
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

COMBINATORIAL RISING BANDITS

Anonymous authors
Paper under double-blind review

ABSTRACT

Combinatorial online learning is a fundamental task for selecting the optimal ac-
tion (or super arm) as a combination of base arms in sequential interactions with
systems providing stochastic rewards. It is applicable to diverse domains such as
robotics, social advertising, network routing, and recommendation systems. In
many real-world scenarios, we often encounter rising rewards, where playing a
base arm not only provides an instantaneous reward but also contributes to the
enhancement of future rewards, e.g., robots improving through practice and social
influence strengthening in the history of successful recommendations. Crucially,
these enhancements may propagate to multiple super arms that share the same base
arms, introducing dependencies beyond the scope of existing bandit models. To
address this gap, we introduce the Combinatorial Rising Bandit (CRB) framework
and propose a provably efficient and empirically effective algorithm, Combinato-
rial Rising Upper Confidence Bound (CRUCB). We empirically demonstrate the
effectiveness of CRUCB in realistic deep reinforcement learning environments and
synthetic settings, while our theoretical analysis establishes tight regret bounds.
Together, they underscore the practical impact and theoretical rigor of our approach.

1 INTRODUCTION

Combinatorial online learning studies how to select an optimal action (super arm) composed of
multiple sub-actions (base arms). This formulation captures the structure of many practical decision-
making problems, including robotics (Xu et al., 2025; Wakayama & Ahmed, 2024), social advertising
(Ge et al., 2025), automatic machine learning (Huang et al., 2021), network routing (Lagos et al.,
2025), and recommendation systems (Atalar & Joe-Wong, 2025; Zhu & Van Roy, 2023).

However, previous studies of combinatorial online learning have largely neglected the presence of
a rising reward nature in practice, where pulling a base arm not only yields an immediate reward
but also enhances future rewards. For example, in robotic planning, hierarchical approaches tackle
complex tasks by decomposing them into low-level skills, such as grasping and lifting, which act as
sub-actions, while the full sequence of these skills constitutes an action. As these low-level skills are
reused across different plans, their performance improves (Jansonnie et al., 2024; Mao et al., 2025),
reflecting the rising reward nature. Additional real-world scenarios are presented in Appendix A.

A complementary line of work studies rising bandits, where the expected reward of an arm enhances
each time the arm is pulled (Fiandri et al., 2024a; Genalti et al., 2024; Heidari et al., 2016; Metelli
et al., 2022). However, these studies consider only non-combinatorial settings and, therefore, ignore
the structural dependencies that arise when different super arms share base arms. Such overlap
couples reward dynamics and makes the problem substantially more complex: while repeatedly
pulling a single arm is optimal in the non-combinatorial setting (Heidari et al., 2016), characterizing
an optimal policy in the combinatorial regime is far more intricate. A detailed comparison with
existing rising bandit formulations is provided in Appendix B.

To model such scenarios, we propose the Combinatorial Rising Bandit (CRB) framework. In this
framework, (i) the policy selects a super arm (a set of base arms), and (ii) the outcome of each base
arm follows a (rested) rising nature such that the expected outcome of a base arm increases after
pulling it as part of the selected super arm. We emphasize that CRB addresses a unique problem that
combinatorial bandits (Chen et al., 2013) and rising bandits (Heidari et al., 2016; Metelli et al., 2022)
cannot address. While individual base arms behave like rising bandits, super arms do not: shared
base arms create dependencies across super arms, leading to partially shared enhancement. Figure 1
shows an illustrative example. As depicted in Figure 1d, our proposed algorithm, CRUCB, rapidly

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑠𝑠

𝑣𝑣

𝑔𝑔

(a) Toy graph

0 10K 20K 30K
number of pulls

0
0.2
0.4
0.6
0.8
1.0

ou
tc

om
e

shared edge
early peaker
late bloomer

(b) Outcome functions

0 250K 500K
episode number

0
1
2
3
4

re
gr

et

x104

CRUCB (Ours)
SW-CUCB
R-ed-UCB

(c) Cumulative regret

0 250K 500K
episode number

0
1
2
3
4

nu
m

be
r o

f p
ul

ls

x105

early peaker
late bloomer
CRUCB (Ours)
SW-CUCB
R-ed-UCB

(d) Empirical number of pulls

Figure 1: Toy example for online shortest path planning. (a) Graph: two paths from s to g, an early
peaker path ({shared edge, early peaker}) and a late-bloomer path ({shared edge, late bloomer}). (b)
Outcome functions: a shared edge rises slowly; early peaker starts high but flattens; a late bloomer
starts low but rises quickly, eventually surpassing the early peaker, so the late bloomer path is optimal
for long horizon T . The reward is the sum of the outcomes of the base arms. (c) Cumulative regret
under three algorithms: CRUCB (ours); SW-CUCB (Chen et al., 2021) (combinatorial bandits); R-
ed-UCB (Metelli et al., 2022) (rested rising bandits). CRUCB becomes nearly flat, while SW-CUCB
and R-ed-UCB accumulate linear regret. (d) Empirical number of pulls of each edge: CRUCB pulls
entirely the late bloomer, SW-CUCB the early peaker, and R-ed-UCB splits pulls roughly evenly.

converges to selecting the late bloomer path, whereas SW-CUCB (Chen et al., 2021), a combinatorial
bandit algorithm, consistently selects the early peaker path due to its inability to account for the rising
nature. R-ed-UCB (Metelli et al., 2022), a rising bandit algorithm that ignores the combinatorial
structure, splits pulls between both paths because it incorrectly interprets cumulative increments
from repeatedly pulling the shared arm as immediate growth, causing it to hallucinate ongoing
potential in the early peaker path. This partially shared enhancement distinguishes CRB from prior
formulations, introducing fundamentally new challenges. Indeed, this difference also leads to a
different characterization of optimality in CRB.

To address the challenges introduced by the partially shared enhancement in CRB, we propose
Combinatorial Rising UCB (CRUCB), a provably efficient algorithm. CRUCB employs a Future-
UCB index that optimistically estimates the future outcome of each base arm by combining its
recent mean, slope, and uncertainty term, and then solves a combinatorial optimization problem
using these estimates of future rewards to select the super arm. On the theoretical side, we derive a
regret upper bound for CRUCB and a regret lower bound for CRB, and show that these bounds are
close, demonstrating the near-optimal efficiency of our approach. On the empirical side, we conduct
extensive experiments comparing CRUCB with a set of baselines in both synthetic environments and
deep reinforcement learning tasks, training a neural agent for navigation. These results consistently
highlight the superiority of CRUCB and its ability to handle challenges that existing approaches
cannot. Therefore, our study positions CRUCB at the intersection of theory and practice: it not
only provides provable guarantees but also exposes the limitations of prior methods in realistic
environments and demonstrates how CRUCB effectively overcomes them.

Our main contributions are summarized as follows:

• We introduce the Combinatorial Rising Bandit (CRB) framework in Section 2 to formalize rising
reward dynamics in combinatorial settings. Furthermore, we analyze the structure of optimal
policies, highlighting that CRB differs from prior frameworks and makes the characterization of
optimality both intractable and more intricate in Section 3.

• We propose Combinatorial Rising UCB (CRUCB), a provably efficient algorithm for CRB in
Section 4, and provide a regret upper bound that nearly matches a corresponding regret lower
bound, demonstrating its theoretical tightness in canonical settings in Section 5.

• We extensively validate CRUCB in both synthetic and deep reinforcement learning environments
in Section 6. It confirms that CRUCB effectively overcomes the difficulties of the combinatorial
rising structure left unsolved by prior methods, while maintaining robustness in practical settings
beyond theoretical assumptions.

2 PROBLEM FORMULATION

We study the Combinatorial Rising Bandit (CRB) problem, where the mean outcome of each base
arm increases with the number of plays. Let K be the number of base arms, [K] := {1, . . . ,K}, and
S ⊆ 2[K] the set of valid super arms. At each round t, a super arm St ∈ S is chosen, and each i ∈ St

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

yields an outcome Xi(t) drawn independently from a distribution Di(Ni,t−1), where Ni,t−1 is the
number of past plays of arm i up to t− 1. We assume that Di(n) is σ2-subgaussian with known σ,
and define µi(n) := EX∼Di(n)[X] , where µi(n) ∈ [0, 1] for all i, n. The rising condition requires:

γi(n) := µi(n+ 1)− µi(n) ≥ 0, ∀i ∈ [K], n ≥ 1. (1)

Given a chosen super arm St and the outcome vector Xt = {Xi(t) : i ∈ St}, the reward is
Rt := R(St,Xt), where R is a fixed function. We consider a canonical setting of semi-bandit
feedback at time t, i.e., π selects super arm St based on history Ft−1 := {(St′ ,Xt′) : t

′ ∈ [t− 1]}.
For analytical tractability, we assume the concavity of µi as in Heidari et al. (2016):
Assumption 1. (Concavity of µi) For each i ∈ [K] and n ≥ 1, we have γi(n) ≥ γi(n+ 1).

We further assume the monotonicity of the reward function, which is canonical in combinatorial
bandit literature (Chen et al., 2016; Wang & Chen, 2018; Wang et al., 2023):
Assumption 2 (Monotone reward). For each super arm S ∈ S , the expected reward can be expressed
as a function of the mean outcomes of its base arms. Formally, there exists a function r such that

E[R(S,X)] = r(S,µ), µ = {µi : i ∈ S}, (2)

where X denotes the outcome vector. Moreover, r is monotone: for any S ∈ S and vectors µ,µ′

with µi ≤ µ′
i for all i ∈ S, we have r(S,µ) ≤ r(S,µ′). Additionally, we assume r(S,0) = 0.

We note that this assumption is verified by various choices of reward functions such as the additive
function (Combes et al., 2015; Kveton et al., 2015) and k-MAX function (Wang et al., 2023).

Regret minimization For a policy π, its expected cumulative reward over horizon T is
Eπ

[∑
t∈[T ] Rt

]
. Let π∗ := argmaxπ Eπ

[∑
t∈[T ] Rt

]
be the optimal policy. Then the regret

of π is defined as:

Reg(π, T ) := Eπ∗

∑
t∈[T ]

Rt

− Eπ

∑
t∈[T ]

Rt

 , (3)

where we want to design π minimizing this.

3 CHARACTERIZATION OF OPTIMALITY

We first study the structure of the optimal policy for CRB. Our key finding is that although the optimal
policy is complex in general, a constant policy, which constantly plays the same super arm, can often
serve as an effective and even optimal strategy under mild assumptions. We begin with a formal
definition of optimal constant policy, which is the best among all possible constant policies.
Definition 1 (Optimal constant policy). For any super arm S ∈ S , let πS denote the constant policy
that selects S at every round, i.e., πS(t) = S, for each t ∈ [T ]. The optimal constant policy is
π∗
const := πS∗

const , where S∗
const = argmaxS∈S EπS [

∑
t∈[T ] Rt].

We note that π∗
const is optimal in non-combinatorial rising settings (Heidari et al., 2016), which are

special instances of CRB such that S = {{1}, {2}, ..., {K}}. However, we found that in general,
π∗

const is not (exactly) optimal:
Theorem 1. Under Assumption 1 & 2, there exists an instance of CRB in which π∗

const is not optimal.

The proof is provided in Appendix C.1. As shown in the proof, the optimal policy may begin with
a combination of early peakers and late bloomers (as introduced in Figure 1), before eventually
selecting a pure combination of late bloomers to maximize long-term rewards. This implies the
optimal policy can be more complex than constant policies due to the partially shared enhancement.

As such, π∗
const is not exactly optimal in CRB. However, it can still serve as a good approximation

under mild assumptions. In particular, if the reward function satisfies additive-bounded reward
assumption, which encompasses important reward functions such as additive and k-MAX rewards,
π∗

const achieves a cumulative reward close to that of the overall optimal policy.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Theorem 2. Assume that the reward function r is bounded above and below by an additive function
for each super arm S ∈ S and any µ ∈ [0, 1]|S|:

BL

∑
i∈S

µi ≤ r(S,µ) ≤ BU

∑
i∈S

µi, (4)

where BL and BU are non-negative constants.

