

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

COMBINATORIAL RISING BANDITS

Anonymous authors

Paper under double-blind review

ABSTRACT

Combinatorial online learning is a fundamental task for selecting the optimal action (or super arm) as a combination of base arms in sequential interactions with systems providing stochastic rewards. It is applicable to diverse domains such as robotics, social advertising, network routing, and recommendation systems. In many real-world scenarios, we often encounter rising rewards, where playing a base arm not only provides an instantaneous reward but also contributes to the enhancement of future rewards, *e.g.*, robots improving through practice and social influence strengthening in the history of successful recommendations. Crucially, these enhancements may propagate to multiple super arms that share the same base arms, introducing dependencies beyond the scope of existing bandit models. To address this gap, we introduce the Combinatorial Rising Bandit (CRB) framework and propose a provably efficient and empirically effective algorithm, Combinatorial Rising Upper Confidence Bound (CRUCB). We empirically demonstrate the effectiveness of CRUCB in realistic deep reinforcement learning environments and synthetic settings, while our theoretical analysis establishes tight regret bounds. Together, they underscore the practical impact and theoretical rigor of our approach.

1 INTRODUCTION

Combinatorial online learning studies how to select an optimal action (super arm) composed of multiple sub-actions (base arms). This formulation captures the structure of many practical decision-making problems, including robotics (Xu et al., 2025; Wakayama & Ahmed, 2024), social advertising (Ge et al., 2025), automatic machine learning (Huang et al., 2021), network routing (Lagos et al., 2025), and recommendation systems (Atalar & Joe-Wong, 2025; Zhu & Van Roy, 2023).

However, previous studies of combinatorial online learning have largely neglected the presence of a *rising* reward nature in practice, where pulling a base arm not only yields an immediate reward but also enhances future rewards. For example, in robotic planning, hierarchical approaches tackle complex tasks by decomposing them into low-level skills, such as grasping and lifting, which act as sub-actions, while the full sequence of these skills constitutes an action. As these low-level skills are reused across different plans, their performance improves (Jansonne et al., 2024; Mao et al., 2025), reflecting the rising reward nature. Additional real-world scenarios are presented in Appendix A.

A complementary line of work studies rising bandits, where the expected reward of an arm enhances each time the arm is pulled (Fiandri et al., 2024a; Genalti et al., 2024; Heidari et al., 2016; Metelli et al., 2022). However, these studies consider only non-combinatorial settings and, therefore, ignore the structural dependencies that arise when different super arms share base arms. Such overlap couples reward dynamics and makes the problem substantially more complex: while repeatedly pulling a single arm is optimal in the non-combinatorial setting (Heidari et al., 2016), characterizing an optimal policy in the combinatorial regime is far more intricate. A detailed comparison with existing rising bandit formulations is provided in Appendix B.

To model such scenarios, we propose the **Combinatorial Rising Bandit** (CRB) framework. In this framework, (i) the policy selects a super arm (a set of base arms), and (ii) the outcome of each base arm follows a (rested) rising nature such that the expected outcome of a base arm increases after pulling it as part of the selected super arm. We emphasize that CRB addresses a unique problem that combinatorial bandits (Chen et al., 2013) and rising bandits (Heidari et al., 2016; Metelli et al., 2022) cannot address. While individual base arms behave like rising bandits, super arms do not: shared base arms create dependencies across super arms, leading to *partially shared enhancement*. Figure 1 shows an illustrative example. As depicted in Figure 1d, our proposed algorithm, CRUCB, rapidly

Figure 1: **Toy example for online shortest path planning.** (a) Graph: two paths from s to g , an *early peaker path* ({shared edge, early peaker}) and a *late-bloomer path* ({shared edge, late bloomer}). (b) Outcome functions: a *shared edge* rises slowly; *early peaker* starts high but flattens; a *late bloomer* starts low but rises quickly, eventually surpassing the early peaker, so the late bloomer path is optimal for long horizon T . The reward is the sum of the outcomes of the base arms. (c) Cumulative regret under three algorithms: CRUCB (ours); SW-CUCB (Chen et al., 2021) (combinatorial bandits); R-ed-UCB (Metelli et al., 2022) (rested rising bandits). CRUCB becomes nearly flat, while SW-CUCB and R-ed-UCB accumulate linear regret. (d) Empirical number of pulls of each edge: CRUCB pulls entirely the late bloomer, SW-CUCB the early peaker, and R-ed-UCB splits pulls roughly evenly.

converges to selecting the late bloomer path, whereas SW-CUCB (Chen et al., 2021), a combinatorial bandit algorithm, consistently selects the early peaker path due to its inability to account for the rising nature. R-ed-UCB (Metelli et al., 2022), a rising bandit algorithm that ignores the combinatorial structure, splits pulls between both paths because it incorrectly interprets cumulative increments from repeatedly pulling the shared arm as immediate growth, causing it to hallucinate ongoing potential in the early peaker path. This partially shared enhancement distinguishes CRB from prior formulations, introducing fundamentally new challenges. Indeed, this difference also leads to a different characterization of optimality in CRB.

To address the challenges introduced by the partially shared enhancement in CRB, we propose **Combinatorial Rising UCB** (CRUCB), a provably efficient algorithm. CRUCB employs a Future-UCB index that optimistically estimates the future outcome of each base arm by combining its recent mean, slope, and uncertainty term, and then solves a combinatorial optimization problem using these estimates of future rewards to select the super arm. On the theoretical side, we derive a regret upper bound for CRUCB and a regret lower bound for CRB, and show that these bounds are close, demonstrating the near-optimal efficiency of our approach. On the empirical side, we conduct extensive experiments comparing CRUCB with a set of baselines in both synthetic environments and deep reinforcement learning tasks, training a neural agent for navigation. These results consistently highlight the superiority of CRUCB and its ability to handle challenges that existing approaches cannot. Therefore, our study positions CRUCB at the intersection of theory and practice: it not only provides provable guarantees but also exposes the limitations of prior methods in realistic environments and demonstrates how CRUCB effectively overcomes them.

Our main contributions are summarized as follows:

- We introduce the Combinatorial Rising Bandit (CRB) framework in Section 2 to formalize rising reward dynamics in combinatorial settings. Furthermore, we analyze the structure of optimal policies, highlighting that CRB differs from prior frameworks and makes the characterization of optimality both intractable and more intricate in Section 3.
- We propose Combinatorial Rising UCB (CRUCB), a provably efficient algorithm for CRB in Section 4, and provide a regret upper bound that nearly matches a corresponding regret lower bound, demonstrating its theoretical tightness in canonical settings in Section 5.
- We extensively validate CRUCB in both synthetic and deep reinforcement learning environments in Section 6. It confirms that CRUCB effectively overcomes the difficulties of the combinatorial rising structure left unsolved by prior methods, while maintaining robustness in practical settings beyond theoretical assumptions.

2 PROBLEM FORMULATION

We study the **Combinatorial Rising Bandit** (CRB) problem, where the mean outcome of each base arm increases with the number of plays. Let K be the number of base arms, $[K] := \{1, \dots, K\}$, and $\mathcal{S} \subseteq 2^{[K]}$ the set of valid super arms. At each round t , a super arm $S_t \in \mathcal{S}$ is chosen, and each $i \in S_t$

108 yields an outcome $X_i(t)$ drawn independently from a distribution $D_i(N_{i,t-1})$, where $N_{i,t-1}$ is the
 109 number of past plays of arm i up to $t-1$. We assume that $D_i(n)$ is σ^2 -subgaussian with known σ ,
 110 and define $\mu_i(n) := \mathbb{E}_{X \sim D_i(n)}[X]$, where $\mu_i(n) \in [0, 1]$ for all i, n . The rising condition requires:
 111

$$\gamma_i(n) := \mu_i(n+1) - \mu_i(n) \geq 0, \quad \forall i \in [K], n \geq 1. \quad (1)$$

113 Given a chosen super arm S_t and the outcome vector $\mathbf{X}_t = \{X_i(t) : i \in S_t\}$, the reward is
 114 $R_t := R(S_t, \mathbf{X}_t)$, where R is a fixed function. We consider a canonical setting of semi-bandit
 115 feedback at time t , i.e., π selects super arm S_t based on history $\mathcal{F}_{t-1} := \{(S_{t'}, \mathbf{X}_{t'}) : t' \in [t-1]\}$.
 116

117 For analytical tractability, we assume the concavity of μ_i as in [Heidari et al. \(2016\)](#):

118 **Assumption 1.** (Concavity of μ_i) For each $i \in [K]$ and $n \geq 1$, we have $\gamma_i(n) \geq \gamma_i(n+1)$.
 119

120 We further assume the monotonicity of the reward function, which is canonical in combinatorial
 121 bandit literature ([Chen et al., 2016](#); [Wang & Chen, 2018](#); [Wang et al., 2023](#)):

122 **Assumption 2** (Monotone reward). For each super arm $S \in \mathcal{S}$, the expected reward can be expressed
 123 as a function of the mean outcomes of its base arms. Formally, there exists a function r such that

$$\mathbb{E}[R(S, \mathbf{X})] = r(S, \boldsymbol{\mu}), \quad \boldsymbol{\mu} = \{\mu_i : i \in S\}, \quad (2)$$

124 where \mathbf{X} denotes the outcome vector. Moreover, r is monotone: for any $S \in \mathcal{S}$ and vectors $\boldsymbol{\mu}, \boldsymbol{\mu}'$ with
 125 $\mu_i \leq \mu'_i$ for all $i \in S$, we have $r(S, \boldsymbol{\mu}) \leq r(S, \boldsymbol{\mu}')$. Additionally, we assume $r(S, \mathbf{0}) = 0$.
 126

127 We note that this assumption is verified by various choices of reward functions such as the additive
 128 function ([Combes et al., 2015](#); [Kveton et al., 2015](#)) and k -MAX function ([Wang et al., 2023](#)).
 129

130 **Regret minimization** For a policy π , its expected cumulative reward over horizon T is
 131 $\mathbb{E}_\pi \left[\sum_{t \in [T]} R_t \right]$. Let $\pi^* := \arg \max_\pi \mathbb{E}_\pi \left[\sum_{t \in [T]} R_t \right]$ be the optimal policy. Then the regret
 132 of π is defined as:
 133

$$\text{Reg}(\pi, T) := \mathbb{E}_{\pi^*} \left[\sum_{t \in [T]} R_t \right] - \mathbb{E}_\pi \left[\sum_{t \in [T]} R_t \right], \quad (3)$$

134 where we want to design π minimizing this.
 135

136 3 CHARACTERIZATION OF OPTIMALITY

140 We first study the structure of the optimal policy for CRB. Our key finding is that although the optimal
 141 policy is complex in general, a constant policy, which constantly plays the same super arm, can often
 142 serve as an effective and even optimal strategy under mild assumptions. We begin with a formal
 143 definition of optimal constant policy, which is the best among all possible constant policies.

144 **Definition 1** (Optimal constant policy). For any super arm $S \in \mathcal{S}$, let π^S denote the constant policy
 145 that selects S at every round, i.e., $\pi^S(t) = S$, for each $t \in [T]$. The optimal constant policy is
 146 $\pi_{\text{const}}^* := \pi^{S_{\text{const}}^*}$, where $S_{\text{const}}^* = \arg \max_{S \in \mathcal{S}} \mathbb{E}_{\pi^S} [\sum_{t \in [T]} R_t]$.
 147

148 We note that π_{const}^* is optimal in non-combinatorial rising settings ([Heidari et al., 2016](#)), which are
 149 special instances of CRB such that $\mathcal{S} = \{\{1\}, \{2\}, \dots, \{K\}\}$. However, we found that in general,
 150 π_{const}^* is not (exactly) optimal:
 151

152 **Theorem 1.** *Under Assumption 1 & 2, there exists an instance of CRB in which π_{const}^* is not optimal.*
 153

154 The proof is provided in Appendix C.1. As shown in the proof, the optimal policy may begin with
 155 a combination of *early peakers* and *late bloomers* (as introduced in Figure 1), before eventually
 156 selecting a pure combination of late bloomers to maximize long-term rewards. This implies the
 157 optimal policy can be more complex than constant policies due to the partially shared enhancement.
 158

159 As such, π_{const}^* is not exactly optimal in CRB. However, it can still serve as a good approximation
 160 under mild assumptions. In particular, if the reward function satisfies additive-bounded reward
 161 assumption, which encompasses important reward functions such as additive and k -MAX rewards,
 162 π_{const}^* achieves a cumulative reward close to that of the overall optimal policy.
 163

162 **Theorem 2.** Assume that the reward function r is bounded above and below by an additive function
 163 for each super arm $S \in \mathcal{S}$ and any $\mu \in [0, 1]^{|S|}$:

$$165 \quad B_L \sum_{i \in S} \mu_i \leq r(S, \mu) \leq B_U \sum_{i \in S} \mu_i, \quad (4)$$

167 where B_L and B_U are non-negative constants.

168 Then, under Assumptions 1 and 2, the cumulative reward ratio of the optimal constant policy π_{const}^* to
 169 the optimal policy π^* is bounded as

$$171 \quad \frac{\mathbb{E}_{\pi^*} \left[\sum_{t \in [T]} R_t \right]}{\mathbb{E}_{\pi_{\text{const}}^*} \left[\sum_{t \in [T]} R_t \right]} \leq \frac{B_U}{B_L}. \quad (5)$$

175 We can interpret the ratio $\frac{B_U}{B_L}$ as a degree of how far the reward function r deviates from the additivity.
 176 Then, Theorem 2 implies that the optimal constant policy can be optimal when the reward function is
 177 effectively additive. Indeed, when the reward function is additive, i.e., $B_U = B_L$, the exact optimality
 178 of optimal constant policy π_{const}^* is guaranteed:

179 **Corollary 1.** Given an additive reward r , π_{const}^* is exactly optimal.

181 The proof of Theorem 2 is provided in Appendix C.2.

183 4 PROPOSED METHOD: CRUCB

186 We propose the **Combinatorial Rising UCB** (CRUCB) algorithm, presented in Algorithm 1. At
 187 each round, CRUCB proceeds in two stages: (i) it estimates the potential of each base arm using
 188 *Future-UCB* index based on the recent average outcome, the estimated rate of improvement and
 189 an exploration bonus, and then (ii) it calls *Solver* to select the best super arm after solving a
 190 combinatorial optimization problem over the estimated indices.

