Published in Transactions on Machine Learning Research (09/2024)

PASS: Pruning Attention Heads with Almost-sure Sparsity
Targets

Dujian Ding dujian.ding@gmail.com
Department of Computer Science
the University of British Columbia

Ganesh Jawahar ganeshjwhr@gmail.com
Google DeepMind

Laks V.S. Lakshmanan laks@cs.ubc.ca
Department of Computer Science
the University of British Columbia

Reviewed on OpenReview: |https: //openreview. net/ forum? id=S4duStTKGL

Abstract

Transformer models have been widely used to obtain high accuracy values in multiple fields
including natural language processing (NLP), computer vision, and more. This superior
performance typically comes at the expense of substantial computational overhead. Multi-
head attention is the key factor in the success of Transformer models that has been found
to be computationally expensive. Significant research effort has been devoted to improving
attention compute efficiency by pruning redundant attention heads. A widely adopted
paradigm is to jointly learn a set of gate variables and apply thresholds on gate values to
prune heads. Previous work shows a high level of sensitivity to threshold tuning which
can limit subnetwork performance and prevent them from wider adoption in practice. We
propose the notion of almost-sure sparsity to overcome this limitation and develop a generic
framework for Pruning with Almost-Sure Sparsity (PASS) targets over attention heads. To
further boost efficiency, we design a novel technique, concentrator, based on which we develop
PASSCONC (PASS with CONCentrator). We also present a simple-yet-effective strategy
to further improve subnetwork performance by clipping and selectively reopening learned
gates. We investigate PASS and PASSCONC on two widely studied architectures: encoder-
decoder (ED) Transformer and encoder-only Transformer (e.g., BERT-base). Experiments
on IWSLT14 German-to-English translation and GLUE benchmark tasks demonstrate that
our approaches outperform the SOTA by achieving up to 1.33 higher BLEU scores, 1.44%
higher accuracy, and 60% higher attention speedups.

1 Introduction

Transformer models (Vaswani et al., 2017) have become a lead force in the study of natural language pro-
cessing (NLP), computer vision, information retrieval, and other domains (Hua et al.| 2024} 2023} |Asai et al.
2024; |Darcet et al., 2024 [Ding et al., 2024). As Transformers grow deeper and larger, however, their ap-
plication on longer contexts remains challenging because attention computation, which is at the heart of
Transformer architectures, is of quadratic time and memory complexity with respect to the input length
(Dao et al.l|2022)). For example,|Wang et al.| (2020a)) observed that attention computation typically accounts
for over 50% end-to-end latency of a GPT-2 model on multiple hardware platforms.

Significant research efforts have been devoted to improving attention computation efficiency from two or-
thogonal perspectives: reducing attention complexity and pruning attention heads. As a successful attempt

https://openreview.net/forum?id=S4duStTKGL

Published in Transactions on Machine Learning Research (09/2024)

90 A
Gate z1 € [0, 1] * —&— Prev. Prob. Pruning SOTA
% e f . 891 Our Method
8 o § 88 + Unpruned
attn_head; - >
el O 874
g &
SRR = 401 3 861
: o == Prev. Prob. Pruning SOTA ¥}
attn_heady # 30 our Method < 851
—-- Sparsity Target 84 -
O.IZ 0.‘3 0.‘4 O.IS 0:6 0.‘7 0.‘3 1{‘){] 12‘0 1£|lO]J:".D 15“0
Gate zy € [0, 1] Gate Thresholds Speedup (%)
(a) Pruning attention heads w/ gates. (b) Threshold sensitivity. (¢) Pruning results.

Figure 1: (a) Pruning attention heads by learning a set of gate variables. Gates take values from [0, 1] and
apply to attention heads before summation. Heads of low gate values are more likely to be pruned. (b)
With a Transformer model of 72 heads and a sparsity target aiming to prune 56 heads, previous probabilistic
pruning SOTA (Xia et al., 2022)) is highly sensitive to gate threshold tuning (a 0.5 threshold only prunes
49 heads) while our approach consistently achieves the desired sparsity target (e.g., pruning 56 heads) in a
threshold-independent manner. (¢) On GLUE benchmark tasks (Wang et al., 2018), our approach achieves
up to 1.4% higher average accuracy and 60% higher speedups than previous probabilistic pruning SOTA.
Points in the plot represent the accuracy-speedup trade-offs achieved by different approaches under various
sparsity targets. Unpruned model performance is also included for reference purpose.

at reducing attention complezity, sparse attention (Roy et all [2021; [Tay et al., [2020; (Child et al.| [2019)
focuses on sparsifying the attention distribution over tokens for each head to improve efficiency. Linformer
(Wang et al.l |2020b) reduces the attention compute complexity from O(N?) to O(N) with low-rank matrix
approximation. FlashAttention (Dao et al.l 2022} Daol 2023|) focuses on memory access efficiency in attention
computation and achieves linear memory complexity by exploiting the asymmetric GPU memory hierarchy
and minimizing unnecessary data transfers. However, implementing these approaches introduces extra chal-
lenges, particularly in rewriting the attention arithmetic operations as well as the underlying CUDA kernels
to improve hardware utilization, which prevents them from wider adoption in practice.

The second line of work focuses on pruning attention heads (Voita et al. [2019; |[Li et al.l [2021; Xia et al.,
2023) to achieve significant inference speedups without changing the arithmetic operations of attention
modules and therefore can be applied to a majority of Transformer models with only minor training/fine-
tuning configuration changes. These works utilize the fact that properly trained Transformers are highly
over-parameterized, and study how to extract efficient subnetworks by removing redundant heads without
significant performance drops. A widely adopted paradigm is to jointly learn a set of trainable gate variables
for each attention head, as shown in Figure[Ta] At test time, attention heads associated with low gate values
are pruned subject to predefined thresholds or sparsity targets. Typically, [Li et al.| (2021) achieves user-
specified attention head sparsity by iteratively applying the Gumbel-softmax trick (Gumbel, |1954) to select
the top-K most important attention heads for given sparsity targets. At each training iteration, however,
only selected attention heads get updated by the training optimizer (e.g., Adam (Kingma & Bal,2015])) which
prevents models from being trained with more heads in early training stages and limits the final subnetwork
performance. [Voita et al.| (2019)) and [Xia et al.| (2022)) overcome this limitation by allowing all heads to
participate in the training process and achieve sparsity in a probabilistic manner. Specifically, [Voita et al.
(2019) learns the probability distribution for gate values and sparsifies the models by regularizing the gate
closing probability (the likelihood that gate variables equal 0). Xia et al.| (2022)) follows a similar probabilistic
forumulation and achieves the target sparsity in expectation by using the lagrangian multiplier (Wang et al.)
2020c) to explicitly enforce sparsity constraints on attention heads. At test time, both [Voita et al.| (2019))
and [Xia et al.| (2022)) use a threshold (e.g., 0.5) on the gate closing probabilities to determine if an attention
head can be pruned confidently. In practice, however, these probabilistic pruning approaches suffer from two
limitations. Firstly, setting correct thresholds is challenging and a mistakenly chosen threshold can lead to
failed sparsity targets, as illustrated in Figure Secondly, thresholding gate variables at test time may
bring significant architecture changes to Transformer models and lead to decayed subnetwork performance.

Published in Transactions on Machine Learning Research (09/2024)

On GLUE benchmark tasks (Wang et al. |2018]), we observe that previous probabilistic pruning SOTA (Xia
et al., 2022)) may lead to drastic performance decay even with correctly calibrated gate thresholds, while our
approach achieves up to 1.4% higher average accuracy and 60% higher speedups (see Figure .

Motivated by these limitations, in this work we propose a novel pruning approach, Pruning with Almost-
Sure Sparsity targets (PASS), to achieve good subnetwork performance by involving all heads during model
training and prune models to the desired sparsity levels in a threshold-independent manner. Similar to [Voita
et al.| (2019)) and Xia et al.|(2022), PASS takes the probabilistic pruning formulation but explicitly enforces
all gate variables to diverge as the pruning process proceeds. The most important observation is that, if
the closing probabilities for all gate variables approach either 0 or 1 with respect to the sparsity targets
after training, we can easily extract the desired sparse subnetworks by introducing no further changes in
attention compute at test time and therefore retain the subnetwork performance. We use the well-established
notion “almost surely” in probability theory (Jacod & Protter] 2003 and propose the notion of almost-sure
sparsity (see Section . We say a gate can be closed almost surely if the corresponding gate closing
probability equals 1. In PASS, we express the sparsity targets in terms of the almost sure sparsity and
extract the desired subnetworks by enforcing the sparsity constraints through regularization techniques in
model training process (see Section . To push the envelope on inference efficiency, we propose a novel
technique, concentrator, based on which we develop PASSCONC (PASS with CONCentrator), as discussed
in Section Observing the gradient vanishing problem in the gate variable training process, we present a
simple-yet-effective strategy to clip and selectively reopen learned gates which leads to improved subnetwork
performance (see Section [3.4). We evaluate our methods with encoder-decoder (ED) Transformer models
and BERT models on IWSLT14 German-to-English translation (Cettolo et all |2014) and GLUE benchmark
tasks (Wang et al., [2018). We explore the Pareto front between model performance and inference efficiency
for subnetworks identified by PASS, PASSCONC, and recent work (Li et al.l 2021} Xia et al., 2022} |Voita
et all 2019). Experiments show that PASS and PASSCONC outperform all baselines across a majority
of experiment settings, by identifying subnetworks of higher speedups and better model performance (see
Section . For example, on GLUE benchmark tasks, PASSCONC achieves a 185.2% attention speedup
on average, which is 60% higher than all baselines, while providing even higher accuracy. This observation
suggests that PASS and PASSCONC are capable of identifying subnetworks with high model capability and
can be applied to resource-limited applications to achieve good performance-efficiency trade-offs.