Then, under Assumptions 1 and 2, the cumulative reward ratio of the optimal constant policy π∗
const to

the optimal policy π∗ is bounded as

Eπ∗

[∑
t∈[T ] Rt

]
Eπ∗

const

[∑
t∈[T ] Rt

] ≤ BU

BL
. (5)

We can interpret the ratio BU

BL
as a degree of how far the reward function r deviates from the additivity.

Then, Theorem 2 implies that the optimal constant policy can be optimal when the reward function is
effectively additive. Indeed, when the reward function is additive, i.e., BU = BL, the exact optimality
of optimal constant policy π∗

const is guaranteed:
Corollary 1. Given an additive reward r, π∗

const is exactly optimal.

The proof of Theorem 2 is provided in Appendix C.2.

4 PROPOSED METHOD: CRUCB

We propose the Combinatorial Rising UCB (CRUCB) algorithm, presented in Algorithm 1. At
each round, CRUCB proceeds in two stages: (i) it estimates the potential of each base arm using
Future-UCB index based on the recent average outcome, the estimated rate of improvement and
an exploration bonus, and then (ii) it calls Solver to select the best super arm after solving a
combinatorial optimization problem over the estimated indices.

Algorithm 1 Combinatorial Rising UCB (CRUCB)

Input Ni,0 ← 0 for all i ∈ [K], Sliding window parameter ε.
Initialize Play an arbitrary super arm including base arm i twice for each i ∈ [K].
for t ∈ (2K + 1, . . . , T ) do

Calculate Future-UCB µ́i(t) for each base arm, where µ́i(t) is defined in equation 6.
St ← Solver(µ́1(t), µ́2(t), · · · , µ́K(t)).
Play St and observe reward Rt.
Update Ft and Ni,t.

end for

Estimation At each time t, for each base arm i, the Future-UCB index µ́i(t) is estimated as follows
to predict the potential of base arm i:

µ́i(t) :=
1

hi

Ni,t−1∑
l=Ni,t−1−hi+1

Xi(l)︸ ︷︷ ︸
(i) recent average

+
1

hi

Ni,t−1∑
l=Ni,t−1−hi+1

(t−l)Xi(l)−Xi(l−hi)

hi︸ ︷︷ ︸
(ii) predicted upper bound of improvement

+ σ (t−Ni,t−1+hi−1)
√

10 log t3

h3
i︸ ︷︷ ︸

(iii) exploration bonus

, (6)

where σ is the standard deviation and hi is the size of the sliding window governing a bias-variance
trade-off between employing few recent observations (less biased), compared to many past observa-
tions (less variance). The index µ́i(t) consists of three parts:

(i) recent average: It is the mean of most recent hi outcomes from playing base arm i, and
indicates the expected immediate outcome of playing base arm i.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(ii) predicted upper bound of improvement : Xi(l)−Xi(l−hi)
hi

is the estimated slope by finite

difference method. Then, by linear extrapolation, (t− l)Xi(l)−Xi(l−hi)
hi

is an estimate of
improvement in the average outcome when playing i for (t−Ni,t−1) times. By the concavity
Assumption 1, the expectation of this term is always optimistic compared to the true value.

(iii) exploration bonus: It accounts for uncertainty and encourages exploration of arms that have
not been sufficiently often. The exploration bonus used here is intentionally larger than typical
bonuses in UCB-based algorithms for stationary bandit settings (Auer et al., 2002), because
CRUCB predicts future rewards in a rising setting, where uncertainty is inherently greater.

Solver After estimating the potential of each base arm, CRUCB employs Solver, which solves a
combinatorial optimization problem. Solver takes the estimated Future-UCB indices of the base
arms µ́ = [µ́1(t), · · · µ́K(t)] as input and selects the super arm with the highest expected reward, i.e.,
Solver(µ́) = argmaxS r(S, µ́). For example, in the online shortest path problem, Solver can
be instantiated as Dijkstra’s algorithm (Dijkstra, 1959).

5 REGRET ANALYSIS

5.1 REGRET UPPER BOUND OF CRUCB

We establish an upper bound on the regret of CRUCB and analyze how it adapts to different levels
of problem difficulty. To characterize the difficulty of a CRB instance, we introduce a cumulative
increment Υ(M, q) :=

∑
l∈[M−1] maxi∈[K]{γi(l)q} (Metelli et al., 2022). Intuitively, Υ(M, q)

quantifies the difficulty of a CRB instance by measuring the overall outcome growth in expected
outcomes. Using Υ(M, q), we establish a regret upper bound for CRUCB as follows:
Theorem 3. Assume that the reward function satisfies Lipschitz assumption:

|r(S,µ)−r(S,µ′)|≤B
∑
i∈S

|µi−µ′
i| , (7)

where B is a Lipschitz constant. Let πε be CRUCB with hi = εNi,t. Under Assumptions 1&2, for
T > 0, q ∈ [0, 1], and ε ∈ (0, 1

2 ), we have the following regret upper bound:

Reg(πε, T )≤
(
2+

Lπ2

3

)
K+

BKT q

1−2ε
Υ

(
(1−2ε)LT

K
, q

)
︸ ︷︷ ︸

(i)

+
3K

ε

(
(2BσT )

2
3 (6 log 4T )

1
3

)
︸ ︷︷ ︸

(ii)

, (8)

where L := maxS∈S |S| is the maximum size of a super arm.

Term (i) captures the regret caused by the inherent difficulty of the CRB problem, which is related
to the rising nature of expected outcomes and the size of a super arm. First, when outcomes
of base arms evolve continuously, i.e., Υ is large, identifying the optimal super arm becomes
significantly more difficult, since early observations may not reflect the long-term value of each
base arm, making it harder to distinguish the optimal super arm without extensive exploration.
Second, when the maximum super arm size L is large, the complexity of accurately estimating
the combined reward increases, making it harder to confidently identify the optimal super arm.
These challenges are quantified by term (i) via the cumulative increment Υ and L, which scales as
O(KT qΥ(LT

K , q)). Term (ii) captures the regret due to randomness in observed outcomes and scales
as O(KT 2/3(log T )1/3). The proof of Theorem 3 is provided in Appendix C.3.

The dominant term in the regret bound depends on the difficulty of the instance. When Υ is large,
corresponding to more difficult instances, term (i) becomes dominant, potentially leading to linear
regret O(T ). To characterize the effect of problem difficulty on the regret bound, we present the
following corollary, which refines the analysis by assuming an explicit upper bound on the slope γi.
Corollary 2. For a non-increasing function f , assume γi(n) ≤ f(n) for each i ∈ [K] and n ≥ 1.
For T ≥ 0, q ∈ [0, 1], and ε ∈ (0, 1/2), the regret of CRUCB πε is bounded as follows:

Reg(πε, T )=O

(
max

(
KT

2
3 (log T )

1
3 ,KT q

∫ (1−2ε)LT
K

1

f(n)qdn

))
. (9)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

In particular, we instantiate the regret upper bound with a set of f with various learning difficulties:

If f(n) = exp(−n), Reg(πε, T ) = O(T
2
3 logKT

1
3 ) . (10)

If f(n) = (n+ 1)−c and c ≤ 1, Reg(πε, T ) = O(T ) . (11)

If f(n) = (n+ 1)−c and c > 1, Reg(πε, T ) = O
(
max

(
T

2
3 logKT

1
3 , T

1
c log LT

K

))
. (12)

To make the role of problem difficulty more explicit, Corollary 2 reformulates the regret bound in
terms of f(n). This allows the cumulative increment to be explicitly bounded in terms of f(n),
enabling an analytical characterization of the regret.

0 50 100
n

0.0

0.5

1.0

i(n
)

f(n) = exp( n)
f(n) = (n + 1) 1.2

f(n) = (n + 1)0

Figure 2: Growth of outcomes.
µi(n) induced by γi(n)=Cf(n),
with C as a normalizing constant.

The regret bounds given in Corollary 2 reflect how the difficulty
of the CRB instance varies with the choice of f(n), as illus-
trated in Figure 2. When f(n) = exp(−n), outcomes saturated
rapidly, making it feasible to disregard the rising nature and re-
sulting in sub-linear regret. In contrast, when f(n) = (n+1)−c

with c ≤ 1, outcomes change gradually, necessitating sustained
exploration, and consequently resulting in linear regret. An in-
teresting intermediate regime appears when f(n) = (n+ 1)−c

with c > 1, where the regret upper bound explicitly depends on
the problem difficulty (parameter c), highlighting adaptivity of
CRUCB. This adaptivity will become clearer through the regret
lower bound analysis in next section with Figure 3.

5.2 REGRET LOWER BOUND OF CRB

In this section, we establish regret lower bounds for CRB. Our results highlight two key findings.
First, without any additional assumptions, the regret lower bound is Ω(T ), reflecting the intrinsic
difficulty of CRB. Second, given restricted outcome growth, the regret lower bound can be sub-linear.
To analyze the regret across a class of CRB instances, we make the dependence on the instance ν
explicit and write the regret as Regν(π, T ) in this section.

We begin with a general class of CRB without any structural assumptions on the slope γi.
Theorem 4. (Regret lower bound over a general class) Fix sufficiently large time T . Let I be the set
of all available CRB instances. Then, any policy π suffers regret:

min
π

max
ν∈I

Regν(π, T ) = Ω(LT ) , (13)

where L is the maximum size of super arms.

Theorem 4 establishes that, without any structural assumptions, no algorithm can achieve sub-linear
regret. However, as seen in the regret upper bound analysis of CRUCB (Corollary 2), not all instances
necessarily incur linear regret. This discrepancy motivates a finer analysis: by considering a more
fine-grained instance class, we can distinguish between instances that are inherently difficult and
those that allow efficient learning, which the regret lower bound becomes sub-linear. The proof of
Theorem 4 is provided in Appendix C.4.
Theorem 5. (Regret lower bound over a fine-grained class) Fix sufficiently large T . For an arbitrary
constant 1 < c < 2, define a fine-grained set of CRB instances Ac as follows:

Ac :=
{
ν : γi(n)≤(n+1)−c, i∈ [K], n∈ [T−1]

}
. (14)

Then, for any policy π incurs regret:

min
π

max
ν∈Ac

Regν(π, T ) = Ω
(
max

{
L
√
T ,LT 2−c

})
, (15)

where L := maxS∈S |S| is the maximum size of a super arm.

Theorem 5 characterizes how the regret lower bound varies with a parameter c. As also reflected in
the upper bound, c serves as a structural separator between easy and difficult instances: a larger c
leads to slower outcome growth and a smaller regret lower bound, while smaller c result in faster
growth and higher regret lower bound. The proof of Theorem 5 is provided in Appendix C.5.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 1 3/2
c

0

1/2

2/3

1

Or
de

r o
f r

eg
re

t b
ou

nd

Upper bound (Cor. 2)
Lower bound (Thm. 4&5)

Figure 3: Regret bound gap. The
regret lower bound of CRB and
the regret upper bound of CRUCB
when f(n)=(n+1)−c. For c ≤ 1,
both the upper and lower bounds
are equal to 1. Specifically, for
1<c<1.5, the lower bound (2−c)
and the upper bound

(
1
c

)
are of sim-

ilar order, indicating that the regret
bounds closely match.

As a final remark for Section 5, our CRUCB achieves a regret
upper bound that closely matches the regret lower bound of the
CRB (see Figure 3). In particular, without requiring any prior
knowledge about the difficulty of the problem instance (e.g.,
the outcome growth parameter c), CRUCB effectively adapts
to varying problem difficulties, ensuring robustness of CRUCB
across diverse scenarios. To the best of our knowledge, this
represents the first explicit and rigorous comparison between
regret upper and lower bounds in the rising bandit literature,
highlighting a key theoretical contribution of our work.

6 EXPERIMENTS

We evaluate the performance of CRUCB against existing state-
of-the-art algorithms for rising and non-stationary bandits on
the online shortest path planning, in both synthetic environ-
ments (Section 6.1) and realistic deep reinforcement learning
applications (Section 6.2). Unlike prior works that mainly focus
on simplified rising bandit settings, our evaluation further considers realistic deep RL scenarios,
underscoring the practical relevance and robustness of CRUCB. Additional results on diverse com-
binatorial tasks, including maximum weighted matching, minimum spanning tree, and the k-MAX
problem are provided in Appendix F.