191 **Algorithm 1** Combinatorial Rising UCB (CRUCB)

193 **Input** $N_{i,0} \leftarrow 0$ for all $i \in [K]$, Sliding window parameter ε .
 194 **Initialize** Play an arbitrary super arm including base arm i twice for each $i \in [K]$.
 195 **for** $t \in (2K + 1, \dots, T)$ **do**
 196 Calculate Future-UCB $\hat{\mu}_i(t)$ for each base arm, where $\hat{\mu}_i(t)$ is defined in equation 6.
 197 $S_t \leftarrow \text{Solver}(\hat{\mu}_1(t), \hat{\mu}_2(t), \dots, \hat{\mu}_K(t))$.
 198 Play S_t and observe reward R_t .
 199 Update \mathcal{F}_t and $N_{i,t}$.
 200 **end for**

201 **Estimation** At each time t , for each base arm i , the Future-UCB index $\hat{\mu}_i(t)$ is estimated as follows
 202 to predict the potential of base arm i :

$$204 \quad \hat{\mu}_i(t) := \underbrace{\frac{1}{h_i} \sum_{l=N_{i,t-1}-h_i+1}^{N_{i,t-1}} X_i(l)}_{(i) \text{ recent average}} + \underbrace{\frac{1}{h_i} \sum_{l=N_{i,t-1}-h_i+1}^{N_{i,t-1}} (t-l) \frac{X_i(l) - X_i(l-h_i)}{h_i}}_{(ii) \text{ predicted upper bound of improvement}} \\ 205 \quad + \underbrace{\sigma (t - N_{i,t-1} + h_i - 1) \sqrt{\frac{10 \log t^3}{h_i^3}}}_{(iii) \text{ exploration bonus}}, \quad (6)$$

212 where σ is the standard deviation and h_i is the size of the sliding window governing a bias-variance
 213 trade-off between employing few recent observations (less biased), compared to many past observa-
 214 tions (less variance). Specifically, we define the window size adaptively as $h_i = \epsilon N_{i,t-1}$, making it
 215 grow proportionally with the number of pulls. This design is crucial for balancing initial agility with
 long-term statistical stability. The hyperparameter ϵ tunes this bias-variance trade-off: a smaller ϵ

216 uses a shorter, more recent history, resulting in a less biased but higher-variance estimate that is more
 217 agile in detecting changes. Conversely, a larger ϵ averages over a longer history, providing a more
 218 stable, lower-variance estimate that is slower to adapt to the rising reward dynamics.
 219

220 The index $\hat{\mu}_i(t)$ consists of three parts:

221 (i) *recent average*: It is the mean of most recent h_i outcomes from playing base arm i , and
 222 indicates the expected immediate outcome of playing base arm i .
 223 (ii) *predicted upper bound of improvement* : $\frac{X_i(l) - X_i(l-h_i)}{h_i}$ is the estimated slope by finite
 224 difference method. Then, by linear extrapolation, $(t-l)\frac{X_i(l) - X_i(l-h_i)}{h_i}$ is an estimate of
 225 improvement in the average outcome when playing i for $(t - N_{i,t-1})$ times. By the concavity
 226 Assumption 1, the expectation of this term is always optimistic compared to the true value.
 227 (iii) *exploration bonus*: It accounts for uncertainty and encourages exploration of arms that have
 228 not been sufficiently often. The exploration bonus used here is intentionally larger than typical
 229 bonuses in UCB-based algorithms for stationary bandit settings (Auer et al., 2002), because
 230 CRUCB predicts future rewards in a rising setting, where uncertainty is inherently greater.
 231

232 **Solver** After estimating the potential of each base arm, CRUCB employs `Solver`, which solves a
 233 combinatorial optimization problem. `Solver` takes the estimated Future-UCB indices of the base
 234 arms $\hat{\mu} = [\hat{\mu}_1(t), \dots, \hat{\mu}_K(t)]$ as input and selects the super arm with the highest expected reward, i.e.,
 235 $\text{Solver}(\hat{\mu}) = \arg \max_S r(S, \hat{\mu})$. This use of a problem-specific optimization oracle is a standard
 236 convention in the combinatorial bandit literature (Chen et al. (2013)). The `Solver` is an interchangeable
 237 component, and its implementation depends on the specific combinatorial structure of the task. For
 238 example, in the online shortest path problem, `Solver` can be instantiated as Dijkstra's algorithm
 239 (Dijkstra, 1959).
 240

241 5 REGRET ANALYSIS

242 5.1 REGRET UPPER BOUND OF CRUCB

243 We establish an upper bound on the regret of CRUCB and analyze how it adapts to different levels
 244 of problem difficulty. To characterize the difficulty of a CRB instance, we introduce a *cumulative*
 245 *increment* $\Upsilon(M, q) := \sum_{l \in [M-1]} \max_{i \in [K]} \{\gamma_i(l)^q\}$ (Metelli et al., 2022). Intuitively, $\Upsilon(M, q)$
 246 quantifies the difficulty of a CRB instance by measuring the overall outcome growth in expected
 247 outcomes. Using $\Upsilon(M, q)$, we establish a regret upper bound for CRUCB as follows:

248 **Theorem 3.** *Assume that the reward function satisfies Lipschitz assumption:*

$$249 |r(S, \mu) - r(S, \mu')| \leq B \sum_{i \in S} |\mu_i - \mu'_i|, \quad (7)$$

250 where B is a Lipschitz constant. Let π_ε be CRUCB with $h_i = \varepsilon N_{i,t}$. Under Assumptions 1&2, for
 251 $T > 0$, $q \in [0, 1]$, and $\varepsilon \in (0, \frac{1}{2})$, we have the following regret upper bound:

$$252 \text{Reg}(\pi_\varepsilon, T) \leq \underbrace{\left(2 + \frac{L\pi^2}{3}\right) K + \frac{BKT^q}{1-2\varepsilon} \Upsilon\left((1-2\varepsilon)\frac{LT}{K}, q\right)}_{(i)} + \underbrace{\frac{3K}{\varepsilon} \left((2B\sigma T)^{\frac{2}{3}} (6 \log 4T)^{\frac{1}{3}}\right)}_{(ii)}, \quad (8)$$

253 where $L := \max_{S \in \mathcal{S}} |S|$ is the maximum size of a super arm.

254 Term (i) captures the regret caused by the inherent difficulty of the CRB problem, which is related
 255 to the rising nature of expected outcomes and the size of a super arm. First, when outcomes
 256 of base arms evolve continuously, i.e., Υ is large, identifying the optimal super arm becomes
 257 significantly more difficult, since early observations may not reflect the long-term value of each
 258 base arm, making it harder to distinguish the optimal super arm without extensive exploration.
 259 Second, when the maximum super arm size L is large, the complexity of accurately estimating
 260 the combined reward increases, making it harder to confidently identify the optimal super arm.
 261 These challenges are quantified by term (i) via the cumulative increment Υ and L , which scales as

270 $O(KT^q \Upsilon(\frac{LT}{K}, q))$. Term (ii) captures the regret due to randomness in observed outcomes and scales
 271 as $O(KT^{2/3}(\log T)^{1/3})$.
 272

273 It is important to note that q is not a hyperparameter of the algorithm but a purely analytical tool used
 274 in our proof. The algorithm’s implementation is completely independent of q . Its sole purpose in
 275 our analysis is to provide a single, unified regret bound that holds across a wide spectrum of reward-
 276 growth patterns by summarizing the cumulative effect of rising rewards. Thus, our theorem guarantees
 277 CRUCB’s performance uniformly, while the algorithm itself operates without any knowledge of q .
 278 The proof of Theorem 3 is provided in Appendix C.3.

279 The dominant term in the regret bound depends on the difficulty of the instance. When Υ is large,
 280 corresponding to more difficult instances, term (i) becomes dominant, potentially leading to linear
 281 regret $O(T)$. To characterize the effect of problem difficulty on the regret bound, we present the
 282 following corollary, which refines the analysis by assuming an explicit upper bound on the slope γ_i .

283 **Corollary 2.** *For a non-increasing function f , assume $\gamma_i(n) \leq f(n)$ for each $i \in [K]$ and $n \geq 1$.
 284 For $T \geq 0$, $q \in [0, 1]$, and $\varepsilon \in (0, 1/2)$, the regret of CRUCB π_ε is bounded as follows:*

$$285 \quad 286 \quad 287 \quad \text{Reg}(\pi_\varepsilon, T) = O\left(\max\left(KT^{\frac{2}{3}}(\log T)^{\frac{1}{3}}, KT^q \int_1^{(1-2\varepsilon)\frac{LT}{K}} f(n)^q dn\right)\right). \quad (9)$$

288 In particular, we instantiate the regret upper bound with a set of f with various learning difficulties:
 289

$$290 \quad \text{If } f(n) = \exp(-n), \quad \text{Reg}(\pi_\varepsilon, T) = O(T^{\frac{2}{3}} \log KT^{\frac{1}{3}}). \quad (10)$$

$$291 \quad \text{If } f(n) = (n+1)^{-c} \text{ and } c \leq 1, \quad \text{Reg}(\pi_\varepsilon, T) = O(T). \quad (11)$$

$$293 \quad \text{If } f(n) = (n+1)^{-c} \text{ and } c > 1, \quad \text{Reg}(\pi_\varepsilon, T) = O\left(\max\left(T^{\frac{2}{3}} \log KT^{\frac{1}{3}}, T^{\frac{1}{c}} \log \frac{LT}{K}\right)\right). \quad (12)$$

295 To make the role of problem difficulty more explicit, Corollary 2 reformulates the regret bound in
 296 terms of $f(n)$. This allows the cumulative increment to be explicitly bounded in terms of $f(n)$,
 297 enabling an analytical characterization of the regret.

298 The regret bounds given in Corollary 2 reflect how the difficulty
 299 of the CRB instance varies with the choice of $f(n)$, as illus-
 300 trated in Figure 2. When $f(n) = \exp(-n)$, outcomes saturated
 301 rapidly, making it feasible to disregard the rising nature and re-
 302 sulting in sub-linear regret. In contrast, when $f(n) = (n+1)^{-c}$
 303 with $c \leq 1$, outcomes change gradually, necessitating sustained
 304 exploration, and consequently resulting in linear regret. An in-
 305 teresting intermediate regime appears when $f(n) = (n+1)^{-c}$
 306 with $c > 1$, where the regret upper bound explicitly depends on
 307 the problem difficulty (parameter c), highlighting adaptivity of
 308 CRUCB. This adaptivity will become clearer through the regret
 309 lower bound analysis in next section with Figure 3.

310 5.2 REGRET LOWER BOUND OF CRB

312 In this section, we establish regret lower bounds for CRB. Our results highlight two key findings.
 313 First, without any additional assumptions, the regret lower bound is $\Omega(T)$, reflecting the intrinsic
 314 difficulty of CRB. Second, given restricted outcome growth, the regret lower bound can be sub-linear.
 315 To analyze the regret across a class of CRB instances, we make the dependence on the instance ν
 316 explicit and write the regret as $\text{Reg}_\nu(\pi, T)$ in this section.

317 We begin with a general class of CRB without any structural assumptions on the slope γ_i .

319 **Theorem 4.** *(Regret lower bound over a general class) Fix sufficiently large time T . Let \mathcal{I} be the set
 320 of all available CRB instances. Then, any policy π suffers regret:*

$$321 \quad 322 \quad \min_{\pi} \max_{\nu \in \mathcal{I}} \text{Reg}_\nu(\pi, T) = \Omega(LT), \quad (13)$$

323 where L is the maximum size of super arms.

324 **Figure 2: Growth of outcomes.**
 325 $\mu_i(n)$ induced by $\gamma_i(n) = Cf(n)$,
 326 with C as a normalizing constant.

Theorem 4 establishes that, without any structural assumptions, no algorithm can achieve sub-linear regret. However, as seen in the regret upper bound analysis of CRUCB (Corollary 2), not all instances necessarily incur linear regret. This discrepancy motivates a finer analysis: by considering a more fine-grained instance class, we can distinguish between instances that are inherently difficult and those that allow efficient learning, which the regret lower bound becomes sub-linear. The proof of Theorem 4 is provided in Appendix C.4.

Theorem 5. (Regret lower bound over a **fine-grained** class) Fix sufficiently large T . For an arbitrary constant $1 < c < 2$, define a fine-grained set of CRB instances \mathcal{A}_c as follows:

$$\mathcal{A}_c := \{\nu : \gamma_i(n) \leq (n+1)^{-c}, i \in [K], n \in [T-1]\}. \quad (14)$$

Then, for any policy π incurs regret:

$$\min_{\pi} \max_{\nu \in \mathcal{A}_c} \text{Reg}_{\nu}(\pi, T) = \Omega\left(\max\left\{L\sqrt{T}, LT^{2-c}\right\}\right), \quad (15)$$

where $L := \max_{S \in \mathcal{S}} |S|$ is the maximum size of a super arm.

Theorem 5 characterizes how the regret lower bound varies with a parameter c . As also reflected in the upper bound, c serves as a structural separator between easy and difficult instances: a larger c leads to slower outcome growth and a smaller regret lower bound, while smaller c result in faster growth and higher regret lower bound. The proof of Theorem 5 is provided in Appendix C.5.

As a final remark for Section 5, our CRUCB achieves a regret upper bound that closely matches the regret lower bound of the CRB (see Figure 3). In particular, without requiring any prior knowledge about the difficulty of the problem instance (e.g., the outcome growth parameter c), CRUCB effectively adapts to varying problem difficulties, ensuring robustness of CRUCB across diverse scenarios. To the best of our knowledge, this represents the first explicit and rigorous comparison between regret upper and lower bounds in the rising bandit literature, highlighting a key theoretical contribution of our work.

6 EXPERIMENTS

We evaluate the performance of CRUCB against existing state-of-the-art algorithms for rising and non-stationary bandits on the online shortest path planning, in both synthetic environments (Section 6.1) and realistic deep reinforcement learning applications (Section 6.2). Unlike prior works that mainly focus on simplified rising bandit settings, our evaluation further considers realistic deep RL scenarios, underscoring the practical relevance and robustness of CRUCB. Additional results on diverse combinatorial tasks, including maximum weighted matching, minimum spanning tree, and the k-MAX problem are provided in Appendix F.

Baselines We consider the following baseline algorithms:

- **R-ed-UCB** (Metelli et al., 2022) is a non-combinatorial algorithm for rising bandits, combining a sliding window with UCB-based estimation designed for rising rewards.
- **SW-UCB** (Garivier & Moulines, 2011) and **SW-TS** (Trovo et al., 2020) are non-stationary non-combinatorial bandit algorithms that use a sliding-window approach with UCB and Thompson Sampling, respectively.
- **SW-CUCB** (Chen et al., 2021) and **SW-CTS** are non-stationary combinatorial bandit algorithms that use a sliding-window approach with UCB and Thompson Sampling, respectively.

Detailed pseudocode and descriptions of the baselines are provided in Appendix D. For CRUCB, we set the window size parameter $\epsilon = 0.125$ in our main experiments. We found this to be a robust choice, and a detailed sensitivity analysis on the impact of ϵ is provided in Appendix F.4.

Figure 3: **Regret bound gap.** The **regret lower bound** of CRB and the **regret upper bound** of CRUCB when $f(n) = (n+1)^{-c}$. For $c \leq 1$, both the upper and lower bounds are equal to 1. Specifically, for $1 < c < 1.5$, the lower bound $(2-c)$ and the upper bound $(\frac{1}{c})$ are of similar order, indicating that the regret bounds closely match.

Figure 4: **Online shortest path planning task.** (a, c) Graphs used to evaluate CRUCB and baselines. (b, d) Corresponding outcome functions for each task.

Figure 5: **Cumulative regret in synthetic environments.** Regret curves for (a) Path-easy and (b) Path-complex. Lines show average; shaded areas indicate 99% confidence intervals over 5 runs.