In this work, we make the following contributions.

1. We propose a novel notion of almost-sure sparsity and develop an effective model pruning framework
PASS to prune models to specified almost-sure sparsity levels on attention heads.

2. We propose a novel technique, concentrator, to further push the envelope on model inference effi-
ciency and develop PASSCONC.

3. We present a simple-yet-effective strategy to further improve subnetwork performance by clipping
and selectively reopening learned gates.

4. We evaluate PASS and PASSCONC on ED Transformer and BERT models with well established NLP
tasks. Experiments show that PASS and PASSCONC outperform baselines by obtaining significant
efficiency improvements and better performance-efficiency trade-offs.

2 Preliminaries

A frequently encountered task in machine learning is to find the model that minimizes the negative log-
likelihood of an observed dataset, which can be formulated as follows,

0" = argmin — log P(D|0) (1)
6
where D is an observed dataset and § = {61,60s,--- , 0|9} stands for the parameters of a parameterized model

(e.g., a neural network). In real-world applications, we typically have model sparsity constraints to prevent
high inference latency or reduce memory footprints (Gupta & Agrawal, 2022)). A recent line of work (Louizos

Published in Transactions on Machine Learning Research (09/2024)

et al.,[2017; Voita et al.,|2019) pursues this goal by training gate variables, z = {21, 22,-- - , 2j9|}, jointly with
parameters, 6. Each z; € z has support [0, 1]. The objective function Eq. [1| can be re-parameterized as,

0" = argmin —log P(DI|0 ® z) (2)
0

where ® indicates component-wise multiplication between network parameters # and the gate variables z.
Typically, z is a latent variable following the posterior distribution p(z|D), which reflects the user-defined
sparsity constraints. The probabilistic pruning approaches (Voita et al., |2019; Xia et all 2022) aim to
optimize the expected likelihood over the posterior distribution of the gate variables z,

0" = argmin —log E,,p)[P(D|0 © z)] (3)
0

The objective function described by Eq. is mathematically intractable when the posterior p(z|D) is a
priori unknown. As an attempt to tackle such intractability, we can first derive the evidence lower bound of
the log-likelihood in Eq. |3| which is a widely used technique in previous variational inference work (Vahdat
et al.,|2018ajb)). Since we are interested in minimizing the negative log-likelihood, it gives us an upper bound
for the objective in Eq. ﬂ

—log Bz p)[P(D]0 © 2)] < —Eyz0)[log P(D]0 © 2)] + KL (q(z; ®)||p (2| D)) (4)

where ¢(z; ®) is an approzimate posterior distribution parameterized by ® = {¢1,¢2,---,¢jg}. Detailed
derivation can be found in Appendix Minimizing this upper bound with respect to ¢(z; ®) results in
q(z; ®) = p(z|D) and turns the inequality into an equality (Beal, |2003). By denoting this upper bound as
L(0,®), we can then formulate the learning problem as,

L(0,9) = —Eq(za)[log P(D|0 © z)] + K L(q(z; ®)||p(2| D))
0%, ®" = argmin L(0, P) (5)
0,®
We aim to jointly learn the optimal network parameters 0* and the distribution of gate variables, ®*, by
minimizing the upper bound £(6, ®).

The foregoing analysis gives a generic framework to enforce sparsity over neural models which is agnostic
to the underlying network structures. To prune attention heads, all we need is to assign each head a gate
variable and solve Eq. 5| with z = {21, 22, -+ , 23 }, where H is set of all attention heads (see Figure .

3 Methodology

3.1 Almost-sure Sparsity

The KL-divergence term in Eq. [5|is mathematically intractable when the true posterior p(z|D) is unknown.
A line of work (Voita et al. 2019; Xia et al., [2022) attempts to tackle this intractability by replacing the
KL-divergence term with distribution-independent surrogates. A widely used surrogate (Voita et al., [2019)
isA\>_, o, Pr[zi # 0], which can be seen as a special case of the KL-divergence term that assumes a constant

ratio log pq(q;ffg) = A. Though this surrogate circumvents the intractability issue, it is often challenging to

identify the right A\ for a given sparsity target s (Li et all [2021) . Other work (Xia et al.| |2022)) utilizes
surrogates in the form of Lagrangian Multipliers (Wang et al., 2020c) to enforce sparsity in expectation
for a given target. Though this approach is able to achieve target sparsities in a probabilistic manner,

its performance highly relies on the gate thresholds and may lead to limited subnetwork performance, as
illustrated in Figures [Ib] and

In light of the limitations of previous work, we introduce the notion of almost-sure sparsity and propose
a novel surrogate which allows us to learn empirically good approximate posteriors as well as discover
subnetworks with desired target sparsities almost surely. The intuition behind the almost-sure sparsity is
straightforward. Note that a model has sparsity s provided a fraction s of the gates are closed in the network.
From a probabilistic perspective, it is natural to ask a subnetwork to be “confident” about which gates should

1The posterior distribution p also depends on the models but we ignore it here since it does not change the inequality.

Published in Transactions on Machine Learning Research (09/2024)

be closed. In other words, gates should be closed with high probability. Mathematically, an event is said
to happen almost surely, if it happens with probability 1 (Jacod & Protter, 2003). Formally, we define
almost-sure sparsity as follows.

Definition 1 (Almost-sure Sparsity) Given s € (0,1), gate variables z have almost-sure sparsity s if
IZciose, Zopen C Z, such that Pr(z; = 0] = 1, Vz; € Zeose and Priz; = 1) = 1, Vz; € Zopen, where zejpse N

Zopen = 0; Zclose U Zopen — Z, and |chose| = 3‘Z|

We argue that the almost-sure sparsity is better aligned with the sparsity notion we need in static subnetworks
and enables the subnetwork discovery with desired sparsity targets. Next, we present learning objectives
designed to achieve almost-sure sparsity targets specified by users.

3.2 Learning Objective with Almost-sure Sparsity

We aim to learn a good approximate posterior ¢(z; ®) with desired almost-sure sparsity. In this paper, we
adopt the Hard Concrete distribution (Louizos et al., 2018) as the basic form of the approximate posterior
q(z; @), given its continuous-discrete nature and its wide application in model pruning (Voita et al., [2019;

2022).

Hard Concrete distribution has its
support over the closed interval Rpo(® = s=05
[0, 1] and non-zero probability mass 10 base(0 = (91, 92},)
at 0 and 1. Hard Concrete dis-

1(";'\’,:3555(‘:D ={¢1,¢2},5=0.5) 5o

tribution is derived by stretching 2 16
and collapsing the Concrete distri-
bution (Maddison et all [2016]), as 1.0
illustrated in Figure 3al We in- 12
troduce derivation details in Ap-

08 08

pendix[A.2] For each gate z; € [0,1] 0 10 070 0 10
following Hard Concrete distribu- 1 1

tion, the corresponding probability

mass at 0 and 1 with respect to Figure 2: Values of Rpgse and Rpass with ® = {¢1,¢2} and s = 0.5.
q(2i; ¢;) are given as q(z; = 0; ¢;) =

sigmoid (,8 log (%) - qﬁi), q(z; = 1;¢;) = sigmoid (¢i — B log (g)) For simplicity of notation, we de-
note qo(¢;) := q(z; = 0;¢;), the gate closing probability, and q¢1(¢;) = q(z; = 1;¢;), the gate opening
probability. Due to the monotonicity of the sigmoid function, when ¢; increases, ¢;(¢;) increases and go(¢;)
decreases, and gate z; is more likely to open. We further define ¢,,;(¢;) = 1—qo(¢:) —q1(¢;) as the probability
for z; being non-binary. We use 5 = 0.33, v = —0.1, and ¢ = 1.1 by default, following previous work
2019)). Clearly, the closing and opening probability of each z; € z are differentiable functions of ¢; € @,
as shown in Figure By jointly learning ® with the network parameters, we are able to almost-surely
close (resp. open) gates z; € z by continuously increasing (resp. decreasing) the values of ¢; € ®, using
gradient-descent optimizers (e.g., Adam (Kingma & Bal[2015)). At each training iteration, gates are sampled
w.r.t. the learnt distribution and then applied to attention heads to achieve pruning.

At the end of pruning, we want ¢(z; ®) to achieve almost-sure sparsity for a given target s. Our strategy is to
design a learning objective that meets the desired almost-sure sparsity at its optimum, and optimize it along
with model training. It is worth pointing out that there exists a family of learning objectives satisfying this
criterion. However, not all of them can be easily optimized to their minimum, especially by gradient descent
optimizers (Kingma & Ba), [2015). For example, one may propose to minimize the following objective.

1]

Rbase(éa 3) = Z an(¢z) +
=1

161

s16] = > ao(¢0)

It can be easily seen that Rpqse takes on its minimum value 0 when achieving almost-sure sparsity s. However,
there exist local optima that may prevent gradient descent optimizers from converging to the global optimum.
To illustrate this, for simplicity, we visualize the values of Rpqse in a 2-gates setting z = {z1, 22} in Figure

(6)

Published in Transactions on Machine Learning Research (09/2024)

4 10 0.25
—— Concrete & 42 —— 3qo(¢:)/ag; /\

S 4 Stretched Concrete né 0. 1 3 0204 aq1(@)/ods

I —— Hard Concrete o g

. o | e

=3 S 06 — aoltn) G

N .

