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Abstract

Transformer models have been widely used to obtain high accuracy values in multiple fields
including natural language processing (NLP), computer vision, and more. This superior
performance typically comes at the expense of substantial computational overhead. Multi-
head attention is the key factor in the success of Transformer models that has been found
to be computationally expensive. Significant research effort has been devoted to improving
attention compute efficiency by pruning redundant attention heads. A widely adopted
paradigm is to jointly learn a set of gate variables and apply thresholds on gate values to
prune heads. Previous work shows a high level of sensitivity to threshold tuning which
can limit subnetwork performance and prevent them from wider adoption in practice. We
propose the notion of almost-sure sparsity to overcome this limitation and develop a generic
framework for Pruning with Almost-Sure Sparsity (PASS) targets over attention heads. To
further boost efficiency, we design a novel technique, concentrator, based on which we develop
PASSCONC (PASS with CONCentrator). We also present a simple-yet-effective strategy
to further improve subnetwork performance by clipping and selectively reopening learned
gates. We investigate PASS and PASSCONC on two widely studied architectures: encoder-
decoder (ED) Transformer and encoder-only Transformer (e.g., BERT). Experiments on
IWSLT14 German-to-English translation and GLUE benchmark tasks demonstrate that
our approaches outperform the SOTA by achieving up to 1.33 higher BLEU scores, 1.44%
higher accuracy, and 60% higher attention speedups.

1 Introduction

Transformer models (Vaswani et al., 2017) have become a lead force in the study of natural language process-
ing (NLP), computer vision, information retrieval, and other domains (Jiang et al., 2023; Asai et al., 2024;
Darcet et al., 2024; Ding et al., 2024). As Transformers grow deeper and larger, however, their application
on longer contexts remains challenging because attention computation, which is at the heart of Transformer
architectures, is of quadratic time and memory complexity with respect to the input length (Dao et al.,
2022). For example, Wang et al. (2020a) observed that attention computation typically accounts for over
50% end-to-end latency of a GPT-2 model on multiple hardware platforms.

Significant research efforts have been devoted to improving attention computation efficiency from two or-
thogonal perspectives: reducing attention complexity and pruning attention heads. As a successful attempt
at reducing attention complexity, sparse attention (Roy et al., 2021; Tay et al., 2020; Child et al., 2019)
focuses on sparsifying the attention distribution over tokens for each head to improve efficiency. Linformer
(Wang et al., 2020b) reduces the attention compute complexity from O(N2) to O(N) with low-rank matrix
approximation. FlashAttention (Dao et al., 2022; Dao, 2023) focuses on memory access efficiency in attention
computation and achieves linear memory complexity by exploiting the asymmetric GPU memory hierarchy
and minimizing unnecessary data transfers. However, implementing these approaches introduces extra chal-
lenges, particularly in rewriting the attention arithmetic operations as well as the underlying CUDA kernels
to improve hardware utilization, which prevents them from wider adoption in practice.
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(a) Pruning attention heads w/ gates. (b) Threshold sensitivity. (c) Pruning results.

Figure 1: (a) Pruning attention heads by learning a set of gate variables. Gates take values from [0, 1] and
apply to attention heads before summation. Heads of low gate values are more likely to be pruned. (b)
With a Transformer model of 72 heads and a sparsity target aiming to prune 56 heads, previous probabilistic
pruning SOTA (Xia et al., 2022) is highly sensitive to gate threshold tuning (a 0.5 threshold only prunes
49 heads) while our approach consistently achieves the desired sparsity target (e.g., pruning 56 heads) in a
threshold-independent manner. (c) On GLUE benchmark tasks (Wang et al., 2018), our approach achieves
up to 1.4% higher average accuracy and 60% higher speedups than previous probabilistic pruning SOTA.
Points in the plot represent the accuracy-speedup trade-offs achieved by different approaches under various
sparsity targets. Unpruned model performance is also included for reference purpose.

The second line of work focuses on pruning attention heads (Voita et al., 2019; Li et al., 2021; Xia et al.,
2023) to achieve significant inference speedups without changing the arithmetic operations of attention
modules and therefore can be applied to a majority of Transformer models with only minor training/fine-
tuning configuration changes. These works utilize the fact that properly trained Transformers are highly
over-parameterized, and study how to extract efficient subnetworks by removing redundant heads without
significant performance drops. A widely adopted paradigm is to jointly learn a set of trainable gate variables
for each attention head, as shown in Figure 1a. At test time, attention heads associated with low gate values
are pruned subject to predefined thresholds or sparsity targets. Typically, Li et al. (2021) achieves user-
specified attention head sparsity by iteratively applying the Gumbel-softmax trick (Gumbel, 1954) to select
the top-K most important attention heads for given sparsity targets. At each training iteration, however,
only selected attention heads get updated by the training optimizer (e.g., Adam (Kingma & Ba, 2015)) which
prevents models from being trained with more heads in early training stages and limits the final subnetwork
performance. Voita et al. (2019) and Xia et al. (2022) overcome this limitation by allowing all heads to
participate in the training process and achieve sparsity in a probabilistic manner. Specifically, Voita et al.
(2019) learns the probability distribution for gate values and sparsifies the models by regularizing the gate
closing probability (the likelihood that gate variables equal 0). Xia et al. (2022) follows a similar probabilistic
forumulation and achieves the target sparsity in expectation by using the lagrangian multiplier (Wang et al.,
2020c) to explicitly enforce sparsity constraints on attention heads. At test time, both Voita et al. (2019)
and Xia et al. (2022) use a threshold (e.g., 0.5) on the gate closing probabilities to determine if an attention
head can be pruned confidently. In practice, however, these probabilistic pruning approaches suffer from two
limitations. Firstly, setting correct thresholds is challenging and a mistakenly chosen threshold can lead to
failed sparsity targets, as illustrated in Figure 1b. Secondly, thresholding gate variables at test time may
bring significant architecture changes to Transformer models and lead to decayed subnetwork performance.
On GLUE benchmark tasks (Wang et al., 2018), we observe that previous probabilistic pruning SOTA (Xia
et al., 2022) may lead to drastic performance decay even with correctly calibrated gate thresholds, while our
approach achieves up to 1.4% higher average accuracy and 60% higher speedups (see Figure 1c).