6.1 SYNTHETIC ENVIRONMENTS

We conduct experiments on the online shortest path task using the graph structures shown in Figures 4a and c, each containing two types of edges: *early peakers* and *late bloomers*, as illustrated in Figures 4b and d, respectively. In these experiments, we assume the additive reward setting in which the reward of a super arm is defined as the sum of the outcomes of constituent base arms. In this setting, Corollary 1 implies that the optimal policy is a constant policy repeatedly selecting a fixed path (super arm), which in our experiments corresponds to a path composed solely of late bloomers.

As shown in Figure 5a, CRUCB demonstrates lower regret compared to all baselines in the Path-easy task. R-ed-UCB underperforms despite the simplicity of the graph structure, due to the partially shared enhancement described earlier in Figure 1. In the more complex Path-complex task, CRUCB continues to outperform all baselines, with the gap between CRUCB and R-ed-UCB becomes significantly larger, as shown in Figure 5b.

This is because the effects of the partially shared enhancement are amplified as the overlap of edges (base arms) among paths (super arms) increases. Interestingly, across both environments, non-combinatorial and non-stationary algorithms (SW-UCB, SW-TS) consistently outperform their combinatorial counterparts (SW-CUCB, SW-CTS), with the gap becoming more pronounced in the complex task. This occurs because the increased number of paths promotes broader exploration, allowing non-combinatorial algorithms sufficient time to explore late bloomers, whereas combinatorial algorithms tend to focus exploitation on early peakers, thereby restricting the opportunities for late bloomers to enhance their full reward potential.

6.2 DEEP REINFORCEMENT LEARNING

We conduct experiments on the online shortest path problem using hierarchical reinforcement learning in AntMaze environments (Yoon et al., 2024), as illustrated in Figure 7. It divides tasks into high-level and low-level policies. The high-level policy makes abstract decisions, such as the path from start to goal, while the low-level policy executes these decisions by controlling the specific movements of the robot. In our setup, the high-level policy plays a role similar to the CRB framework by selecting paths as super arms, where each edge corresponds to a base arm. As training progresses, the improvements in the low-level policy lead to the rising outcomes for the high-level policy. We consider two tasks: AntMaze-easy and AntMaze-complex (Figures 7a and b). In AntMaze-easy, the policy can choose among three paths: an impossible path using edge (e_1), a shortcut path (e_2, e_3, e_7) that is short but contains a bottleneck edge e_3 requiring more episodes to train, and a detour path (e_2, e_4, e_5, e_6, e_7) composed solely of wide edges but requiring more steps.

Figure 6: **Cumulative regret in deep reinforcement learning environments.** (a) Observed outcomes for each edge with respect to the number of pulls. Regret curves for (b) AntMaze-easy and (c) AntMaze-complex. Lines show average; shaded areas indicate 99% confidence intervals over 5 runs.

The key challenge in this task is to recognize the rising outcome of the bottleneck edge and efficiently exploit the shortcut path despite its initial difficulty. In AntMaze-complex, the environment has a complex graph structure with extensive paths from start to goal. The large number of paths increases combinatorial complexity, making exploration and identification of the optimal path challenging. Each task aims at a distinct challenge: AntMaze-easy focuses on capturing the rising reward nature, whereas AntMaze-complex emphasizes robustness against growing combinatorial complexity. Detailed descriptions of the environments and reward structures are provided in Appendix E.2.

As depicted in Figure 6a, the outcomes exhibit non-concave behavior due to an extended zero-reward period before the first success; however, the outcome growth appears roughly concave once the rewards increase. Despite this violation of the concavity assumption (Assumption 1), Figures 6b and c show that CRUCB outperforms the baselines, highlighting its robustness in settings where theoretical assumptions are not strictly satisfied. In AntMaze-easy, CRUCB and R-ed-UCB outperform other baselines, as shown in Figure 6b. Given the simplicity of the environment, which includes only three paths, most algorithms successfully identify the detour path. However, non-stationary bandit algorithms tend to exploit the detour path once found and limit further exploration. In contrast, rising bandit algorithms continue to explore the bottleneck path, eventually identifying the optimal path and resulting in lower cumulative regret.

As depicted in Figure 8, existing algorithms fail to capture both the combinatorial structure and the rising nature simultaneously. Figure 8a shows thick traces around blocked walls, indicating that the agent repeatedly attempts the same impossible edges. This behavior stems from the agent's evaluation, where it perceives a single impossible edge as more optimistic than a detour path composed of multiple low-reward edges. Conversely, R-ed-UCB performs uniform exploration as illustrated in Figure 8b. This broad search is an unavoidable consequence of initially treating all 178 possible paths as independent super arms. Even after a sufficient amount of time, its inability to leverage partially shared improvements leads to incorrect estimations, causing the agent to continue exploring various paths instead of converging on the optimal path. In contrast, CRUCB, as depicted in Figure 8c, integrates both perspectives: it avoids repeated trials on impossible paths, efficiently exploits shared improvements, and quickly concentrates on the optimal path. These observations confirm that the limitations of existing approaches highlighted in Section 1 arise in practice and demonstrate that CRUCB successfully overcomes them.

Figure 7: **Deep RL environments.** An ant robot navigates the shortest path from start to goal via intermediate nodes, encountering three types of edges in (a): **impossible edge** (e_1), **bottleneck edge** (e_3), and **wide edge** (e_2, e_4, e_5, e_6, e_7). (b) Focus on **impossible edges** and **wide edges** in a complex map.

486 7 CONCLUSION

488
 489 In this work, we introduced the Combinatorial Rising Bandit
 490 (CRB) framework, modeling combinatorial online learning scenar-
 491 os wherein selecting a super arm enhances the future rewards of its
 492 constituent base arms. By highlighting the novel challenges from
 493 the *partially shared enhancement* in Figure 1, we established that
 494 CRB fundamentally differs from classical bandit formulations. To
 495 address this challenge, we developed Combinatorial Rising UCB
 496 (CRUCB), a provably efficient algorithm. Our extensive exper-
 497 iments across synthetic and deep RL environments demonstrate
 498 that CRUCB robustly handles the combinatorial rising structure
 499 where prior methods fail. At the same time, our theoretical analysis
 500 establishes tight regret bounds, showing that the algorithm is nearly
 501 optimal from an analytical standpoint. Taken together, these results
 502 highlight that CRUCB offers both tangible benefits in practice and
 503 solid guarantees in theory. While our analysis relies on simplifying
 504 assumptions, such as a fixed set of base arms and a static combi-
 505 natorial structure, these are often reasonable in domains where the
 506 action space is pre-defined. However, in certain applications, such
 507 as robotic systems that involve skill discovery, the set of feasible
 508 actions may evolve over time. Extending CRB to handle such
 509 dynamic structures is a promising direction for future research.

510 REFERENCES

511 Omer Amichay and Yishay Mansour. Rising rested mab with linear drift. *arXiv preprint*
 512 *arXiv:2501.04403*, 2025.

513 Baran Atalar and Carlee Joe-Wong. Neural combinatorial clustered bandits for recommendation
 514 systems. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 15417–
 515 15426, 2025.

516 Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
 517 problem. *Machine learning*, 47:235–256, 2002.

518 Wei Chen, Yajun Wang, and Yang Yuan. Combinatorial multi-armed bandit: General framework
 519 and applications. In *Proceedings of the 30th International Conference on Machine Learning*, pp.
 520 151–159. PMLR, 2013.

521 Wei Chen, Wei Hu, Fu Li, Jian Li, Yu Liu, and Pinyan Lu. Combinatorial multi-armed bandit with
 522 general reward functions. *Advances in Neural Information Processing Systems*, 29, 2016.

523 Wei Chen, Liwei Wang, Haoyu Zhao, and Kai Zheng. Combinatorial semi-bandit in the non-stationary
 524 environment. In *Uncertainty in Artificial Intelligence*, pp. 865–875. PMLR, 2021.

525 Richard Combes, Mohammad Sadegh Talebi Mazraeh Shahi, Alexandre Proutiere, and marc lelarge.
 526 Combinatorial bandits revisited. In *Advances in Neural Information Processing Systems*, volume 28,
 527 pp. 2116–2124, 2015.

528 Edsger W Dijkstra. A note on two problems in connexion with graphs. *Numerische Mathematik*, pp.
 529 269–271, 1959.

530 Marco Fiandri, Alberto Maria Metelli, and Francesco Trovò. Rising rested bandits: Lower bounds
 531 and efficient algorithms. *arXiv preprint arXiv:2411.14446*, 2024a.

532 Marco Fiandri, Alberto Maria Metelli, and Francesco Trovò. Thompson sampling-like algorithms for
 533 stochastic rising rested bandits. In *Seventeenth European Workshop on Reinforcement Learning*,
 534 2024b.

535 **Figure 8: Heatmap of visit frequencies in AntMaze-complex.** We visualize the visit frequencies of SW-CUCB, R-ed-UCB, and CRUCB at time steps 500 and 3000 to highlight their respective exploration patterns. Visualizations of other baselines are provided in Appendix G.

540 Aurélien Garivier and Eric Moulines. On upper-confidence bound policies for switching bandit
 541 problems. In *International conference on algorithmic learning theory*, pp. 174–188. Springer,
 542 2011.

543 Lin Ge, Yang Xu, Jianing Chu, David Cramer, Fuhong Li, Kelly Paulson, and Rui Song. Multi-task
 544 combinatorial bandits for budget allocation. In *Proceedings of the 31st ACM SIGKDD Conference
 545 on Knowledge Discovery and Data Mining V. 1*, pp. 2247–2258, 2025.

546 Gianmarco Genalti, Marco Mussi, Nicola Gatti, Marcello Restelli, Matteo Castiglioni, and Al-
 547 berto Maria Metelli. Graph-triggered rising bandits. In *Forty-first International Conference on
 548 Machine Learning*, 2024.

549 Hoda Heidari, Michael J Kearns, and Aaron Roth. Tight policy regret bounds for improving and
 550 decaying bandits. In *IJCAI*, pp. 1562–1570, 2016.

551 Hanxun Huang, Xingjun Ma, Sarah M Erfani, and James Bailey. Neural architecture search via
 552 combinatorial multi-armed bandit. In *2021 International Joint Conference on Neural Networks
 553 (IJCNN)*, pp. 1–8. IEEE, 2021.

554 Paul Janssonie, Bingbing Wu, Julien Perez, and Jan Peters. Unsupervised skill discovery for robotic
 555 manipulation through automatic task generation. In *2024 IEEE-RAS 23rd International Conference
 556 on Humanoid Robots (Humanoids)*, pp. 926–933. IEEE, 2024.

557 Branislav Kveton, Zheng Wen, Azin Ashkan, and Csaba Szepesvari. Tight regret bounds for stochastic
 558 combinatorial semi-bandits. In *Artificial Intelligence and Statistics*, pp. 535–543. PMLR, 2015.

559 Tomás Lagos, Ramón Auad, and Felipe Lagos. The online shortest path problem: Learning travel
 560 times using a multiarmed bandit framework. *Transportation Science*, 59(1):28–59, 2025.

561 Tor Lattimore and Csaba Szepesvári. *Bandit algorithms*. Cambridge University Press, 2020.

562 Xiaofeng Mao, Yucheng Xu, Zhaole Sun, Elle Miller, Daniel Layeghi, and Michael Mistry. Learning
 563 long-horizon robot manipulation skills via privileged action. *arXiv preprint arXiv:2502.15442*,
 564 2025.

565 Alberto Maria Metelli, Francesco Trovo, Matteo Pirola, and Marcello Restelli. Stochastic rising
 566 bandits. In *International Conference on Machine Learning*, pp. 15421–15457. PMLR, 2022.

567 Marco Mussi, Alessandro Montenegro, Francesco Trovo, Marcello Restelli, ALBERTO Metelli,
 568 et al. Best arm identification for stochastic rising bandits. In *Proceedings of the 41st International
 569 Conference on Machine Learning*, pp. 1–9, 2024.

570 Vishakha Patil, Vineet Nair, Ganesh Ghalme, and Arindam Khan. Mitigating disparity while maxi-
 571 mizing reward: tight anytime guarantee for improving bandits. *arXiv preprint arXiv:2208.09254*,
 572 2022.

573 Francesco Trovo, Stefano Paladino, Marcello Restelli, and Nicola Gatti. Sliding-window thompson
 574 sampling for non-stationary settings. *Journal of Artificial Intelligence Research*, 68:311–364,
 575 2020.

576 Shohei Wakayama and Nisar Ahmed. Observation-augmented contextual multi-armed bandits for
 577 robotic search and exploration. *IEEE Robotics and Automation Letters*, 2024.

578 Siwei Wang and Wei Chen. Thompson sampling for combinatorial semi-bandits. In *International
 579 Conference on Machine Learning*, pp. 5114–5122. PMLR, 2018.

580 Yiliu Wang, Wei Chen, and Milan Vojnović. Combinatorial bandits for maximum value reward
 581 function under max value-index feedback. *arXiv preprint arXiv:2305.16074*, 2023.

582 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 583 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 584 neural information processing systems*, 35:24824–24837, 2022.

585

594 Yu Xia, Fang Kong, Tong Yu, Liya Guo, Ryan A Rossi, Sungchul Kim, and Shuai Li. Which llm to
595 play? convergence-aware online model selection with time-increasing bandits. In *Proceedings of*
596 *the ACM on Web Conference 2024*, pp. 4059–4070, 2024.

597
598 Lily Xu, Bryan Wilder, Elias Boutros Khalil, and Milind Tambe. Reinforcement learning with combi-
599 natorial actions for coupled restless bandits. In *The Thirteenth International Conference on Learn-
600 ing Representations*, 2025. URL <https://openreview.net/forum?id=DhH3LbA6F6>.

601 Youngsik Yoon, Gangbok Lee, Sungsoo Ahn, and Jungseul Ok. Breadth-first exploration on adaptive
602 grid for reinforcement learning. In *Forty-first International Conference on Machine Learning*,
603 2024.

604
605 Chuanyang Zheng, Zhengying Liu, Enze Xie, Zhenguo Li, and Yu Li. Progressive-hint prompting
606 improves reasoning in large language models. *arXiv preprint arXiv:2304.09797*, 2023.

607 Zheqing Zhu and Benjamin Van Roy. Scalable neural contextual bandit for recommender sys-
608 tems. In *Proceedings of the 32nd ACM International Conference on Information and Knowledge
609 Management*, pp. 3636–3646, 2023.

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 This material provides proof of theorems, details of environments and baselines, and additional
 649 experimental results:
 650

- 651 • **Appendix A:** Motivating applications of CRB.
- 652 • **Appendix B:** Comparison with existing rising bandit studies.
- 653 • **Appendix C:** Proofs of Theorem 1, 2, 3, 4, and 5.
- 654 • **Appendix D:** Detailed description and pseudocode of the baselines in Section 6.
- 655 • **Appendix E:** Detailed description of the environments in Section 6.
- 656 • **Appendix F:** Additional experiments on other combinatorial tasks.
- 657 • **Appendix G:** Further analysis of exploration on the deep RL environment.
- 658 • **Appendix H:** The use of Large Language Models.

662 A REAL-WORLD APPLICATIONS OF THE CRB FRAMEWORK

664 The CRB framework, which addresses a regret minimization problem, naturally arises in real-
 665 world scenarios where complex actions are composed of reusable sub-actions that improve through
 666 repetition. We can consider following applications:

668 **Network Routing** optimizes performance metrics such as latency or throughput by selecting
 669 network paths (super arms) composed of individual links (base arms). Frequent utilization of specific
 670 links enables routing protocols to adapt and improve via better congestion estimation and traffic-
 671 pattern learning. Thus, network routing naturally aligns with regret minimization as it balances
 672 exploiting known effective routes and exploring potentially better alternatives.