E 5] Y 0.4 qulg) _g

w = a

o .| O 0.2)

ol] -
] AN ©
8 0.0 O

00 02 04 06 08 10 -10 -5 0 5 10 10
z @i
(a) Hard concrete distribution. (b) Closing and opening probabilities. (c) Gate probability gradients.

Figure 3: (a) Hard concrete distribution derived by streching-and-collapsing a Concrete distribution. (b)
Closing and opening probability of gating variables are differentiable functions of ¢;. (¢) The gradient values
of both gate closing and opening probabilities quickly approach 0 as ¢; increases or decreases. Hard concrete
distribution is parameterized with g = 0.33, v = —0.1, ¢ = 1.1, following previous work (Voita et al., 2019).

With 2 gates and a sparsity target s = 0.5, we want one gate to be almost-surely closed and the other gate
almost-surely opened. In Figure [2] such global optima correspond to the top-left and bottom-right corner
where one of ¢; or ¢, takes on a high value and the other takes on a low value. However, it can be clearly
observed that there exist a local optimum in the top-right region which corresponds to the situation where
both gates are open with high probability. In other words, with Rygse, if both ¢1 and ¢o happen to take
positive values due to noise from the training process or bad initialization, the gradient descent direction will
increase the probability for both gates to be open and fail to meet the sparsity target s = 0.5 by delivering
overly dense models. Under weak condition&ﬂ we can prove that the gradient descent direction of Rpgse
always leads to a higher opening probability for gate z; if ¢; > log(_l_— ‘;Zgam_a)), where g(a) = 2e*—e~¢
a= ﬂlog(?). The proof is presented in Appendix

In light of the limitation of Rpqse, we propose the following learning objective,

)

161

Rpass((l)z 5) = anb(¢i) +
=1

0]

8]0 — Z(IO(@')

Rpass does not suffer from the local optimality issue that Ryqs. does, as shown in Figure @ In fact, we can
show that minimizing R,qss always generates neither over-sparse nor over-dense subnetworks. In order to

6]

=910 =Y a6 (7)

show this formally, we define the expected number of opened gates (ﬁ ZL0:‘1 q1(®;)) as the expected density,

and the expected number of closed gates (ﬁ Zﬂl qo(¢;)) as the expected sparsity. We have the following
lemma.

Lemma 1 Minimizing Rpass always generates sparse subnetworks whose expected sparsities are no more
than s and expected densities are no more than 1 — s, for any given sparsity target s € (0,1).

Proof can be found in Appendix [A:4 By substituting the KL-divergence term in Eq. [with Rpass, we
obtain the PASS optimization objective where A is the regularization coefficient.

Lpass(0,P) = —Eq(z;@)[bg P(D|0 © z)] + ARpass(®, s)

epassy q)pass = arg min ﬁpass (07 (I)) (8)
6,9

3.3 Concentrator

To further improve model inference efficiency, we propose the use of concentrator. Wang et al.| (2020a)
observed that the auxiliary operations in multi-head attention computation (e.g., reshaping and transposing

2We assume the Hard Concrete distribution is equally stretched in both directions, which gives v + ¢ = 1.

Published in Transactions on Machine Learning Research (09/2024)

matrices, heads splitting, and concatenation) account for 73% of the overall latency in attention layers. The
run-time overhead can hardly be avoided as long as there exist unpruned heads in the attention layers.
Consider subnetworks of the same attention head sparsity. Intuitively, if the unpruned attention heads are
inclined to concentrate among a few layers, the other layers can be entirely skipped, saving the run-time
overhead and improving inference efficiency. Given this, we propose the concentrator to encourage the
unpruned attention heads to be concentrated on as few layers as possible.

Given a Transformer-based model of L layers and H heads per layer, the concentrator is defined as R cone(®) =
Zlel (1 — HhH:1 qo((bl,h))7 where ¢, 5, is the distribution parameter for the h-th gate variable on the I-th

layer. Notice that 1 — HhH:1 go(¢r,) indicates if the I-th layer can be entirely skipped: it takes on a value 0
only if all heads of the layer have a closing probability 1. R;opn. is a summation of the layer-wise indicators
over all layers and has regularization effects by penalizing the levels of unconcentration. We introduce A, to
control the concentrator effects and obtain the following optimization objective for PASSCONC, i.e., PASS
with concentrator.

Acpassconc(e, (I)) = 7Eq(z;<1>) [IOg P(D|6 ® Z)} + A7zpu.ss(q), 3) +)\cRconc(q))

: 9
6passconm q)passcons = argmin L"passconc(e; (I)) ()
0,

3.4 Clipping and Reopening

In practice, with proper training settings, the proposed approach can discover subnetworks with the desired
sparsities and high accuracy. Note that we approach almost sure sparsity by increasing or decreasing ¢; € ®
with gradient-descent optimizers. However, as ¢;’s increase or decrease, their gradients quickly converge to 0
as illustrated in Figure Consequently, gates closed (resp. opened) with high probability in early training
stage are unlikely to be self-adaptively re-opened (resp. closed) in later training iterations by gradient-
descent optimizers, which may lead to sub-optimal pruning results. We propose to resolve this issue with a
clipping and selective reopening strategy. The idea of clipping has been widely used in training deep learning
models to avoid gradient exploding and vanishing (Zhang et al., [2019; [Koloskova et al.| |2023)). In this same
spirit, we clip ¢; to predefined ranges to alleviate the aforementioned issues caused by small gradients. In
our implementation, we empirically clip all ¢;’s to the range [—5,5] to avoid the vanishing of gradients
to excessively small values (see Figure . Randomness has been widely observed to be helpful in neural
network training (Bottou, [2010). To further incentivize training dynamics, we propose to randomly reopen
closed gates with respect to the gate quality. There is a line of work on how to measure gate qualities (Michel
et al.l 2019; [Voita et al |2019; Ding et al.l 2017)), among which we choose head confidence (Voita et al.,[2019)
in our implementation because it has been found to be an informative notion (Behnke & Heafield, |2020)) and
requires little to no additional computation. The confidence of a head is the average maximum attention
weights of tokens in a set of sentences (Voita et all [2019). We normalize confidence scores for each attention
head and reopen almost-surely closed gatesEI with a probability equal to the normalized scores.

Notably, the clipping and reopening strategy is designed to be applied jointly. Without clipping to a proper
range, an opened gate may remain fully open due to the nearly zero gradients and finally result in overly-
dense subnetworks as the reopening strategy progresses. Similarly, without the randomly reopening strategy,
the subnetwork may be trapped by certain local optimums and lead to suboptimal performance even with
the clipping strategy.

4 Evaluation

4.1 Evaluation Setup

4.1.1 Model, Data, and Metrics

Model: We investigate two widely-studied Transformer models: encoder-decoder (ED) Transformer
(Vaswani et al. 2017) and the encoder-only Transformer, BERT (Devlin et al.l 2018]). We use the FAIRSEQ
toolkit (Ott et al., |2019)) to implement a 6-layer ED Transformer with 72 heads in total, and the HUGGING

3To reopen an almost-surely closed gate z;, we manually decrease its closing probability by increasing ¢;.

Published in Transactions on Machine Learning Research (09/2024)

FACE codebase (Wolf et al., 2020) to implement a 12-layer BERT-base with 144 heads in total. We believe
our setting has covered the most important attention head variants, especially that the ED Transformer
includes both encoder (self-attention) and decoder (self- and cross-attention) modules, and therefore suffices
a comprehensive evaluation setup.

Datasets: Following previous work , the ED Transformer model is trained and evaluated on
the IWSLT14 German-to-English translation dataset (Cettolo et all |2014). The BERT-base model is fine-
tuned and evaluated on 4 benchmark NLP tasks from the GLUE benchmark (Wang et al.| [2018) including
the Multi-Genre Natural Language Inference (MNLI) dataset (Williams et al., [2018)), the Question-answering
NLI (QNLI) dataset (Rajpurkar et al.,|2016)), the Quora Question Pairs (QQP) dataset (Sharma et al.,[2019),
and the Stanford Sentiment Treebank (SST-2) dataset (Socher et all 2013). We choose these 4 datasets of
the largest training splits from the GLUE benchmark to ensure that gate variables can be sufficiently trained
to convergence.

Metrics: We use BLEU score (Papineni et all 2002) as the metric to measure model performance on
the translation task following previous work (Li et al., [2021} Michel et al., 2019), and use accuracy as the
metric on the GLUE benchmark tasks following Wang et al.| (2018). In addition, we are also interested in
the efficiency improvements achieved by PASS and PASSCONC. We use wall clock time to measure the
efficiency w.r.t. latency.

4.1.2 Baselines

We consider three strong baselines that prune attention heads to a specified sparsity level.

Differentiable Subset Pruning (DSP). DSP (Li et al.,2021) applies the Gumbel-softmax trick (Gumbel

1954) to select the top-K attention heads for a given sparsity target. DSP learns a K-hot vector g; by
k
iteratively applying Gumbel-softmax K times, where g, = Zszl gZ = Zle %, rZ = r}’jfl +
n—=1 exrp Th, T
log(1 — g’,j_l), and r, = wp + np. wp, denotes trainable parameter indicating head importance, nj ~
Gumbel(0, 1) is Gumbel noise, and 7 is a hyper-parameter that controls the annealing temperature.

Lagrangian Multiplier (LAG). A recent line of work (Xia et al. 2022, Wang et al. |2020c) employs
Lagrangian Multiplier (Wang et al), [2020c]) to enforce sparsity in expectation. Given a sparsity target s,
LAG trains models along with the regularization term R;,q = A1 (8 — 5) + A2(8 — s)?, where § is the ezpected
sparsity. A1 and Ao are trainable parameters and will be optimized jointly in training.