Motivated by these limitations, in this work we propose a novel pruning approach, Pruning with Almost-
Sure Sparsity targets (PASS), to achieve good subnetwork performance by involving all heads during model
training and prune models to the desired sparsity levels in a threshold-independent manner. Similar to Voita
et al. (2019) and Xia et al. (2022), PASS takes the probabilistic pruning formulation but explicitly enforces
all gate variables to diverge as the pruning process proceeds. The most important observation is that, if
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the closing probabilities for all gate variables approach either 0 or 1 with respect to the sparsity targets
after training, we can easily extract the desired sparse subnetworks by introducing no further changes in
attention compute at test time and therefore retain the subnetwork performance. We use the well-established
notion “almost surely” in probability theory (Jacod & Protter, 2003) and propose the notion of almost-sure
sparsity (see Section 3.1). We say a gate can be closed almost surely if the corresponding gate closing
probability equals 1. In PASS, we express the sparsity targets in terms of the almost sure sparsity and
extract the desired subnetworks by enforcing the sparsity constraints through regularization techniques in
model training process (see Section 3.2). To push the envelope on inference efficiency, we propose a novel
technique, concentrator, based on which we develop PASSCONC (PASS with CONCentrator), as discussed
in Section 3.3. Observing the gradient vanishing problem in the gate variable training process, we present a
simple-yet-effective strategy to clip and selectively reopen learned gates which leads to improved subnetwork
performance (see Section 3.4). We evaluate our methods with encoder-decoder (ED) Transformer models
and BERT models on IWSLT14 German-to-English translation (Cettolo et al., 2014) and GLUE benchmark
tasks (Wang et al., 2018). We explore the Pareto front between model performance and inference efficiency
for subnetworks identified by PASS, PASSCONC, and recent work (Li et al., 2021; Xia et al., 2022; Voita
et al., 2019). Experiments show that PASS and PASSCONC outperform all baselines across a majority
of experiment settings, by identifying subnetworks of higher speedups and better model performance (see
Section 4). For example, on GLUE benchmark tasks, PASSCONC achieves a 185.2% attention speedup
on average, which is 60% higher than all baselines, while providing even higher accuracy. This observation
suggests that PASS and PASSCONC are capable of identifying subnetworks with high model capability and
can be applied to resource-limited applications to achieve good performance-efficiency trade-offs.

In this work, we make the following contributions.

1. We propose a novel notion of almost-sure sparsity and develop an effective model pruning framework
PASS to prune models to specified almost-sure sparsity levels on attention heads.

2. We propose a novel technique, concentrator, to further push the envelope on model inference effi-
ciency and develop PASSCONC.

3. We present a simple-yet-effective strategy to further improve subnetwork performance by clipping
and selectively reopening learned gates.

4. We evaluate PASS and PASSCONC on ED Transformer and BERT models with well established NLP
tasks. Experiments show that PASS and PASSCONC outperform baselines by obtaining significant
efficiency improvements and better performance-efficiency trade-offs.

2 Preliminaries

A frequently encountered task in machine learning is to find the model that minimizes the negative log-
likelihood of an observed dataset, which can be formulated as follows,

θ∗ = arg min
θ

− log P (D|θ) (1)

where D is an observed dataset and θ = {θ1, θ2, · · · , θ|θ|} stands for the parameters of a parameterized model
(e.g., a neural network). In real-world applications, we typically have model sparsity constraints to prevent
high inference latency or reduce memory footprints (Gupta & Agrawal, 2022). A recent line of work (Louizos
et al., 2017; Voita et al., 2019) pursues this goal by training gate variables, z = {z1, z2, · · · , z|θ|}, jointly with
parameters, θ. Each zi ∈ z has support [0, 1]. The objective function Eq. 1 can be re-parameterized as,

θ∗ = arg min
θ

− log P (D|θ ⊙ z) (2)

where ⊙ indicates component-wise multiplication between network parameters θ and the gate variables z.
Typically, z is a latent variable following the posterior distribution p(z|D), which reflects the user-defined
sparsity constraints. The probabilistic pruning approaches (Voita et al., 2019; Xia et al., 2022) aim to
optimize the expected likelihood over the posterior distribution of the gate variables z,

θ∗ = arg min
θ

− log Ep(z|D)[P (D|θ ⊙ z)] (3)
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The objective function described by Eq. 3 is mathematically intractable when the posterior p(z|D) is a
priori unknown. As an attempt to tackle such intractability, we can first derive the evidence lower bound of
the log-likelihood in Eq. 3 which is a widely used technique in previous variational inference work (Vahdat
et al., 2018a;b). Since we are interested in minimizing the negative log-likelihood, it gives us an upper bound
for the objective in Eq. 3 1,

− logEp(z|D)[P (D|θ ⊙ z)] ≤ −Eq(z;Φ)[log P (D|θ ⊙ z)] + KL (q(z; Φ)||p (z|D)) (4)

where q(z; Φ) is an approximate posterior distribution parameterized by Φ = {ϕ1, ϕ2, · · · , ϕ|θ|}. Detailed
derivation can be found in Appendix A.1. Minimizing this upper bound with respect to q(z; Φ) results in
q(z; Φ) = p(z|D) and turns the inequality into an equality (Beal, 2003). By denoting this upper bound as
L(θ, Φ), we can then formulate the learning problem as,

L(θ, Φ) = −Eq(z;Φ)[log P (D|θ ⊙ z)] + KL(q(z; Φ)||p(z|D))
θ∗, Φ∗ = arg min

θ,Φ
L(θ, Φ) (5)

We aim to jointly learn the optimal network parameters θ∗ and the distribution of gate variables, Φ∗, by
minimizing the upper bound L(θ, Φ).

The foregoing analysis gives a generic framework to enforce sparsity over neural models which is agnostic
to the underlying network structures. To prune attention heads, all we need is to assign each head a gate
variable and solve Eq. 5 with z = {z1, z2, · · · , z|H|}, where H is set of all attention heads (see Figure 1a).

3 Methodology

3.1 Almost-sure Sparsity

The KL-divergence term in Eq. 5 is mathematically intractable when the true posterior p(z|D) is unknown.
A line of work (Voita et al., 2019; Xia et al., 2022) attempts to tackle this intractability by replacing the
KL-divergence term with distribution-independent surrogates. A widely used surrogate (Voita et al., 2019)
is λ

∑
zi∈z Pr[zi ̸= 0], which can be seen as a special case of the KL-divergence term that assumes a constant

ratio log qΦ(zi)
p(zi|D) = λ. Though this surrogate circumvents the intractability issue, it is often challenging to

identify the right λ for a given sparsity target s (Li et al., 2021) . Other work (Xia et al., 2022) utilizes
surrogates in the form of Lagrangian Multipliers (Wang et al., 2020c) to enforce sparsity in expectation
for a given target. Though this approach is able to achieve target sparsities in a probabilistic manner,
its performance highly relies on the gate thresholds and may lead to limited subnetwork performance, as
illustrated in Figures 1b and 1c.

In light of the limitations of previous work, we introduce the notion of almost-sure sparsity and propose
a novel surrogate which allows us to learn empirically good approximate posteriors as well as discover
subnetworks with desired target sparsities almost surely. The intuition behind the almost-sure sparsity is
straightforward. Note that a model has sparsity s provided a fraction s of the gates are closed in the network.
From a probabilistic perspective, it is natural to ask a subnetwork to be “confident” about which gates should
be closed. In other words, gates should be closed with high probability. Mathematically, an event is said
to happen almost surely, if it happens with probability 1 (Jacod & Protter, 2003). Formally, we define
almost-sure sparsity as follows.