Baselines We consider the following baseline algorithms:

• R-ed-UCB (Metelli et al., 2022) is a non-combinatorial algorithm for rising bandits, combining
a sliding window with UCB-based estimation designed for rising rewards.

• SW-UCB (Garivier & Moulines, 2011) and SW-TS (Trovo et al., 2020) are non-stationary
non-combinatorial bandit algorithms that use a sliding-window approach with UCB and Thomp-
son Sampling, respectively.

• SW-CUCB (Chen et al., 2021) and SW-CTS are non-stationary combinatorial bandit algo-
rithms that use a sliding-window approach with UCB and Thompson Sampling, respectively.

Detailed pseudocode and descriptions of the baselines are provided in Appendix D.

6.1 SYNTHETIC ENVIRONMENTS

(a) Path-easy graph

0 10K20K30K40K50K
number of pulls

0
0.2
0.4
0.6
0.8
1.0

ou
tc

om
e

early peaker
late bloomer

(b) Outcome functions (c) Path-complex graph

0 10K20K30K40K50K
number of pulls

0
0.2
0.4
0.6
0.8
1.0

ou
tc

om
e

early peaker
late bloomer

(d) Outcome functions
Figure 4: Online shortest path planning task. (a, c) Graphs used to evaluate CRUCB and baselines.
(b, d) Corresponding outcome functions for each task.

We conduct experiments on the online shortest path task using the graph structures shown in Figures 4a
and c, each containing two types of edges: early peakers and late bloomers, as illustrated in Figures 4b
and d, respectively. In these experiments, we assume the additive reward setting in which the reward
of a super arm is defined as the sum of the outcomes of constituent base arms. In this setting,
Corollary 1 implies that the optimal policy is a constant policy repeatedly selecting a fixed path (super
arm), which in our experiments corresponds to a path composed solely of late bloomers.

As shown in Figure 5a, CRUCB demonstrates lower regret compared to all baselines in the Path-easy
task. R-ed-UCB underperforms despite the simplicity of the graph structure, due to the partially
shared enhancement described earlier in Figure 1. In the more complex Path-complex task, CRUCB
continues to outperform all baselines, with the gap between CRUCB and R-ed-UCB becomes

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

CRUCB (Ours)
R-ed-UCB
SW-CUCB
SW-UCB
SW-CTS
SW-TS

0 100K 200K 300K
episode number

0

2

4

re
gr

et

x104

(a) Path-easy

0 250K 500K
episode number

0

2

4

re
gr

et

x105

(b) Path-complex
Figure 5: Cumulative regret in synthetic environments. Regret curves for (a) Path-easy and (b)
Path-complex. Lines show average; shaded areas indicate 99% confidence intervals over 5 runs.

significantly larger, as shown in Figure 5b. This is because the effects of the partially shared
enhancement are amplified as the overlap of edges (base arms) among paths (super arms) increases.
Interestingly, across both environments, non-combinatorial and non-stationary algorithms (SW-UCB,
SW-TS) consistently outperform their combinatorial counterparts (SW-CUCB, SW-CTS), with the
gap becoming more pronounced in the complex task. This occurs because the increased number of
paths promotes broader exploration, allowing non-combinatorial algorithms sufficient time to explore
late bloomers, whereas combinatorial algorithms tend to focus exploitation on early peakers, thereby
restricting the opportunities for late bloomers to enhance their full reward potential.

6.2 DEEP REINFORCEMENT LEARNING

𝑒𝑒1

𝑒𝑒7 𝑒𝑒6
𝑒𝑒5𝑒𝑒3

𝑒𝑒2 𝑒𝑒4

(a) AntMaze-easy

(b) AntMaze-complex

Figure 6: Deep RL environ-
ments. An ant robot navigates
the shortest path from start to
goal via intermediate nodes, en-
countering three types of edges
in (a): impossible edge (e1),
bottleneck edge (e3), and wide
edge (e2, e4, e5, e6, e7). (b) Fo-
cus on impossible edges and
wide edges in a complex map.

We conduct experiments on the online shortest path problem us-
ing hierarchical reinforcement learning in AntMaze environments
(Yoon et al., 2024), as illustrated in Figure 6. It divides tasks into
high-level and low-level policies. The high-level policy makes
abstract decisions, such as the path from start to goal, while the
low-level policy executes these decisions by controlling the spe-
cific movements of the robot. In our setup, the high-level policy
plays a role similar to the CRB framework by selecting paths as
super arms, where each edge corresponds to a base arm. As train-
ing progresses, the improvements in the low-level policy lead to
the rising outcomes for the high-level policy.

We consider two tasks: AntMaze-easy and AntMaze-complex
(Figures 6a and b). In AntMaze-easy, the policy can choose among
three paths: an impossible path using edge (e1), a shortcut path
(e2, e3, e7) that is short but contains a bottleneck edge e3 requir-
ing more episodes to train, and a detour path (e2, e4, e5, e6, e7)
composed solely of wide edges but requiring more steps. The key
challenge in this task is to recognize the rising outcome of the
bottleneck edge and efficiently exploit the shortcut path despite
its initial difficulty. In AntMaze-complex, the environment has a
complex graph structure with extensive paths from start to goal.
The large number of paths increases combinatorial complexity,
making exploration and identification of the optimal path challeng-
ing. Each task aims at a distinct challenge: AntMaze-easy focuses
on capturing the rising reward nature, whereas AntMaze-complex
emphasizes robustness against growing combinatorial complexity.
Detailed descriptions of the environments and reward structures
are provided in Appendix E.2.

As depicted in Figure 7a, the outcomes exhibit non-concave behavior due to an extended zero-reward
period before the first success; however, the outcome growth appears roughly concave once the
rewards increase. Despite this violation of the concavity assumption (Assumption 1), Figures 7b and c
show that CRUCB outperforms the baselines, highlighting its robustness in settings where theoretical
assumptions are not strictly satisfied. In AntMaze-easy, CRUCB and R-ed-UCB outperform other
baselines, as shown in Figure 7b. Given the simplicity of the environment, which includes only
three paths, most algorithms successfully identify the detour path. However, non-stationary bandit
algorithms tend to exploit the detour path once found and limit further exploration. In contrast, rising

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

CRUCB (Ours) R-ed-UCB SW-CUCB SW-UCB SW-CTS SW-TS

0 0.5K 1.0K 1.5K
number of pulls

0
0.2
0.4
0.6
0.8
1.0

ou
tc

om
e

impossible edge
bottleneck edge
wide edge

(a) Observed outcomes

0 1K 2K
episode number

0

5

10

15

re
gr

et

x102

(b) AntMaze-easy

0 1K 2K 3K
episode number

0

5

10

15

re
gr

et

x102

(c) AntMaze-complex

Figure 7: Cumulative regret in deep reinforcement learning environments. (a) Observed outcomes
for each edge with respect to the number of pulls. Regret curves for (b) AntMaze-easy and (c)
AntMaze-complex. Lines show average; shaded areas indicate 99% confidence intervals over 5 runs.

bandit algorithms continue to explore the bottleneck path, eventually identifying the optimal path and
resulting in lower cumulative regret.

Less tried More tried

t
=

50
0

t
=

30
00

goal

start

goal

start

(a) SW-CUCB

goal

start

goal

start

(b) R-ed-UCB

goal

start

goal

start

(c) CRUCB
Figure 8: Heatmap of visit frequencies in
AntMaze-complex. We visualize the visit fre-
quencies of SW-CUCB, R-ed-UCB, and CRUCB
at time steps 500 and 3000 to highlight their re-
spective exploration patterns. Visualizations of
other baselines are provided in Appendix G.

As depicted in Figure 8, existing algorithms fail
to capture both the combinatorial structure and
the rising nature simultaneously. Figure 8a shows
thick traces around blocked walls, indicating that
the agent repeatedly attempts the same impossi-
ble edges. This behavior stems from the agent’s
evaluation, where it perceives a single impossible
edge as more optimistic path than a detour path
composed of multiple low-reward edges. Con-
versely, R-ed-UCB performs uniform exploration
as illustrated in Figure 8b. This broad search
is an unavoidable consequence of initially treat-
ing all 178 possible paths as independent super
arms. Even after a sufficient amount of time, its in-
ability to leverage partially shared enhancements
leads to incorrect estimations, causing the agent
to continue exploring various paths instead of con-
verging on the optimal path. In contrast, CRUCB,
as depicted in Figure 8c, integrates both perspec-
tives: it avoids repeated trials on impossible paths,
efficiently exploits shared improvements, and quickly concentrates on the optimal path. These
observations confirm that the limitations of existing approaches highlighted in Section 1 arise in
practice and demonstrate that CRUCB successfully overcomes them.

7 CONCLUSION

In this work, we introduced the Combinatorial Rising Bandit (CRB) framework, modeling combi-
natorial online learning scenarios wherein selecting a super arm enhances the future rewards of its
constituent base arms. By highlighting the novel challenges from the partially shared enhancement
in Figure 1, we established that CRB fundamentally differs from classical bandit formulations.To
address this challenge, we developed Combinatorial Rising UCB (CRUCB), a provably efficient
algorithm. Our extensive experiments across synthetic and deep RL environments demonstrate that
CRUCB robustly handles the combinatorial rising structure where prior methods fail. At the same
time, our theoretical analysis establishes tight regret bounds, showing that the algorithm is nearly
optimal from an analytical standpoint. Taken together, these results highlight that CRUCB offers both
tangible benefits in practice and solid guarantees in theory. While our analysis relies on simplifying
assumptions, such as a fixed set of base arms and a static combinatorial structure, these are often
reasonable in domains where the action space is pre-defined. However, in certain applications, such
as robotic systems that involve skill discovery, the set of feasible actions may evolve over time.
Extending CRB to handle such dynamic structures is a promising direction for future research.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Omer Amichay and Yishay Mansour. Rising rested mab with linear drift. arXiv preprint
arXiv:2501.04403, 2025.

Baran Atalar and Carlee Joe-Wong. Neural combinatorial clustered bandits for recommendation
systems. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp. 15417–
15426, 2025.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47:235–256, 2002.

Wei Chen, Yajun Wang, and Yang Yuan. Combinatorial multi-armed bandit: General framework
and applications. In Proceedings of the 30th International Conference on Machine Learning, pp.
151–159. PMLR, 2013.

Wei Chen, Wei Hu, Fu Li, Jian Li, Yu Liu, and Pinyan Lu. Combinatorial multi-armed bandit with
general reward functions. Advances in Neural Information Processing Systems, 29, 2016.

Wei Chen, Liwei Wang, Haoyu Zhao, and Kai Zheng. Combinatorial semi-bandit in the non-stationary
environment. In Uncertainty in Artificial Intelligence, pp. 865–875. PMLR, 2021.

Richard Combes, Mohammad Sadegh Talebi Mazraeh Shahi, Alexandre Proutiere, and marc lelarge.
Combinatorial bandits revisited. In Advances in Neural Information Processing Systems, volume 28,
pp. 2116–2124, 2015.

Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, pp.
269–271, 1959.

Marco Fiandri, Alberto Maria Metelli, and Francesco Trovo. Rising rested bandits: Lower bounds
and efficient algorithms. arXiv preprint arXiv:2411.14446, 2024a.

Marco Fiandri, Alberto Maria Metelli, and Francesco Trovò. Thompson sampling-like algorithms for
stochastic rising rested bandits. In Seventeenth European Workshop on Reinforcement Learning,
2024b.

Aurélien Garivier and Eric Moulines. On upper-confidence bound policies for switching bandit
problems. In International conference on algorithmic learning theory, pp. 174–188. Springer,
2011.

Lin Ge, Yang Xu, Jianing Chu, David Cramer, Fuhong Li, Kelly Paulson, and Rui Song. Multi-task
combinatorial bandits for budget allocation. In Proceedings of the 31st ACM SIGKDD Conference
on Knowledge Discovery and Data Mining V. 1, pp. 2247–2258, 2025.

Gianmarco Genalti, Marco Mussi, Nicola Gatti, Marcello Restelli, Matteo Castiglioni, and Al-
berto Maria Metelli. Graph-triggered rising bandits. In Forty-first International Conference on
Machine Learning, 2024.

Hoda Heidari, Michael J Kearns, and Aaron Roth. Tight policy regret bounds for improving and
decaying bandits. In IJCAI, pp. 1562–1570, 2016.