673 **Crowdsourcing** aims to find optimal task assignments by combining annotators (base arms) with
 674 datasets, which can be framed as an online combinatorial regret minimization problem (Chen et al.,
 675 2016). Annotators' skill levels improve over repeated tasks, increasing their annotation accuracy. CRB
 676 effectively addresses regret minimization here by dynamically reallocating tasks among annotators to
 677 leverage their rising skills, thereby optimizing overall annotation quality and cost-effectiveness.

679 **LLM-based Planning** decomposes complex tasks into simpler subtasks (base arms), akin to the
 680 Chain-of-Thought (CoT) approach (Wei et al., 2022). Iterative prompting, where previous outputs
 681 refine future ones (Zheng et al., 2023), enhances model performance over time (rising reward). By
 682 applying CRB to decompose tasks into subtasks, we expect improved performance by exploiting the
 683 rising reward structure in these iterative reasoning tasks.

685 B COMPARISON WITH EXISTING RISING BANDIT STUDIES

687 The rising bandit problem has been widely studied in non-combinatorial settings (Fiandri et al.,
 688 2024a;b; Heidari et al., 2016; Metelli et al., 2022; Mussi et al., 2024; Patil et al., 2022; Xia et al.,
 689 2024; Amichay & Mansour, 2025), where each base arm evolves independently over pulls. In this
 690 work, we consider a combinatorial extension of the rising bandit problem, where each action is a set
 691 of base arms. This generalization introduces new challenges that fundamentally differ from previous
 692 work.

693 In previous work (Heidari et al., 2016), a constant policy is optimal in the rising setting. However
 694 in Section 3, we demonstrate that in the combinatorial setting, constant policies are generally not
 695 optimal. Furthermore, (Metelli et al., 2022) focus primarily on establishing worst-case regret lower
 696 bounds, showing that regret is linear ($\Omega(T)$), highlighting the inherent difficulty of the problem. In
 697 contrast, we show that under a more fine-grained instance class where reward growth is bounded, the
 698 regret lower bound can be sublinear. Moreover, we illustrate that this lower bound is tight, nearly
 699 matching it with the regret upper bound of our proposed algorithm, CRUCB.

700 A recent study (Genalti et al., 2024) investigates rising bandits with structured dependencies among
 701 arms, introducing a graph-triggered mechanism in which pulling an arm increases the rewards of

702 its neighboring arms. While conceptually related to our work, their approach assumes uniform
703 enhancement across neighbors, without modeling the nuanced structure of overlapping actions. In
704 contrast, our CRB framework models partially shared enhancement, preserving the combinatorial
705 structure. This distinction makes CRB a more general and unified framework for capturing rising
706 reward dynamics in combinatorial settings.

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 C PROOF OF THEOREMS
757758 C.1 PROOF OF THEOREM 1
759760 It suffices to show that there exists a CRB instance such that the *constant policy* is not the optimal
761 policy. We consider k -MAX problem, where reward function is given as follows:

762
$$r(S, \mu) := \max_{i \in S}(\mu_i) . \quad (16)$$

763

764 Note that equation 16 satisfies all assumptions. Consider μ such that:
765

766
$$\mu_1(n) = \begin{cases} \frac{10}{T}n & n < \frac{T}{10} \\ 1 & n \geq \frac{T}{10} \end{cases} , \quad (17)$$

767

768
$$\mu_2(n) = \begin{cases} 0.1 & n = 1 \\ 0.9 & n > 1 \end{cases} , \quad (18)$$

769

770
$$\mu_3(n) = 0.5 . \quad (19)$$

771

772 Let $K = 3$, $\mathcal{S} = \{(1, 2), (1, 3), (2, 3)\}$, $T \gg 100$. For simplicity, when a base arm is pulled for
773 n -th times, then the outcome is $\mu_i(n)$ without considering randomness. In this problem instance, the
774 optimal constant policy is selecting the super arm $(1, 2)$ continuously. For the best constant policy, it
775 receives 0.1 for $t = 1$, and $\frac{10t}{T}$ for $1 < t \leq \frac{9T}{10}$ and 1 for $t > \frac{9T}{10}$. However, if $(2, 3)$ is firstly selected
776 once and $(1, 2)$ for the remaining time, it receives 0.3 more rewards than the best constant policy.
777 This is because selecting $(2, 3)$ initially yields an immediate gain of 0.4 from first selecting, but later
778 results in a loss of 0.1 due to not playing optimal super arm $(1, 2)$. Consequently, the total reward is
779 higher than that of the best constant policy, which suffices to complete proof.
780781 C.2 PROOF OF THEOREM 2
782

783 For proof, we first consider a specific case: additive reward.

784 **Lemma 1.** *Given an additive reward $r(S, \mu) = \sum_{i \in S} \mu_i$, π_{const}^* is exactly optimal.*
785786 **Set up.** Since we consider additive reward function, the cumulative reward is invariant with respect
787 to permutations of the order of selecting super arms, which means that a policy can be represented as
788 the vector of number of pulling each super arm, that is, a policy π can be represented as follows:
789

790
$$\pi \mapsto (T_1^\pi, T_2^\pi, \dots, T_{|\mathcal{S}|}^\pi) , \quad (20)$$

791

792 where T_S^π denotes the number of pulling a super arm S until time T by the policy π , which satisfies
793 $\sum_{S \in \mathcal{S}} T_S^\pi = T$. Let $N_{i,T}^\pi$ denote the number of selecting a base arm i until time T by π . Then, $N_{i,T}^\pi$
794 can be represented as follows:
795

796
$$N_{i,T}^\pi = \sum_{S \in \mathcal{S}} T_S^\pi \mathbb{1}\{i \in S\} , \quad (21)$$

797

798 where $\mathbb{1}$ denotes the indicator function. Let π^* be the optimal policy given μ and T . We show that if
799 π^* pulls at least two different super arms, then a constant policy can be constructed so that generates
800 larger than or equal to the expected cumulative reward as the one produced by π^* , which suffices to
801 conclude.
802803 Assume that π^* selects m distinct super arms, denoted by super arms as S_1, S_2, \dots, S_m . Define a
804 subset of base arms B_c and B_j for each $j \in [m]$ as follows:
805

806
$$B_c := \{i \in [K] : i \in S_j, \forall j \in [m]\} , \quad (22)$$

807

808
$$B_j := S_j \setminus B_c . \quad (23)$$

809

810 B_c represents the subset of the common base arms included in every selected super arm by the
811 optimal policy π^* and B_j represents the subset of base arms included in the super arm S_j except for
812 B_c .
813

810 **Claim 1.** $\sum_{i \in B_j} \mu_i(N_{i,T}^{\pi^*})$ is equal for all $j \in [m]$.
 811

812 *Proof.* To establish Claim 1, we consider two arbitrary distinct super arms S_1 and S_2 , with-
 813 out loss of generality. We observe $\sum_{i \in B_1 \setminus B_2} \mu_i(N_{i,T}^{\pi^*}) \geq \sum_{i \in B_2 \setminus B_1} \mu_i(N_{i,T}^{\pi^*})$. If not, that is,
 814 $\sum_{i \in B_1 \setminus B_2} \mu_i(N_{i,T}^{\pi^*}) < \sum_{i \in B_2 \setminus B_1} \mu_i(N_{i,T}^{\pi^*})$, we can construct new policy π_1 as follows:
 815

$$816 \quad 817 \quad 818 \quad 819 \quad T_S^{\pi_1} = \begin{cases} T_{S_1}^{\pi^*} - 1 & S = S_1 \\ T_{S_2}^{\pi^*} + 1 & S = S_2 \\ T_S^{\pi^*} & \text{otherwise.} \end{cases} \quad (24)$$

820 Then, $N_{i,T}^{\pi_1}$ is given by:
 821

$$822 \quad 823 \quad 824 \quad 825 \quad N_{i,T}^{\pi_1} = \begin{cases} N_{i,T}^{\pi^*} - 1 & i \in B_1 \setminus B_2 \\ N_{i,T}^{\pi^*} + 1 & i \in B_2 \setminus B_1 \\ N_{i,T}^{\pi^*} & \text{otherwise.} \end{cases} \quad (25)$$

826 The difference between the expected cumulative reward of π^* and π_1 is given by:
 827

$$828 \quad 829 \quad 830 \quad 831 \quad \sum_{i \in [K]} \left(\sum_{n \in [N_{i,T}^{\pi^*}]} \mu_i(n) - \sum_{n \in [N_{i,T}^{\pi_1}]} \mu_i(n) \right) \quad (26)$$

$$832 \quad 833 \quad = \sum_{i \in B_1 \setminus B_2} \mu_i(N_{i,T}^{\pi^*}) - \sum_{i \in B_2 \setminus B_1} \mu_i(N_{i,T}^{\pi^*} + 1) \quad (27)$$

$$834 \quad < 0, \quad (28)$$

835 which indicates that the cumulative reward of π_1 is larger than that of π^* . However, it is
 836 contradicting with the assumption that π^* is optimal and thus we have $\sum_{i \in B_1 \setminus B_2} \mu_i(N_{i,T}^{\pi^*}) \geq$
 837 $\sum_{i \in B_2 \setminus B_1} \mu_i(N_{i,T}^{\pi^*})$. By applying the same logic, we can also derive that $\sum_{i \in B_1 \setminus B_2} \mu_i(N_{i,T}^{\pi^*}) \leq$
 838 $\sum_{i \in B_2 \setminus B_1} \mu_i(N_{i,T}^{\pi^*})$. Combing these results, we have $\sum_{i \in B_1 \setminus B_2} \mu_i(N_{i,T}^{\pi^*}) = \sum_{i \in B_2 \setminus B_1} \mu_i(N_{i,T}^{\pi^*})$.
 839 By adding $\sum_{i \in B_1 \cap B_2} \mu_i(N_{i,T}^{\pi^*})$, we can derive that $\sum_{i \in B_1} \mu_i(N_{i,T}^{\pi^*}) = \sum_{i \in B_2} \mu_i(N_{i,T}^{\pi^*})$. Since we
 840 can apply the same logic to any arbitrary super arm pair, we conclude the claim. \square
 841

842 **Claim 2.** $\sum_{i \in B_j \setminus B_{j'}} \mu_i(N_{i,T}^{\pi^*} - T_{S_1}^{\pi^*} + 1) = \sum_{i \in B_{j'} \setminus B_j} \mu_i(N_{i,T}^{\pi^*})$ for any $j, j' \in [m]$.
 843

844 *Proof.* Similar to Claim 1, we consider S_1 and S_2 , without loss of generality. Given
 845 that $\sum_{i \in B_1 \setminus B_2} \mu_i(N_{i,T}^{\pi^*}) \leq \sum_{i \in B_2 \setminus B_1} \mu_i(N_{i,T}^{\pi^*})$ from preceding analysis, we observe
 846 $\sum_{i \in B_1 \setminus B_2} \mu_i(N_{i,T}^{\pi^*} - T_{S_1}^{\pi^*} + 1) \geq \sum_{i \in B_2 \setminus B_1} \mu_i(N_{i,T}^{\pi^*})$. Otherwise, that is, $\sum_{i \in B_1 \setminus B_2} \mu_i(N_{i,T}^{\pi^*} -$
 847 $T_{S_1}^{\pi^*} + 1) < \sum_{i \in B_2 \setminus B_1} \mu_i(N_{i,T}^{\pi^*})$, we can construct new policy π_2 such that:
 848

$$849 \quad 850 \quad 851 \quad 852 \quad 853 \quad T_S^{\pi_2} = \begin{cases} 0 & S = S_1 \\ T_{S_1}^{\pi^*} + T_{S_2}^{\pi^*} & S = S_2 \\ T_S^{\pi^*} & \text{otherwise.} \end{cases} \quad (29)$$

854 Then, $N_{i,T}^{\pi_2}$ is given by:
 855

$$856 \quad 857 \quad 858 \quad 859 \quad N_{i,T}^{\pi_2} = \begin{cases} N_{i,T}^{\pi^*} - T_{S_1}^{\pi^*} & i \in B_1 \setminus B_2 \\ N_{i,T}^{\pi^*} + T_{S_2}^{\pi^*} & i \in B_2 \setminus B_1 \\ N_{i,T}^{\pi^*} & \text{otherwise.} \end{cases} \quad (30)$$

860
 861
 862
 863

864 The difference between the cumulative rewards of π^* and π_2 is given by:
 865

$$866 \sum_{i \in [K]} \left(\sum_{n \in [N_{i,T}^*]} \mu_i(n) - \sum_{n \in [N_{i,T}^*]} \mu_i(n) \right) \quad (31)$$

$$867 = \sum_{i \in B_1 \setminus B_2} \sum_{n=N_{i,T}^* - T_{S_1}^* + 1}^{N_{i,T}^*} \mu_i(n) - \sum_{i \in B_2 \setminus B_1} \sum_{n=N_{i,T}^* + 1}^{N_{i,T}^* + T_{S_1}^*} \mu_i(n) \quad (32)$$

$$868 = \sum_{l \in [T_{S_1}^*]} \left(\sum_{i \in B_1 \setminus B_2} \mu_i(N_{i,T}^* - T_{S_1}^* + l) - \sum_{i \in B_2 \setminus B_1} \mu_i(N_{i,T}^* + l) \right) \quad (33)$$

$$869 \leq \left(\sum_{i \in B_1 \setminus B_2} \mu_i(N_{i,T}^* - T_{S_1}^* + 1) - \sum_{i \in B_2 \setminus B_1} \mu_i(N_{i,T}^*) \right) \quad (34)$$

$$870 + (T_{S_1}^* - 1) \left(\sum_{i \in B_1 \setminus B_2} \mu_i(N_{i,T}^*) - \sum_{i \in B_2 \setminus B_1} \mu_i(N_{i,T}^*) \right) \quad (35)$$

$$871 < 0,$$

872 where equation 34 holds since $\mu_i(N_{i,T}^* - T_{S_1}^* + l) \leq \mu_i(N_{i,T}^*)$ and $\mu_i(N_{i,T}^* + l) > \mu_i(N_{i,T}^*)$ for
 873 any $l \in [2, T_{S_1}^*]$ for any base arm i by the definition of combinatorial rising bandit. It indicates
 874 that the cumulative reward of π_2 is larger than that of π^* , which is a contradiction with assumption
 875 that π^* is optimal. Therefore, we have $\sum_{i \in B_1 \setminus B_2} \mu_i(N_{i,T}^* - T_{S_1}^* + 1) \geq \sum_{i \in B_2 \setminus B_1} \mu_i(N_{i,T}^*)$.
 876 Combining this observation with the previous observation, we have $\sum_{i \in B_1 \setminus B_2} \mu_i(N_{i,T}^* - T_{S_1}^* + 1) =$
 877 $\sum_{i \in B_1 \setminus B_2} \mu_i(N_{i,T}^*)$. This result implies that rewards of all base arms in S_1 are flat after pulling for
 878 $N_{i,T}^* - T_{S_1}^*$ times. Since we can apply the same logic to any arbitrary super arm pair, we conclude
 879 the claim. \square

880 **Induction.** Lastly, we construct constant policy inductively. As before, we choose two arbitrary
 881 two super arm and consider S_1 and S_2 without loss of generality. we revisit π_2 . By Claim 1 and
 882 Claim 2 the difference between π^* and π_2 equals 0, which means that π_2 is also an optimal policy.
 883 We remark that π_2 plays $m - 1$ distinct super arms. Applying preceding logic inductively, we can
 884 construct the optimal policy pulls only one super arm, which completes proof for Lemma 1.