Definition 1 (Almost-sure Sparsity) Given s ∈ (0, 1), gate variables z have almost-sure sparsity s if
∃zclose, zopen ⊆ z, such that Pr[zi = 0] = 1, ∀zi ∈ zclose and Pr[zi = 1] = 1, ∀zi ∈ zopen, where zclose ∩
zopen = ∅, zclose ∪ zopen = z, and |zclose| = s|z|.

We argue that the almost-sure sparsity is better aligned with the sparsity notion we need in static subnetworks
and enables the subnetwork discovery with desired sparsity targets. Next, we present learning objectives
designed to achieve almost-sure sparsity targets specified by users.

1The posterior distribution p also depends on the models but we ignore it here since it does not change the inequality.
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(a) Hard concrete distribution. (b) Closing and opening probabilities. (c) Gate probability gradients.

Figure 2: (a) Hard concrete distribution derived by streching-and-collapsing a Concrete distribution. (b)
Closing and opening probability of gating variables are differentiable functions of ϕi. (c) The gradient values
of both gate closing and opening probabilities quickly approach 0 as ϕi increases or decreases. Hard concrete
distribution is parameterized with β = 0.33, γ = −0.1, ζ = 1.1, following previous work (Voita et al., 2019).

3.2 Learning Objective with Almost-sure Sparsity

We aim to learn a good approximate posterior q(z; Φ) with desired almost-sure sparsity. In this paper, we
adopt the Hard Concrete distribution (Louizos et al., 2018) as the basic form of the approximate posterior
q(z; Φ), given its continuous-discrete nature and its wide application in model pruning (Voita et al., 2019;
Xia et al., 2022).

Hard Concrete distribution has its support over the closed interval [0, 1] and non-zero probability mass
at 0 and 1. Hard Concrete distribution is derived by stretching and collapsing the Concrete distribution
(Maddison et al., 2016), as illustrated in Figure 2a. We introduce derivation details in Appendix A.2. For
each gate zi ∈ [0, 1] following Hard Concrete distribution, the corresponding probability mass at 0 and 1 with
respect to q(zi; ϕi) are given as q(zi = 0; ϕi) = sig

(
β log

(
−γ
ζ

)
− ϕi

)
, q(zi = 1; ϕi) = sig

(
ϕi − β log

(
1−γ
ζ−1

))
.

For simplicity of notation, we denote q0(ϕi) := q(zi = 0; ϕi), the gate closing probability, and q1(ϕi) :=
q(zi = 1; ϕi), the gate opening probability. Due to the monotonicity of the sigmoid function, when ϕi

increases, q1(ϕi) increases and q0(ϕi) decreases, and gate zi is more likely to open. We further define
qnb(ϕi) = 1 − q0(ϕi) − q1(ϕi) as the probability for zi being non-binary. We use β = 0.33, γ = −0.1, and
ζ = 1.1 by default, following previous work (Voita et al., 2019). Clearly, the closing and opening probability
of each zi ∈ z are differentiable functions of ϕi ∈ Φ, as shown in Figure 2b. By jointly learning Φ with the
network parameters, we are able to almost-surely close (resp. open) gates zi ∈ z by continuously increasing
(resp. decreasing) the values of ϕi ∈ Φ, using gradient-descent optimizers (e.g., Adam (Kingma & Ba, 2015)).
At each training iteration, gates are sampled w.r.t. the learnt distribution and then applied to attention
heads to achieve pruning.

Figure 3: Values of Rbase and Rpass with Φ = {ϕ1, ϕ2} and s = 0.5.

At the end of pruning, we want
q(z; Φ) to achieve almost-sure spar-
sity for a given target s. Our strat-
egy is to design a learning objective
that meets the desired almost-sure
sparsity at its optimum, and opti-
mize it along with model training.
It is worth pointing out that there
exists a family of learning objec-
tives satisfying this criterion. How-
ever, not all of them can be easily
optimized to their minimum, espe-
cially by gradient descent optimiz-
ers (Kingma & Ba, 2015). For ex-

5



Under review as submission to TMLR

ample, one may propose to minimize the following objective.

Rbase(Φ, s) =
|θ|∑

i=1

qnb(ϕi) +

∣∣∣∣∣s|θ| −
|θ|∑

i=1

q0(ϕi)

∣∣∣∣∣ (6)

It can be easily seen that Rbase takes on its minimum value 0 when achieving almost-sure sparsity s. However,
there exist local optima that may prevent gradient descent optimizers from converging to the global optimum.
To illustrate this, for simplicity, we visualize the values of Rbase in a 2-gates setting z = {z1, z2} in Figure 3.
With 2 gates and a sparsity target s = 0.5, we want one gate to be almost-surely closed and the other gate
almost-surely opened. In Figure 3, such global optima correspond to the top-left and bottom-right corner
where one of ϕ1 or ϕ2 takes on a high value and the other takes on a low value. However, it can be clearly
observed that there exist a local optimum in the top-right region which corresponds to the situation where
both gates are open with high probability. In other words, with Rbase, if both ϕ1 and ϕ2 happen to take
positive values due to noise from the training process or bad initialization, the gradient descent direction will
increase the probability for both gates to be open and fail to meet the sparsity target s = 0.5 by delivering
overly dense models. Under weak conditions2, we can prove that the gradient descent direction of Rbase

always leads to a higher opening probability for gate zi if ϕi ≥ log( −1−
√

1−g(a)g(−a)
g(a) ), where g(a) = 2ea −e−a,

a = β log( −γ
ζ ). The proof is presented in Appendix A.3.

In light of the limitation of Rbase, we propose the following learning objective,

Rpass(Φ, s) =
|θ|∑

i=1

qnb(ϕi) +

∣∣∣∣∣s|θ| −
|θ|∑

i=1

q0(ϕi)

∣∣∣∣∣ +

∣∣∣∣∣(1 − s)|θ| −
|θ|∑

i=1

q1(ϕi)

∣∣∣∣∣ (7)

Rpass does not suffer from the local optimality issue that Rbase does, as shown in Figure 3. In fact, we can
show that minimizing Rpass always generates neither over-sparse nor over-dense subnetworks. In order to
show this formally, we define the expected number of opened gates ( 1

|θ|
∑|θ|

i=1 q1(ϕi)) as the expected density,
and the expected number of closed gates ( 1

|θ|
∑|θ|

i=1 q0(ϕi)) as the expected sparsity. We have the following
lemma.

Lemma 1 Minimizing Rpass always generates sparse subnetworks whose expected sparsities are no more
than s and expected densities are no more than 1 − s, for any given sparsity target s ∈ (0, 1).

Proof can be found in Appendix A.4. By substituting the KL-divergence term in Eq. 5 with Rpass, we
obtain the PASS optimization objective where λ is the regularization coefficient.

