ∈ [L]} . (160)
Due to same reason in Appendix C.4 we have:

inf
π

sup
µ∈Ac

Regµ(π, T ) ≥ Ω(LT 2−c) . (161)

Now, we note that any stationary bandit problem is included in Ac, since γi(n) = 0 for all base
arm i ∈ [K]. Previous literature has proven that for stationary bandit problem, the worst-case regret
lower bound is Ω(

√
KT ) (Lattimore & Szepesvári, 2020). Similarly, we can extend this setting to

combinatorial setting:

inf
π

sup
µ∈Ac

Regµ(π, T ) ≥ Ω(L
√
T ) . (162)

Combining these results, we conclude:

min
π

max
µ∈Ac

Regµ(π, T ) ≥ Ω
(
max

{
L
√
T ,LT 2−c

})
. (163)
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D PSEUDOCODE AND DESCRIPTION OF BASELINES

In Section 6, we have considered 5 baseline algorithms to evaluate CRUCB’s performance. Each al-
gorithm is carefully chosen to highlight different aspects of the bandit problem, such as rising rewards
and combinatorial settings. In this section, we provide the pseudocode and detailed descriptions for
each baseline algorithm.

D.1 R-ED-UCB (METELLI ET AL., 2022)

R-ed-UCB is a rising bandit algorithm that employs a sliding-window approach combined with
UCB-based optimistic reward estimation algorithm, specifically designed for rising rewards. While
it shares the core estimation method (µ́i(t)) with CRUCB, R-ed-UCB applies this method directly
to super arms and selects the maximum one, rather than applying it to base arms and solving the
combinatorial problem as in CRUCB. R-ed-UCB would be less effective in complex environments
where the number of super arms significantly exceeds the number of base arms, as it does not benefit
from the shared exploration of common base arms, leading to reduced exploration efficiency.

Algorithm 2 Rested UCB (R-ed-UCB)

Input Ni,0 ← 0 for all i ∈ [|S|], Sliding window parameter ε.
Initialize Play each super arm Si two times for each i ∈ [|S|].
for t ∈ (1, . . . , T ) do

Calculate Future-UCB µ́i(t) for each super arm.
St ← Solver(µ́1(t), µ́2(t), · · · , µ́|S|(t)).
Play St and observe reward Rt.
Update Ft and Ni,t.

end for

D.2 SW-UCB (GARIVIER & MOULINES, 2011)

SW-UCB is a non-stationary bandit algorithm that uses a sliding-window approach with UCB
algorithm. It estimates the reward of each super arm and confidence bounds using the following
expressions:

µ̂SW-UCBi (t) :=
1

h

Ni,t−1∑
l=Ni,t−1−h+1

Xi(l) (164)

βSW-UCBi (t) :=

√
3 log t

2Ni,t−1
(165)

µ́SW-UCBi (t) := µ̂SW-UCBi (t) + βSW-UCBi (t) . (166)

While the SW-UCB algorithm is similar to R-ed-UCB, it differs slightly in the values it estimates.
Additionally, SW-UCB uses a fixed sliding window size, in contrast to the dynamic sliding window
size employed by R-ed-UCB. Similar to R-ed-UCB, SW-UCB would be less effective in complex
environments.

Algorithm 3 Sliding Window-UCB (SW-UCB)

Input Ni,0 ← 0 for all i ∈ [|S|], Sliding window size h.
Initialize Play each super arm Si two times for each i ∈ [|S|].
for t ∈ (1, . . . , T ) do

For each super arm Si, set µ́SW-UCBi (t) = µ̂SW-UCBi (t) + βSW-UCBi (t).
St ← argmax(µ́SW-UCB1 (t), µ́SW-UCB2 (t), · · · , µ́SW-UCB|S| (t)).
Play St and observe reward XSt(t).
Update µ̂SW-UCBi (t) and Ni,t.

end for
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D.3 SW-CUCB (CHEN ET AL., 2021)

SW-CUCB is a non-stationary combinatorial bandit algorithm that uses a sliding-window approach
with UCB algorithm for combinatorial setting. It estimates the values µ̂SW-CUCBi (t) and βSW-CUCBi (t),
which are nearly identical to those used in SW-UCB but specifically adapted for base arms. SW-CUCB
then utilizes Solver to address the combinatorial problem.