885 Then, we are ready to prove Theorem 2.

886 *Proof.* For the proof, we define S'_{const} and π'_{const} as follows:

$$887 S'_{\text{const}} := \arg \max_S \sum_{t \in [T]} \sum_{i \in S} \mu_i(t-1), \quad (36)$$

$$888 S^*_{\text{const}} := \arg \max_S \sum_{t \in [T]} r(S, \mu_S(t-1)), \quad (37)$$

$$889 \pi'_{\text{const}}(t) := S'_{\text{const}} \quad \forall t \in [T], \quad (38)$$

$$890 \pi^*_{\text{const}}(t) := S^*_{\text{const}} \quad \forall t \in [T], \quad (39)$$

891 where $\mu_S(t-1) := \{\mu_i(t-1) : i \in S\}$. Intuitively, π'_{const} indicates the optimal constant policy
 892 when the reward function is additive and π^*_{const} indicates the optimal constant policy when the reward
 893 function is given $r(\cdot)$.

918 Let π^* be optimal policy, and denote the selected super arm and expectation of base arm at time t
 919 under π^* as S_t^* and μ_t^* respectively. Then, we have:
 920

$$921 \mathbb{E}_{\pi^*} \left[\sum_{t \in [T]} R_t \right] = \sum_{t \in [T]} r(S_t^*, \mu_{t-1}^*) \quad (40)$$

$$924 = \sum_{t \in [T]} (r(S_t^*, \mu_{t-1}^*) - r(S_t^*, \mathbf{0}) + r(S_t^*, \mathbf{0})) \quad (41)$$

$$927 \leq B_U \sum_{t \in [T]} \sum_{i \in S_t^*} \mu_i^*(t-1) \quad (42)$$

$$929 \leq B_U \sum_{t \in [T]} \sum_{i \in S'_{\text{const}}} \mu_i(t-1). \quad (43)$$

931 From Lemma 1, we know that the reward under the optimal policy is bounded by the reward under a
 932 constant arm selection, which leads to the inequality in equation 43.
 933

934 Now, consider the reward of π'_{const} . Then, we have:
 935

$$936 \mathbb{E}_{\pi'_{\text{const}}} \left[\sum_{t \in [T]} R_t \right] = \sum_{t \in [T]} r(S'_{\text{const}}, \mu_{S'_{\text{const}}}(t-1)) \quad (44)$$

$$939 = \sum_{t \in [T]} (r(S'_{\text{const}}, \mu_{S'_{\text{const}}}(t-1)) - r(S'_{\text{const}}, \mathbf{0}) + r(S'_{\text{const}}, \mathbf{0})) \quad (45)$$

$$941 \geq B_L \sum_{t \in [T]} \sum_{i \in S'_{\text{const}}} \mu_i(t-1). \quad (46)$$

944 From the inequalities equation 43 and equation 46, we can derive the following ratio:
 945

$$948 \frac{\mathbb{E}_{\pi^*} \left[\sum_{t \in [T]} R_t \right]}{\mathbb{E}_{\pi'_{\text{const}}} \left[\sum_{t \in [T]} R_t \right]} \leq \frac{B_U \sum_{t \in [T]} \sum_{i \in S'_{\text{const}}} \mu_i(t-1)}{B_L \sum_{t \in [T]} \sum_{i \in S'_{\text{const}}} \mu_i(t-1)} \quad (47)$$

$$951 = \frac{B_U}{B_L}. \quad (48)$$

953 Since S'_{const} is defined to maximize the reward we have the inequality:
 954

$$956 \mathbb{E}_{\pi^*_{\text{const}}} \left[\sum_{t \in [T]} R_t \right] > \mathbb{E}_{\pi'_{\text{const}}} \left[\sum_{t \in [T]} R_t \right]. \quad (49)$$

959 Finally, combining all the inequalities, we conclude:
 960

$$961 \frac{\mathbb{E}_{\pi^*} \left[\sum_{t \in [T]} R_t \right]}{\mathbb{E}_{\pi^*_{\text{const}}} \left[\sum_{t \in [T]} R_t \right]} \leq \frac{\mathbb{E}_{\pi^*} \left[\sum_{t \in [T]} R_t \right]}{\mathbb{E}_{\pi'_{\text{const}}} \left[\sum_{t \in [T]} R_t \right]} \leq \frac{B_U}{B_L}. \quad (50)$$

965 \square
 966
 967
 968
 969
 970
 971

972 C.3 PROOF OF THEOREM 3
973974 *Proof.* We rewrite the regret as follows.
975

976
$$Reg(\pi, T) = \sum_{t \in [T]} \mathbb{E}_{\pi^*} [R_t] - \sum_{t \in [T]} \mathbb{E}_\pi [R_t] \quad (51)$$

977

978
$$= \sum_{t \in [T]} r(S_t^{\pi^*}, \mu_{S_t^{\pi^*}}) - \sum_{t \in [T]} \mathbb{E}_\pi [r(S_t^{\pi}, \mu_{S_t^{\pi}})] \quad (52)$$

979

980
$$= \sum_{t \in [T]} \mathbb{E}_\pi \left[r(S_t^{\pi^*}, \mu_{S_t^{\pi^*}}) - r(S_t^{\pi}, \mu_{S_t^{\pi}}) \right], \quad (53)$$

981

982 where equation 52 holds since in semi-bandit feedback setting, the optimal policy is characterized as
983 a deterministic policy.
984985 To define well-estimated event, we define $\hat{\mu}_i(t)$ and $\tilde{\mu}_i(t)$ as follows:
986

987
$$\hat{\mu}_i(t) := \frac{1}{h_i} \sum_{l=N_{i,t-1}-h_i+1}^{N_{i,t-1}} \left(X_i(l) + (t-l) \frac{X_i(l) - X_i(l-h_i)}{h_i} \right) \quad (54)$$

988

989
$$\tilde{\mu}_i(t) := \frac{1}{h_i} \sum_{l=N_{i,t-1}-h_i+1}^{N_{i,t-1}} \left(\mu_i(l) + (t-l) \frac{\mu_i(l) - \mu_i(l-h_i)}{h_i} \right) \quad (55)$$

990

991
$$\beta_i(t) := \sigma(t - N_{i,t-1} + h_i - 1) \sqrt{\frac{10 \log t^3}{h_i^3}} \quad (56)$$

992

993
$$\hat{\mu}_i(t) := \hat{\mu}_i(t) + \beta_i(t). \quad (57)$$

994

995 We define well-estimated event \mathcal{E}_t as follows:
996

997
$$\mathcal{E}_{i,t} := \{|\hat{\mu}_i(t) - \tilde{\mu}_i(t)| \leq \beta_i(t)\}, \quad (58)$$

998

999
$$\mathcal{E}_t := \cap_{i \in [K]} \mathcal{E}_{i,t}. \quad (59)$$

1000

1001 We decompose the regret with well-estimated event \mathcal{E}_t as follows:
1002

1003
$$\mathbb{E}_\pi \left[r(S_t^{\pi^*}, \mu_{S_t^{\pi^*}}) - r(S_t^{\pi}, \mu_{S_t^{\pi}}) \right] \quad (60)$$

1004

1005
$$= \underbrace{\mathbb{E}_\pi \left[\left(r(S_t^{\pi^*}, \mu_{S_t^{\pi^*}}) - r(S_t^{\pi}, \mu_{S_t^{\pi}}) \right) \mathbb{1}\{\neg \mathcal{E}_t\} \right]}_{(A)} + \underbrace{\mathbb{E}_\pi \left[\left(r(S_t^{\pi^*}, \mu_{S_t^{\pi^*}}) - r(S_t^{\pi}, \mu_{S_t^{\pi}}) \right) \mathbb{1}\{\mathcal{E}_t\} \right]}_{(B)}. \quad (61)$$

1006

1007 Firstly, we bound term (A):
1008

1009
$$\mathbb{E}_\pi \left[\left(r(S_t^{\pi^*}, \mu_{S_t^{\pi^*}}) - r(S_t^{\pi}, \mu_{S_t^{\pi}}) \right) \mathbb{1}\{\neg \mathcal{E}_t\} \right] \leq L \sum_{t \in [T]} \mathbb{E}_\pi [\mathbb{1}\{\neg \mathcal{E}_t\}] \quad (62)$$

1010

1011
$$= L \sum_{t \in [T]} \mathbb{P}(\neg \mathcal{E}_t) \quad (63)$$

1012

1013
$$\leq \sum_{t \in [T]} \frac{2LK}{t^2} \quad (64)$$

1014

1015
$$\leq \frac{LK\pi^2}{3}. \quad (65)$$

1016

1017 where equation 64 holds by Lemma 2 and equation 65 holds since $\sum_{t=1}^{\infty} \frac{1}{t^2} = \frac{\pi^2}{6}$.
10181019 **Lemma 2.** (Metelli et al., 2022) For every round $K < t < T$, and window size $1 \leq h_i \leq \varepsilon N_{i,t-1}$,
1020 we have:
1021

1022
$$\mathbb{P}(\neg \mathcal{E}_t) \leq \frac{2K}{t^2}. \quad (66)$$

1023

1026 Next, we bound term (B). Firstly, we utilize Lipschitz continuity.
1027

$$1028 r(S_t^{\pi^*}, \mu_{S_t^{\pi^*}}) - r(S_t^{\pi}, \mu_{S_t^{\pi}}) \quad (67)$$

$$1029 = r(S_t^{\pi^*}, \mu_{S_t^{\pi^*}}) - r(S_t^{\pi}, \mu_{S_t^{\pi}}) + r(S_t^{\pi}, \hat{\mu}_{S_t^{\pi}}) - r(S_t^{\pi}, \hat{\mu}_{S_t^{\pi}}) + r(S_t^{\pi^*}, \hat{\mu}_{S_t^{\pi^*}}) - r(S_t^{\pi^*}, \hat{\mu}_{S_t^{\pi^*}}) \quad (68)$$

$$1030 \leq -r(S_t^{\pi}, \mu_{S_t^{\pi}}) + r(S_t^{\pi}, \hat{\mu}_{S_t^{\pi}}) - r(S_t^{\pi}, \hat{\mu}_{S_t^{\pi}}) + r(S_t^{\pi^*}, \hat{\mu}_{S_t^{\pi^*}}) \quad (69)$$

$$1031 \leq r(S_t^{\pi}, \hat{\mu}_{S_t^{\pi}}) - r(S_t^{\pi}, \mu_{S_t^{\pi}}) \quad (70)$$

$$1032 \leq B \sum_{i \in S_t^{\pi}} |\hat{\mu}_i(t) - \mu_i(t)| \quad (71)$$

$$1033 \leq B \sum_{i \in S_t^{\pi}} \underbrace{\hat{\mu}_i(t) - \mu_i(t)}_{(B1)} + 2B \sum_{i \in S_t^{\pi}} \underbrace{\beta_i(t)}_{(B2)}, \quad (72)$$

1040 where equation 69 holds by Assumption 2 and equation 70 holds by definition of CRUCB and
1041 equation 71 holds by Lipschitz assumption and equation 72 holds by well-estimated event \mathcal{E}_t .

1042 We bound the term (B1) defining $t_{i,n}$ as the time step where the base arm i is pulled the n^{th} time:
1043

$$1044 \sum_{t \in [T]} \sum_{i \in S_t^{\pi}} \hat{\mu}_i(t) - \mu_i(t) \leq 2K + \sum_{i \in [K]} \sum_{n=3}^{N_{i,t}} \min \{ \hat{\mu}_i(t_{i,n}) - \mu_i(t), 1 \} \quad (73)$$

$$1045 \leq 2K + \sum_{i \in [K]} \sum_{n=3}^{N_{i,t}} \min \left\{ \frac{1}{2} (2t_{i,n} - 2n + h_i - 1) \gamma_i(n - 2h_i + 1), 1 \right\} \quad (74)$$

$$1046 = 2K + \sum_{i \in [K]} \sum_{n=3}^{N_{i,t}} \min \{ T \gamma_i((1 - 2\varepsilon)n), 1 \} \quad (75)$$

$$1047 \leq 2K + T^q \sum_{i \in [K]} \sum_{n=3}^{N_{i,t}} \gamma_i((1 - 2\varepsilon)n)^q \quad (76)$$

$$1048 \leq 2K + KT^q \left(\frac{1}{1 - 2\varepsilon} \right) \Upsilon \left((1 - 2\varepsilon) \frac{LT}{K}, q \right), \quad (77)$$

1049 where equation 74 follows from the Lemma A.3, in (Metelli et al., 2022), equation 76 follows from
1050 the fact $\min(s, 1) \leq \min(s, 1)^q \leq s^q$ for $q \in [0, 1]$, and equation 77 follows from the Lemma C.2.
1051 in (Metelli et al., 2022). Now, we bound the term (B2).

$$1052 \sum_{t \in [T]} \sum_{i \in S_t^{\pi}} 2B \min \{ \beta_i(t), 1 \} = \sum_{t \in [T]} \sum_{i \in S_t} 2B \min \left\{ \sigma(t - N_{i,t-1} + h_i - 1) \sqrt{\frac{2 \log 4t^3}{h^3}}, 1 \right\} \quad (78)$$

$$1053 \leq \sum_{t \in [T]} \sum_{i \in S_t^{\pi}} 2B \min \left\{ T \sigma \sqrt{\frac{6 \log 4T}{(\varepsilon \lfloor N_{i,t} \rfloor)^3}}, 1 \right\} \quad (79)$$

$$1054 = \sum_{i \in [K]} \sum_{n \in [N_{i,t}]} 2B \min \left\{ T \sigma \sqrt{\frac{6 \log 4T}{(\varepsilon \lfloor n \rfloor)^3}}, 1 \right\}. \quad (80)$$

1055 Choose $n' = \frac{(2B\sigma T)^{\frac{2}{3}}(6 \log(4T))^{\frac{1}{3}}}{\varepsilon}$. Then for $n > n'$

$$1056 2B\sigma T \sqrt{\frac{6 \log 4T}{(\varepsilon \lfloor n \rfloor)^3}} \leq 1. \quad (81)$$

1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080 Thus, we have:

$$1082 \sum_{i \in [K]} \sum_{n=1}^{N_{i,t}} 2B \min \left\{ \sigma T \sqrt{\frac{6 \log 4T}{(\varepsilon |n|)^3}}, 1 \right\} \leq \sum_{i \in [K]} \left(n' + \sum_{n=n'+1}^T 2B \sigma T \sqrt{\frac{6 \log 4T}{(\varepsilon |n|)^3}} \right) \quad (82)$$

$$1085 \leq K \left(n' + 2B \sigma T \sqrt{\frac{6 \log 4T}{\varepsilon^3}} \int_{n'}^{\infty} x^{-\frac{3}{2}} dx \right) \quad (83)$$

$$1088 \leq \frac{3K}{\epsilon} \left((2B \sigma T)^{\frac{2}{3}} (6 \log 4T)^{\frac{1}{3}} \right), \quad (84)$$

1089 where equation 83 comes from the fact that the sum of monotone decreasing function can be upper
1090 bounded. Combining the results from equation 65, equation 77, and equation 84, we conclude the
1091 proof. \square

1093 C.4 PROOF OF THEOREM 4

1095 *Proof.* Firstly, we consider non-combinatorial case, which means that every super arm has only one
1096 base arm. We construct two different problems and show that no policy can achieve sub-linear regret.