Lpass(θ, Φ) = −Eq(z;Φ)[log P (D|θ ⊙ z)] + λRpass(Φ, s)
θpass, Φpass = arg min

θ,Φ
Lpass(θ, Φ) (8)

3.3 Concentrator

To further improve model inference efficiency, we propose the use of concentrator. Wang et al. (2020a)
observed that the auxiliary operations in multi-head attention computation (e.g., reshaping and transposing
matrices, heads splitting, and concatenation) account for 73% of the overall latency in attention layers. The
run-time overhead can hardly be avoided as long as there exist unpruned heads in the attention layers.
Consider subnetworks of the same attention head sparsity. Intuitively, if the unpruned attention heads are
inclined to concentrate among a few layers, the other layers can be entirely skipped, saving the run-time
overhead and improving inference efficiency. Given this, we propose the concentrator to encourage the
unpruned attention heads to be concentrated on as few layers as possible.
Given a Transformer-based model of L layers and H heads per layer, the concentrator is defined as Rconc(Φ) =∑L

l=1

(
1 −

∏H
h=1 q0(ϕl,h)

)
, where ϕl,h is the distribution parameter for the h-th gate variable on the l-th

layer. Notice that 1 −
∏H

h=1 q0(ϕl,h) indicates if the l-th layer can be entirely skipped: it takes on a value 0
2We assume the Hard Concrete distribution is equally stretched in both directions, which gives γ + ζ = 1.
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only if all heads of the layer have a closing probability 1. Rconc is a summation of the layer-wise indicators
over all layers and has regularization effects by penalizing the levels of unconcentration. We introduce λc to
control the concentrator effects and obtain the following optimization objective for PASSCONC, i.e., PASS
with concentrator.

Lpassconc(θ, Φ) = −Eq(z;Φ)[log P (D|θ ⊙ z)] + λRpass(Φ, s) + λcRconc(Φ)
θpassconc, Φpassconc = arg min

θ,Φ
Lpassconc(θ, Φ) (9)

3.4 Clipping and Reopening

In practice, with proper training settings, the proposed approach can discover subnetworks with the desired
sparsities and high accuracy. Note that we approach almost sure sparsity by increasing or decreasing ϕi ∈ Φ
with gradient-descent optimizers. However, as ϕi’s increase or decrease, their gradients quickly converge to 0
as illustrated in Figure 2c. Consequently, gates closed (resp. opened) with high probability in early training
stage are unlikely to be self-adaptively re-opened (resp. closed) in later training iterations by gradient-
descent optimizers, which may lead to sub-optimal pruning results. We propose to resolve this issue with a
clipping and selective reopening strategy. The idea of clipping has been widely used in training deep learning
models to avoid gradient exploding and vanishing (Zhang et al., 2019; Koloskova et al., 2023). In this same
spirit, we clip ϕi to predefined ranges to alleviate the aforementioned issues caused by small gradients. In
our implementation, we empirically clip all ϕi’s to the range [−5, 5] to avoid the vanishing of gradients
to excessively small values (see Figure 2c). Randomness has been widely observed to be helpful in neural
network training (Bottou, 2010). To further incentivize training dynamics, we propose to randomly reopen
closed gates with respect to the gate quality. There is a line of work on how to measure gate qualities (Michel
et al., 2019; Voita et al., 2019; Ding et al., 2017), among which we choose head confidence (Voita et al., 2019)
in our implementation because it has been found to be an informative notion (Behnke & Heafield, 2020) and
requires little to no additional computation. The confidence of a head is the average maximum attention
weights of tokens in a set of sentences (Voita et al., 2019). We normalize confidence scores for each attention
head and reopen almost-surely closed gates3 with a probability equal to the normalized scores.

4 Evaluation

4.1 Evaluation Setup

4.1.1 Model, Data, and Metrics

Model: We investigate two widely-studied Transformer models: encoder-decoder (ED) Transformer
(Vaswani et al., 2017) and the encoder-only Transformer, BERT (Devlin et al., 2018). We use the fairseq
toolkit (Ott et al., 2019) to implement a 6-layer ED Transformer with 72 heads in total, and the Hugging
Face codebase (Wolf et al., 2020) to implement a 12-layer BERT with 144 heads in total. We believe
our setting has covered the most important attention head variants, especially that the ED Transformer
includes both encoder (self-attention) and decoder (self- and cross-attention) modules, and therefore suffices
a comprehensive evaluation setup. 4

Datasets: Following previous work (Li et al., 2021), the ED Transformer model is trained and evaluated on
the IWSLT14 German-to-English translation dataset (Cettolo et al., 2014). The BERT model is fine-tuned
and evaluated on 4 benchmark NLP tasks from the GLUE benchmark (Wang et al., 2018) including the
Multi-Genre Natural Language Inference (MNLI) dataset (Williams et al., 2018), the Question-answering
NLI (QNLI) dataset (Rajpurkar et al., 2016), the Quora Question Pairs (QQP) dataset (Sharma et al., 2019),
and the Stanford Sentiment Treebank (SST-2) dataset (Socher et al., 2013). We choose these 4 datasets of
the largest training splits from the GLUE benchmark to ensure that gate variables can be sufficiently trained
to convergence.

3To reopen an almost-surely closed gate zi, we manually decrease its closing probability by increasing ϕi.
4Observing the emergence of large language models (LLM) (Chang et al., 2024) that are typically decoder-only Transformer

models, it is intriguing to evaluate the scalability of our approaches on large-scale LLMs and we leave it in our future work.
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Metrics: We use BLEU score (Papineni et al., 2002) as the metric to measure model performance on
the translation task following previous work (Li et al., 2021; Michel et al., 2019), and use accuracy as the
metric on the GLUE benchmark tasks following Wang et al. (2018). In addition, we are also interested in
the efficiency improvements achieved by PASS and PASSCONC. We use wall clock time to measure the
efficiency w.r.t. latency.

4.1.2 Baselines

We consider three strong baselines that prune attention heads to a specified sparsity level.

Differentiable Subset Pruning (DSP). DSP (Li et al., 2021) applies the Gumbel-softmax trick (Gumbel,
1954) to select the top-K attention heads for a given sparsity target. DSP learns a K-hot vector gh by
iteratively applying Gumbel-softmax K times, where gh =

∑K
k=1 gk

h =
∑K

k=1
exp(rk

h/τ)∑H

h′=1
exp(rk

h′ /τ)
, rk

h = rk−1
h +

log(1 − gk−1
h ), and r1

h = wh + nh. wh denotes trainable parameter indicating head importance, nh ∼
Gumbel(0, 1) is Gumbel noise, and τ is a hyper-parameter that controls the annealing temperature.

Lagrangian Multiplier (LAG). A recent line of work (Xia et al., 2022; Wang et al., 2020c) employs
Lagrangian Multiplier (Wang et al., 2020c) to enforce sparsity in expectation. Given a sparsity target s,
LAG trains models along with the regularization term Rlag = λ1(ŝ − s) + λ2(ŝ − s)2, where ŝ is the expected
sparsity. λ1 and λ2 are trainable parameters and will be optimized jointly in training.