Hanxun Huang, Xingjun Ma, Sarah M Erfani, and James Bailey. Neural architecture search via
combinatorial multi-armed bandit. In 2021 International Joint Conference on Neural Networks
(IJCNN), pp. 1–8. IEEE, 2021.

Paul Jansonnie, Bingbing Wu, Julien Perez, and Jan Peters. Unsupervised skill discovery for robotic
manipulation through automatic task generation. In 2024 IEEE-RAS 23rd International Conference
on Humanoid Robots (Humanoids), pp. 926–933. IEEE, 2024.

Branislav Kveton, Zheng Wen, Azin Ashkan, and Csaba Szepesvari. Tight regret bounds for stochastic
combinatorial semi-bandits. In Artificial Intelligence and Statistics, pp. 535–543. PMLR, 2015.

Tomás Lagos, Ramón Auad, and Felipe Lagos. The online shortest path problem: Learning travel
times using a multiarmed bandit framework. Transportation Science, 59(1):28–59, 2025.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Xiaofeng Mao, Yucheng Xu, Zhaole Sun, Elle Miller, Daniel Layeghi, and Michael Mistry. Learning
long-horizon robot manipulation skills via privileged action. arXiv preprint arXiv:2502.15442,
2025.

Alberto Maria Metelli, Francesco Trovo, Matteo Pirola, and Marcello Restelli. Stochastic rising
bandits. In International Conference on Machine Learning, pp. 15421–15457. PMLR, 2022.

Marco Mussi, Alessandro Montenegro, Francesco Trovo, Marcello Restelli, ALBERTO Metelli,
et al. Best arm identification for stochastic rising bandits. In Proceedings of the 41st International
Conference on Machine Learning, pp. 1–9, 2024.

Vishakha Patil, Vineet Nair, Ganesh Ghalme, and Arindam Khan. Mitigating disparity while maxi-
mizing reward: tight anytime guarantee for improving bandits. arXiv preprint arXiv:2208.09254,
2022.

Francesco Trovo, Stefano Paladino, Marcello Restelli, and Nicola Gatti. Sliding-window thompson
sampling for non-stationary settings. Journal of Artificial Intelligence Research, 68:311–364,
2020.

Shohei Wakayama and Nisar Ahmed. Observation-augmented contextual multi-armed bandits for
robotic search and exploration. IEEE Robotics and Automation Letters, 2024.

Siwei Wang and Wei Chen. Thompson sampling for combinatorial semi-bandits. In International
Conference on Machine Learning, pp. 5114–5122. PMLR, 2018.

Yiliu Wang, Wei Chen, and Milan Vojnović. Combinatorial bandits for maximum value reward
function under max value-index feedback. arXiv preprint arXiv:2305.16074, 2023.

Yu Xia, Fang Kong, Tong Yu, Liya Guo, Ryan A Rossi, Sungchul Kim, and Shuai Li. Which llm to
play? convergence-aware online model selection with time-increasing bandits. In Proceedings of
the ACM on Web Conference 2024, pp. 4059–4070, 2024.

Lily Xu, Bryan Wilder, Elias Boutros Khalil, and Milind Tambe. Reinforcement learning with combi-
natorial actions for coupled restless bandits. In The Thirteenth International Conference on Learn-
ing Representations, 2025. URL https://openreview.net/forum?id=DhH3LbA6F6.

Youngsik Yoon, Gangbok Lee, Sungsoo Ahn, and Jungseul Ok. Breadth-first exploration on adaptive
grid for reinforcement learning. In Forty-first International Conference on Machine Learning,
2024.

Zheqing Zhu and Benjamin Van Roy. Scalable neural contextual bandit for recommender sys-
tems. In Proceedings of the 32nd ACM International Conference on Information and Knowledge
Management, pp. 3636–3646, 2023.

11

https://openreview.net/forum?id=DhH3LbA6F6


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

This material provides proof of theorems, details of environments and baselines, and additional
experimental results:

• Appendix A: Motivating applications of CRB.
• Appendix B: Comparison with existing rising bandit studies.
• Appendix C: Proofs of Theorem 1, 2, 3, 4, and 5.
• Appendix D: Detailed description and pseudocode of the baselines in Section 6.
• Appendix E: Detailed description of the environments in Section 6.
• Appendix F: Additional experiments on other combinatorial tasks.
• Appendix G: Further analysis of exploration on the deep RL environment.
• Appendix H: The use of Large Language Models.

A REAL-WORLD APPLICATIONS OF THE CRB FRAMEWORK

The CRB framework, which addresses a regret minimization problem, naturally arises in real-
world scenarios where complex actions are composed of reusable sub-actions that improve through
repetition. We can consider following applications:

Network Routing optimizes performance metrics such as latency or throughput by selecting
network paths (super arms) composed of individual links (base arms). Frequent utilization of specific
links enables routing protocols to adapt and improve via better congestion estimation and traffic-
pattern learning. Thus, network routing naturally aligns with regret minimization as it balances
exploiting known effective routes and exploring potentially better alternatives.

Crowdsourcing aims to find optimal task assignments by combining annotators (base arms) with
datasets, which can be framed as an online combinatorial regret minimization problem (Chen et al.,
2016). Annotators’ skill levels improve over repeated tasks, increasing their annotation accuracy. CRB
effectively addresses regret minimization here by dynamically reallocating tasks among annotators to
leverage their rising skills, thereby optimizing overall annotation quality and cost-effectiveness.

B COMPARISON WITH EXISTING RISING BANDIT STUDIES

The rising bandit problem has been widely studied in non-combinatorial settings (Fiandri et al.,
2024a;b; Heidari et al., 2016; Metelli et al., 2022; Mussi et al., 2024; Patil et al., 2022; Xia et al.,
2024; Amichay & Mansour, 2025), where each base arm evolves independently over pulls. In this
work, we consider a combinatorial extension of the rising bandit problem, where each action is a set
of base arms. This generalization introduces new challenges that fundamentally differ from previous
work.

In previous work (Heidari et al., 2016), a constant policy is optimal in the rising setting. However
in Section 3, we demonstrate that in the combinatorial setting, constant policies are generally not
optimal. Furthermore, (Metelli et al., 2022) focus primarily on establishing worst-case regret lower
bounds, showing that regret is linear (Ω(T )), highlighting the inherent difficulty of the problem. In
contrast, we show that under a more fine-grained instance class where reward growth is bounded, the
regret lower bound can be sublinear. Moreover, we illustrate that this lower bound is tight, nearly
matching it with the regret upper bound of our proposed algorithm, CRUCB.

A recent study (Genalti et al., 2024) investigates rising bandits with structured dependencies among
arms, introducing a graph-triggered mechanism in which pulling an arm increases the rewards of
its neighboring arms. While conceptually related to our work, their approach assumes uniform
enhancement across neighbors, without modeling the nuanced structure of overlapping actions. In
contrast, our CRB framework models partially shared enhancement, preserving the combinatorial
structure. This distinction makes CRB a more general and unified framework for capturing rising
reward dynamics in combinatorial settings.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

C PROOF OF THEOREMS

C.1 PROOF OF THEOREM 1

It suffices to show that there exists a CRB instance such that the constant policy is not the optimal
policy. We consider k-MAX problem, where reward function is given as follows:

r(S,µ) := max
i∈S

(µi) . (16)

Note that equation 16 satisfies all assumptions. Consider µ such that:

µ1(n) =

{
10
T n n < T

10

1 n ≥ T
10

, (17)

µ2(n) =

{
0.1 n = 1

0.9 n > 1
, (18)

µ3(n) = 0.5 . (19)

Let K = 3, S = {(1, 2), (1, 3), (2, 3)}, T ≫ 100. For simplicity, when a base arm is pulled for
n-th times, then the outcome is µi(n) without considering randomness. In this problem instance, the
optimal constant policy is selecting the super arm (1, 2) continuously. For the best constant policy, it
receives 0.1 for t = 1, and 10t

T for 1 < t ≤ 9T
10 and 1 for t > 9T

10 . However, if (2, 3) is firstly selected
once and (1, 2) for the remaining time, it receives 0.3 more rewards than the best constant policy.
This is because selecting (2, 3) initially yields an immediate gain of 0.4 from first selecting, but later
results in a loss of 0.1 due to not playing optimal super arm (1, 2). Consequently, the total reward is
higher than that of the best constant policy, which suffices to complete proof.

C.2 PROOF OF THEOREM 2

For proof, we first consider a specific case: additive reward.

Lemma 1. Given an additive reward r(S,µ) =
∑

i∈S µi, π∗
const is exactly optimal.

Set up. Since we consider additive reward function, the cumulative reward is invariant with respect
to permutations of the order of selecting super arms, which means that a policy can be represented as
the vector of number of pulling each super arm, that is, a policy π can be represented as follows:

π 7→
(
Tπ
1 , T

π
2 , · · · , Tπ

|S|

)
, (20)

where Tπ
S denotes the number of pulling a super arm S until time T by the policy π, which satisfies∑

S∈S Tπ
S = T . Let Nπ

i,T denote the number of selecting a base arm i until time T by π. Then, Nπ
i,T

can be represented as follows:

Nπ
i,T =

∑
S∈S

Tπ
S 1 {i ∈ S} , (21)

where 1 denotes the indicator function. Let π∗ be the optimal policy given µ and T . We show that if
π∗ pulls at least two different super arms, then a constant policy can be constructed so that generates
larger than or equal to the expected cumulative reward as the one produced by π∗, which suffices to
conclude.

Assume that π∗ selects m distinct super arms, denoted by super arms as S1, S2, . . . , Sm. Define a
subset of base arms Bc and Bj for each j ∈ [m] as follows:

Bc := {i ∈ [K] : i ∈ Sj , ∀j ∈ [m]} , (22)
Bj := Sj \Bc . (23)

Bc represents the subset of the common base arms included in every selected super arm by the
optimal policy π∗ and Bj represents the subset of base arms included in the super arm Sj except for
Bc.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Claim 1.
∑

i∈Bj
µi(N

π∗

i,T ) is equal for all j ∈ [m].

Proof. To establish Claim 1, we consider two arbitrary distinct super arms S1 and S2, with-
out loss of generality. We observe

∑
i∈B1\B2

µi(N
π∗

i,T ) ≥
∑

i∈B2\B1
µi(N

π∗

i,T ). If not, that is,∑
i∈B1\B2

µi(N
π∗

i,T ) <
∑

i∈B2\B1
µi(N

π∗

i,T ), we can construct new policy π1 as follows:

Tπ1

S =


Tπ∗

S1
− 1 S = S1

Tπ∗

S2
+ 1 S = S2

Tπ∗

S otherwise.
(24)

Then, Nπ1

i,T is given by:

Nπ1

i,T =


Nπ∗

i,T − 1 i ∈ B1 \B2

Nπ∗

i,T + 1 i ∈ B2 \B1

Nπ∗

i,T otherwise .

(25)

The difference between the expected cumulative reward of π∗ and π1 is given by:

∑
i∈[K]

 ∑
n∈[Nπ∗

i,T ]

µi(n)−
∑

n∈[N
π1
i,T ]

µi(n)

 (26)

=
∑

i∈B1\B2

µi(N
π∗

i,T )−
∑

i∈B2\B1

µi(N
π∗

i,T + 1) (27)

< 0 , (28)

which indicates that the cumulative reward of π1 is larger than that of π∗. However, it is
contradicting with the assumption that π∗ is optimal and thus we have

∑
i∈B1\B2

µi(N
π∗

i,T ) ≥∑
i∈B2\B1

µi(N
π∗

i,T ). By applying the same logic, we can also derive that
∑

i∈B1\B2
µi(N

π∗

i,T ) ≤∑
i∈B2\B1

µi(N
π∗

i,T ). Combing these results, we have
∑

i∈B1\B2
µi(N

π∗

i,T ) =
∑

i∈B2\B1
µi(N

π∗

i,T ).
By adding

∑
i∈B1∩B2

µi(N
π∗

i,T ), we can derive that
∑

i∈B1
µi(N

π∗

i,T ) =
∑

i∈B2
µi(N

π∗

i,T ). Since we
can apply the same logic to any arbitrary super arm pair, we conclude the claim.