1097 **Lemma 3.** *Let \mathcal{I}' be the set of all available two-armed rising bandit problem. For sufficiently large
1098 time T , any policy π suffers regret:*

$$1100 \min_{\pi} \max_{\mu \in \mathcal{I}'} \text{Reg}_{\mu}(\pi, T) \geq \frac{T}{16}, \quad (85)$$

1102 *Proof.* For simplicity, we consider the deterministic problem, that is, $\sigma = 0$. Let $\text{Rew}_{\mu}(\pi, T)$ be
1103 the cumulative reward of policy π up to time T with respect to the problem instance μ . Define two
1104 problem μ^A and μ^B as follows:

$$1106 \mu_1^A(n) = \mu_1^B(n) = \frac{1}{2}$$

$$1108 \mu_2^A(n) = \begin{cases} \frac{3n}{2T} & \text{if } n \leq \frac{2T}{3} \\ 1 & \text{otherwise} \end{cases}$$

$$1110 \mu_2^B(n) = \begin{cases} \frac{3n}{2T} & \text{if } n \leq \frac{T}{3} \\ \frac{1}{2} & \text{otherwise} \end{cases}.$$

1127 In this setting, we define \mathcal{S} as follows:

$$1129 \mathcal{S} = \{S_1, S_2\}. \quad (86)$$

1130 The main idea of the proof is that for any arbitrary policy π' , the policy receives the same rewards for
1131 both μ^A and μ^B at least until $\frac{T}{3}$, indicating that:

$$1132 \text{Rew}_{\mu^A} \left(\pi', \frac{T}{3} \right) = \text{Rew}_{\mu^B} \left(\pi', \frac{T}{3} \right). \quad (87)$$

1134 Fix some arbitrary policy π and define M as follows:
 1135

$$1136 M := \mathbb{E}_{\mu^A, \pi}[N_{S_1, \frac{T}{3}}] = \mathbb{E}_{\mu^B, \pi}[N_{S_1, \frac{T}{3}}] \quad (88)$$

1137 We compute the cumulative regret of policy π in μ^A and μ^B .
 1138

1139 **Problem (A)** For μ^A , the optimal policy π_A^* selects S_2 for every time. The corresponding cumulative reward is given by:
 1140

$$1142 \quad 1143 \quad 1144 \quad \text{Rew}_{\mu^A}(\pi_A^*, T) = \sum_{n=1}^{\lceil \frac{2T}{3} \rceil} \frac{3n}{2T} + \frac{T}{3}. \quad (89)$$

1145 For the given policy π , the cumulative reward is upper bounded as follows:
 1146

$$1147 \quad \text{Rew}_{\mu^A}(\pi, T) = \frac{1}{2} \mathbb{E}_{\mu^A, \pi}[N_{S_1, T}] + \sum_{n=1}^{T - \mathbb{E}_{\mu^A, \pi}[N_{S_1, T}]} \mu_2^A(n) \quad (90)$$

$$1149 \quad 1150 \quad 1151 \quad \leq \frac{M}{2} + \sum_{n=1}^{T-M} \mu_2^A(n) \quad (91)$$

$$1152 \quad 1153 \quad 1154 \quad = \frac{M}{2} + \sum_{n=1}^{\lceil \frac{2T}{3} \rceil} \frac{3n}{2T} + \left(\frac{T}{3} - M \right) \quad (92)$$

$$1155 \quad 1156 \quad 1157 \quad = \sum_{n=1}^{\lceil \frac{2T}{3} \rceil} \frac{3n}{2T} + \frac{T}{3} - \frac{M}{2}, \quad (93)$$

1158 where equation 91 holds since the cumulative reward is maximized as $\mathbb{E}_{\mu^A, \pi}[N_{S_1, T}]$ minimized and
 1159 it is guaranteed that $\mathbb{E}_{\mu^A, \pi}[N_{S_1, T}] \geq \mathbb{E}_{\mu^A, \pi}[N_{S_1, \frac{T}{3}}] = M$.
 1160

1161 The cumulative regret is lower bounded by:
 1162

$$1163 \quad \text{Reg}_{\mu^A}(\pi, T) \geq \sum_{n=1}^{\lceil \frac{2T}{3} \rceil} \frac{3n}{2T} + \frac{T}{3} - \left(\sum_{n=1}^{\lceil \frac{2T}{3} \rceil} \frac{3n}{2T} + \frac{T}{3} - \frac{M}{2} \right) \quad (94)$$

$$1166 \quad 1167 \quad = \frac{M}{2}. \quad (95)$$

1168 **Problem (B)** For μ^B , the optimal policy π_B^* is selecting S_1 , for every time. The corresponding
 1169 cumulative reward is given by:
 1170

$$1171 \quad 1172 \quad \text{Rew}_{\mu^B}(\pi_B^*, T) = \frac{T}{2}. \quad (96)$$

1173 For the given policy π , the cumulative reward is upper bounded as follows:
 1174

$$1175 \quad 1176 \quad 1177 \quad \text{Rew}_{\mu^B}(\pi, T) = \frac{1}{2} \mathbb{E}_{\mu^B, \pi}[N_{S_1, T}] + \sum_{n=1}^{T - \mathbb{E}_{\mu^B, \pi}[N_{S_1, T}]} \mu_2^B(n) \quad (97)$$

$$1178 \quad 1179 \quad 1180 \quad \leq \frac{(\frac{2T}{3} + M)}{2} + \sum_{n=1}^{\lceil \frac{T}{3} - M \rceil} \mu_2^B(n) \quad (98)$$

$$1181 \quad 1182 \quad 1183 \quad = \sum_{n=1}^{\lceil \frac{T}{3} - M \rceil} \frac{3n}{2T} + \frac{T}{3} + \frac{M}{2} \quad (99)$$

$$1184 \quad 1185 \quad 1186 \quad = \frac{3}{4T} \left(\frac{T}{3} - M \right) \left(\frac{T}{3} - M + 1 \right) + \frac{T}{3} + \frac{M}{2} \quad (100)$$

$$1187 \quad = \frac{3M^2}{4T} - \frac{3M}{4T} + \frac{5T}{12} + \frac{1}{4}, \quad (101)$$

1188 where equation 91 holds since the cumulative reward is maximized as $\mathbb{E}_{\mu_B, \pi}[N_{S_1, T}]$ maximized and
 1189 it is guaranteed that $\mathbb{E}_{\mu_B, \pi}[N_{S_1, T}] \leq \frac{2T}{3} + \mathbb{E}_{\mu_B, \pi}[N_{S_1, \frac{T}{3}}] = \frac{2T}{3} + M$.
 1190

1191 The cumulative regret is lower bounded by:

$$1192 \quad \text{Reg}_{\mu^B}(\pi, T) \geq \frac{T}{2} - \left(\frac{3M^2}{4T} - \frac{3M}{4T} + \frac{5T}{12} + \frac{1}{4} \right) \quad (102)$$

$$1193 \quad = -\frac{3M^2}{4T} + \frac{3M}{4T} + \frac{T}{12} - \frac{1}{4} \quad (103)$$

$$1194 \quad \geq -\frac{3M^2}{4T} + \frac{3M}{4T} + \frac{T}{16}, \quad (104)$$

1195 where equation 104 holds since we assume sufficiently large T .
 1196

1197 From previous results, the worst-case regret can be lower bounded as follows:
 1198

$$1199 \quad \inf_{\pi} \sup_{\mu} \text{Reg}_{\mu}(\pi, T) \geq \inf_{\pi} \max \{ \text{Reg}_{\mu^A}(\pi, T), \text{Reg}_{\mu^B}(\pi, T) \} \quad (105)$$

$$1200 \quad = \inf_{M \in [0, \frac{T}{3}]} \max \left\{ \frac{M}{2}, -\frac{3M^2}{4T} + \frac{3M}{4T} + \frac{T}{16} \right\} \quad (106)$$

$$1201 \quad \geq \inf_{M \in [0, \frac{T}{3}]} \frac{-12M^2 + (8T + 12)M + T^2}{16T} \quad (107)$$

$$1202 \quad \geq \frac{T}{16}, \quad (108)$$

1203 where equation 107 holds since $\max(a, b) \geq \frac{a+b}{2}$ and equation 108 holds since it is easily verified
 1204 that equation 107 is minimized when $M = 0$, which completes the proof. \square
 1205

1206 Now, we expand Lemma 3 to general combinatorial setting. Let L be an arbitrary constant. We define
 1207 two problem $\mu^{A,L}$ and $\mu^{B,L}$ construct super arm set \mathcal{S}_L as follows:
 1208

$$1209 \quad \mu_i^{A,L}(n) = \mu_i^{B,L}(n) = \frac{1}{2} \quad i \in [1, L] \quad (109)$$

$$1210 \quad \mu_i^{A,L}(n) = \begin{cases} \frac{3n}{2T} & \text{if } n \leq \frac{2T}{3} \\ 1 & \text{otherwise} \end{cases} \quad i \in [L+1, 2L] \quad (110)$$

$$1211 \quad \mu_i^{B,L}(n) = \begin{cases} \frac{3n}{2T} & \text{if } n \leq \frac{T}{3} \\ \frac{1}{2} & \text{otherwise} \end{cases} \quad i \in [L+1, 2L] \quad (111)$$

$$1212 \quad \mathcal{S}_L := \{(a_1, a_2, \dots, a_L) : a_i \in \{i, L+i\} \quad i \in [L]\}. \quad (112)$$

1213 Since it can be interpreted as solving L independent problems, we have:
 1214

$$1215 \quad \inf_{\pi} \sup_{\mu} \text{Reg}_{\mu}(\pi, T) \geq \frac{LT}{16}. \quad (113)$$

1216 \square

1217 C.5 PROOF OF THEOREM 5

1218 *Proof.* We apply similar logic given in the Appendix C.4 to show that for the worst-case lower bound
 1219 is $\Omega(\max\{L\sqrt{T}, LT^{2-c}\})$. Firstly, we consider non-combinatorial case.
 1220

1221 **Lemma 4.** *Let \mathcal{A}'_c be the subset of two-armed rising bandit problem with constraints given in
 1222 equation 14. For sufficiently large time T , any policy π suffers regret:*

$$1223 \quad \min_{\pi} \max_{\mu \in \mathcal{A}'_c} \text{Reg}_{\mu}(\pi, T) \geq LT^{2-c}, \quad (114)$$

1242 *Proof.* For convention, we define $\mu(m)$ and $F(m)$ as follows:
1243

$$1244 \quad \mu(m) := \sum_{n=1}^m (n+1)^{-c} \quad (115)$$

$$1245 \quad F(m) := \sum_{n=1}^m \mu(n) . \quad (116)$$

1246 Let μ^A and μ^B be two rising bandit instances, which are defined as:
1247

$$1248 \quad \mu_1^A(n) = \mu_2^B(n) = \mu(P) - \varepsilon \quad (117)$$

$$1249 \quad \mu_2^A(n) = \mu(n) ; \quad (118)$$

$$1250 \quad \mu_2^B(n) = \begin{cases} \mu(n) & \text{if } n \leq P \\ \mu(P) & \text{otherwise} \end{cases} , \quad (119)$$

1251 where $P = (2 - c)^{\frac{1}{c-1}} T$ and $0 < \varepsilon < \mu(P)$ will be specified later. In this setting, we define \mathcal{S} as
1252 follows:
1253

$$1254 \quad \mathcal{S} = \{S_1, S_2\} , \quad (120)$$

1255 where $S_1 = \{1\}$ and $S_2 = \{2\}$. Similar to Theorem 4, we define:
1256

$$1257 \quad M := \mathbb{E}_{\mu^A, \pi}[N_{S_1, P}] = \mathbb{E}_{\mu^B, \pi}[N_{S_1, P}] \quad (121)$$

1258 We note that μ^A and μ^B belongs to \mathcal{A}'_c . We firstly assume that the optimal super arm for μ^A is S_2
1259 and the optimal super arm for μ^B is S_1 . We will show that it is true after ε is specified.
1260

1261 The main idea of the proof is that for any arbitrary policy π' , the agent receives the same rewards for
1262 both μ^A and μ^B at least until P , indicating that:
1263

$$1264 \quad \text{Rew}_{\mu^A}(\pi', P) = \text{Rew}_{\mu^B}(\pi', P) . \quad (122)$$

1265 **Problem (A)** For μ^A , the optimal policy π_A^* is selecting S_2 , for every time. The corresponding
1266 cumulative reward is given by:
1267

$$1268 \quad \text{Rew}_{\mu^A}(\pi_A^*, T) = F(T) . \quad (123)$$

1269 For the given policy π , the cumulative reward is upper bounded as follows:
1270

$$1271 \quad \text{Rew}_{\mu^A}(\pi, T) = (\mu(P) - \varepsilon) \mathbb{E}_{\mu^A, \pi}[N_{S_1, T}] + \sum_{n=1}^{T - \mathbb{E}_{\mu^A, \pi}[N_{S_1, T}]} \mu_2^A(n) \quad (124)$$

$$1272 \quad \leq (\mu(P) - \varepsilon) M + F(T - M), \quad (125)$$

1273 where equation 125 holds since the cumulative reward is maximized as $\mathbb{E}_{\mu^A, \pi}[N_{S_1, T}]$ minimized
1274 and it is guaranteed that $\mathbb{E}_{\mu^A, \pi}[N_{S_1, T}] \geq \mathbb{E}_{\mu^A, \pi}[N_{S_1, P}]$.
1275

1276 With The cumulative regret is lower bounded by:
1277

$$1278 \quad \text{Reg}_{\mu^A}(\pi, T) \geq F(T) - (\mu(P) - \varepsilon) M - F(T - M) . \quad (126)$$

1296 **Problem (B)** For μ^B , the optimal policy π_B^* is selecting S_1 , for every time. The corresponding
 1297 cumulative reward is given by:

$$1298 \quad \text{Rew}_{\mu^B}(\pi_B^*, T) = T(\mu(P) - \varepsilon) . \quad (127)$$

1300 For the given policy π , the cumulative reward is upper bounded as follows:

$$1301 \quad \text{Rew}_{\mu^B}(\pi, T) = (\mu(P) - \varepsilon) \mathbb{E}_{\mu^B, \pi}[N_{S_1, T}] + \sum_{n=1}^{T - \mathbb{E}_{\mu^B, \pi}[N_{S_1, T}]} \mu_2^B(n) \quad (128)$$

$$1304 \quad \leq (\mu(P) - \varepsilon)(T - P + M) + \sum_{n=1}^{P-M} \mu_2^B(n) \quad (129)$$

$$1307 \quad = (\mu(P) - \varepsilon)(T - P + M) + F(P - M) , \quad (130)$$

1308 where equation 129 holds since the cumulative reward is maximized as $\mathbb{E}_{\mu^B, \pi}[N_{S_1, T}]$ maximized
 1309 and it is guaranteed that $\mathbb{E}_{\mu^B, \pi}[N_{S_1, T}] \leq T - P + \mathbb{E}_{\mu^B, \pi}[N_{S_1, P}] = T - P + M$.