[Voita et al. (2019) (Voita). [Voita et al.| (2019) prunes attention heads by applying the stochastic approx-
imation to L¢ regularization (Louizos et all [2018)) to gate closing probabilities. [Voita et al.| (2019) achieves

pruning by jointly training models with the following regularization term R pitq(®) = Ay D ,Zi‘l(l —qo(on)),
where)\, can be used to indirectly control the achieved sparsities. Following the previous work (Li et al.
2021)), we use grid search to find the correct A, values for each sparsity setting.

As observed in , Ay is in general hard to tune and there could exist certain sparsity targets
that cannot be achieved by tuning A,, which makes Voita’s approach not a good fit if the user demands
a sparse Transformer model of customized number of attention heads. In our work, we propose to enforce
the sparsity constraints explicitly using a novel sparsifier (see Section and further push the envelope of
efficiency by developing the concentrator (see Section. The design of our sparsifier, concentrator, as well
as the clipping and reopening strategy has not been proposed in previous attention pruning literature and
contributes to the novelty of our work.

We adopt the same implementation of DSP and Voita as in (2021) P} We implement LAG by training
models with the regularization term R;,q = A1 (8—5)+A2(8—s)?, where s is the user-specified sparsity target,
A1 and g are trainable parameters, and § is the expected sparsity over all attention heads. Following|Louizos|

(2017)), we estimate the value of each gate as 2; = min{1l, max{0, sigmoid(log(¢;)(¢ —) + v)}}, for
¢; € . The expected sparsity § over attention heads H is computed as § = ﬁ leﬂ 1-2;.

4Observing the emergence of large language models (LLM) (Chang et al.|[2024)) that are typically decoder-only Transformer
models, it is intriguing to evaluate the scalability of our approaches on large-scale LLMs and we leave it in our future work.
Shttps://github.com/rycolab/differentiable-subset-pruning.

Published in Transactions on Machine Learning Research (09/2024)

Table 1: Subnetwork performance on IWSLT14 De-En translation (left) and GLUE benchmark tasks (right).

BLEU Accuracy (%)
K | PASS PASSCONC DSP LAG Voita | PASS PASSCONC DSP LAG Voita
16 | 32.73 32.70 31.40 3091 27.55 | 86.27 85.25 84.47 83.84 84.83
32 | 33.45 33.48 33.42 32.66 32.80 | 87.59 86.47 88.36 86.99 87.15
48 | 33.89 33.91 34.00 33.12 3297 | 88.65 88.30 88.52 88.02 88.02
64 | 34.01 34.05 33.89 33.02 33.20 | 88.72 88.62 88.81 88.40 84.20

4.1.3 Protocols

We express sparsity targets over attention heads H interchangeably as s € (0,1) and as integer K where
K = |(1—s)[H]], the number of unpruned heads. Unless stated otherwise, for a given sparsity target K, we
evaluate all methods by selecting the top-K most important heads w.r.t. the corresponding ranking metrics,
i.e., the gate opening probabilities for PASS, PASSCONC, Voita, and LAG, and the head importance score
wy, for DSP. Detailed hyper-parameter settings are in Appendix[B] We test all methods on both architectures
with target tasks (30 training epochs for ED Transformer; 3 fine-tuning epochs for BERT-base as in [Li et al.
(2021)). All experiments are conducted on a high performance compute cluster equipped with NVIDIA P100
GPUs (each with 12GB GPU RAM). Codebase is available on https://github.com/DujianDing/PASS.

We evaluate the performance of PASS and PASSCONC in Section [4.2] demonstrate the speedups brought by
PASSCONC in Section validate the effectiveness of concentrator as well as the clipping and reopening
strategy in Section [£.4] present the patterns of pruned attention heads in Section and show more
performance results in Appendix [C]

4.2 PASS and PASSCONC Improve Model Performance

We investigate the model performance of subnetworks identified by PASS, PASSCONC and all baselines
under various sparsity constraints. We compare all five methods on both ED Transformer and BERT-base
models. The results are summarized in Table [l Detailed performance results on each GLUE benchmark
task are in Appendix [C]

On IWSLT14 German-to-English translation task, PASS and PASSCONC outperform all 3 baselines in a
majority of sparsity settings. When K = 16, both PASS and PASSCONC achieve BLEU scores of 32.7, which
is 1.3 higher than DSP, 1.8 higher than LAG, and 5.2 higher than Voita. On the GLUE benchmark tasks, we
observe a similar trend in high sparsity situations. When K = 16, PASS and PASSCONC achieve average
model accuracy of 86.27% and 85.25% respectively, while DSP drops to 84.47%, LAG drops to 83.84%, and
Voita drops to 84.83%. When sparsity targets are low, PASS is able to match or outperform all 3 baselines,
while PASSCONC can be outperformed by the strongest baseline DSP while still being comparable to the
remaining two.

One interesting observation is that Voita delivers surprisingly low accuracy in low sparsity settings (e.g.,
K = 64) with GLUE benchmark tasks. The degraded performance can be attributed to its intrinsic sensitivity
to the choice of A,, which is used to indirectly control sparsity targets. |[Li et al.[(2021) observed that a small
increase in A\, (e.g., 0.0009 — 0.0014) may lead to drastic change of achieved sparsity (e.g., the number
of unpruned heads decreases from 30 to 11), which suggests that Voita is inadequate when users require
subnetworks of pre-defined number of attention heads.

4.3 PASSCONC Improves Model Efficiency

We evaluate the attention speedups for subnetworks identified under various sparsity constraints, at inference
time. We report the inference speedups in comparison to the unpruned model. The results are summarized
in Figure [f and Table [2} Detailed results on each GLUE benchmark task can be found in Appendix [C]

On the GLUE benchmark tasks with BERT-base models, PASSCONC outperforms all baselines across a
majority of sparsity constraints with great efficiency improvements and comparable or better accuracy (see

https://github.com/DujianDing/PASS

Published in Transactions on Machine Learning Research (09/2024)

Table 2: Attention speedups on IWSLT14 De-En translation (left) and GLUE benchmark tasks (right).

Speedup (%) | Speedup (%)
K ‘ PASS PASSCONC DSP LAG Voita ‘ PASS PASSCONC DSP LAG Voita
16 | 144.3 162.8 141.1 141.1 142.7 | 1144 185.2 123.1 120.4 126.1
32 | 115.5 118.7 118.7 1104 1176 | 107.1 135.6 107.3 105.4 105.3
48 | 101.6 104.1 105.8 102.4 1024 | 103.1 109.3 102.7 102.9 103.8
64 | 100.8 104.1 100.0 100.0 100.0 | 103.2 106.4 102.9 103.0 103.0

LAG
Voita
X DsSP
5 ; PASS
[T] PASSCONC
n_:ll o Unpruned
3
o S-~a
S ___‘
—8— PASSCOMNC < K=16
284 < Unpruned
l[l.'FU l:i_[) lZI{] l:L)U l‘llﬂ lSI{] 16ID l[l}{] lZIU lill{] 16ID lé[)
Speedup (%) Speedup (%)
(a) IWSLT14 De-En translation. (b) GLUE benchmark tasks.

Figure 4: Subnetwork performance v.s. attention speedups on IWSLT14 De-En translation task and GLUE
benchmark tasks. We add dashed lines (——) to connect data points with the same sparsity constraints for
better comparison. The unpruned model performance is included for reference purpose.

Figure [). When K = 16, PASSCONC achieves a 185.2% speedup, which is 60% higher than all baselines,
and an average accuracy 85.25% that is also higher than DSP, LAG, and Voita. PASS has a better accuracy
but a lower speedup. As the sparsity targets decrease (i.e, as K increases), the speedups achieved by all
methods in general goes down but PASSCONC always dominates the competition in terms of efficiency, at the
price of a relatively small drop in performance. On IWSLT14 German-to-English task with ED Transformer
model, PASSCONC outperforms all baseline methods in almost all sparsity settings (see Table . When
K =16, PASSCONC achieves a 162.8% speedup, which is more than 20% higher than all baselines, with at
least 1.3 higher BLEU scores.

4.4 Ablation Study

Previous analysis of PASS and PASSCONC in Section [4.3] demonstrates the significant efficiency improve-
ments brought about by the concentrator (see Section. In this section, we validate that (1) by introducing
the concentrator loss, PASSCONC is able to prune more attention layers entirely (Figure , and (2) the
clipping and reopening strategy is necessary for PASSCONC to obtain significant efficiency improvements
(Figure . We report results using BERT-base models and the GLUE benchmark tasks. In Figure m we
observe that PASSCONC with concentrator is able to prune up to 7 out of 12 attention layers with high
sparsity targets, which is 3 layers more than not using concentrator and therefore validates its effectiveness
in pruning redundant attention layers entirely to bring significant speedups. In Figure we observe that
without the clipping and reopening strategy, the speedups achieved by PASSCONC can reduce by up to
70%! This observation demonstrates the necessity of dynamically re-activating closed gates to help the model
converge to cost-effective regions, as desired by the concentrator.

10

Published in Transactions on Machine Learning Research (09/2024)

—e— Concentrator 180 A —8— Clip&Reopen
v o6 w/o Concentrator w/o Clip&Reopen
qJ -—
E" 3% 160 -
4 o
= 4 =
[} T 140 A
c Q
2 g
a 27 \.\ VN 120 -
* —_
0_ T T T T T 100 _ T T T T T
20 30 40 50 60 20 30 40 50 60
Unpruned Heads # Unpruned Heads
(a) Concentrator (b) Clipping and Reopening

Figure 5: (a) Concentrator is critical for PASSCONC to prune more attention layers entirely. (b) The
clipping and reopening strategy is necessary for PASSCONC to obtain significant efficiency improvements.
All results are reported with BERT-base models on the GLUE benchmark tasks.