Claim 2.
∑

i∈Bj\Bj′
µi(N

π∗

i,T − Tπ∗

S1
+ 1) =

∑
i∈Bj\Bj′

µi(N
π∗

i,T ) for any j, j′ ∈ [m] .

Proof. Similar to Claim 1, we consider S1 and S2, without loss of generality. Given
that

∑
i∈B1\B2

µi(N
π∗

i,T ) ≤
∑

i∈B2\B1
µi(N

π∗

i,T ) from preceding analysis, we observe∑
i∈B1\B2

µi(N
π∗

i,T − Tπ∗

S1
+ 1) ≥

∑
i∈B2\B1

µi(N
π∗

i,T ). Otherwise, that is,
∑

i∈B1\B2
µi(N

π∗

i,T −
Tπ∗

S1
+ 1) <

∑
i∈B2\B1

µi(N
π∗

i,T ), we can construct new policy π2 such that:

Tπ2

S =


0 S = S1

Tπ∗

S1
+ Tπ∗

S2
S = S2

Tπ∗

S otherwise.
(29)

Then, Nπ2

i,T is given by:

Nπ2

i,T =


Nπ∗

i,T − Tπ∗

S1
i ∈ B1 \B2

Nπ∗

i,T + Tπ∗

S1
i ∈ B2 \B1

Nπ∗

i,T otherwise .

(30)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

The difference between the cumulative rewards of π∗ and π2 is given by:

∑
i∈[K]

 ∑
n∈[Nπ∗

i,T ]

µi(n)−
∑

n∈[N
π2
i,T ]

µi(n)

 (31)

=
∑

i∈B1\B2

Nπ∗
i,T∑

n=Nπ∗
i,T−Tπ∗

S1
+1

µi(n)−
∑

i∈B2\B1

Nπ∗
i,T+Tπ∗

S1∑
n=Nπ∗

i,T+1

µi(n) (32)

=
∑

l∈[Tπ∗
S1

]

 ∑
i∈B1\B2

µi(N
π∗

i,T − Tπ∗

S1
+ l)−

∑
i∈B2\B1

µi(N
π∗

i,T + l)

 (33)

≤

 ∑
i∈B1\B2

µi(N
π∗

i,T − Tπ∗

S1
+ 1)−

∑
i∈B2\B1

µi(N
π∗

i,T )

 (34)

+ (Tπ∗

S1
− 1)

 ∑
i∈B1\B2

µi(N
π∗

i,T )−
∑

i∈B2\B1

µi(N
π∗

i,T )


<0 , (35)

where equation 34 holds since µi(N
π∗

i,T − Tπ∗

S1
+ l) ≤ µi(N

π∗

i,T ) and µi(N
π∗

i,T + l) > µi(N
π∗

i,T ) for
any l ∈ [2, Tπ∗

S1
] for any base arm i by the definition of combinatorial rising bandit. It indicates

that the cumulative reward of π2 is larger than that of π∗, which is a contradiction with assumption
that π∗ is optimal. Therefore, we have

∑
i∈B1\B2

µi(N
π∗

i,T − Tπ∗

S1
+ 1) ≥

∑
i∈B2\B1

µi(N
π∗

i,T ).
Combining this observation with the previous observation, we have

∑
i∈B1\B2

µi(N
π∗

i,T −Tπ∗

S1
+1) =∑

i∈B1\B2
µi(N

π∗

i,T ). This result implies that rewards of all base arms in S1 are flat after pulling for
Nπ∗

i,T − Tπ∗

S1
times. Since we can apply the same logic to any arbitrary super arm pair, we conclude

the claim.

Induction. Lastly, we construct constant policy inductively. As before, we choose two arbitrary
two super arm and consider S1 and S2 without loss of generality. we revisit π2. By Claim 1 and
Claim 2 the difference between π∗ and π2 equals 0, which means that π2 is also an optimal policy.
We remark that π2 plays m− 1 distinct super arms. Applying preceding logic inductively, we can
construct the optimal policy pulls only one super arm, which completes proof for Lemma 1.

Then, we are ready to prove Theorem 2.

Proof. For the proof, we define S′
const and π′

const as follows:

S′
const := argmax

S

∑
t∈[T ]

∑
i∈S

µi(t− 1) , (36)

S∗
const := argmax

S

∑
t∈[T ]

r(S,µS(t− 1)) , (37)

π′
const(t) := S′

const ∀t ∈ [T ] , (38)
π∗

const(t) := S∗
const ∀t ∈ [T ] , (39)

where µS(t − 1) := {µi(t − 1) : i ∈ S}. Intuitively, π′
const indicates the optimal constant policy

when the reward function is additive and π∗
const indicates the optimal constant policy when the reward

function is given r(·).

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Let π∗ be optimal policy, and denote the selected super arm and expectation of base arm at time t
under π∗ as S∗

t and µ∗
t respectively. Then, we have:

Eπ∗

∑
t∈[T ]

Rt

 =
∑
t∈[T ]

r(S∗
t ,µ

∗
t−1) (40)

=
∑
t∈[T ]

(
r(S∗

t ,µ
∗
t−1)− r(S∗

t ,0) + r(S∗
t ,0)

)
(41)

≤ BU

∑
t∈[T ]

∑
i∈S∗

t

µ∗
i (t− 1) (42)

≤ BU

∑
t∈[T ]

∑
i∈S′

const

µi(t− 1) . (43)

From Lemma 1, we know that the reward under the optimal policy is bounded by the reward under a
constant arm selection, which leads to the inequality in equation 43.

Now, consider the reward of π′
const. Then, we have:

Eπ′
const

∑
t∈[T ]

Rt

 =
∑
t∈[T ]

r(S′
const,µS′

const
(t− 1)) (44)

=
∑
t∈[T ]

(
r(S′

const,µS′
const

(t− 1))− r(S′
const,0) + r(S′

const,0)
)

(45)

≥ BL

∑
t∈[T ]

∑
i∈S′

const

µi(t− 1) . (46)

From the inequalities equation 43 and equation 46, we can derive the following ratio:

Eπ∗

[∑
t∈[T ] Rt

]
Eπ∗

const

[∑
t∈[T ] Rt

] ≤ BU

∑
t∈[T ]

∑
i∈S′

const
µi(t− 1)

BL

∑
t∈[T ]

∑
i∈S′

const
µi(t− 1)

(47)

=
BU

BL
. (48)

Since S∗
const is defined to maximize the reward we have the inequality:

Eπ∗
const

∑
t∈[T ]

Rt

 > Eπ′
const

∑
t∈[T ]

Rt

 . (49)

Finally, combining all the inequalities, we conclude:

Eπ∗

[∑
t∈[T ] Rt

]
Eπ∗

const

[∑
t∈[T ] Rt

] ≤ Eπ∗

[∑
t∈[T ] Rt

]
Eπ′

const

[∑
t∈[T ] Rt

] ≤ BU

BL
. (50)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C.3 PROOF OF THEOREM 3

Proof. We rewrite the regret as follows.

Reg(π, T ) =
∑
t∈[T ]

Eπ∗ [Rt]−
∑
t∈[T ]

Eπ [Rt] (51)

=
∑
t∈[T ]

r(Sπ∗

t ,µSπ∗
t
)−

∑
t∈[T ]

Eπ

[
r(Sπ

t ,µSπ
t
)
]

(52)

=
∑
t∈[T ]

Eπ

[
r(Sπ∗

t ,µSπ∗
t
)− r(Sπ

t ,µSπ
t
)
]
, (53)

where equation 52 holds since in semi-bandit feedback setting, the optimal policy is characterized as
a deterministic policy.

To define well-estimated event, we define µ̂i(t) and µ̃i(t) as follows:

µ̂i(t) :=
1

hi

Ni,t−1∑
l=Ni,t−1−hi+1

(
Xi(l) + (t− l)

Xi(l)−Xi(l − hi)

hi

)
(54)

µ̃i(t) :=
1

hi

Ni,t−1∑
l=Ni,t−1−hi+1

(
µi(l) + (t− l)

µi(l)− µi(l − hi)

hi

)
(55)

βi(t) := σ (t−Ni,t−1 + hi − 1)

√
10 log t3

h3
i

(56)

µ́i(t) := µ̂i(t) + βi(t) . (57)

We define well-estimated event Et as follows:

Ei,t := {|µ̂i(t)− µ̃i(t)| ≤ βi(t)} , (58)
Et := ∩i∈[K]Ei,t . (59)

We decompose the regret with well-estimated event Et as follows:

Eπ

[
r(Sπ∗

t ,µSπ∗
t
)− r(Sπ

t ,µSπ
t
)
]

(60)

=Eπ

[(
r(Sπ∗

t ,µSπ∗
t
)− r(Sπ

t ,µSπ
t
)
)
1{¬Et}

]
︸ ︷︷ ︸

(A)

+Eπ

[(
r(Sπ∗

t ,µSπ∗
t
)− r(Sπ

t ,µSπ
t
)
)
1{Et}

]
︸ ︷︷ ︸

(B)

.

(61)

Firstly, we bound term (A):

Eπ

[(
r(Sπ∗

t ,µSπ∗
t
)− r(Sπ

t ,µSπ
t
)
)
1{¬Et}

]
≤ L

∑
t∈[T ]

Eπ [1{¬Et}] (62)

= L
∑
t∈[T ]

P(¬Et) (63)

≤
∑
t∈[T ]

2LK

t2
(64)

≤ LKπ2

3
. (65)

where equation 64 holds by Lemma 2 and equation 65 holds since
∑∞

t=1
1
t2 = π2

6 .

Lemma 2. (Metelli et al., 2022) For every round K < t < T , and window size 1 ≤ hi ≤ εNi,t−1,
we have:

P(¬Et) ≤
2K

t2
. (66)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Next, we bound term (B). Firstly, we utilize Lipschitz continuity.

r(Sπ∗

t ,µSπ∗
t
)− r(Sπ

t ,µSπ
t
) (67)

=r(Sπ∗

t ,µSπ∗
t
)− r(Sπ

t ,µSπ
t
) + r(Sπ

t , µ́Sπ
t
)−r(Sπ

t , µ́Sπ
t
) + r(Sπ∗

t , µ́Sπ∗
t
)−r(Sπ∗

t , µ́Sπ∗
t
) (68)

≤− r(Sπ
t ,µSπ

t
) + r(Sπ

t , µ́Sπ
t
)− r(Sπ

t , µ́Sπ
t
) + r(Sπ∗

t , µ́Sπ∗
t
) (69)

≤r(Sπ
t , µ́Sπ

t
)− r(Sπ

t ,µSπ
t
) (70)

≤B
∑
i∈Sπ

t

|µ́i(t)− µi(t)| (71)

≤B
∑
i∈Sπ

t

µ̃i(t)− µi(t)︸ ︷︷ ︸
(B1)

+2B
∑
i∈Sπ

t

βi(t)︸ ︷︷ ︸
(B2)

, (72)

where equation 69 holds by Assumption 2 and equation 70 holds by definition of CRUCB and
equation 71 holds by Lipschitz assumption and equation 72 holds by well-estimated event Et.
We bound the term (B1) defining ti,n as the time step where the base arm i is pulled the nth time:

∑
t∈[T ]

∑
i∈Sπ

t

µ̃i(t)− µi(t) ≤ 2K +
∑
i∈[K]

Ni,t∑
n=3

min {µ̃i(ti,n)− µi(t), 1} (73)

≤ 2K +
∑
i∈[K]

Ni,t∑
n=3

min

{
1

2
(2ti,n−2n+ hi−1)γi(n−2hi + 1), 1

}
(74)

= 2K +
∑
i∈[K]

Ni,t∑
n=3

min {Tγi((1− 2ε)n), 1} (75)

≤ 2K + T q
∑
i∈[K]

Ni,t∑
n=3

γi((1− 2ε)n)q (76)

≤ 2K +KT q

(
1

1− 2ε

)
Υ

(
(1− 2ε)

LT

K
, q

)
, (77)

where equation 74 follows from the Lemma A.3, in (Metelli et al., 2022), equation 76 follows from
the fact min(s, 1) ≤ min(s, 1)q ≤ sq for q ∈ [0, 1], and equation 77 follows from the Lemma C.2.
in (Metelli et al., 2022). Now, we bound the term (B2).