1310 The cumulative regret is lower bounded by:

$$1311 \quad \text{Reg}_{\mu^B}(\pi, T) \geq (\mu(P) - \varepsilon)T - (\mu(P) - \varepsilon)(T - P + M) - F(P - M) \quad (131)$$

$$1313 \quad = (\mu(P) - \varepsilon)(P - M) - F(P - M) . \quad (132)$$

1315 From previous results, the worst-case regret can be lower bounded as follows:

$$1316 \quad \inf_{\pi} \sup_{\mu} \text{Reg}_{\mu}(\pi, T) \quad (133)$$

$$1318 \quad \geq \inf_{\pi} \max \{ \text{Reg}_{\mu^A}(\pi, T), \text{Reg}_{\mu^B}(\pi, T) \} \quad (134)$$

$$1319 \quad = \inf_{M \in [0, P]} \max \{ F(T) - (\mu(P) - \varepsilon)M - F(T - M), (\mu(P) - \varepsilon)(P - M) - F(P - M) \} \quad (135)$$

$$1321 \quad \geq \inf_{M \in [0, P]} \frac{F(T) - F(T - M) - F(P - M) + (\mu(P) - \varepsilon)(P - 2M)}{2} , \quad (136)$$

1323 where equation 136 holds since $\max(a, b) \geq \frac{a+b}{2}$. We observe that equation 136 is unimodal over
 1324 P , which means that it increases to a maximum value and then decreases. More precisely, let
 1325 $A(n) := F(T) - F(T - n) - F(P - n) + (\mu(P) - \varepsilon)(P - 2n)$. Then, we have:

$$1327 \quad A(n+1) - A(n) = F(T - n) - F(T - n + 1) + F(P - n) - F(P - n + 1) - 2(\mu(P) - \varepsilon) \quad (137)$$

$$1329 \quad = \mu(T - n + 1) + \mu(P - n + 1) - 2(\mu(P) - \varepsilon) , \quad (138)$$

1330 which means that $A(n)$ is concave, which means that $A(n)$ is unimodal. It implies that:

$$1331 \quad \inf_{M \in [0, P]} \left(\frac{F(T) - F(T - M) - F(P - M) + (\mu(P) - \varepsilon)(P - 2M)}{2} \right) \quad (139)$$

$$1334 \quad \geq \min \left\{ \frac{(\mu(P) - \varepsilon)P - F(P)}{2}, \frac{F(T) - F(T - P) - (\mu(P) - \varepsilon)P}{2} \right\} . \quad (140)$$

1336 equation 140 consists of two terms: the first term is obtained by setting $M = 0$ and the second term
 1337 is obtained by setting $M = P$.

1338 To calculate two terms, we use the property of monotone functions.

1339 **Proposition 1.** If a and b are integers with $a < b$ and f is some real-valued function monotone on
 1340 $[a, b]$, we have:

$$1342 \quad \min\{f(a), f(b)\} \leq \sum_{n=a}^b f(n) - \int_a^b f(t) dt \leq \max\{f(a), f(b)\} . \quad (141)$$

1345 Proposition 1 indicates that we can bound $\mu(n)$ and $F(n)$ as follows:

$$1347 \quad \mu(n) \leq \int_{x=1}^n (x+1)^{-c} dx + 2^{-c} \quad (142)$$

$$1349 \quad = \frac{1}{c-1} (2^{1-c} - (n+1)^{1-c}) + 2^{-c} . \quad (143)$$

1350 For simplicity, we denote $(2 - c)^{\frac{1}{c-1}}$ by a so that $P = aT$. Then, we have:

$$1351 \quad (\mu(P) - \varepsilon)P - F(P) \quad (144)$$

$$1352 \quad = P \sum_{n=1}^P (n+1)^{-c} - P\varepsilon - \sum_{n=1}^P (P+1-n)(n+1)^{-c} \quad (145)$$

$$1353 \quad = \sum_{n=1}^P (n-1)(n+1)^{-c} - P\varepsilon \quad (146)$$

$$1354 \quad \geq P^{2-c} - P\varepsilon \quad (147)$$

$$1355 \quad = (aT)^{2-c} - (aT)\varepsilon. \quad (148)$$

1356 Similarly, we have:

$$1357 \quad F(T) - F(T-P) - (\mu(P) - \varepsilon)P \quad (149)$$

$$1358 \quad = \sum_{n=1}^T (T+1-n)(n+1)^{-c} - \sum_{n=1}^{T-P} (T-P+1-n)(n+1)^{-c} - (\mu(P) - \varepsilon)P \quad (150)$$

$$1359 \quad = \sum_{n=T-P+1}^T (T+1-n)(n+1)^{-c} + \sum_{n=1}^{T-P} P(n+1)^{-c} - (\mu(P) - \varepsilon)P \quad (151)$$

$$1360 \quad \geq P(T+1)^{-c} + (T-P)P(T+P-1)^{-c} - (\mu(P) - \varepsilon)P \quad (152)$$

$$1361 \quad = aT(T+1)^{-c} + (T-aT)aT(T+aT-1)^{-c} - \left(\frac{2^{1-c}}{c-1} - \frac{(aT+1)^{1-c}}{c-1} + 2^{-c} - \varepsilon \right) aT \quad (153)$$

$$1362 \quad = c_2 T^{2-c} + o(T^{2-c}) + \varepsilon aT, \quad (154)$$

1363 where Now, we define ε so that equation 148 equals equation 154:

$$1364 \quad 2aT\varepsilon = (c_2 + a^{2-c})T^{2-c} + o(T^{2-c}) \quad (155)$$

1365 Then, by substituting ε to equation 148 and equation 154, we have:

$$1366 \quad \text{Reg}_{\mu}(\pi, T) \geq \Omega(T^{2-c}). \quad (156)$$

1367 \square

1368 Now, we expand Lemma 4 to general combinatorial setting. Let L be an arbitrary constant. As before, we define two problem $\mu^{A,L}$ and $\mu^{B,L}$ construct super arm set \mathcal{S}_L as follows:

$$1369 \quad \mu_i^{A,L}(n) = \mu_i^{B,L}(n) = \mu(P) - \varepsilon, \quad i \in [L], \quad (157)$$

$$1370 \quad \mu_i^{A,L}(n) = \mu(n), \quad i \in [L+1, 2L], \quad (158)$$

$$1371 \quad \mu_i^{B,L}(n) = \begin{cases} \mu(n) & \text{if } n \leq P \\ \mu(P) & \text{otherwise} \end{cases} \quad i \in [L+1, 2L], \quad (159)$$

$$1372 \quad \mathcal{S}_L := \{(a_1, a_2, \dots, a_L) : a_i \in \{i, L+i\} \quad i \in [L]\}. \quad (160)$$

1373 Due to same reason in Appendix C.4 we have:

$$1374 \quad \inf_{\pi} \sup_{\mu \in \mathcal{A}_c} \text{Reg}_{\mu}(\pi, T) \geq \Omega(LT^{2-c}). \quad (161)$$

1375 Now, we note that any stationary bandit problem is included in \mathcal{A}_c , since $\gamma_i(n) = 0$ for all base arm $i \in [K]$. Previous literature has proven that for stationary bandit problem, the worst-case regret lower bound is $\Omega(\sqrt{KT})$ (Lattimore & Szepesvári, 2020). Similarly, we can extend this setting to combinatorial setting:

$$1376 \quad \inf_{\pi} \sup_{\mu \in \mathcal{A}_c} \text{Reg}_{\mu}(\pi, T) \geq \Omega(L\sqrt{T}). \quad (162)$$

1377 Combining these results, we conclude:

$$1378 \quad \min_{\pi} \max_{\mu \in \mathcal{A}_c} \text{Reg}_{\mu}(\pi, T) \geq \Omega \left(\max \left\{ L\sqrt{T}, LT^{2-c} \right\} \right). \quad (163)$$

1379 \square

1404 D PSEUDOCODE AND DESCRIPTION OF BASELINES

1405
 1406 In Section 6, we have considered 5 baseline algorithms to evaluate CRUCB’s performance. Each al-
 1407 gorithm is carefully chosen to highlight different aspects of the bandit problem, such as rising rewards
 1408 and combinatorial settings. In this section, we provide the pseudocode and detailed descriptions for
 1409 each baseline algorithm.

1411 D.1 R-ED-UCB (METELLI ET AL., 2022)

1412
 1413 R-ed-UCB is a rising bandit algorithm that employs a sliding-window approach combined with
 1414 UCB-based optimistic reward estimation algorithm, specifically designed for rising rewards. While
 1415 it shares the core estimation method ($\hat{\mu}_i(t)$) with CRUCB, R-ed-UCB applies this method directly
 1416 to super arms and selects the maximum one, rather than applying it to base arms and solving the
 1417 combinatorial problem as in CRUCB. R-ed-UCB would be less effective in complex environments
 1418 where the number of super arms significantly exceeds the number of base arms, as it does not benefit
 1419 from the shared exploration of common base arms, leading to reduced exploration efficiency.

1420 **Algorithm 2** Rested UCB (R-ed-UCB)

1421
 1422 **Input** $N_{i,0} \leftarrow 0$ for all $i \in [|\mathcal{S}|]$, Sliding window parameter ε .
 1423 **Initialize** Play each super arm S_i two times for each $i \in [|\mathcal{S}|]$.
 1424 **for** $t \in (1, \dots, T)$ **do**
 1425 Calculate Future-UCB $\hat{\mu}_i(t)$ for each super arm.
 1426 $S_t \leftarrow \text{Solver}(\hat{\mu}_1(t), \hat{\mu}_2(t), \dots, \hat{\mu}_{|\mathcal{S}|}(t))$.
 1427 Play S_t and observe reward R_t .
 1428 Update \mathcal{F}_t and $N_{i,t}$.
 1429 **end for**

1431 D.2 SW-UCB (GARIVIER & MOULINES, 2011)

1432
 1433 SW-UCB is a non-stationary bandit algorithm that uses a sliding-window approach with UCB
 1434 algorithm. It estimates the reward of each super arm and confidence bounds using the following
 1435 expressions:

1436
 1437
$$\hat{\mu}_i^{\text{SW-UCB}}(t) := \frac{1}{h} \sum_{l=N_{i,t-1}-h+1}^{N_{i,t-1}} X_i(l) \quad (164)$$

1438
 1439
$$\beta_i^{\text{SW-UCB}}(t) := \sqrt{\frac{3 \log t}{2N_{i,t-1}}} \quad (165)$$

1440
 1441
$$\hat{\mu}_i^{\text{SW-UCB}}(t) := \hat{\mu}_i^{\text{SW-UCB}}(t) + \beta_i^{\text{SW-UCB}}(t) . \quad (166)$$

1442
 1443 While the SW-UCB algorithm is similar to R-ed-UCB, it differs slightly in the values it estimates.
 1444 Additionally, SW-UCB uses a fixed sliding window size, in contrast to the dynamic sliding window
 1445 size employed by R-ed-UCB. Similar to R-ed-UCB, SW-UCB would be less effective in complex
 1446 environments.

1448 **Algorithm 3** Sliding Window-UCB (SW-UCB)

1449
 1450 **Input** $N_{i,0} \leftarrow 0$ for all $i \in [|\mathcal{S}|]$, Sliding window size h .
 1451 **Initialize** Play each super arm S_i two times for each $i \in [|\mathcal{S}|]$.
 1452 **for** $t \in (1, \dots, T)$ **do**
 1453 For each super arm S_i , set $\hat{\mu}_i^{\text{SW-UCB}}(t) = \hat{\mu}_i^{\text{SW-UCB}}(t) + \beta_i^{\text{SW-UCB}}(t)$.
 1454 $S_t \leftarrow \arg \max(\hat{\mu}_1^{\text{SW-UCB}}(t), \hat{\mu}_2^{\text{SW-UCB}}(t), \dots, \hat{\mu}_{|\mathcal{S}|}^{\text{SW-UCB}}(t))$.
 1455 Play S_t and observe reward $X_{S_t}(t)$.
 1456 Update $\hat{\mu}_i^{\text{SW-UCB}}(t)$ and $N_{i,t}$.
 1457 **end for**

1458 D.3 SW-CUCB (CHEN ET AL., 2021)
1459

1460 SW-CUCB is a non-stationary combinatorial bandit algorithm that uses a sliding-window approach
 1461 with UCB algorithm for combinatorial setting. It estimates the values $\hat{\mu}_i^{\text{SW-CUCB}}(t)$ and $\beta_i^{\text{SW-CUCB}}(t)$,
 1462 which are nearly identical to those used in SW-UCB but specifically adapted for base arms. SW-CUCB
 1463 then utilizes Solver to address the combinatorial problem.

1464

1465 **Algorithm 4** Sliding Window-Combinatorial UCB (SW-CUCB)

1466 **Input** $N_{i,0} \leftarrow 0$ for all $i \in [K]$, Sliding window size h .
 1467 **Initialize** Play arbitrary super arm including base arm i two times for each $i \in [K]$.
 1468 **for** $t \in (1, \dots, T)$ **do**
 1469 For each base arm i , set $\hat{\mu}_i^{\text{SW-CUCB}}(t) = \hat{\mu}_i^{\text{SW-CUCB}}(t) + \beta_i^{\text{SW-CUCB}}(t)$.
 1470 $S_t \leftarrow \text{Solver}(\hat{\mu}_1^{\text{SW-CUCB}}(t), \hat{\mu}_2^{\text{SW-CUCB}}(t), \dots, \hat{\mu}_K^{\text{SW-CUCB}}(t))$.
 1471 Play S_t and observe reward $X_{S_t}(t)$.
 1472 Update $\hat{\mu}_i^{\text{SW-CUCB}}(t)$ and $N_{i,t}$.
 1473 **end for**

1474

1475 D.4 SW-TS (TROVO ET AL., 2020)
1476

1477 SW-TS is a non-stationary bandit algorithm that uses a sliding-window approach with Thompson
 1478 Sampling. Since outcomes are bounded, the algorithm updates the parameters by adds $X_{S_t}(t)$ to
 1479 α and $1 - X_{S_t}(t)$ to β based on the observed output $X_{S_t}(t)$. SW-TS also utilizes a fixed sliding
 1480 window size similar to SW-UCB. Similar to R-ed-UCB and SW-UCB, SW-TS also operates directly
 1481 on super arms, it may suffer from reduced exploration efficiency in complex environments.