To disentangle the benefit of the clipping and reopening strategy from the proposed sparsity objective, we
implement the Voita approach with the clipping and reopening strategy and compare it with PASS and
PASSCONC on the SST-2 dataset from the GLUE benchmark. Results are summarized in Figure [6] By
clipping and reopening gates as Voita prunes attention heads, the accuracy of the resulting subnetworks
drastically drops to 50.9% when K = 16 while PASS and PASSCONC achieve accuracy at least 89.3%. One
possible reason is that, the clipping and reopening strategy reopens fully closed gates along the pruning
process which tends to continue reducing the subnetwork sparsity levels. Without our proposed sparsity
objective, Voita fails to converge to the desired sparsity levels and leads to decayed performance when we
extract the sparse subnetworks according to the user-specified sparsity targets.

4.5 Distribution of Heads

We visualize the distribution of unpruned heads to bet-
ter understand the dynamics of the pruning process (see
Figure[7). We report the frequency of heads unpruned by Ke64 SST-2
PASSCONC, averaged over all datasets (IWSLT14 De-En
translation task for ED-Transformer and GLUE bench-
mark tasks for BERT-base) and sparsity settings (K=16,
32, 48, 64). In each layer, the heads are sorted by the

Accuracy (%)
-]
[=]

. —e— \bita
unpruned frequency for clearer presentation. We also re- —e— PASSCONC
port the average number of unpruned heads per layer PASS
for both ED-Transformer and BERT-base to provide a 607 —e— Voita (Clip&Reopen)
quantitative comparison (see Tables |3| and . For ED . Y Unpruned
Transformer (Figure [7ajand table [3)), we observe that the 100 110 120 130 140 150 160
encoder self-attention heads are typically less important Speedup (%)

than cross-attention and decoder self-attention heads at

test time, and therefore are pruned more frequently (the

average number of unpruned encoder self-attention heads Figure 6: Voita augmented with clipping and
are at least 5 fewer than the other two attention types). reopening strategy leads to decayed subnetwork
This observation suggests the high level of redundancy in performance.

encoder attention heads from properly trained Enc-Dec

Transformers, which conforms with the observations in

Li et al| (2021) and [Voita et al| (2019). For BERT-base (Figure [7hand table[d]), we observe that the middle
layers (Layer 2,3,4,6) are likely to contain more unpruned heads, in comparison to the bottom (Layer 1) and

11

Published in Transactions on Machine Learning Research (09/2024)

’ 1 0.8
2
0.8 3

4 0.6
v 0.6 n 5
] Q 6

> > 7 0.4
T 0.4 & g
9

0.2 10 0.2
11

0.0 12 0.0

Enc Self Cross Dec Self 1234567 8 9101112
Heads Heads
(a) ED-Transformer (b) BERT-base

Figure 7: Distribution of unpruned heads across layers. Different colors represent the unpruned frequency for
each head across all datasets (IWSLT14 De-En translation task for ED-Transformer and GLUE benchmark
tasks for BERT-base) and sparsity settings (K=16, 32, 48, 64).

Table 3: The average number of unpruned heads per layer in ED-Transformer on IWSLT14 De-En translation
task across sparsity settings (K=16, 32, 48, 64).

Layer 1 2 3 4 5 6 SUM

Enc Self 1.67 1.00 1.67 217 0.92 217 9.58
Cross 1.33 2.00 258 292 250 3.25 14.58
Dec Self 2.58 2.83 3.00 258 3.00 1.83 15.83

top (Layer 7-12) layers, which is also aligned with the observation in previous work (Prasanna et al.l [2020b;
[Sajjad et al. [2023).

4.6 Overhead Analysis

To realize the efficiency improvements achieved by attention head pruning, we index the unpruned attention
heads and only perform matmul on the indexed tensors during inference. In Sections[.2]to[£.4] we implement
all approaches with indexing and evaluate the speedups w.r.t. the unpruned model using indexing to better
understand the efficiency improvements solely caused by different attention sparsities. In this subsection,
we investigate the overhead of indexing by comparing our methods with indexing to the unpruned model
without indexing (matmul is performed on the original unpruned matrix), using a 72-head Encoder-Decoder
Transformer on 2 Intel Broadwell CPUs @ 2.2GHz, and 1 NVIDIA P100 Pascal GPU. Comparison results
are summarized in Table [5] where we report the average latency achieved by subnetworks of K unpruned
heads on CPU and GPU devices separately.

Table 4: The average number of unpruned heads per layer in BERT-base on GLUE benchmark tasks across
sparsity settings (K=16, 32, 48, 64).

Layer 1 2 3 4) 6 7 8 9 10 11 12
Enc Self 3.38 3.81 4.00 4.44 3.19 4.00 2.88 3.25 263 325 213 3.06

12

Published in Transactions on Machine Learning Research (09/2024)

Table 5: The average inference latency for subnetworks extracted by indexing unpruned heads, compared to
the full model latency without indexing. On CPU-only devices, the subnetworks can achieve speed-ups up
to 48 heads unpruned out of 72.

K 1 2 4 8 16 32 48 64 No Indexing
GPU (le4s) 16 16 32 46 8 9.1 10.8 11 4.3
CPU (le4s) 16.9 16.2 27.5 443 681 822 955 1029 96

Intuitively, on CPU-only devices where matmul operation is dominantly time-consuming, the overhead of
indexing could be negligible and the subnetworks can achieve speed-ups up to 48 heads unpruned out of 72.
In contrast, on devices specialized for in-parallel matmul operations such as GPUs, the indexing approach
may cause non-negligible overheads and head pruning achieves speed-ups only with high-sparsity targets,
such as when less than 8 heads are retained from the subnetworks, as shown in Table [f]

It is worth noting that, indexing in our work is used to reflect the attention sparsities and is only necessary
when we assume no specialized software supports. With software supports such as high-performance sparse
matrix multiplication librariesﬂ the indexing operation is no longer necessary and can be completely removed
to avoid overheads.

5 Related Work

Unstructured pruning has been well studied in the literature (Gupta & Agrawal,|[2022) and dates back to Op-
timal Brain Damage (LeCun et al.|[1989). Unstructured pruning prunes individual parameters and identifies
subnetworks of high sparsity. However, unstructured pruning hardly achieves practical efficiency improve-
ments without specialized software and hardware support (Xia et al., |2022)). In contrast, structured pruning
prunes groups of parameters within certain structures (e.g., channels and attention heads). Structured prun-
ing has been widely explored in computer vision tasks (He et al., |2017)) and has started to attract research
interest in the NLP community. Research efforts have been devoted to designing pruning strategies at both
coarse- and fine-grained levels (Xia et al.l [2022; [Prasanna et al.| [2020a)) over structures like feed-forward
layers and attention heads. Previous work on attention head pruning (Li et al., 2021; Michel et al.| |2019;
Voita et al.l 2019) either highly relies on threshold tuning or enforces hard structural constraints on model
structure in the early training stages, which could lead to limited subnetwork performance. We focus on
structured pruning and propose the notion of almost-sure sparsity to overcome the above limitations.

In addition to pruning, many other techniques have been developed to obtain inference efficiency for deep
learning models. Other than sparsity over the number of attention heads, a line of work (Roy et al.l |2021;
Child et al., |2019) focuses on sparsifying the attention distribution over tokens for each head to improve
efficiency and head diversity. Recently, |Correia et al.| (2019)) and Treviso et al.| (2021]) propose to adaptively
sparsify the attention distribution by enforcing low attention scores to be exactly 0 through a-entmax (Peters
et al.l 2019)). Linformer (Wang et al. 2020b|) develops efficient self-attention design of linear complexity by
using low-rank matrix approximation. FlashAttention (Dao et al.; 2022; Dao, [2023)) focuses on I/O access in
attention computation and achieves linear memory complexity by leveraging the hardware memory hierarchy
and minimizing unnecessary data transfers. Other techniques include quantization (Shen et al., [2020)),
knowledge distillation (Hinton et all 2015), parameter sharing (Ling et al.l 2015]), tensor decomposition
(Oseledets, [2011)), neural architecture search (Zhang et all [2024; [Zheng et al., 2023) and more. We refer
interested readers to (Menghani, 2023; |Gupta & Agrawal, 2022; Treviso et al., |2022) for a comprehensive
survey.

6 Discussion and Conclusion

We propose a novel notion of almost-sure sparsity, develop a generic framework for Pruning with Almost-
Sure Sparsity (PASS) targets, and demonstrate its pruning capacity with attention heads. To further push

6https://docs.nvidia.com/cuda/cusparselt/

13

Published in Transactions on Machine Learning Research (09/2024)

the envelope on inference efficiency, we propose a novel technique, concentrator, based on which we develop
PASSCONC (PASS with CONCentrator). We also present a simple-yet-effective strategy to improve
subnetwork performance by clipping and selectively reopening learned gates. We investigate PASS and
PASSCONC on two widely studied Transformer models: encoder-decoder (ED) Transformer and encoder-
only Transformer, BERT-base. Experiments on IWSLT14 German-to-English translation (Cettolo et al.
2014) and GLUE benchmark tasks (Wang et al., 2018) demonstrate that PASS and PASSCONC outperform
the SOTA methods by identifying subnetworks of up to 1.33 higher BLEU scores, 1.44% higher accuracy,
and 60% higher speedups, at the same sparsity levels.