Algorithm 4 Sliding Window-Combinatorial UCB (SW-CUCB)

Input Ni,0 ← 0 for all i ∈ [K], Sliding window size h.
Initialize Play arbitrary super arm including base arm i two times for each i ∈ [K].
for t ∈ (1, . . . , T ) do

For each base arm i, set µ́SW-CUCBi (t) = µ̂SW-CUCBi (t) + βSW-CUCBi (t).
St ← Solver(µ́SW-CUCB1 (t), µ́SW-CUCB2 (t), · · · , µ́SW-CUCBK (t)).
Play St and observe reward XSt

(t).
Update µ̂SW-CUCBi (t) and Ni,t.

end for

D.4 SW-TS (TROVO ET AL., 2020)

SW-TS is a non-stationary bandit algorithm that uses a sliding-window approach with Thompson
Sampling. Since outcomes are bounded, the algorithm updates the parameters by adds XSt(t) to
α and 1 − XSt

(t) to β based on the observed output XSt
(t). SW-TS also utilizes a fixed sliding

window size similar to SW-UCB. Similar to R-ed-UCB and SW-UCB, SW-TS also operates directly
on super arms, it may suffer from reduced exploration efficiency in complex environments.

Algorithm 5 Sliding Window Thompson Sampling (SW-TS)

Input Sliding window size h.
Initialize Play each super arm Si two times for each i ∈ [|S|].
for t ∈ (1, . . . , T ) do

For each super arm Si, set θi(t) ∼ Beta(αi + 1, βi + 1).
St ← argmax(θ1(t), θ2(t), · · · , θK(t)).
Play St and observe reward XSt(t).
Update αi and βi.

end for

D.5 SW-CTS

SW-CTS is a non-stationary combinatorial bandit algorithm that uses a sliding-window approach
with Thompson Sampling for combinatorial setting. While it operates similarly to SW-TS, the key
difference is that SW-CTS performs estimation at base arms then solves the combinatorial problem
using Solver.

Algorithm 6 Sliding Window-Combinatorial Thompson Sampling (SW-CTS)

Input Sliding window size h.
Initialize Play arbitrary super arm including base arm i two times for each i ∈ [K].
for t ∈ (1, . . . , T ) do

For each base arm i, set θi(t) ∼ Beta(αi + 1, βi + 1).
St ← Solver(θ1(t), θ2(t), · · · , θK(t)).
Play St and observe reward XSt(t).
Update αi and βi.

end for
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E EXPERIMENTAL DETAILS

Table 1: Overview of task specifications. We summarizes the details of each task, including the
number of base arms K, the number of super arms |S|, and the maximal size of a super arm L.

Environment Experiment difficulty K |S| L

Synthetic environments
(Section 6.1 & Appendix F)

Online shortest path
toy 3 2 2

easy 12 6 4

complex 60 252 10

Maximum weighted matching easy 8 12 2

complex 28 840 4

Minimum spanning tree easy 6 8 3

complex 15 1296 5

k-MAX - 5 10 2

Deep reinforcement learning
(Section 6.2)

AntMaze-easy - 7 3 5

AntMaze-complex - 48 178 15

Table 2: Hyperparameters for AntMaze Tasks.

AntMaze-easy AntMaze-complex

number of graph nodes 6 16
fail condition 100 100

maximum length of episode 500 1000
T 2000 3000

hidden layer (256, 256) (256, 256)
actor lr 0.0001 0.0001
critic lr 0.001 0.001

τ 0.005 0.005
γ 0.99 0.99

batch size 1024 1024

In Section 6, we conduct experiments in two distinct environments: synthetic environments and deep
reinforcement learning settings. This section provides a detailed description of each environment,
including their design and hyperparameters. The specifications for each experiment are summarized
in Table 1.

E.1 SYNTHETIC ENVIRONMENTS

In the synthetic environments, we have the flexibility to design reward functions by choosing arbitrary
values. Here, we set c = 1.2, which lies in the range between 1 and 1.5. This choice is motivated by
the theoretical reasoning discussed in Section 5. To be specific, γ(n) =

([
n

1000 + 1
]
· 1000 + 1

)−1.2

for n < 20000 and 0 for n ≥ 20000 with σ = 0.01. In the simpler environments, we use
γ(n) =

([
n

250 + 1
]
· 250 + 1

)−1.2
for n < 5000 and 0 for n ≥ 5000. As depicted in Figure 3,

the regret upper bound for these environments is O(T
1

1.2 ), and the regret lower bound is O(T 0.8).
Therefore, while the regret observed in Figure 5b appears nearly linear, which aligns with the
theoretical bounds, it still demonstrates superior performance compared to other baseline algorithms.

E.2 DEEP REINFORCEMENT LEARNING

In the deep reinforcement learning environments, we conducted experiments using the AntMaze
environment. AntMaze is a hierarchical goal conditioned reinforcement learning task where an ant
robot navigates to a predefined goal hierarchically. The ant robot in this environment has four legs,
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each with two joints, resulting in an action space that controls a total of eight joints. The reward
structure for the low-level agent is simple: the agent receives a reward of 0 when it reaches the goal
or comes within a certain distance of it, and a reward of -1 otherwise. Our experiments are carried out
in the scenario depicted in Figure 5, which shows the map and corresponding graph structure used.
To ensure consistent and repeated exploration over the fixed graph, we utilized a code based on the
algorithm described in (Yoon et al., 2024) without the adaptive grid refinement. The hyperparameters
used in these experiments are summarized in Table 2.