∑
t∈[T ]

∑
i∈Sπ

t

2Bmin {βi(t), 1} =
∑
t∈[T ]

∑
i∈St

2Bmin

{
σ (t−Ni,t−1 + hi − 1)

√
2 log 4t3

h3
, 1

}
(78)

≤
∑
t∈[T ]

∑
i∈Sπ

t

2Bmin

{
Tσ

√
6 log 4T

(ε⌊Ni,t⌋)3
, 1

}
(79)

=
∑
i∈[K]

∑
n∈[Ni,t]

2Bmin

{
Tσ

√
6 log 4T

(ε⌊n⌋)3
, 1

}
. (80)

Choose n′ = (2BσT )
2
3 (6 log(4T ))

1
3

ε . Then for n > n′

2BσT

√
6 log 4T

(ε⌊n⌋)3
≤ 1 . (81)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Thus, we have:∑
i∈[K]

Ni,t∑
n=1

2Bmin

{
σT

√
6 log 4T

(ε⌊n⌋)3
, 1

}
≤
∑
i∈[K]

(
n′ +

T∑
n=n′+1

2BσT

√
6 log 4T

(ε⌊n⌋)3

)
(82)

≤ K

(
n′ + 2BσT

√
6 log 4T

ε3

∫ ∞

n′
x− 3

2 dx

)
(83)

≤ 3K

ϵ

(
(2BσT )

2
3 (6 log 4T )

1
3

)
, (84)

where equation 83 comes from the fact that the sum of monotone decreasing function can be upper
bounded. Combining the results from equation 65, equation 77, and equation 84, we conclude the
proof.

C.4 PROOF OF THEOREM 4

Proof. Firstly, we consider non-combinatorial case, which means that every super arm has only one
base arm. We construct two different problems and show that no policy can achieve sub-linear regret.

Lemma 3. Let I ′ be the set of all available two-armed rising bandit problem. For sufficiently large
time T , any policy π suffers regret:

min
π

max
µ∈I′

Regµ(π, T ) ≥
T

16
, (85)

Proof. For simplicity, we consider the deterministic problem, that is, σ = 0. Let Rewµ(π, T ) be
the cumulative reward of policy π up to time T with respect to the problem instance µ. Define two
problem µA and µB as follows:

µA
1 (n) = µB

1 (n) =
1

2

µA
2 (n) =

{
3n
2T if n ≤ 2T

3

1 otherwise

µB
2 (n) =

{
3n
2T if n ≤ T

3
1
2 otherwise

.

T
3

2T
3

T

1
2

1

n

µA
1

µA
2

T
3

2T
3

T

1
2

1

n

µB
1

µB
2

In this setting, we define S as follows:
S = {S1, S2} . (86)

The main idea of the proof is that for any arbitrary policy π′, the policy receives the same rewards for
both µA and µB at least until T

3 , indicating that:

RewµA

(
π′,

T

3

)
= RewµB

(
π′,

T

3

)
. (87)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Fix some arbitrary policy π and define M as follows:

M := EµA,π[NS1,
T
3
] = EµB ,π[NS1,

T
3
] (88)

We compute the cumulative regret of policy π in µA and µB .

Problem (A) For µA, the optimal policy π∗
A selects S2 for every time. The corresponding cumula-

tive reward is given by:

RewµA(π∗
A, T ) =

⌈ 2T
3 ⌉∑

n=1

3n

2T
+

T

3
. (89)

For the given policy π, the cumulative reward is upper bounded as follows:

RewµA(π, T ) =
1

2
EµA,π[NS1,T ] +

T−EµA,π [NS1,T ]∑
n=1

µA
2 (n) (90)

≤ M

2
+

T−M∑
n=1

µA
2 (n) (91)

=
M

2
+

⌈ 2T
3 ⌉∑

n=1

3n

2T
+

(
T

3
−M

)
(92)

=

⌈ 2T
3 ⌉∑

n=1

3n

2T
+

T

3
− M

2
, (93)

where equation 91 holds since the cumulative reward is maximized as EµA,π[NS1,T ] minimized and
it is guaranteed that EµA,π[NS1,T ] ≥ EµA,π[NS1,

T
3
] = M .

The cumulative regret is lower bounded by:

RegµA(π, T ) ≥
⌈ 2T

3 ⌉∑
n=1

3n

2T
+

T

3
−

⌈ 2T
3 ⌉∑

n=1

3n

2T
+

T

3
− M

2

 (94)

=
M

2
. (95)

Problem (B) For µB , the optimal policy π∗
B is selecting S1, for every time. The corresponding

cumulative reward is given by:

RewµB (π∗
B , T ) =

T

2
. (96)

For the given policy π, the cumulative reward is upper bounded as follows:

RewµB (π, T ) =
1

2
EµB ,π[NS1,T ] +

T−EµB,π [NS1,T ]∑
n=1

µB
2 (n) (97)

≤
( 2T3 +M)

2
+

⌈T
3 −M⌉∑
n=1

µB
2 (n) (98)

=

⌈T
3 −M⌉∑
n=1

3n

2T
+

T

3
+

M

2
(99)

=
3

4T

(
T

3
−M

)(
T

3
−M + 1

)
+

T

3
+

M

2
(100)

=
3M2

4T
− 3M

4T
+

5T

12
+

1

4
, (101)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

where equation 91 holds since the cumulative reward is maximized as EµB ,π[NS1,T ] maximized and
it is guaranteed that EµB ,π[NS1,T ] ≤ 2T

3 + EµB ,π[NS1,
T
3
] = 2T

3 +M .

The cumulative regret is lower bounded by:

RegµB (π, T ) ≥ T

2
−
(
3M2

4T
− 3M

4T
+

5T

12
+

1

4

)
(102)

= −3M2

4T
+

3M

4T
+

T

12
− 1

4
(103)

≥ −3M2

4T
+

3M

4T
+

T

16
, (104)

where equation 104 holds since we assume sufficiently large T .

From previous results, the worst-case regret can be lower bounded as follows:

inf
π

sup
µ

Regµ(π, T ) ≥ inf
π

max
{

RegµA(π, T ),RegµB (π, T )
}

(105)

= inf
M∈[0,T3 ]

max

{
M

2
,−3M2

4T
+

3M

4T
+

T

16

}
(106)

≥ inf
M∈[0,T3 ]

−12M2 + (8T + 12)M + T 2

16T
(107)

≥ T

16
, (108)

where equation 107 holds since max(a, b) ≥ a+b
2 and equation 108 holds since it is easily verified

that equation 107 is minimized when M = 0, which completes the proof.

Now, we expand Lemma 3 to general combinatorial setting. Let L be an arbitrary constant. We define
two problem µA,L and µB,L construct super arm set SL as follows:

µA,L
i (n) = µB,L

i (n) =
1

2
i ∈ [1, L] (109)

µA,L
i (n) =

{
3n
2T if n ≤ 2T

3

1 otherwise
i ∈ [L+ 1, 2L] (110)

µB,L
i (n) =

{
3n
2T if n ≤ T

3
1
2 otherwise

i ∈ [L+ 1, 2L] (111)

SL := {(a1, a2, . . . , aL) : ai ∈ {i, L+ i} i ∈ [L]} . (112)

Since it can be interpreted as solving L independent problems, we have:

inf
π

sup
µ

Regµ(π, T ) ≥
LT

16
. (113)

C.5 PROOF OF THEOREM 5

Proof. We apply similar logic given in the Appendix C.4 to show that for the worst-case lower bound
is Ω

(
max

{
L
√
T , LT 2−c

})
. Firstly, we consider non-combinatorial case.

Lemma 4. Let A′
c be the subset of two-armed rising bandit problem with constraints given in

equation 14 . For sufficiently large time T , any policy π suffers regret:

min
π

max
µ∈A′

c

Regµ(π, T ) ≥ LT 2−c , (114)

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Proof. For convention, we define µ(m) and F (m) as follows:

µ(m) :=

m∑
n=1

(n+ 1)−c (115)

F (m) :=

m∑
n=1

µ(n) . (116)

Let µA and µB be two rising bandit instances. which are defined as:

µA
1 (n) = µB

2 (n) = µ(P )− ε (117)

µA
2 (n) = µ(n) ; (118)

µB
2 (n) =

{
µ(n) if n ≤ P

µ(P ) otherwise
, (119)

where P = (2 − c)
1

c−1T and 0 < ε < µ(P ) will be specified later. In this setting, we define S as
follows:

S = {S1, S2} , (120)
where S1 = {1} and S2 = {2}. Similar to Theorem 4, we define:

M := EµA,π[NS1,P ] = EµB ,π[NS1,P ] (121)

We note that µA and µB belongs to A′
c. We firstly assume that the optimal super arm for µA is S2

and the optimal super arm for µB is S1. We will show that it is true after ε is specified.

P T

µ(P )− ε

1

n

µA
1

µA
2

P T

µ(P )− ε

1

n

µB
1

µB
2

The main idea of the proof is that for any arbitrary policy π′, the agent receives the same rewards for
both µA and µB at least until P , indicating that:

RewµA(π′, P ) = RewµB (π′, P ) . (122)

Problem (A) For µA, the optimal policy π∗
A is selecting S2, for every time. The corresponding

cumulative reward is given by:
RewµA(π∗

A, T ) = F (T ) . (123)
For the given policy π, the cumulative reward is upper bounded as follows:

RewµA(π, T ) = (µ(P )− ε)EµA,π[NS1,T ] +

T−EµA,π [NS1,T ]∑
n=1

µA
2 (n) (124)

≤ (µ(P )− ε)M + F (T −M), (125)
where equation 125 holds since the cumulative reward is maximized as EµA,π[NS1,T ] minimized
and it is guaranteed that EµA,π[NS1,T ] ≥ EµA,π[NS1,P ].

With The cumulative regret is lower bounded by:
RegµA(π, T ) ≥ F (T )− (µ(P )− ε)M − F (T −M) . (126)

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Problem (B) For µB , the optimal policy π∗
B is selecting S1, for every time. The corresponding

cumulative reward is given by:
RewµB (π∗

B , T ) = T (µ(P )− ε) . (127)
For the given policy π, the cumulative reward is upper bounded as follows:

RewµB (π, T ) = (µ(P )− ε)EµB ,π[NS1,T ] +

T−EµB,π [NS1,T ]∑
n=1

µB
2 (n) (128)

≤ (µ(P )− ε) (T − P +M) +

P−M∑
n=1

µB
2 (n) (129)

= (µ(P )− ε) (T − P +M) + F (P −M) , (130)
where equation 129 holds since the cumulative reward is maximized as EµB ,π[NS1,T ] maximized
and it is guaranteed that EµB ,π[NS1,T ] ≤ T − P + EµB ,π[NS1,P ] = T − P +M .

The cumulative regret is lower bounded by:
RegµB (π, T ) ≥ (µ(P )− ε)T − (µ(P )− ε) (T − P +M)− F (P −M) (131)

= (µ(P )− ε) (P −M)− F (P −M) . (132)

From previous results, the worst-case regret can be lower bounded as follows:
inf
π

sup
µ

Regµ(π, T ) (133)

≥ inf
π

max
{

RegµA(π, T ),RegµB (π, T )
}

(134)

= inf
M∈[0,P ]

max {F (T )−(µ(P )−ε)M−F (T−M), (µ(P )−ε) (P−M)−F (P−M)} (135)

≥ inf
M∈[0,P ]

F (T )− F (T −M)− F (P −M) + (µ(P )− ε) (P − 2M)

2
, (136)

where equation 136 holds since max(a, b) ≥ a+b
2 . We observe that equation 136 is unimodal over

P , which means that it increases to a maximum value and then decreases. More precisely, let
A(n) := F (T )− F (T − n)− F (P − n) + (µ(P )− ε)(P − 2n). Then, we have:
A(n+ 1)−A(n) = F (T − n)− F (T − n+ 1) + F (P − n)− F (P − n+ 1)− 2(µ(P )− ε)

(137)
= µ(T − n+ 1) + µ(P − n+ 1)− 2(µ(P )− ε), (138)

which means that A(n) is concave, which means that A(n) is unimodal. It implies that:

inf
M∈[0,P ]

(
F (T )− F (T −M)− F (P −M) + (µ(P )− ε)(P − 2M)

2

)
(139)

≥min

{
(µ(P )− ε)P − F (P )

2
,
F (T )− F (T − P )− (µ(P )− ε)P

2

}
. (140)

equation 140 consists of two terms: the first term is obtained by setting M = 0 and the second term
is obtained by setting M = P .