We conclude that PASS and PASSCONC can be used to identify high performance subnetworks and help
address the challenge of deploying Transformer models in resource-limited applications. We identify several
important extensions for future work: (1) More pruning structures and metrics. We would like to
explore the possibility of extending the proposed framework to multiple model structures (e.g., feed-forward
layers) and prune for meeting other target footprint metrics such as latency and memory which are more
accessible to users in real-world applications, in addition to sparsity. (2) Combination with other tech-
niques. Since both PASS and PASSCONC are agnostic to the underlying self-attention implementation,
it is intriguing to investigate the compound efficiency improvements achieved by combining our approaches
with other efficiency improvement techniques such as flash attention (Dao et al.,|2022; |Dao, [2023) and quan-
tization (Shen et al.| |2020; |[Frantar et al 2022)). For example, a naive combination strategy is to first apply
our attention pruning techniques to reduce the redundant heads and then leverage quantization or flash
attention techniques to accelerate the computation of those unpruned heads. In the future, we would like to
explore other non-trivial combination strategies to further push the envelope on efficiency gains. (3) Large
Language Models (LLMs) pruning. LLMs are typically large-scale decoder-only Transformer models
(Chang et al., 2024). Recent work (Xia et al. [2023) shows that LLMs possess a high level of parameter
redundancy which can benefit from model pruning to improve inference efficiency while maintaining high
performance. Though we have demonstrated the effectiveness of our approaches on both encoder and de-
coder modules in standard Transformer models, it is still intriguing to test the scalability of our approaches
on large scale Transformer models such as LLMs. On the one hand, it is worth noting that our sparsity
convergence analysis is agnostic to the model size and attention types (see Lemma . For decoder-only
LLMs, we believe our approach will be able to prune subnetworks to desired sparsity levels. On the other
hand, we acknowledge that currently the intrinsic mechanism behind the impressive emergent abilities of
LLMs (Wei et al} |2022)) remains unclear. How to effectively and efficiently prune attention heads from LLMs
brings new challenges and opportunities which we plan to investigate in our future work.

References

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-RAG: Learning to re-
trieve, generate, and critique through self-reflection. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=hSyW5go0v8.

Matthew Beal. Variational algorithms for approximate bayesian inference /. PhD thesis, 01 2003.

Maximiliana Behnke and Kenneth Heafield. Losing heads in the lottery: Pruning transformer attention
in neural machine translation. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 2664-2674, Online, November 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.emnlp-main.211. URL https://aclanthology.org/2020.emnlp-main.
211l

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of
COMPSTAT’2010: 19th International Conference on Computational StatisticsParis France, August 22-27,
2010 Keynote, Invited and Contributed Papers, pp. 177-186. Springer, 2010.

Mauro Cettolo, Jan Niehues, Sebastian Stiiker, Luisa Bentivogli, and Marcello Federico. Report on the 11th
iwslt evaluation campaign, iwslt 2014. In Proceedings of the International Workshop on Spoken Language
Translation, Hanoi, Vietnam, volume 57, 2014.

14

https://openreview.net/forum?id=hSyW5go0v8
https://aclanthology.org/2020.emnlp-main.211
https://aclanthology.org/2020.emnlp-main.211

Published in Transactions on Machine Learning Research (09/2024)

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM Transactions
on Intelligent Systems and Technology, 15(3):1-45, 2024.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse trans-
formers. arXiv preprint arXiv:1904.10509, 2019.

Gongalo M Correia, Vlad Niculae, and André FT Martins. Adaptively sparse transformers. arXiv preprint
arXiv:1909.00015, 2019.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv preprint
arXiv:2307.08691, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-efficient
exact attention with io-awareness. Advances in Neural Information Processing Systems, 35:16344-16359,
2022.

Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need registers.
In The Twelfth International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=2dn03LLiJ1.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep bidirec-
tional transformers for language understanding. CoRR, abs/1810.04805, 2018. URL http://arxiv.org/
abs/1810.04805.

Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim, Subhabrata Mukherjee, Victor Riihle, Laks V. S.
Lakshmanan, and Ahmed Hassan Awadallah. Hybrid LLM: Cost-efficient and quality-aware query routing.
In The Twelfth International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=02f3mUtqnM.

Yanzhuo Ding, Yang Liu, Huanbo Luan, and Maosong Sun. Visualizing and understanding neural machine
translation. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 1150-1159, Vancouver, Canada, July 2017. Association for Computational
Linguistics. doi: 10.18653/v1/P17-1106. URL https://aclanthology.org/P17-1106.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training quantization
for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Emil Julius Gumbel. Statistical theory of extreme values and some practical applications : A series of
lectures. 1954.

Manish Gupta and Puneet Agrawal. Compression of deep learning models for text: A survey. ACM Trans.
Knowl. Discov. Data, 16(4), jan 2022. ISSN 1556-4681. doi: 10.1145/3487045. URL https://doi.org/10.
1145/3487045.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks. In
Proceedings of the IEEE international conference on computer vision, pp. 1389-1397, 2017.

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2(7), 2015.

Wenyue Hua, Yinggiang Ge, Shuyuan Xu, Jianchao Ji, and Yongfeng Zhang. Upb: Unbiased foundation
model for fairness-aware recommendation. arXiv preprint arXiv:2305.12090, 2023.

Wenyue Hua, Jiang Guo, Mingwen Dong, Henghui Zhu, Patrick Ng, and Zhiguo Wang. Propagation and
pitfalls: Reasoning-based assessment of knowledge editing through counterfactual tasks. arXiv preprint
arXiv:2401.17585, 2024.

Jean Jacod and Philip E. Protter. Probability essentials. Springer, 2003.

15

https://openreview.net/forum?id=2dnO3LLiJ1
https://openreview.net/forum?id=2dnO3LLiJ1
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://openreview.net/forum?id=02f3mUtqnM
https://openreview.net/forum?id=02f3mUtqnM
https://aclanthology.org/P17-1106
https://doi.org/10.1145/3487045
https://doi.org/10.1145/3487045

Published in Transactions on Machine Learning Research (09/2024)

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio and
Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.

Anastasia Koloskova, Hadrien Hendrikx, and Sebastian U Stich. Revisiting gradient clipping: Stochastic
bias and tight convergence guarantees. arXiv preprint arXiv:2305.01588, 2023.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information processing
systems, 2, 1989.

Jiaoda Li, Ryan Cotterell, and Mrinmaya Sachan. Differentiable subset pruning of transformer heads, 2021.
URL https://arxiv.org/abs/2108.04657.

Wang Ling, Chris Dyer, Alan W Black, Isabel Trancoso, Ramén Fermandez, Silvio Amir, Luis Marujo,
and Tiago Luis. Finding function in form: Compositional character models for open vocabulary word
representation. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, pp. 1520-1530, Lisbon, Portugal, September 2015. Association for Computational Linguis-
tics. doi: 10.18653/v1/D15-1176. URL https://aclanthology.org/D15-1176.

Christos Louizos, Max Welling, and Diederik P. Kingma. Learning sparse neural networks through [y regu-
larization, 2017. URL https://arxiv.org/abs/1712.01312.

Christos Louizos, Max Welling, and Diederik P. Kingma. Learning sparse neural networks through [y regu-
larization, 2018.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous relaxation
of discrete random variables. CoRR, abs/1611.00712, 2016. URL http://arxiv.org/abs/1611.00712.

Gaurav Menghani. Efficient deep learning: A survey on making deep learning models smaller, faster, and
better. ACM Computing Surveys, 55(12):1-37, 2023.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? CoRR,
abs/1905.10650, 2019. URL http://arxiv.org/abs/1905.10650.

Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing, 33(5):2295-2317,
2011.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. fairseq: A fast, extensible toolkit for sequence modeling. arXiv preprint arXiv:1904.01038, 2019.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation
of machine translation. In Proceedings of the 40th annual meeting of the Association for Computational
Linguistics, pp. 311-318, 2002.

Ben Peters, Vlad Niculae, and André FT Martins. Sparse sequence-to-sequence models. arXiv preprint
arXiv:1905.05702, 2019.

Sai Prasanna, Anna Rogers, and Anna Rumshisky. When BERT Plays the Lottery, All Tickets Are Winning.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pp. 3208-3229, Online, November 2020a. Association for Computational Linguistics. doi: 10.18653/v1/
2020.emnlp-main.259. URL https://aclanthology.org/2020.emnlp-main.259.

Sai Prasanna, Anna Rogers, and Anna Rumshisky. When bert plays the lottery, all tickets are winning.
arXiv preprint arXiv:2005.00561, 2020b.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based sparse attention
with routing transformers. Transactions of the Association for Computational Linguistics, 9:53-68, 2021.

16

http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2108.04657
https://aclanthology.org/D15-1176
https://arxiv.org/abs/1712.01312
http://arxiv.org/abs/1611.00712
http://arxiv.org/abs/1905.10650
https://aclanthology.org/2020.emnlp-main.259

Published in Transactions on Machine Learning Research (09/2024)

Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and Preslav Nakov. On the effect of dropping layers of pre-
trained transformer models. Computer Speech & Language, 77:101429, 2023.

Lakshay Sharma, Laura Graesser, Nikita Nangia, and Utku Evci. Natural language understanding with the
quora question pairs dataset. arXiv preprint arXiv:1907.01041, 2019.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W Mahoney, and Kurt
Keutzer. Q-bert: Hessian based ultra low precision quantization of bert. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pp. 8815-8821, 2020.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In
Proceedings of the 2013 conference on empirical methods in natural language processing, pp. 1631-1642,
2013.

Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-Cheng Juan. Sparse sinkhorn attention. In
International Conference on Machine Learning, pp. 9438-9447. PMLR, 2020.