Voita et al. (2019) (Voita). Voita et al. (2019) prunes attention heads by applying the stochastic approx-
imation to L0 regularization (Louizos et al., 2018) to gate closing probabilities. Voita et al. (2019) achieves
pruning by jointly training models with the following regularization term Rvoita(Φ) = λv

∑|H|
h=1(1 − q0(ϕh)),

where λv can be used to indirectly control the achieved sparsities. Following the previous work (Li et al.,
2021), we use grid search to find the correct λv values for each sparsity setting.

As observed in Li et al. (2021), λv is in general hard to tune and there could exist certain sparsity targets
that cannot be achieved by tuning λv, which makes Voita’s approach not a good fit if the user demands
a sparse Transformer model of customized number of attention heads. In our work, we propose to enforce
the sparsity constraints explicitly using a novel sparsifier (see Section 3.2) and further push the envelope of
efficiency by developing the concentrator (see Section 3.3). The design of our sparsifier, concentrator, as well
as the clipping and reopening strategy has not been proposed in previous attention pruning literature and
contributes to the novelty of our work.

4.1.3 Protocols

We express sparsity targets over attention heads H interchangeably as s ∈ (0, 1) and as integer K where
K = ⌊(1 − s)|H|⌋, the number of unpruned heads. Unless stated otherwise, for a given sparsity target K, we
evaluate all methods by selecting the top-K most important heads w.r.t. the corresponding ranking metrics,
i.e., the gate opening probabilities for PASS, PASSCONC, Voita, and LAG, and the head importance score wh

for DSP. Detailed hyper-parameter settings are in Appendix B. We test all methods on both architectures
with target tasks (30 training epochs for ED Transformer; 3 fine-tuning epochs for BERT as in Li et al.
(2021)). All experiments are conducted on a high performance compute cluster equipped with NVIDIA
P100 GPUs (each with 12GB GPU RAM). All codes will be released through GitHub after reviews.

We evaluate the performance of PASS and PASSCONC in Section 4.2, demonstrate the speedups brought by
PASSCONC in Section 4.3, validate the effectiveness of concentrator as well as the clipping and reopening
strategy in Section 4.4, present the patterns of pruned attention heads in Section 4.5, and show more
performance results in Appendix C.

4.2 PASS and PASSCONC Improve Model Performance

We investigate the model performance of subnetworks identified by PASS, PASSCONC and all baselines
under various sparsity constraints. We compare all five methods on both ED Transformer and BERT
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Table 1: Subnetwork performance on IWSLT14 De-En translation (left) and GLUE benchmark tasks (right).

BLEU Accuracy (%)
K PASS PASSCONC DSP LAG Voita PASS PASSCONC DSP LAG Voita
16 32.73 32.70 31.40 30.91 27.55 86.27 85.25 84.47 83.84 84.83
32 33.45 33.48 33.42 32.66 32.80 87.59 86.47 88.36 86.99 87.15
48 33.89 33.91 34.00 33.12 32.97 88.65 88.30 88.52 88.02 88.02
64 34.01 34.05 33.89 33.02 33.20 88.72 88.62 88.81 88.40 84.20

Table 2: Attention speedups on IWSLT14 De-En translation (left) and GLUE benchmark tasks (right).

Speedup (%) Speedup (%)
K PASS PASSCONC DSP LAG Voita PASS PASSCONC DSP LAG Voita
16 144.3 162.8 141.1 141.1 142.7 114.4 185.2 123.1 120.4 126.1
32 115.5 118.7 118.7 110.4 117.6 107.1 135.6 107.3 105.4 105.3
48 101.6 104.1 105.8 102.4 102.4 103.1 109.3 102.7 102.9 103.8
64 100.8 104.1 100.0 100.0 100.0 103.2 106.4 102.9 103.0 103.0

models. The results are summarized in Table 1. Detailed performance results on each GLUE benchmark
task are in Appendix C.

On IWSLT14 German-to-English translation task, PASS and PASSCONC outperform all 3 baselines in a
majority of sparsity settings. When K = 16, both PASS and PASSCONC achieve BLEU scores of 32.7, which
is 1.3 higher than DSP, 1.8 higher than LAG, and 5.2 higher than Voita. On the GLUE benchmark tasks, we
observe a similar trend in high sparsity situations. When K = 16, PASS and PASSCONC achieve average
model accuracy of 86.27% and 85.25% respectively, while DSP drops to 84.47%, LAG drops to 83.84%, and
Voita drops to 84.83%. When sparsity targets are low, PASS is able to match or outperform all 3 baselines,
while PASSCONC can be outperformed by the strongest baseline DSP while still being comparable to the
remaining two.

One interesting observation is that Voita delivers surprisingly low accuracy in low sparsity settings (e.g.,
K = 64) with GLUE benchmark tasks. The degraded performance can be attributed to its intrinsic sensitivity
to the choice of λv, which is used to indirectly control sparsity targets. Li et al. (2021) observed that a small
increase in λv (e.g., 0.0009 → 0.0014) may lead to drastic change of achieved sparsity (e.g., the number
of unpruned heads decreases from 30 to 11), which suggests that Voita is inadequate when users require
subnetworks of pre-defined number of attention heads.

4.3 PASSCONC Improves Model Efficiency

We evaluate the attention speedups for subnetworks identified under various sparsity constraints, at inference
time. We report the inference speedups in comparison to the unpruned model. The results are summarized
in Figure 4 and Table 2. Detailed results on each GLUE benchmark task can be found in Appendix C.

On the GLUE benchmark tasks with BERT models, PASSCONC outperforms all baselines across a majority
of sparsity constraints with great efficiency improvements and comparable or better accuracy (see Figure
4). When K = 16, PASSCONC achieves a 185.2% speedup, which is 60% higher than all baselines, and an
average accuracy 85.25% that is also higher than DSP, LAG, and Voita. PASS has a better accuracy but a
lower speedup. As the sparsity targets decrease (i.e, as K increases), the speedups achieved by all methods
in general goes down but PASSCONC always dominates the competition in terms of efficiency, at the price of
a relatively small drop in performance. On IWSLT14 German-to-English task with ED Transformer model,
PASSCONC outperforms all baseline methods in almost all sparsity settings (see Table 2). When K = 16,
PASSCONC achieves a 162.8% speedup, which is more than 20% higher than all baselines, with at least 1.3
higher BLEU scores.
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K=64
K=48

K=32
K=16

(a) IWSLT14 De-En translation.

K=16

K=32

K=48

K=64

(b) GLUE benchmark tasks.

Figure 4: Subnetwork performance v.s. attention speedups on IWSLT14 De-En translation task and GLUE
benchmark tasks. We add dashed lines (−−) to connect data points with the same sparsity constraints for
better comparison. The unpruned model performance is included for reference purpose.

(a) Concentrator (b) Clipping and Reopening

Figure 5: (a) Concentrator is critical for PASSCONC to prune more attention layers entirely. (b) The
clipping and reopening strategy is necessary for PASSCONC to obtain significant efficiency improvements.
All results are reported with BERT models on the GLUE benchmark tasks.