To calculate two terms, we use the property of monotone functions.

Proposition 1. If a and b are integers with a < b and f is some real-valued function monotone on
[a, b], we have:

min{f(a), f(b)} ≤
b∑

n=a

f(n)−
∫ b

a

f(t) dt ≤ max{f(a), f(b)} . (141)

Proposition 1 indicates that we can bound µ(n) and F (n) as follows:

µ(n) ≤
∫ n

x=1

(x+ 1)−cdx+ 2−c (142)

=
1

c− 1

(
21−c − (n+ 1)1−c

)
+ 2−c . (143)

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

For simplicity, we denote (2− c)
1

c−1 by a so that P = aT . Then, we have:
(µ(P )− ε)P − F (P ) (144)

=P

P∑
n=1

(n+ 1)−c − Pε−
P∑

n=1

(P + 1− n)(n+ 1)−c (145)

=

P∑
n=1

(n− 1)(n+ 1)−c − Pε (146)

≥P 2−c − Pε (147)

=(aT )2−c − (aT )ε . (148)
Similarly, we have:

F (T )− F (T − P )− (µ(P )− ε)P (149)

=

T∑
n=1

(T + 1− n)(n+ 1)−c −
T−P∑
n=1

(T − P + 1− n)(n+ 1)−c − (µ(P )− ε)P (150)

=

T∑
n=T−P+1

(T + 1− n)(n+ 1)−c +

T−P∑
n=1

P (n+ 1)−c − (µ(P )− ε)P (151)

≥P (T + 1)−c + (T − P )P (T + P − 1)−c − (µ(P )− ε)P (152)

=aT (T + 1)−c + (T − aT )aT (T + aT − 1)−c −
(
21−c

c− 1
− (aT + 1)1−c

c− 1
+ 2−c − ε

)
aT

(153)

=c2T
2−c + o(T 2−c) + εaT , (154)

where Now, we define ε so that equation 148 equals equation 154:
2aTε = (c2 + a2−c)T 2−c + o(T 2−c) (155)

Then, by substituting ε to equation 148 and equation 154, we have:
Regµ(π, T ) ≥ Ω

(
T 2−c

)
. (156)

Now, we expand Lemma 4 to general combinatorial setting. Let L be an arbitrary constant. As before,
we define two problem µA,L and µB,L construct super arm set SL as follows:

µA,L
i (n) = µB,L

i (n) = µ(P )− ε, i ∈ [L], (157)

µA,L
i (n) = µ(n), i ∈ [L+ 1, 2L], (158)

µB,L
i (n) =

{
µ(n) if n ≤ P

µ(P ) otherwise
i ∈ [L+ 1, 2L] , (159)

SL := {(a1, a2, . . . , aL) : ai ∈ {i, L+ i} i ∈ [L]} . (160)
Due to same reason in Appendix C.4 we have:

inf
π

sup
µ∈Ac

Regµ(π, T ) ≥ Ω(LT 2−c) . (161)

Now, we note that any stationary bandit problem is included in Ac, since γi(n) = 0 for all base
arm i ∈ [K]. Previous literature has proven that for stationary bandit problem, the worst-case regret
lower bound is Ω(

√
KT ) (Lattimore & Szepesvári, 2020). Similarly, we can extend this setting to

combinatorial setting:

inf
π

sup
µ∈Ac

Regµ(π, T ) ≥ Ω(L
√
T ) . (162)

Combining these results, we conclude:

min
π

max
µ∈Ac

Regµ(π, T ) ≥ Ω
(
max

{
L
√
T ,LT 2−c

})
. (163)

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

D PSEUDOCODE AND DESCRIPTION OF BASELINES

In Section 6, we have considered 5 baseline algorithms to evaluate CRUCB’s performance. Each al-
gorithm is carefully chosen to highlight different aspects of the bandit problem, such as rising rewards
and combinatorial settings. In this section, we provide the pseudocode and detailed descriptions for
each baseline algorithm.

D.1 R-ED-UCB (METELLI ET AL., 2022)

R-ed-UCB is a rising bandit algorithm that employs a sliding-window approach combined with
UCB-based optimistic reward estimation algorithm, specifically designed for rising rewards. While
it shares the core estimation method (µ́i(t)) with CRUCB, R-ed-UCB applies this method directly
to super arms and selects the maximum one, rather than applying it to base arms and solving the
combinatorial problem as in CRUCB. R-ed-UCB would be less effective in complex environments
where the number of super arms significantly exceeds the number of base arms, as it does not benefit
from the shared exploration of common base arms, leading to reduced exploration efficiency.

Algorithm 2 Rested UCB (R-ed-UCB)

Input Ni,0 ← 0 for all i ∈ [|S|], Sliding window parameter ε.
Initialize Play each super arm Si two times for each i ∈ [|S|].
for t ∈ (1, . . . , T ) do

Calculate Future-UCB µ́i(t) for each super arm.
St ← Solver(µ́1(t), µ́2(t), · · · , µ́|S|(t)).
Play St and observe reward Rt.
Update Ft and Ni,t.

end for

D.2 SW-UCB (GARIVIER & MOULINES, 2011)

SW-UCB is a non-stationary bandit algorithm that uses a sliding-window approach with UCB
algorithm. It estimates the reward of each super arm and confidence bounds using the following
expressions:

µ̂SW-UCBi (t) :=
1

h

Ni,t−1∑
l=Ni,t−1−h+1

Xi(l) (164)

βSW-UCBi (t) :=

√
3 log t

2Ni,t−1
(165)

µ́SW-UCBi (t) := µ̂SW-UCBi (t) + βSW-UCBi (t) . (166)

While the SW-UCB algorithm is similar to R-ed-UCB, it differs slightly in the values it estimates.
Additionally, SW-UCB uses a fixed sliding window size, in contrast to the dynamic sliding window
size employed by R-ed-UCB. Similar to R-ed-UCB, SW-UCB would be less effective in complex
environments.

Algorithm 3 Sliding Window-UCB (SW-UCB)

Input Ni,0 ← 0 for all i ∈ [|S|], Sliding window size h.
Initialize Play each super arm Si two times for each i ∈ [|S|].
for t ∈ (1, . . . , T ) do

For each super arm Si, set µ́SW-UCBi (t) = µ̂SW-UCBi (t) + βSW-UCBi (t).
St ← argmax(µ́SW-UCB1 (t), µ́SW-UCB2 (t), · · · , µ́SW-UCB|S| (t)).
Play St and observe reward XSt(t).
Update µ̂SW-UCBi (t) and Ni,t.

end for

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

D.3 SW-CUCB (CHEN ET AL., 2021)

SW-CUCB is a non-stationary combinatorial bandit algorithm that uses a sliding-window approach
with UCB algorithm for combinatorial setting. It estimates the values µ̂SW-CUCBi (t) and βSW-CUCBi (t),
which are nearly identical to those used in SW-UCB but specifically adapted for base arms. SW-CUCB
then utilizes Solver to address the combinatorial problem.

Algorithm 4 Sliding Window-Combinatorial UCB (SW-CUCB)

Input Ni,0 ← 0 for all i ∈ [K], Sliding window size h.
Initialize Play arbitrary super arm including base arm i two times for each i ∈ [K].
for t ∈ (1, . . . , T ) do

For each base arm i, set µ́SW-CUCBi (t) = µ̂SW-CUCBi (t) + βSW-CUCBi (t).
St ← Solver(µ́SW-CUCB1 (t), µ́SW-CUCB2 (t), · · · , µ́SW-CUCBK (t)).
Play St and observe reward XSt

(t).
Update µ̂SW-CUCBi (t) and Ni,t.

end for

D.4 SW-TS (TROVO ET AL., 2020)

SW-TS is a non-stationary bandit algorithm that uses a sliding-window approach with Thompson
Sampling. Since outcomes are bounded, the algorithm updates the parameters by adds XSt(t) to
α and 1 − XSt

(t) to β based on the observed output XSt
(t). SW-TS also utilizes a fixed sliding

window size similar to SW-UCB. Similar to R-ed-UCB and SW-UCB, SW-TS also operates directly
on super arms, it may suffer from reduced exploration efficiency in complex environments.

Algorithm 5 Sliding Window Thompson Sampling (SW-TS)

Input Sliding window size h.
Initialize Play each super arm Si two times for each i ∈ [|S|].
for t ∈ (1, . . . , T ) do

For each super arm Si, set θi(t) ∼ Beta(αi + 1, βi + 1).
St ← argmax(θ1(t), θ2(t), · · · , θK(t)).
Play St and observe reward XSt(t).
Update αi and βi.

end for

D.5 SW-CTS

SW-CTS is a non-stationary combinatorial bandit algorithm that uses a sliding-window approach
with Thompson Sampling for combinatorial setting. While it operates similarly to SW-TS, the key
difference is that SW-CTS performs estimation at base arms then solves the combinatorial problem
using Solver.

Algorithm 6 Sliding Window-Combinatorial Thompson Sampling (SW-CTS)

Input Sliding window size h.
Initialize Play arbitrary super arm including base arm i two times for each i ∈ [K].
for t ∈ (1, . . . , T ) do

For each base arm i, set θi(t) ∼ Beta(αi + 1, βi + 1).
St ← Solver(θ1(t), θ2(t), · · · , θK(t)).
Play St and observe reward XSt(t).
Update αi and βi.

end for

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

E EXPERIMENTAL DETAILS

Table 1: Overview of task specifications. We summarizes the details of each task, including the
number of base arms K, the number of super arms |S|, and the maximal size of a super arm L.

Environment Experiment difficulty K |S| L

Synthetic environments
(Section 6.1 & Appendix F)

Online shortest path
toy 3 2 2

easy 12 6 4

complex 60 252 10

Maximum weighted matching easy 8 12 2

complex 28 840 4

Minimum spanning tree easy 6 8 3

complex 15 1296 5

k-MAX - 5 10 2

Deep reinforcement learning
(Section 6.2)

AntMaze-easy - 7 3 5

AntMaze-complex - 48 178 15

Table 2: Hyperparameters for AntMaze Tasks.

AntMaze-easy AntMaze-complex

number of graph nodes 6 16
fail condition 100 100

maximum length of episode 500 1000
T 2000 3000

hidden layer (256, 256) (256, 256)
actor lr 0.0001 0.0001
critic lr 0.001 0.001

τ 0.005 0.005
γ 0.99 0.99

batch size 1024 1024

In Section 6, we conduct experiments in two distinct environments: synthetic environments and deep
reinforcement learning settings. This section provides a detailed description of each environment,
including their design and hyperparameters. The specifications for each experiment are summarized
in Table 1.

E.1 SYNTHETIC ENVIRONMENTS

In the synthetic environments, we have the flexibility to design reward functions by choosing arbitrary
values. Here, we set c = 1.2, which lies in the range between 1 and 1.5. This choice is motivated by
the theoretical reasoning discussed in Section 5. To be specific, γ(n) =

([
n

1000 + 1
]
· 1000 + 1

)−1.2

for n < 20000 and 0 for n ≥ 20000 with σ = 0.01. In the simpler environments, we use
γ(n) =

([
n

250 + 1
]
· 250 + 1

)−1.2
for n < 5000 and 0 for n ≥ 5000. As depicted in Figure 3,

the regret upper bound for these environments is O(T
1

1.2 ), and the regret lower bound is O(T 0.8).
Therefore, while the regret observed in Figure 5b appears nearly linear, which aligns with the
theoretical bounds, it still demonstrates superior performance compared to other baseline algorithms.

E.2 DEEP REINFORCEMENT LEARNING

In the deep reinforcement learning environments, we conducted experiments using the AntMaze
environment. AntMaze is a hierarchical goal conditioned reinforcement learning task where an ant
robot navigates to a predefined goal hierarchically. The ant robot in this environment has four legs,

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

each with two joints, resulting in an action space that controls a total of eight joints. The reward
structure for the low-level agent is simple: the agent receives a reward of 0 when it reaches the goal
or comes within a certain distance of it, and a reward of -1 otherwise. Our experiments are carried out
in the scenario depicted in Figure 5, which shows the map and corresponding graph structure used.
To ensure consistent and repeated exploration over the fixed graph, we utilized a code based on the
algorithm described in (Yoon et al., 2024) without the adaptive grid refinement. The hyperparameters
used in these experiments are summarized in Table 2.