Marcos Treviso, Anténio Géis, Patrick Fernandes, Erick Fonseca, and André FT Martins. Predicting atten-
tion sparsity in transformers. arXiv preprint arXiv:2109.12188, 2021.

Marcos Treviso, Tianchu Ji, Ji-Ung Lee, Betty van Aken, Qingqing Cao, Manuel R. Ciosici, Michael Hassid,
Kenneth Heafield, Sara Hooker, Pedro H. Martins, André F. T. Martins, Peter Milder, Colin Raffel,
Edwin Simpson, Noam Slonim, Niranjan Balasubramanian, Leon Derczynski, and Roy Schwartz. Efficient
methods for natural language processing: A survey, 2022. URL https://arxiv.org/abs/2209.00099.

Arash Vahdat, Evgeny Andriyash, and William Macready. Dvae#: Discrete variational autoencoders with
relaxed boltzmann priors. Advances in Neural Information Processing Systems, 31, 2018a.

Arash Vahdat, William Macready, Zhengbing Bian, Amir Khoshaman, and Evgeny Andriyash. Dvae++: Dis-
crete variational autoencoders with overlapping transformations. In International conference on machine

learning, pp. 5035-5044. PMLR, 2018b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017. URL http://arxiv.org/
abs/1706.03762.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head self-
attention: Specialized heads do the heavy lifting, the rest can be pruned. CoRR, abs/1905.09418, 2019.
URL http://arxiv.org/abs/1905.09418.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. GLUE: A
multi-task benchmark and analysis platform for natural language understanding. CoRR, abs/1804.07461,
2018. URL http://arxiv.org/abs/1804.07461.

Hanrui Wang, Zhekai Zhang, and Song Han. Spatten: Efficient sparse attention architecture with cascade
token and head pruning, 2020a. URL https://arxiv.org/abs/2012.09852.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with linear
complexity. arXiv preprint arXiv:2006.04768, 2020b.

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. Structured pruning of large language models. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 6151-6162,
Online, November 2020c. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.
496. URL https://aclanthology.org/2020.emnlp-main.496.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al. FEmergent abilities of large language models.
Transactions on Machine Learning Research, 2022.

17

https://arxiv.org/abs/2209.00099
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1905.09418
http://arxiv.org/abs/1804.07461
https://arxiv.org/abs/2012.09852
https://aclanthology.org/2020.emnlp-main.496

Published in Transactions on Machine Learning Research (09/2024)

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sentence
understanding through inference. In Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers),
pp. 1112-1122. Association for Computational Linguistics, 2018. URL http://aclweb.org/anthology/
N18-1101.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 conference on empirical methods in natural language processing:
system demonstrations, pp. 38-45, 2020.

Mengzhou Xia, Zexuan Zhong, and Dangi Chen. Structured pruning learns compact and accurate models,
2022. URL https://arxiv.org/abs/2204.00408.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language model
pre-training via structured pruning. arXiv preprint arXiv:2310.06694, 2023.

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates training: A
theoretical justification for adaptivity. arXiv preprint arXiv:1905.11881, 2019.

Shaokun Zhang, Xiawu Zheng, Guilin Li, Chenyi Yang, Yuchao Li, Yan Wang, Fei Chao, Mengdi Wang,
Shen Li, and Rongrong Ji. You only compress once: Towards effective and elastic bert compression via
exploit—explore stochastic nature gradient. Neurocomputing, 599:128140, 2024.

Xiawu Zheng, Chenyi Yang, Shaokun Zhang, Yan Wang, Baochang Zhang, Yongjian Wu, Yunsheng Wu, Ling
Shao, and Rongrong Ji. Ddpnas: Efficient neural architecture search via dynamic distribution pruning.
International Journal of Computer Vision, 131(5):1234-1249, 2023.

A Proofs and Analysis

A.1 Derivation of the Upper Bound in Eq. [
Here we present how to derive the upper bound in Eq.
- log IEp(z\D) [P(D|9 © Z)]

= —log /p(z|D)P(D|t9®z)

~—

= —log /Zp(z|D)P(D|<9 © Z)QZZ

p(z|D)
Q<I>(Z)
p(z|D

—Egy(2) [1og <P(D|0®z) 10 (2))]
= —Egy(s)[log P(D|0 ©2)] + KL (g0 (2) |[p (2|D))

[~
—

(10)

—~

= —log]qu)(z) |:P(D|9 © Z)

~

IN

A.2 Hard Concrete Distribution (Louizos et al., 2018

Hard Concrete distribution is derived from the Concrete distribution (Maddison et al.,|2016]). The cumulative
distribution function of a binary Conrete random variable z{ € (0, 1) is as follows:

Qc(z7; B, ¢i) = sigmoid ((log zi — log(1 — 2)) B — &) (11)
where sigmoid(z) = H% is the sigmoid function and 0 < 8 < 1 is a constant. We can obtain the Hard
Concrete distribution by first stretching the support of the Concrete distribution from (0, 1) to (v, (), where
v < 0, ¢ > 1, and then collapsing the probability mass on (v,0] (resp. [1,()) to the endpoint O (resp. 1).

18

http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101
https://arxiv.org/abs/2204.00408

Published in Transactions on Machine Learning Research (09/2024)

Equivalently, for each Concrete random variable z§ € (0, 1), we can obtain a Hard Concrete random variable

zi = min(1, max(0,z{(¢ — 7) + 7). For each z;, the closing probability ¢(z; = 0;¢;) = Pr[zf < =] =
Qu(£2; 8, 6), and the opening probability q(z = 1; 6;) = Pr[f > 1=2] = 1 — Q.(12; 8, ;). By plugging

in Eq. we have the gate closing and opening probabilities.

A.3 Rpuse Local Optimum Analysis

We show that the gradient descent direction of Rpgse always leads to a higher opening probability for gate

2z if ¢y > log(_l_— W), where g(a) = 2 —e™?, a = Blog(—). We assume that the Hard Concrete
distribution is equally stretched in both directions, which gives v 4+ (= 1 and has been widely adopted in

previous work (Voita et al., |2019; Xia et al., 2022).

Without loss of generality, we focus on the high sparsity target situation (s|f] > Zlill qo(¢;)) and ignore the
sparsity constraint s in following computation because it does not change the equation. We first compute
the derivative of Rpase(P) with respect to ¢y,

67?fbase ((I))

5o = (2sig(~0u + a)sig(or — a)

— sig(—¢i — a)sig(¢; + a))

(12)

where A > 0, a = Blog (ﬂ) and 8 >0,(>1,v+(=1. In order to compute the domain for mba“%;‘?((b) <0,
we can equally solve the %ollowing inequalities,

ORbase(P) <0
0¢; -
> 2sig(—¢; + a)sig(d; —a) <
sig(—¢i — a)sig(¢; + a)
28i9(—¢i +a) _ sig(di +a)
sig(—¢i —a) ~ sig(d; — a)

(13)

where the last step is due to the non-negativity of the sigmoid function. By denoting f,(¢;) = %, we

can simplify the inequality to be 2f,(—¢;) < fo(¢;). The derivative of f,(¢;) with respect to ¢; is as follows,

0fa(¢i) _sig(¢i +a)
0o; sig(¢; — a)

(sig(—¢i — a) — sig(—¢i + a)) (14)

Because a = flog () = Blog (%) < 0, we have —¢; —a > —@; +a and hence sig(—¢; —a) > sig(—p; +a)
due to the fact that the sigmoid function is monotonically increasing. As a result, the derivative of f,(¢;)

with respect to ¢; is always positive (%jfﬂ > 0) and therefore f,(¢;) is monotonically increasing while

fa(—@;) monotonically decreases as a function of ¢;.

Assuming there is ¢} having the equality 2f,(—¢;) = fu(#}). It is easy to show that for ¢; > ¢}, the
inequality 2f,(—¢;) < fu(¢;) holds true due to the monotonicity of f,(¢;) and f,(—¢;), and hence we have
M%‘Iféf@) < 0 (the gradient descent direction). Notably, it indicates that, for ¢; > ¢%, any gradient-descent
optimizer (e.g., Adam (Kingma & Bal,[2015))) will continue increasing the value of ¢; which opens more gates

and leads to undesired low sparsity, as dicussed in Section We can derive the value of ¢} by solving

19

Published in Transactions on Machine Learning Research (09/2024)

equation 2f,(—¢}) = fu(¢}) as follows,

2fa(—¢,/i) = fa(d);)
J5i0(-0) +a) _ siglo! +a)
sig(—=¢; —a) sig(¢; —a)
1+ 6¢>2+a _ 14+ e*¢;+a (15)
14e?i—0 14e %0
& (2% — e Ve = 2+ (e — 26~)e %

& (2e — e_“)e%’é = 2% 4% — 27

&2

which is a quadratic equation with respect to e? and gives us o = log(%iga)g(ﬂl)) where g(a) =
2e* — e~

A.4 Proof of Lemma(ll

We include the proof of Lemma [T as follows.

Proof: We prove this lemma by showing that, in every possible case, the gradient descent direction of the
objective Rpqss always leads to a subregion in the search space where the expected sparsity is no more than

s and expected density is no more than 1 — s. Recall that we define expected density as \T}| Z‘Z—G:ll q1(:),

and the expected sparsity as ﬁ Zliill qo(¢;). For the simplicity of proof language, we use F; to denote the
expected density and E; to denote the expected sparsity. Intuitively, as the expected density increases (resp.
decreases), the expected sparsity will monotonically decrease (resp. increase). One important observation is
that, the sum of expected density and sparsity is always less than 1, due to the fact that ¢1(éi) + go(¢s) =
1 — gnp(¢:) and gnp(é5) > 0.