4.4 Ablation Study

Previous analysis of PASS and PASSCONC in Section 4.3 demonstrates the significant efficiency improve-
ments brought about by the concentrator (see Section 3.3). In this section, we validate that (1) by introducing
the concentrator loss, PASSCONC is able to prune more attention layers entirely (Figure 5a), and (2) the
clipping and reopening strategy is necessary for PASSCONC to obtain significant efficiency improvements
(Figure 5b). We report results using BERT models and the GLUE benchmark tasks. In Figure 5a, we
observe that PASSCONC with concentrator is able to prune up to 7 out of 12 attention layers with high
sparsity targets, which is 3 layers more than not using concentrator and therefore validates its effectiveness
in pruning redundant attention layers entirely to bring significant speedups. In Figure 5b, we observe that
without the clipping and reopening strategy, the speedups achieved by PASSCONC can reduce by up to
70%! This observation demonstrates the necessity of dynamically re-activating closed gates to help the model
converge to cost-effective regions, as desired by the concentrator.
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(a) ED-Transformer (b) BERT

Figure 6: Distribution of unpruned heads across layers. Different colors represent the unpruned frequency for
each head across all datasets (IWSLT14 De-En translation task for ED-Transformer and GLUE benchmark
tasks for BERT) and sparsity settings (K=16, 32, 48, 64).

4.5 Distribution of Heads

We visualize the distribution of unpruned heads to better understand the dynamics of the pruning process (see
Figure 6). We report the frequency of heads unpruned by PASSCONC, averaged over all datasets (IWSLT14
De-En translation task for ED-Transformer and GLUE benchmark tasks for BERT) and sparsity settings
(K=16, 32, 48, 64). In each layer, the heads are sorted by the unpruned frequency for clearer presentation.
For ED Transformer (Figure 6a), we observe that the encoder self-attention heads are typically less important
than cross-attention and decoder self-attention heads at test time, and therefore are pruned more frequently.
This observation suggests the high level of redundancy in encoder attention heads from properly trained
Enc-Dec Transformers, which conforms with the observations in Li et al. (2021) and Voita et al. (2019). For
BERT (Figure 6b), we observe that the middle layers (Layer 2-6) are likely to contain important unpruned
heads, in comparison to the bottom (Layer 1) and top (Layer 7-12) layers, which is also aligned with the
observation in previous work (Prasanna et al., 2020b; Sajjad et al., 2023).

5 Related Work

Unstructured pruning has been well studied in the literature (Gupta & Agrawal, 2022) and dates back to Op-
timal Brain Damage (LeCun et al., 1989). Unstructured pruning prunes individual parameters and identifies
subnetworks of high sparsity. However, unstructured pruning hardly achieves practical efficiency improve-
ments without specialized software and hardware support (Xia et al., 2022). In contrast, structured pruning
prunes groups of parameters within certain structures (e.g., channels and attention heads). Structured prun-
ing has been widely explored in computer vision tasks (He et al., 2017) and has started to attract research
interest in the NLP community. Research efforts have been devoted to designing pruning strategies at both
coarse- and fine-grained levels (Xia et al., 2022; Prasanna et al., 2020a) over structures like feed-forward
layers and attention heads. Previous work on attention head pruning (Li et al., 2021; Michel et al., 2019;
Voita et al., 2019) either highly relies on threshold tuning or enforces hard structural constraints on model
structure in the early training stages, which could lead to limited subnetwork performance. We focus on
structured pruning and propose the notion of almost-sure sparsity to overcome the above limitations.

In addition to pruning, many other techniques have been developed to obtain inference efficiency for deep
learning models. Other than sparsity over the number of attention heads, a line of work (Roy et al., 2021;
Child et al., 2019) focuses on sparsifying the attention distribution over tokens for each head to improve
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efficiency and head diversity. Recently, Correia et al. (2019) and Treviso et al. (2021) propose to adaptively
sparsify the attention distribution by enforcing low attention scores to be exactly 0 through α-entmax (Peters
et al., 2019). Linformer (Wang et al., 2020b) develops efficient self-attention design of linear complexity by
using low-rank matrix approximation. FlashAttention (Dao et al., 2022; Dao, 2023) focuses on I/O access in
attention computation and achieves linear memory complexity by leveraging the hardware memory hierarchy
and minimizing unnecessary data transfers. Other techniques include quantization (Shen et al., 2020),
knowledge distillation (Hinton et al., 2015), parameter sharing (Ling et al., 2015), tensor decomposition
(Oseledets, 2011) and more. We refer interested readers to (Menghani, 2023; Gupta & Agrawal, 2022;
Treviso et al., 2022) for a comprehensive survey.

6 Discussion and Conclusion

We propose a novel notion of almost-sure sparsity, develop a generic framework for Pruning with Almost-
Sure Sparsity (PASS) targets, and demonstrate its pruning capacity with attention heads. To further push
the envelope on inference efficiency, we propose a novel technique, concentrator, based on which we develop
PASSCONC (PASS with CONCentrator). We also present a simple-yet-effective strategy to improve
subnetwork performance by clipping and selectively reopening learned gates. We investigate PASS and
PASSCONC on two widely studied Transformer models: encoder-decoder (ED) Transformer and encoder-
only Transformer, BERT. Experiments on IWSLT14 German-to-English translation (Cettolo et al., 2014)
and GLUE benchmark tasks (Wang et al., 2018) demonstrate that PASS and PASSCONC outperform the
SOTA methods by identifying subnetworks of up to 1.33 higher BLEU scores, 1.44% higher accuracy, and
60% higher speedups, at the same sparsity levels.

We conclude that PASS and PASSCONC can be used to identify high performance subnetworks and help
address the challenge of deploying Transformer models in resource-limited applications. We identify several
important extensions for future work: (1) More pruning structures and metrics. We would like to
explore the possibility of extending the proposed framework to multiple model structures (e.g., feed-forward
layers) and prune for meeting other target footprint metrics such as latency and memory which are more
accessible to users in real-world applications, in addition to sparsity. (2) Combination with other tech-
niques. Since both PASS and PASSCONC are agnostic to the underlying self-attention implementation,
it is intriguing to investigate the compound efficiency improvements achieved by combining our approaches
with other efficiency techniques such as linear multi-attention (Wang et al., 2020b). (3) Large Language
Models (LLMs) pruning. LLMs are typically large-scale decoder-only Transformer models (Chang et al.,
2024). Recent work (Xia et al., 2023) shows that LLMs possess a high level of parameter redundancy which
can benefit from model pruning to improve inference efficiency while maintaining high performance. Though
we have demonstrated the effectiveness of our approaches on both encoder and decoder modules in standard
Transformer models, it is still intriguing to test the scalability of our approaches on large scale Transformer
models such as LLMs.
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A Proofs and Analysis

A.1 Derivation of the Upper Bound in Eq. 4

Here we present how to derive the upper bound in Eq. 4.