In each experiment, the algorithm generates a path that the ant robot follows, receiving feedback
based on success or failure. For combinatorial methods, the agent does not persist with a single edge
until the episode ends; if the agent fails to reach the goal within 100 steps, the attempt is considered a
failure. In this case, the reward is set to 0, and the agent fails to attempt the next edge, which known
as the cascading bandit setting. If the agent successfully reaches the goal, the reward is proportional
to the efficiency, calculated as the number of steps taken divided by 100. For non-combinatorial
methods, the reward for success is determined by the number of steps taken divided by the maximum
length of the episode. We note that while the reward function of AntMaze is non-concave, as depicted
in Figure 6a, and cascading bandit setting, we confirmed that RCUCB performs well, as illustrated in
Figure 6.
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F ADDITIONAL EXPERIMENTS

In this section, we present additional experiments to evaluate the performance of CRUCB in a broader
set of environments. Specifically, we test CRUCB on three representative combinatorial optimization
problems, k-MAX (Section F.1), maximum weighted matching (Section F.2), and minimum spanning
tree (Section F.3). These experiments demonstrate that CRUCB maintains strong performance across
diverse scenarios, further validating its robustness and adaptability.

F.1 k-MAX TASK

We investigate the k-MAX setting, where the reward is determined by the maximum value among
outcomes of the selected base arm. As shown in Theorem 1, the optimal policy for the k-MAX may
not always involve consistently pulling a single super arm. However, since the k-MAX satisfies the
additive-bounded reward assumption in Theorem 2 with BL=

1√
k
, BU =1, we use an approximate

optimal constant policy (consistntly pulling (1, 5)) to calculate regret.
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Figure 9: k-MAX task. (a) Reward functions (c = 1.2) for base arms 1–5, where K = 5 and k = 2.
(b) Regret curves for K-MAX. Lines show average; shaded areas indicate 99% confidence intervals
over 5 runs.

The results, as shown in Figure 9b, demonstrate that CRUCB consistently outperforms other algo-
rithms. R-ed-UCB shows sub-optimal regret due to the partially shared enhancement. Notably,
we observe that among non-stationary algorithms, combinatorial algorithms (SW-CUCB, SW-CTS)
perform worse than non-combinatorial algorithms (SW-UCB, SW-TS). Non-combinatorial algorithms
select the early peaker (5) frequently while evenly exploring other edges. On the other hand, combi-
natorial algorithms select early peakers (4, 5), limiting exploration of late bloomers and preventing
them from fully rising their potential.
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F.2 MAXIMUM WEIGHTED MATCHING

We conduct experiments on maximum weighted matching task, a widely studied classic combinatorial
optimization problem. In this task, we are given two disjoint sets of nodes, U and V , and the goal
is to find a matching where each node ui ∈ U is paired with a unique node vj ∈ V , ensuring no
overlapping connections. The objective is to maximize the total reward by selecting the best set of
edges between these nodes.
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Figure 10: Maximum weighted matching task. (a, c) Graphs used to evaluate CRUCB and baselines.
(b, d) Corresponding outcome functions for each task.
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Figure 11: Cumulative regret in maximum weighted matching task. Regret curves for (a)
Matching-easy and (b) Matching-complex. Lines show average; shaded areas indicate 99% confidence
intervals over 5 runs.

We use the same outcome function as in the online shortest path problem, shown in Figure 10b and d.
The graph structures are depicted in Figure 10a and c. The regret results, shown in Figure 11, confirm
that CRUCB outperforms the baseline algorithms in this task.

The task is particularly relevant in settings like job matching, where each job can be matched to
a worker, and the reward might increase over time as workers gain experience. This makes the
problem a perfect fit for combinatorial bandit settings, where the rewards of certain matches (such as
experienced workers with higher skill levels) rise as more interactions occur, highlighting the rising
aspect of the task.
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F.3 MINIMUM SPANNING TREE

We conduct experiments on minimum spanning tree task, a fundamental problem in combinatorial
optimization, where the objective is to find a subset of edges that connect all nodes in a graph with
the minimum total edge weight, ensuring no cycles. However, in our setting, we treat the weight of
each edge as a 1−outcome, meaning we aim to maximize the total outcome, which is equivalent to
minimizing the total edge weight.
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Figure 12: Minimum spanning tree task. (a, c) Graphs used to evaluate CRUCB and baselines. (b,
d) Corresponding outcome functions for each task.
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Figure 13: Cumulative regret in minimum spanning tree task. Regret curves for (a) Spanning-easy
and (b) Spanning-complex. Lines show average; shaded areas indicate 99% confidence intervals over
5 runs.