Given a sparsity target s, depending on the values of expected density and sparsity, there are three possible
situations: (i) the easiest case is that the model is already neither over-sparse nor over-dense (i.e.,
E; <1—sand E; < s). In this case, we can rewrite Rpqss(P,s) = 2 ZZ 1 @nb(®:). Minimizing Rpgss (P, s)
amounts to minimizing g,,(¢;), which polarizes the gates to achieve the required almost-sure sparsity, until
either By = 1 —s,E, < sor B < 1—s,FEs; = s both of which satisfy Lemma (ii) high expected
density and low expected sparsity (i.e., E; > 1— s and Es; < s), in which case we can rewrite Eq. [7] to
obtain Ryes(@.8) = 17, 4,0(00) +516] - 1%, o(6) — (1-)]0 + Xy 1 (00). Becanse g (60) +0(6:) =
1—qo(¢;), we can further simplify the equation to be Rpqss(P,s) =2 Zi:l (5 — qo(gzbi)). Clearly, minimizing
Rpass(P, s) amounts to increasing ¢o(¢;) that leads to lower expected density and higher expected sparsity
until By = 1 — s, E5 < s, which satisfies Lemma (iii) low expected density and high expected
sparsity (ie., By < 1— s and E; > s). Similarly, we can rewrite Rpuss(®,s) = QZWI (1—s—aq(e:)).
Minimizing R pess(®, s) amounts to increasing g1 (¢;) that brings down expected sparsity as well as increases
expected density until Fy < 1 — s, Es; = s, which satisfies Lemma [I} It is impossible to have both high
expected density and expected sparsity due to £ + E; < 1. We have shown that Lemma [1| holds in
all possible cases. O

B Hyper-parameter Settings

We adopt an exponential escalation strategy to increase the value of regularization coefficient .
A = /\base . Azﬁtrainiitr/#nistep (16)

where A\pqse and Ay are hyper-parameters. We choose #n_ step as 1,000 in all experiments. We use the same
inverse square root learning rate schedules for model training as in |Li et al.| (2021]). Values of corresponding
hyper-parameters are summarized in Table [6]

As for PASSCONC,). is defined as the minimal ratio between sparsifier gradients and concentrator gra-
dients of ¢; € @ for all heads to ensure that the concentrator is not dominated by the sparsifier while the

20

Published in Transactions on Machine Learning Research (09/2024)

Table 6: Hyper-parameters

ED Transformer BERT-base

Abase 1 le-5
Ao 2 1000
learning rate for ® 0.2 0.5

Table 7: Subnetwork performance at different sparsity levels, on MNLI and QQP.

Accuracy(MNLI) (%) Accuracy(QQP) (%)
K | PASS PASSCONC DSP LAG Voita | PASS PASSCONC DSP LAG Voita
16 | 79.38 78.38 80.69 78.19 80.14 | 89.18 88.50 89.25 86.87 85.53
32 | 80.73 79.63 82.64 81.33 80.30 | 89.94 89.36 90.09 88.99 89.99
48 | 82.59 82.51 82.92 8280 82.03 | 90.57 90.40 90.16 89.67 90.20
64 | 83.23 83.06 83.55 83.74 75.70 | 90.80 90.74 90.28 90.02 87.21

concentration effect is modest to avoid damaging model training quality.

- . 8Rpa55 aRconc
Ae = A mln{' D6 /’ 96:

¢ is adaptively updated in the middle of training, and set to 0 in both the early training phase and the last
few training iterations to help improve model performance and achieve sparsity convergence. Specifically,
Ac is set to 0 during the first 20,000 iterations and the last 7,000 iterations when training ED Transformer
models. For BERT-base models, A, is set to 0 except for iterations between 2,000 and 5, 000.

¢i € CD} 17)

As to the clipping range, there is a trade-off between choosing a larger range (e.g., [-10, 10]) and a smaller
one (e.g., [-1, 1]). In general, a larger range allows us to better achieve subnetworks of desired almost-sure
sparsities but the gradients will vanish to excessively small values (see Figure and make the gradient-
descent optimization extremely slow. On the other hand, a small range allows efficient gradient-descent
optimization but the corresponding gates may be neither almost surely closed nor opened (see Figure [3b)
and therefore fail the almost-sure sparsity guarantees. For example, for a large range [-10, 10], the smallest
gradient approaches 2e-5 (see Figure which leads to slow optimization rates, while for a small range
[-1, 1], the maximal gate open/close probability is only 55% (see Figure that is neither almost surely
opened nor closed. We use a held-out set to empirically select [-5, 5] as the clipping ranges because it gives
a maximal gate open/close probability that is roughly 99% while the smallest gradient is above 0.003, which
is practically sufficient for efficient optimization according to our experiments.

C More Performance Results

In this section, we provide detailed performance and speedup results on each of the 4 GLUE benchmark
tasks: MNLI, QQP, QNLI, and SST-2 (see Section . Performance results are summarized in Tables
and [B] which resemble our analysis in Section [f.2] In general, PASS and PASSCONC are able to match
or outperform all 3 baselines across a majority of experiment settings. Speedups achieved by different
approaches are presented in Tables [0] and Notably, PASSCONC outperforms all baselines in almost all
cases which demonstrates its effectiveness in delivering efficiency improvements. Lastly, we report the Pareto
front between model performance and speedups for subnetworks identified by different methods (see Figure,
where PASSCONC dominates all other methods in most cases by achieving better performance-efficiency
trade-offs, similar to our observation in Section [4.3

21

Published in Transactions on Machine Learning Research (09/2024)

MNLI QQP
* 91
84 - —— LAG . —e— LAG
3 % —e— \bita 3 901 4 o —8— \bita
[=)] [=)]
— 82 DsP < g9/ DsP
> PASS > PASS
T g0 - —8— PASSCONC T 88 - —8— PASSCONC
| . 80 [
3 ¢ Unpruned 3 Y Unpruned
[- U a7
QU 78 1 U
< <
76 861
T T T T T T T T
100 150 200 250 100 120 140 160
Speedup (%) Speedup (%)
QNLI SST-2
92
*x —e— LAG 02 {7
o 90 _ —8— Vboita "y
M : DSP S 90
> 881 PASS > e :-2?
@ —e— PASSCONC | @ 881 ¢ [:-slpa
3 86 ¢ Unpruned 3 PSS
] e o 867
<< g4 I —e— PASSCONC
84 Y Unpruned
T T T T T T T T T T T T
100 110 120 130 140 100 110 120 130 140 150 160

Speedup (%)

Speedup (%)

Figure 8: Attention speedups v.s. subnetwork performance on MNLI, QQP, QNLI, and SST-2. The unpruned

model performance is included for reference purpose.

Table 8: Subnetwork performance at different sparsity levels, on QNLI and SST-2.

Accuracy(QNLI) (%) Accuracy(SST-2) (%)
K | PASS PASSCONC DSP LAG Voita | PASS PASSCONC DSP LAG Voita
16 | 86.03 84.79 84.59 83.49 84.90 | 90.48 89.33 83.37 86.81 88.76
32 | 88.43 85.83 88.38 87.50 87.59 | 91.28 91.06 92.32 90.14 90.71
48 | 89.13 88.80 89.58 89.13 88.91 | 92.32 91.51 91.40 90.48 90.94
64 | 89.57 89.51 89.68 89.69 82.61 | 91.28 91.17 91.74 90.14 91.28
Table 9: Attention speedups at different sparsity levels, on MNLI and QQP.
Speedup(MNLI) (%) Speedup(QQP) (%)
K | PASS PASSCONC DSP LAG Voita | PASS PASSCONC DSP LAG Voita
16 | 124.2 262.7 1125 113.2 132.9 | 108.2 171.2 1127 133.1 1254
32 | 117.7 141.3 106.7 103.5 102.8 | 103.4 138.8 112.3 107.8 107.8
48 | 103.2 107.4 102.5 102.5 106.7 | 103.4 118.9 102.7 102.4 103.0
64 | 103.5 107.8 102.8 102.5 104.1 | 103.4 107.5 102.7 103.4 102.1

22

Published in Transactions on Machine Learning Research (09/2024)

Table 10: Attention speedups at different sparsity levels, on QNLI and SST-2.

Speedup(QNLI) (%)

Speedup(SST-2) (%)

K | PASS PASSCONC DSP LAG Voita | PASS PASSCONC DSP LAG Voita
16 | 113.8 143.7 118.3 127.5 138.8 | 111.5 163.3 148.8 1079 107.2
32 | 105.1 125.6 103.1 108.2 107.9 | 102.2 136.7 106.9 102.2 102.8
48 | 103.8 103.5 103.1 103.5 102.8 | 101.9 107.2 102.5 103.1 102.5
64 | 103.8 107.5 103.1 103.1 103.1 | 102.2 102.8 102.8 102.8 102.8

23

	Introduction
	Preliminaries
	Methodology
	Almost-sure Sparsity
	Learning Objective with Almost-sure Sparsity
	Concentrator
	Clipping and Reopening

	Evaluation
	Evaluation Setup
	Model, Data, and Metrics
	Baselines
	Protocols

	PASS and PASSCONC Improve Model Performance
	PASSCONC Improves Model Efficiency
	Ablation Study
	Distribution of Heads
	blackOverhead Analysis

	Related Work
	Discussion and Conclusion
	Proofs and Analysis
	Derivation of the Upper Bound in Eq. 4
	Hard Concrete Distribution louizos2018learning
	Rbase Local Optimum Analysis
	Proof of Lemma 1

	Hyper-parameter Settings
	More Performance Results