− logEp(z|D)[P (D|θ ⊙ z)]

= − log
∫

z
p(z|D)P (D|θ ⊙ z)

= − log
∫

z
p(z|D)P (D|θ ⊙ z)qΦ(z)

qΦ(z)

= − log EqΦ(z)

[
P (D|θ ⊙ z)p(z|D)

qΦ(z)

]
≤ −EqΦ(z)

[
log

(
P (D|θ ⊙ z)p(z|D)

qΦ(z)

)]
= −EqΦ(z)[log P (D|θ ⊙ z)] + KL (qΦ (z) ||p (z|D))

(10)

A.2 Hard Concrete Distribution (Louizos et al., 2018)

Hard Concrete distribution is derived from the Concrete distribution (Maddison et al., 2016). The cumulative
distribution function of a binary Conrete random variable zc

i ∈ (0, 1) is as follows:

Qc(zc
i ; β, ϕi) = sig ((log zc

i − log(1 − zc
i )) β − ϕi) (11)

where sig(x) = 1
1+e−x is the sigmoid function and 0 < β < 1 is a constant. We can obtain the Hard

Concrete distribution by first stretching the support of the Concrete distribution from (0, 1) to (γ, ζ), where
γ < 0, ζ > 1, and then collapsing the probability mass on (γ, 0] (resp. [1, ζ)) to the endpoint 0 (resp. 1).
Equivalently, for each Concrete random variable zc

i ∈ (0, 1), we can obtain a Hard Concrete random variable
zi = min(1, max(0, zc

i (ζ − γ) + γ). For each zi, the closing probability q(zi = 0; ϕi) = Pr[zc
i ≤ −γ

ζ−γ ] =
Qc( −γ

ζ−γ ; β, ϕi), and the opening probability q(zi = 1; ϕi) = Pr[zc
i ≥ 1−γ

ζ−γ ] = 1 − Qc( 1−γ
ζ−γ ; β, ϕi). By plugging

in Eq. 11, we have the gate closing and opening probabilities.

A.3 Rbase Local Optimum Analysis

We show that the gradient descent direction of Rbase always leads to a higher opening probability for gate
zi if ϕi ≥ log( −1−

√
1−g(a)g(−a)
g(a) ), where g(a) = 2ea − e−a, a = β log( −γ

ζ ). We assume that the Hard Concrete
distribution is equally stretched in both directions, which gives γ + ζ = 1 and has been widely adopted in
previous work (Voita et al., 2019; Xia et al., 2022).
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Without loss of generality, we focus on the high sparsity target situation (s|θ| ≥
∑|θ|

i=1 q0(ϕi)) and ignore the
sparsity constraint s in following computation because it does not change the equation. We first compute
the derivative of Rbase(Φ) with respect to ϕi,

∂Rbase(Φ)
∂ϕi

= λ
(
2sig(−ϕi + a)sig(ϕi − a)

− sig(−ϕi − a)sig(ϕi + a)
) (12)

where λ > 0, a = β log
( −γ

ζ

)
and β > 0, ζ > 1, γ + ζ = 1. In order to compute the domain for ∂Rbase(Φ)

∂ϕi
≤ 0,

we can equally solve the following inequalities,

∂Rbase(Φ)
∂ϕi

≤ 0

⇐⇒ 2sig(−ϕi + a)sig(ϕi − a) ≤
sig(−ϕi − a)sig(ϕi + a)

⇐⇒ 2sig(−ϕi + a)
sig(−ϕi − a) ≤ sig(ϕi + a)

sig(ϕi − a)

(13)

where the last step is due to the non-negativity of the sigmoid function. By denoting fa(ϕi) = sig(ϕi+a)
sig(ϕi−a) , we

can simplify the inequality to be 2fa(−ϕi) ≤ fa(ϕi). The derivative of fa(ϕi) with respect to ϕi is as follows,

∂fa(ϕi)
∂ϕi

=sig(ϕi + a)
sig(ϕi − a)

(
sig(−ϕi − a) − sig(−ϕi + a)

)
(14)

Because a = β log
( −γ

ζ

)
= β log

(
ζ−1

ζ

)
< 0, we have −ϕi −a > −ϕi +a and hence sig(−ϕi −a) > sig(−ϕi +a)

due to the fact that the sigmoid function is monotonically increasing. As a result, the derivative of fa(ϕi)
with respect to ϕi is always positive ( ∂fa(ϕi)

∂ϕi
> 0) and therefore fa(ϕi) is monotonically increasing while

fa(−ϕi) monotonically decreases as a function of ϕi.

Assuming there is ϕ′
i having the equality 2fa(−ϕ′

i) = fa(ϕ′
i). It is easy to show that for ϕi ≥ ϕ′

i, the
inequality 2fa(−ϕi) ≤ fa(ϕi) holds true due to the monotonicity of fa(ϕi) and fa(−ϕi), and hence we have
∂Rbase(Φ)

∂ϕi
≤ 0 (the gradient descent direction). Notably, it indicates that, for ϕi ≥ ϕ′

i, any gradient-descent
optimizer (e.g., Adam (Kingma & Ba, 2015)) will continue increasing the value of ϕi which opens more gates
and leads to undesired low sparsity, as dicussed in Section 3.2. We can derive the value of ϕ′

i by solving
equation 2fa(−ϕ′

i) = fa(ϕ′
i) as follows,

2fa(−ϕ′
i) = fa(ϕ′

i)

⇔ 2sig(−ϕ′
i + a)

sig(−ϕ′
i − a) = sig(ϕ′

i + a)
sig(ϕ′

i − a)

⇔ 21 + eϕ′
i+a

1 + eϕ′
i
−a

= 1 + e−ϕ′
i+a

1 + e−ϕ′
i
−a

⇔ (2ea − e−a)eϕ′
i = −2 + (ea − 2e−a)e−ϕ′

i

⇔ (2ea − e−a)e2ϕ′
i = −2eϕ′

i + ea − 2e−a

(15)

which is a quadratic equation with respect to eϕ′
i and gives us ϕ′

i = log( −1+
√

1−g(a)g(−a)
g(a) ) where g(a) =

2ea − e−a.

A.4 Proof of Lemma 1

We include the proof of Lemma 1 as follows.

Proof: We prove this lemma by showing that, in every possible case, the gradient descent direction of the
objective Rpass always leads to a subregion in the search space where the expected sparsity is no more than
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Table 3: Hyper-parameters

ED Transformer BERT
λbase 1 1e-5

λ0 2 1000
learning rate for Φ 0.2 0.5

s and expected density is no more than 1 − s. Recall that we define expected density as 1
|θ|

∑|θ|
i=1 q1(ϕi),

and the expected sparsity as 1
|θ|

∑|θ|
i=1 q0(ϕi). For the simplicity of proof language, we use Ed to denote the

expected density and Es to denote the expected sparsity. Intuitively, as the expected density increases (resp.
decreases), the expected sparsity will monotonically decrease (resp. increase). One important observation is
that, the sum of expected density and sparsity is always less than 1, due to the fact that q1(ϕi) + q0(ϕi) =
1 − qnb(ϕi) and qnb(ϕi) > 0.