Similarly, we evaluate minimum spanning tree task with the same outcome function from Figure 12b
and d, applied to the graph structures in Figure 12a and c. The regret results, presented in Figure 13,
indicate that CRUCB consistently performs better than the baselines.

This formulation is particularly relevant in practical applications such as network routing, where the
objective is to establish efficient communication across a distributed system. Over time, as certain
paths are used more frequently, the network can adapt and optimize its behavior: caches warm up,
congestion reduces through load balancing, and routing protocols fine-tune their decisions. As a
result, the effective cost of using the same edge decreases, which translates into a rising reward for
that edge.
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F.4 SENSITIVITY TO THE WINDOW SIZE PARAMETER

To evaluate the robustness of CRUCB to the choice of the window size hyperparameter ϵ, we
conducted a sensitivity analysis in the Path-easy environment (described in Section 6.1). We compared
the cumulative regret at different episode counts for ϵ values of 0.05, 0.125, 0.25, and 0.4.

Table 3: Cumulative regret at different episodes for various ϵ values in the Path-easy task.

Regret ϵ = 0.05 ϵ = 0.125 ϵ = 0.25 ϵ = 0.4

100K 8019.34 8020.53 8020.53 8019.64
200K 13715.91 13717.10 13717.10 13716.21
300K 19060.71 19061.90 19061.90 19061.01

The results, summarized in the table below, show that the performance of CRUCB is remarkably
stable across this wide range of values, indicating that our algorithm is not overly sensitive to this
hyperparameter choice in practice.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

G HEATMAPS IN ANTMAZE-COMPLEX
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Figure 14: Heatmap illustrating visit frequencies in AntMaze-complex. We visualize the visit
frequencies for the optimal policy, CRUCB, and baseline algorithms. The heatmap includes three
rows representing visit frequencies until episode numbers 100, 500, and 3000.

In Figure 14, we provide a more comprehensive view by illustrating the exploration patterns across
all baseline algorithms at various stages. The optimal policy, which follows the oracle constant policy,
only explores the optimal path from the start to the goal, resulting in highly focused exploration along
this path, as depicted in Figure 14a. In Figure 14b, CRUCB exhibits exploration patterns most similar
to the optimal policy compared to other baselines, demonstrating its efficiency in targeting the goal
effectively. Among the baselines, SW-CTS notably aligns most closely with the optimal policy in the
exploration patterns and is the only algorithm to show a significant difference in regret compared to
the others, as seen in Figure 6c. In comparison, algorithms not specifically designed for combinatorial
settings, such as R-ed-UCB, SW-UCB, and SW-TS, suffer from less efficient exploration. Their
exploration resembles a breadth-first search pattern, as they must explore a broader range of super
arms despite having a given goal.

In Figure 15 and Figure 16, we further analyze the exploration behaviors of each algorithm by
visualizing their try frequencies at both the path and edge levels. The optimal policy concentrates its
tries exclusively along the shortest path, resulting in highly localized activity in both visualizations.
CRUCB exhibits exploration patterns that closely resemble those of the optimal policy, maintaining
focused and structured exploration throughout. Notably, AntMaze-complex includes 178 possible
paths, which makes exhaustive exploration highly time-consuming. As illustrated in Figure 15,
non-combinatorial algorithms struggle with this complexity: by episode 100, some paths remain
untried, and even by episode 3000, their exploration remains broadly distributed and unguided,
indicating inefficient use of the exploration budget.
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Figure 15: Heatmap illustrating the path-level try frequencies in AntMaze-complex. We visualize
the path-level try frequencies for the optimal policy, CRUCB, and baseline algorithms. The heatmap
includes three rows representing the path-level try frequencies until episode numbers 100, 500, and
3000.
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Figure 16: Heatmap illustrating the edge-level try frequencies in AntMaze-complex. We visualize
the edge-level try frequencies for the optimal policy, CRUCB, and baseline algorithms. The heatmap
includes three rows representing the edge-level try frequencies until episode numbers 100, 500, and
3000.
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H THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this manuscript, we utilized a large language model (LLM) as a writing assistant
to aid in polishing the text. The LLM’s role was limited to refining phrasing and grammar in author-
written drafts, suggesting alternative sentence structures to improve clarity, and helping maintain a
consistent academic tone. All technical contributions, theoretical results, experimental designs, and
final claims were conceived and developed solely by the human authors. The authors thoroughly
reviewed and edited the manuscript and take full responsibility for all content presented in this paper.
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