1482

1483 **Algorithm 5** Sliding Window Thompson Sampling (SW-TS)

1484 **Input** Sliding window size h .
 1485 **Initialize** Play each super arm S_i two times for each $i \in [|\mathcal{S}|]$.
 1486 **for** $t \in (1, \dots, T)$ **do**
 1487 For each super arm S_i , set $\theta_i(t) \sim \text{Beta}(\alpha_i + 1, \beta_i + 1)$.
 1488 $S_t \leftarrow \arg \max(\theta_1(t), \theta_2(t), \dots, \theta_K(t))$.
 1489 Play S_t and observe reward $X_{S_t}(t)$.
 1490 Update α_i and β_i .
 1491 **end for**

1492

1493

1494 D.5 SW-CTS

1495 SW-CTS is a non-stationary combinatorial bandit algorithm that uses a sliding-window approach
 1496 with Thompson Sampling for combinatorial setting. While it operates similarly to SW-TS, the key
 1497 difference is that SW-CTS performs estimation at base arms then solves the combinatorial problem
 1498 using Solver.
 1499

1500

1501 **Algorithm 6** Sliding Window-Combinatorial Thompson Sampling (SW-CTS)

1502 **Input** Sliding window size h .
 1503 **Initialize** Play arbitrary super arm including base arm i two times for each $i \in [K]$.
 1504 **for** $t \in (1, \dots, T)$ **do**
 1505 For each base arm i , set $\theta_i(t) \sim \text{Beta}(\alpha_i + 1, \beta_i + 1)$.
 1506 $S_t \leftarrow \text{Solver}(\theta_1(t), \theta_2(t), \dots, \theta_K(t))$.
 1507 Play S_t and observe reward $X_{S_t}(t)$.
 1508 Update α_i and β_i .
 1509 **end for**

1510

1511

1512 **E EXPERIMENTAL DETAILS**
15131514 Table 1: **Overview of task specifications.** We summarizes the details of each task, including the
1515 number of base arms K , the number of super arms $|\mathcal{S}|$, and the maximal size of a super arm L .
1516

Environment	Experiment	difficulty	K	$ \mathcal{S} $	L
Synthetic environments (Section 6.1 & Appendix F)	Online shortest path	toy	3	2	2
		easy	12	6	4
	Maximum weighted matching	complex	60	252	10
		easy	8	12	2
	Minimum spanning tree	complex	28	840	4
		easy	6	8	3
	k -MAX	-	15	1296	5
Deep reinforcement learning (Section 6.2)	AntMaze-easy	-	7	3	5
	AntMaze-complex	-	48	178	15

1532 Table 2: **Hyperparameters for AntMaze Tasks.**
1533

	AntMaze-easy	AntMaze-complex
number of graph nodes	6	16
fail condition	100	100
maximum length of episode	500	1000
T	2000	3000
hidden layer	(256, 256)	(256, 256)
actor lr	0.0001	0.0001
critic lr	0.001	0.001
τ	0.005	0.005
γ	0.99	0.99
batch size	1024	1024

1546 In Section 6, we conduct experiments in two distinct environments: synthetic environments and deep
1547 reinforcement learning settings. This section provides a detailed description of each environment,
1548 including their design and hyperparameters. The specifications for each experiment are summarized
1549 in Table 1.
15501551 **E.1 SYNTHETIC ENVIRONMENTS**
15521553 In the synthetic environments, we have the flexibility to design reward functions by choosing arbitrary
1554 values. Here, we set $c = 1.2$, which lies in the range between 1 and 1.5. This choice is motivated by
1555 the theoretical reasoning discussed in Section 5. To be specific, $\gamma(n) = \left(\left[\frac{n}{1000} + 1\right] \cdot 1000 + 1\right)^{-1.2}$
1556 for $n < 20000$ and 0 for $n \geq 20000$ with $\sigma = 0.01$. In the simpler environments, we use
1557 $\gamma(n) = \left(\left[\frac{n}{250} + 1\right] \cdot 250 + 1\right)^{-1.2}$ for $n < 5000$ and 0 for $n \geq 5000$. As depicted in Figure 3,
1558 the regret upper bound for these environments is $O(T^{1/2})$, and the regret lower bound is $O(T^{0.8})$.
1559 Therefore, while the regret observed in Figure 5b appears nearly linear, which aligns with the
1560 theoretical bounds, it still demonstrates superior performance compared to other baseline algorithms.
15611562 **E.2 DEEP REINFORCEMENT LEARNING**
15631564 In the deep reinforcement learning environments, we conducted experiments using the AntMaze
1565 environment. AntMaze is a hierarchical goal conditioned reinforcement learning task where an ant
robot navigates to a predefined goal hierarchically. The ant robot in this environment has four legs,

1566 each with two joints, resulting in an action space that controls a total of eight joints. The reward
 1567 structure for the low-level agent is simple: the agent receives a reward of 0 when it reaches the goal
 1568 or comes within a certain distance of it, and a reward of -1 otherwise. Our experiments are carried out
 1569 in the scenario depicted in Figure 5, which shows the map and corresponding graph structure used.
 1570 To ensure consistent and repeated exploration over the fixed graph, we utilized a code based on the
 1571 algorithm described in (Yoon et al., 2024) without the adaptive grid refinement. The hyperparameters
 1572 used in these experiments are summarized in Table 2.

1573 In each experiment, the algorithm generates a path that the ant robot follows, receiving feedback
 1574 based on success or failure. For combinatorial methods, the agent does not persist with a single edge
 1575 until the episode ends; if the agent fails to reach the goal within 100 steps, the attempt is considered a
 1576 failure. In this case, the reward is set to 0, and the agent fails to attempt the next edge, which known
 1577 as the cascading bandit setting. If the agent successfully reaches the goal, the reward is proportional
 1578 to the efficiency, calculated as the number of steps taken divided by 100. For non-combinatorial
 1579 methods, the reward for success is determined by the number of steps taken divided by the maximum
 1580 length of the episode. We note that while the reward function of AntMaze is non-concave, as depicted
 1581 in Figure 6a, and cascading bandit setting, we confirmed that RCUCB performs well, as illustrated in
 1582 Figure 6.

1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619

1620 **F ADDITIONAL EXPERIMENTS**
 1621

1622 In this section, we present additional experiments to evaluate the performance of CRUCB in a broader
 1623 set of environments. Specifically, we test CRUCB on three representative combinatorial optimization
 1624 problems, k -MAX (Section F.1), maximum weighted matching (Section F.2), and minimum spanning
 1625 tree (Section F.3). These experiments demonstrate that CRUCB maintains strong performance across
 1626 diverse scenarios, further validating its robustness and adaptability.
 1627

1628 **F.1 k -MAX TASK**
 1629

1630 We investigate the k -MAX setting, where the reward is determined by the maximum value among
 1631 outcomes of the selected base arm. As shown in Theorem 1, the optimal policy for the k -MAX may
 1632 not always involve consistently pulling a single super arm. However, since the k -MAX satisfies the
 1633 additive-bounded reward assumption in Theorem 2 with $B_L = \frac{1}{\sqrt{k}}$, $B_U = 1$, we use an approximate
 1634 optimal constant policy (consistently pulling (1, 5)) to calculate regret.
 1635

1642 **Figure 9: k -MAX task.** (a) Reward functions ($c = 1.2$) for base arms 1–5, where $K = 5$ and $k = 2$.
 1643 (b) Regret curves for K -MAX. Lines show average; shaded areas indicate 99% confidence intervals
 1644 over 5 runs.

1645 The results, as shown in Figure 9b, demonstrate that CRUCB consistently outperforms other algo-
 1646 rithms. R-ed-UCB shows sub-optimal regret due to the *partially shared enhancement*. Notably,
 1647 we observe that among non-stationary algorithms, combinatorial algorithms (SW-CUCB, SW-CTS)
 1648 perform worse than non-combinatorial algorithms (SW-UCB, SW-TS). Non-combinatorial algorithms
 1649 select the early peaker (5) frequently while evenly exploring other edges. On the other hand, combi-
 1650 natorial algorithms select early peakers (4, 5), limiting exploration of late bloomers and preventing
 1651 them from fully rising their potential.
 1652

1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673

1674
1675

F.2 MAXIMUM WEIGHTED MATCHING

1676
1677
1678
1679
1680

We conduct experiments on maximum weighted matching task, a widely studied classic combinatorial optimization problem. In this task, we are given two disjoint sets of nodes, U and V , and the goal is to find a matching where each node $u_i \in U$ is paired with a unique node $v_j \in V$, ensuring no overlapping connections. The objective is to maximize the total reward by selecting the best set of edges between these nodes.

1681
1682
1683
1684
1685
1686
1687
1688
1689

(a) Matching-easy

(b) Outcome functions

(c) Matching-complex

(d) Outcome functions

1690
1691
1692

Figure 10: **Maximum weighted matching task.** (a, c) Graphs used to evaluate CRUCB and baselines. (b, d) Corresponding outcome functions for each task.

1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703

(a) Matching-easy

(b) Matching-complex

1704
1705
1706

Figure 11: **Cumulative regret in maximum weighted matching task.** Regret curves for (a) Matching-easy and (b) Matching-complex. Lines show average; shaded areas indicate 99% confidence intervals over 5 runs.

1707
1708
1709
1710

We use the same outcome function as in the online shortest path problem, shown in Figure 10b and d. The graph structures are depicted in Figure 10a and c. The regret results, shown in Figure 11, confirm that CRUCB outperforms the baseline algorithms in this task.

1711
1712
1713
1714
1715

The task is particularly relevant in settings like job matching, where each job can be matched to a worker, and the reward might increase over time as workers gain experience. This makes the problem a perfect fit for combinatorial bandit settings, where the rewards of certain matches (such as experienced workers with higher skill levels) rise as more interactions occur, highlighting the rising aspect of the task.

1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

1728 F.3 MINIMUM SPANNING TREE
1729

1730 We conduct experiments on minimum spanning tree task, a fundamental problem in combinatorial
1731 optimization, where the objective is to find a subset of edges that connect all nodes in a graph with
1732 the minimum total edge weight, ensuring no cycles. However, in our setting, we treat the weight of
1733 each edge as a 1-outcome, meaning we aim to maximize the total outcome, which is equivalent to
1734 minimizing the total edge weight.

1744 Figure 12: **Minimum spanning tree task.** (a, c) Graphs used to evaluate CRUCB and baselines. (b, d)
1745 Corresponding outcome functions for each task.

1757 Figure 13: **Cumulative regret in minimum spanning tree task.** Regret curves for (a) Spanning-easy
1758 and (b) Spanning-complex. Lines show average; shaded areas indicate 99% confidence intervals over
1759 5 runs.

1761 Similarly, we evaluate minimum spanning tree task with the same outcome function from Figure 12b
1762 and d, applied to the graph structures in Figure 12a and c. The regret results, presented in Figure 13,
1763 indicate that CRUCB consistently performs better than the baselines.

1764 This formulation is particularly relevant in practical applications such as network routing, where the
1765 objective is to establish efficient communication across a distributed system. Over time, as certain
1766 paths are used more frequently, the network can adapt and optimize its behavior: caches warm up,
1767 congestion reduces through load balancing, and routing protocols fine-tune their decisions. As a
1768 result, the effective cost of using the same edge decreases, which translates into a rising reward for
1769 that edge.

1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

1782 F.4 SENSITIVITY TO THE WINDOW SIZE PARAMETER
17831784 To evaluate the robustness of CRUCB to the choice of the window size hyperparameter ϵ , we
1785 conducted a sensitivity analysis in the Path-easy environment (described in Section 6.1). We compared
1786 the cumulative regret at different episode counts for ϵ values of 0.05, 0.125, 0.25, and 0.4.
17871788 Table 3: Cumulative regret at different episodes for various ϵ values in the Path-easy task.
1789

Regret	$\epsilon = 0.05$	$\epsilon = 0.125$	$\epsilon = 0.25$	$\epsilon = 0.4$
100K	8019.34	8020.53	8020.53	8019.64
200K	13715.91	13717.10	13717.10	13716.21
300K	19060.71	19061.90	19061.90	19061.01

1795 The results, summarized in the table below, show that the performance of CRUCB is remarkably
1796 stable across this wide range of values, indicating that our algorithm is not overly sensitive to this
1797 hyperparameter choice in practice.
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

1836 **G HEATMAPS IN ANTMAZE-COMPLEX**
1837

1838
1839 **Figure 14: Heatmap illustrating visit frequencies in AntMaze-complex.** We visualize the visit
1840 frequencies for the optimal policy, CRUCB, and baseline algorithms. The heatmap includes three
1841 rows representing visit frequencies until episode numbers 100, 500, and 3000.
1842
1843

1844 In Figure 14, we provide a more comprehensive view by illustrating the exploration patterns across
1845 all baseline algorithms at various stages. The optimal policy, which follows the oracle constant policy,
1846 only explores the optimal path from the start to the goal, resulting in highly focused exploration along
1847 this path, as depicted in Figure 14a. In Figure 14b, CRUCB exhibits exploration patterns most similar
1848 to the optimal policy compared to other baselines, demonstrating its efficiency in targeting the goal
1849 effectively. Among the baselines, SW-CTS notably aligns most closely with the optimal policy in the
1850 exploration patterns and is the only algorithm to show a significant difference in regret compared to
1851 the others, as seen in Figure 6c. In comparison, algorithms not specifically designed for combinatorial
1852 settings, such as R-ed-UCB, SW-UCB, and SW-TS, suffer from less efficient exploration. Their
1853 exploration resembles a breadth-first search pattern, as they must explore a broader range of super
1854 arms despite having a given goal.
1855

1856 In Figure 15 and Figure 16, we further analyze the exploration behaviors of each algorithm by
1857 visualizing their try frequencies at both the path and edge levels. The optimal policy concentrates its
1858 tries exclusively along the shortest path, resulting in highly localized activity in both visualizations.
1859 CRUCB exhibits exploration patterns that closely resemble those of the optimal policy, maintaining
1860 focused and structured exploration throughout. Notably, AntMaze-complex includes 178 possible
1861 paths, which makes exhaustive exploration highly time-consuming. As illustrated in Figure 15,
1862 non-combinatorial algorithms struggle with this complexity: by episode 100, some paths remain
1863 untried, and even by episode 3000, their exploration remains broadly distributed and unguided,
1864 indicating inefficient use of the exploration budget.
1865

1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

1910
1911 **Figure 15: Heatmap illustrating the path-level try frequencies in AntMaze-complex.** We visualize
1912 the path-level try frequencies for the optimal policy, CRUCB, and baseline algorithms. The heatmap
1913 includes three rows representing the path-level try frequencies until episode numbers 100, 500, and
1914 3000.

1937
1938 **Figure 16: Heatmap illustrating the edge-level try frequencies in AntMaze-complex.** We visualize
1939 the edge-level try frequencies for the optimal policy, CRUCB, and baseline algorithms. The heatmap
1940 includes three rows representing the edge-level try frequencies until episode numbers 100, 500, and
1941 3000.

H THE USE OF LARGE LANGUAGE MODELS (LLMs)

In the preparation of this manuscript, we utilized a large language model (LLM) as a writing assistant to aid in polishing the text. The LLM’s role was limited to refining phrasing and grammar in author-written drafts, suggesting alternative sentence structures to improve clarity, and helping maintain a consistent academic tone. All technical contributions, theoretical results, experimental designs, and final claims were conceived and developed solely by the human authors. The authors thoroughly reviewed and edited the manuscript and take full responsibility for all content presented in this paper.

1944
1945

1946
1947
1948
1949
1950
1951

1952
1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997