Given a sparsity target s, depending on the values of expected density and sparsity, there are three possible
situations: (i) the easiest case is that the model is already neither over-sparse nor over-dense (i.e.,
Ed ≤ 1 − s and Es ≤ s). In this case, we can rewrite Rpass(Φ, s) = 2

∑|θ|
i=1 qnb(ϕi). Minimizing Rpass(Φ, s)

amounts to minimizing qnb(ϕi), which polarizes the gates to achieve the required almost-sure sparsity, until
either Ed = 1 − s, Es < s or Ed < 1 − s, Es = s both of which satisfy Lemma 1. (ii) high expected
density and low expected sparsity (i.e., Ed ≥ 1 − s and Es ≤ s), in which case we can rewrite Eq. 7 to
obtain Rpass(Φ, s) =

∑|θ|
i=1 qnb(ϕi)+s|θ|−

∑|θ|
i=1 q0(ϕi)− (1−s)|θ|+

∑|θ|
i=1 q1(ϕi). Because qnb(ϕi)+q1(ϕi) =

1 − q0(ϕi), we can further simplify the equation to be Rpass(Φ, s) = 2
∑|θ|

i=1
(
s − q0(ϕi)

)
. Clearly, minimizing

Rpass(Φ, s) amounts to increasing q0(ϕi) that leads to lower expected density and higher expected sparsity
until Ed = 1 − s, Es < s, which satisfies Lemma 1; (iii) low expected density and high expected
sparsity (i.e., Ed ≤ 1 − s and Es ≥ s). Similarly, we can rewrite Rpass(Φ, s) = 2

∑|θ|
i=1

(
1 − s − q1(ϕi)

)
.

Minimizing Rpass(Φ, s) amounts to increasing q1(ϕi) that brings down expected sparsity as well as increases
expected density until Ed < 1 − s, Es = s, which satisfies Lemma 1; It is impossible to have both high
expected density and expected sparsity due to Es + Ed < 1. We have shown that Lemma 1 holds in
all possible cases. 2

B Hyper-parameter Settings

We adopt an exponential escalation strategy to increase the value of regularization coefficient λ.

λ = λbase · λ
#train_itr / #n_step
0 (16)

where λbase and λ0 are hyper-parameters. We choose #n_step as 1, 000 in all experiments. We use the same
inverse square root learning rate schedules for model training as in Li et al. (2021). Values of corresponding
hyper-parameters are summarized in Table 3.
As for PASSCONC, λc is defined as the minimal ratio between sparsifier gradients and concentrator gra-
dients of ϕi ∈ Φ for all heads to ensure that the concentrator is not dominated by the sparsifier while the
concentration effect is modest to avoid damaging model training quality.

λc = λ · min
{∣∣∣∣∂Rpass

∂ϕi

∣∣∣∣ / ∣∣∣∣∂Rconc

∂ϕi

∣∣∣∣ ∣∣∣ϕi ∈ Φ
}

(17)

λc is adaptively updated in the middle of training, and set to 0 in both the early training phase and the last
few training iterations to help improve model performance and achieve sparsity convergence. Specifically,
λc is set to 0 during the first 20, 000 iterations and the last 7, 000 iterations when training ED Transformer
models. For BERT models, λc is set to 0 except for iterations between 2, 000 and 5, 000.
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Figure 7: Attention speedups v.s. subnetwork performance on MNLI, QQP, QNLI, and SST-2. The unpruned
model performance is included for reference purpose.

Table 4: Subnetwork performance at different sparsity levels, on MNLI and QQP.

Accuracy(MNLI) (%) Accuracy(QQP) (%)
K PASS PASSCONC DSP LAG Voita PASS PASSCONC DSP LAG Voita
16 79.38 78.38 80.69 78.19 80.14 89.18 88.50 89.25 86.87 85.53
32 80.73 79.63 82.64 81.33 80.30 89.94 89.36 90.09 88.99 89.99
48 82.59 82.51 82.92 82.80 82.03 90.57 90.40 90.16 89.67 90.20
64 83.23 83.06 83.55 83.74 75.70 90.80 90.74 90.28 90.02 87.21

C More Performance Results

In this section, we provide detailed performance and speedup results on each of the 4 GLUE benchmark
tasks: MNLI, QQP, QNLI, and SST-2 (see Section 4.1.1). Performance results are summarized in Tables 4
and 5, which resemble our analysis in Section 4.2. In general, PASS and PASSCONC are able to match
or outperform all 3 baselines across a majority of experiment settings. Speedups achieved by different
approaches are presented in Tables 6 and 7. Notably, PASSCONC outperforms all baselines in almost all
cases which demonstrates its effectiveness in delivering efficiency improvements. Lastly, we report the Pareto
front between model performance and speedups for subnetworks identified by different methods (see Figure 7),
where PASSCONC dominates all other methods in most cases by achieving better performance-efficiency
trade-offs, similar to our observation in Section 4.3.
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Table 5: Subnetwork performance at different sparsity levels, on QNLI and SST-2.

Accuracy(QNLI) (%) Accuracy(SST-2) (%)
K PASS PASSCONC DSP LAG Voita PASS PASSCONC DSP LAG Voita
16 86.03 84.79 84.59 83.49 84.90 90.48 89.33 83.37 86.81 88.76
32 88.43 85.83 88.38 87.50 87.59 91.28 91.06 92.32 90.14 90.71
48 89.13 88.80 89.58 89.13 88.91 92.32 91.51 91.40 90.48 90.94
64 89.57 89.51 89.68 89.69 82.61 91.28 91.17 91.74 90.14 91.28

Table 6: Attention speedups at different sparsity levels, on MNLI and QQP.

Speedup(MNLI) (%) Speedup(QQP) (%)
K PASS PASSCONC DSP LAG Voita PASS PASSCONC DSP LAG Voita
16 124.2 262.7 112.5 113.2 132.9 108.2 171.2 112.7 133.1 125.4
32 117.7 141.3 106.7 103.5 102.8 103.4 138.8 112.3 107.8 107.8
48 103.2 107.4 102.5 102.5 106.7 103.4 118.9 102.7 102.4 103.0
64 103.5 107.8 102.8 102.5 104.1 103.4 107.5 102.7 103.4 102.1

Table 7: Attention speedups at different sparsity levels, on QNLI and SST-2.

Speedup(QNLI) (%) Speedup(SST-2) (%)
K PASS PASSCONC DSP LAG Voita PASS PASSCONC DSP LAG Voita
16 113.8 143.7 118.3 127.5 138.8 111.5 163.3 148.8 107.9 107.2
32 105.1 125.6 103.1 108.2 107.9 102.2 136.7 106.9 102.2 102.8
48 103.8 103.5 103.1 103.5 102.8 101.9 107.2 102.5 103.1 102.5
64 103.8 107.5 103.1 103.1 103.1 102.2 102.8 102.8 102.8 102.8
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