In each experiment, the algorithm generates a path that the ant robot follows, receiving feedback
based on success or failure. For combinatorial methods, the agent does not persist with a single edge
until the episode ends; if the agent fails to reach the goal within 100 steps, the attempt is considered a
failure. In this case, the reward is set to 0, and the agent fails to attempt the next edge, which known
as the cascading bandit setting. If the agent successfully reaches the goal, the reward is proportional
to the efficiency, calculated as the number of steps taken divided by 100. For non-combinatorial
methods, the reward for success is determined by the number of steps taken divided by the maximum
length of the episode. We note that while the reward function of AntMaze is non-concave, as depicted
in Figure 7a, and cascading bandit setting, we confirmed that RCUCB performs well, as illustrated in
Figure 7.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

F ADDITIONAL EXPERIMENTS

In this section, we present additional experiments to evaluate the performance of CRUCB in a broader
set of environments. Specifically, we test CRUCB on three representative combinatorial optimization
problems, k-MAX (Section F.1), maximum weighted matching (Section F.2), and minimum spanning
tree (Section F.3). These experiments demonstrate that CRUCB maintains strong performance across
diverse scenarios, further validating its robustness and adaptability.

F.1 k-MAX TASK

We investigate the k-MAX setting, where the reward is determined by the maximum value among
outcomes of the selected base arm. As shown in Theorem 1, the optimal policy for the k-MAX may
not always involve consistently pulling a single super arm. However, since the k-MAX satisfies the
additive-bounded reward assumption in Theorem 2 with BL=

1√
k
, BU =1, we use an approximate

optimal constant policy (consistntly pulling (1, 5)) to calculate regret.

CRUCB (Ours)
R-ed-UCB
SW-CUCB
SW-UCB
SW-CTS
SW-TS

0 10K 20K 30K
number of pulls

0
0.2
0.4
0.6
0.8
1.0

ou
tc

om
e 1

2
3
4
5

(a) Outcome functions

0 100K 200K 300K
episode number

0

1

re
gr

et

x104

(b) Cumulative regret

Figure 9: k-MAX task. (a) Reward functions (c = 1.2) for base arms 1–5, where K = 5 and k = 2.
(b) Regret curves for K-MAX. Lines show average; shaded areas indicate 99% confidence intervals
over 5 runs.

The results, as shown in Figure 9b, demonstrate that CRUCB consistently outperforms other algo-
rithms. R-ed-UCB shows sub-optimal regret due to the partially shared enhancement. Notably,
we observe that among non-stationary algorithms, combinatorial algorithms (SW-CUCB, SW-CTS)
perform worse than non-combinatorial algorithms (SW-UCB, SW-TS). Non-combinatorial algorithms
select the early peaker (5) frequently while evenly exploring other edges. On the other hand, combi-
natorial algorithms select early peakers (4, 5), limiting exploration of late bloomers and preventing
them from fully rising their potential.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

F.2 MAXIMUM WEIGHTED MATCHING

We conduct experiments on maximum weighted matching task, a widely studied classic combinatorial
optimization problem. In this task, we are given two disjoint sets of nodes, U and V , and the goal
is to find a matching where each node ui ∈ U is paired with a unique node vj ∈ V , ensuring no
overlapping connections. The objective is to maximize the total reward by selecting the best set of
edges between these nodes.

(a) Matching-easy

0 10K20K30K40K50K
number of pulls

0
0.2
0.4
0.6
0.8
1.0

ou
tc

om
e

early peaker
late bloomer

(b) Outcome functions (c) Matching-complex

0 10K20K30K40K50K
number of pulls

0
0.2
0.4
0.6
0.8
1.0

ou
tc

om
e

early peaker
late bloomer

(d) Outcome functions

Figure 10: Maximum weighted matching task. (a, c) Graphs used to evaluate CRUCB and baselines.
(b, d) Corresponding outcome functions for each task.

CRUCB (Ours)
R-ed-UCB
SW-CUCB
SW-UCB
SW-CTS
SW-TS

0 100K 200K 300K
episode number

0

1

2

re
gr

et

x104

(a) Matching-easy

0 250K 500K
episode number

0

1

2

re
gr

et

x105

(b) Matching-complex

Figure 11: Cumulative regret in maximum weighted matching task. Regret curves for (a)
Matching-easy and (b) Matching-complex. Lines show average; shaded areas indicate 99% confidence
intervals over 5 runs.

We use the same outcome function as in the online shortest path problem, shown in Figure 10b and d.
The graph structures are depicted in Figure 10a and c. The regret results, shown in Figure 11, confirm
that CRUCB outperforms the baseline algorithms in this task.

The task is particularly relevant in settings like job matching, where each job can be matched to
a worker, and the reward might increase over time as workers gain experience. This makes the
problem a perfect fit for combinatorial bandit settings, where the rewards of certain matches (such as
experienced workers with higher skill levels) rise as more interactions occur, highlighting the rising
aspect of the task.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

F.3 MINIMUM SPANNING TREE

We conduct experiments on minimum spanning tree task, a fundamental problem in combinatorial
optimization, where the objective is to find a subset of edges that connect all nodes in a graph with
the minimum total edge weight, ensuring no cycles. However, in our setting, we treat the weight of
each edge as a 1−outcome, meaning we aim to maximize the total outcome, which is equivalent to
minimizing the total edge weight.

(a) Spanning-easy

0 10K20K30K40K50K
number of pulls

0
0.2
0.4
0.6
0.8
1.0

ou
tc

om
e

early peaker
late bloomer

(b) Outcome functions (c) Spanning-complex

0 10K20K30K40K50K
number of pulls

0
0.2
0.4
0.6
0.8
1.0

ou
tc

om
e

early peaker
late bloomer

(d) Outcome functions

Figure 12: Minimum spanning tree task. (a, c) Graphs used to evaluate CRUCB and baselines. (b,
d) Corresponding outcome functions for each task.

CRUCB (Ours)
R-ed-UCB
SW-CUCB
SW-UCB
SW-CTS
SW-TS

0 100K 200K 300K
episode number

0

1

2

re
gr

et

x104

(a) Simple graph

0 250K 500K
episode number

0

1

2

re
gr

et

x105

(b) Complex graph

Figure 13: Cumulative regret in minimum spanning tree task. Regret curves for (a) Spanning-easy
and (b) Spanning-complex. Lines show average; shaded areas indicate 99% confidence intervals over
5 runs.

Similarly, we evaluate minimum spanning tree task with the same outcome function from Figure 12b
and d, applied to the graph structures in Figure 12a and c. The regret results, presented in Figure 13,
indicate that CRUCB consistently performs better than the baselines.

This formulation is particularly relevant in practical applications such as network routing, where the
objective is to establish efficient communication across a distributed system. Over time, as certain
paths are used more frequently, the network can adapt and optimize its behavior: caches warm up,
congestion reduces through load balancing, and routing protocols fine-tune their decisions. As a
result, the effective cost of using the same edge decreases, which translates into a rising reward for
that edge.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

G HEATMAPS IN ANTMAZE-COMPLEX

Less visited More visited
t

=
10

0
t

=
50

0
t

=
30

00

goal

start

goal

start

goal

start

(a) Optimal

goal

start

goal

start

goal

start

(b) CRUCB

goal

start

goal

start

goal

start

(c) R-ed-UCB

goal

start

goal

start

goal

start

(d) SW-CUCB

goal

start

goal

start

goal

start

(e) SW-UCB

goal

start

goal

start

goal

start

(f) SW-CTS

goal

start

goal

start

goal

start

(g) SW-TS

Figure 14: Heatmap illustrating visit frequencies in AntMaze-complex. We visualize the visit
frequencies for the optimal policy, CRUCB, and baseline algorithms. The heatmap includes three
rows representing visit frequencies until episode numbers 100, 500, and 3000.

In Figure 14, we provide a more comprehensive view by illustrating the exploration patterns across
all baseline algorithms at various stages. The optimal policy, which follows the oracle constant policy,
only explores the optimal path from the start to the goal, resulting in highly focused exploration along
this path, as depicted in Figure 14a. In Figure 14b, CRUCB exhibits exploration patterns most similar
to the optimal policy compared to other baselines, demonstrating its efficiency in targeting the goal
effectively. Among the baselines, SW-CTS notably aligns most closely with the optimal policy in the
exploration patterns and is the only algorithm to show a significant difference in regret compared to
the others, as seen in Figure 7c. In comparison, algorithms not specifically designed for combinatorial
settings, such as R-ed-UCB, SW-UCB, and SW-TS, suffer from less efficient exploration. Their
exploration resembles a breadth-first search pattern, as they must explore a broader range of super
arms despite having a given goal.

In Figure 15 and Figure 16, we further analyze the exploration behaviors of each algorithm by
visualizing their try frequencies at both the path and edge levels. The optimal policy concentrates its
tries exclusively along the shortest path, resulting in highly localized activity in both visualizations.
CRUCB exhibits exploration patterns that closely resemble those of the optimal policy, maintaining
focused and structured exploration throughout. Notably, AntMaze-complex includes 178 possible
paths, which makes exhaustive exploration highly time-consuming. As illustrated in Figure 15,
non-combinatorial algorithms struggle with this complexity: by episode 100, some paths remain
untried, and even by episode 3000, their exploration remains broadly distributed and unguided,
indicating inefficient use of the exploration budget.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Less tried More tried
t

=
10

0
t

=
50

0
t

=
30

00

goal

start

goal

start

goal

start

(a) Optimal

goal

start

goal

start

goal

start

(b) CRUCB

goal

start

goal

start

goal

start

(c) R-ed-UCB

goal

start

goal

start

goal

start

(d) SW-CUCB

goal

start

goal

start

goal

start

(e) SW-UCB

goal

start

goal

start

goal

start

(f) SW-CTS

goal

start

goal

start

goal

start

(g) SW-TS

Figure 15: Heatmap illustrating the path-level try frequencies in AntMaze-complex. We visualize
the path-level try frequencies for the optimal policy, CRUCB, and baseline algorithms. The heatmap
includes three rows representing the path-level try frequencies until episode numbers 100, 500, and
3000.

Less tried More tried

t
=

10
0

t
=

50
0

t
=

30
00

goal

start

goal

start

goal

start

(a) Optimal

goal

start

goal

start

goal

start

(b) CRUCB

goal

start

goal

start

goal

start

(c) R-ed-UCB

goal

start

goal

start

goal

start

(d) SW-CUCB

goal

start

goal

start

goal

start

(e) SW-UCB

goal

start

goal

start

goal

start

(f) SW-CTS

goal

start

goal

start

goal

start

(g) SW-TS

Figure 16: Heatmap illustrating the edge-level try frequencies in AntMaze-complex. We visualize
the edge-level try frequencies for the optimal policy, CRUCB, and baseline algorithms. The heatmap
includes three rows representing the edge-level try frequencies until episode numbers 100, 500, and
3000.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

H THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this manuscript, we utilized a large language model (LLM) as a writing assistant
to aid in polishing the text. The LLM’s role was limited to refining phrasing and grammar in author-
written drafts, suggesting alternative sentence structures to improve clarity, and helping maintain a
consistent academic tone. All technical contributions, theoretical results, experimental designs, and
final claims were conceived and developed solely by the human authors. The authors thoroughly
reviewed and edited the manuscript and take full responsibility for all content presented in this paper.

34


	Introduction
	Problem formulation
	Characterization of optimality
	Proposed method: CRUCB
	Regret analysis
	Regret upper bound of CRUCB
	Regret lower bound of CRB

	Experiments
	Synthetic environments
	Deep reinforcement learning

	Conclusion
	Real-world applications of the CRB framework
	Comparison with existing rising bandit studies
	Proof of theorems
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5

	Pseudocode and description of baselines
	R-ed-UCB
	Sw-UCB
	SW-CUCB
	SW-TS
	SW-CTS

	Experimental details
	Synthetic environments
	Deep reinforcement learning

	Additional experiments
	k-MAX task
	Maximum weighted matching
	Minimum spanning tree

	Heatmaps in AntMaze-complex
	The Use of Large Language Models (LLMs)

