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Abstract

Fine-tuning continuous prompts for target
tasks has recently emerged as a compact alter-
native to full model fine-tuning. Motivated by
these promising results, we investigate the fea-
sibility of extracting a discrete (textual) inter-
pretation of continuous prompts that is faithful
to the problem they solve. In practice, we ob-
serve a “wayward” behavior between the task
solved by continuous prompts and the nearest
neighbor discrete projections of these prompts:
One can find continuous prompts that solve a
task while being projected to an arbitrary text
(e.g., definition of a different or even a contra-
dictory task) and simultaneously being within
a very small (2%) margin of the best contin-
uous prompt of the same size for the task.
We provide intuitions behind this odd and sur-
prising behavior, as well as extensive empir-
ical analyses quantifying the effect of design
choices. For instance, larger models exhibit
higher waywardness, i.e, we can find prompts
that more closely map to any arbitrary text
with a smaller drop of accuracy. These find-
ings have important implications relating to
the difficulty of faithfully interpreting contin-
uous prompts and their generalization across
models and tasks, providing guidance for fu-
ture progress in prompting language models.

1 Introduction

Recent work has shown the surprising power of
continuous prompts to language models (LMs) for
controlled generation and for solving a wide range
of tasks (Li and Liang, 2021; Lester et al., 2021;
Min et al., 2022). Despite these successes, the
resulting continuous prompts are not easy to inter-
pret (Shin et al., 2020). Is it possible to come up
with meaningful discrete (textual) interpretations
of continuous prompts, especially ones that provide
a faithful explanation of the prompt’s behavior?

Towards addressing this question, we propose
and investigate the Prompt Waywardness hypoth-
esis (§3.2), a surprising disconnect between the
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Figure 1: We show that one can find accurate contin-
uous prompts (that do well on a given task, e.g., sen-
timent classification here) such that they can be pro-
jected to any arbitrary text, such as the definition of
a different task (e.g., generating a question) or even an
irrelevant statement (e.g., a piece of code) — suggest-
ing a disconnect between the outcome of continuous
prompts and their discrete interpretations.

intended behavior of continuous prompts and their
nearest-neighbor discrete (language) representa-
tions.1 In particular, we show that one can find con-
tinuous prompts that perform a desired task while,
at the same time, project to any given target text.
This indicates that there is little correspondence
between continuous prompts and their discrete in-
terpretation. For instance, a continuous prompt that
effectively solves the sentiment classification task
in Fig.1, when projected onto discrete space, might
appear as the definition of a different task (“flip
the sentiment”). Intuitively, continuous prompt
optimization is a highly non-convex problem with
numerous local minima. More surprisingly, many
of these prompts (e.g., those near embedded text)
are very effective at solving a desired task.

We conduct extensive analyses showing Way-
wardness on five classification datasets (§4). Em-
pirically, we find the existence of wayward prompts
— prompts that solve each of these tasks while pro-

1Nearest-neighbor projection via dot product has been
previously used to study properties of continuous word em-
beddings (Mikolov et al., 2013; Hashimoto et al., 2016) and is
commonly performed in the final layer of modern generative
LMs (Radford et al., 2019; Raffel et al., 2020).



jecting to arbitrary natural language text. To study
a variety of projected text, we experiment with 60+
sentences, either discrete prompts from other tasks
(from Mishra et al. 2022b) or random sentences
from a large text corpus. We observe that it is
possible to find prompts that project to a given dis-
crete prompt (token overlap 94% F1) while scoring
within 2% accuracy of the best continuous prompts-
based solution for the task. Further analysis shows
that the effect of Waywardness gets worse for larger
models and longer prompts. We explain this sur-
prising behavior by relating it to several structural
properties of large language models (§5).

We discuss several social and research implica-
tions of prompt waywardness, to help guide future
research on prompt based models (§6). First and
foremost, despite many promising attributes of con-
tinuous prompts, interpreting them is non-trivial
and will require further research. In fact, careless
interpretation of continuous prompts can result in
vulnerabilities against malicious attacks concealed
under the guise of benign discrete representation.
Further, the loose correspondence between contin-
uous and discrete prompts poses a challenge for fu-
ture research in differentiable interpretable-prompt
optimization – optimization in search of human
readable discrete prompts through the continuous
space. Our work shows that continuous and dis-
crete prompts, despite their seeming similarity, are
quite different and the results from one may not
always transfer to the other. We hope these findings
will motivate further innovations in the prompting
literature for NLP models.

2 Related Work

Continuous prompts. There is a line of work fo-
cused on tuning continuous prompts (Li and Liang,
2021; Lester et al., 2021; Zhong et al., 2021; Qin
and Eisner, 2021; Zhou et al., 2021; Zhong et al.,
2021). These works present different approaches
to discovering a continuous prompt (which is an
array of real numbers) for addressing an end task,
though the interpretability of the resulting prompts
remains an open question. This paper investigates
the feasibility of interpreting a learned continuous
prompt and its connection to discrete prompts.

Discrete prompts. The release of GPT-3 (Brown
et al., 2020) initiated a body of work on the emer-
gent ability of LMs to follow discrete natural lan-
guage prompts. Consequently, several follow-
up studies have used manually-designed discrete

prompts for probing LMs (Petroni et al., 2019;
Jiang et al., 2020), improving LMs’ few-shot abil-
ity (Schick and Schütze, 2021; Gao et al., 2021;
Le Scao and Rush, 2021), and their zero-shot
ability as well as transferability (Mishra et al.,
2022a; Reynolds and McDonell, 2021). Most im-
portantly, discrete prompts have the advantages
of being human-readable and thus easily inter-
pretable though we do not have efficient and al-
gorithmic ways of reconstructing them. For ex-
ample, Shin et al. (2020)’s algorithm discovers
discrete prompts, yet the results are not human
readable. Prior work also finds that model per-
formance is highly sensitive to small changes in
wordings (Mishra et al., 2022a) and that optimiza-
tion over the discrete prompt space is non-trivial
and often highly unstable. Our findings here about
the disconnect between continuous prompts and
their discrete interpretation provides another per-
spective on the difficulty of discovering discrete
prompts via continuous optimization algorithms
that (directly or indirectly) leverage the continuous
space (more discussion in §6).

3 Prompt Waywardness

3.1 Preliminaries: Setup and Terminology

We begin with some notation and the setup of our
study, starting with the space of discrete and contin-
uous prompts (Fig.2). Let pd ∈ {0, 1}L×V denote
a discrete prompt represented as an L-length se-
quence of one-hot vectors over a lexicon of size V
(corners of a hyper-cube). Similarly, let pc ∈ RL×d

denote a continuous prompt, represented as a L-
length sequence of d-dimensional real vectors.

Projection operators. We define operators that
project these two spaces to one another. Define the
c-projection as one that maps discrete inputs to a
continuous space by multiplying with a fixed (often
pre-trained) embedding matrix2 E ∈ RV×d:

c-proj(pd) = pdE ∈ RL×d. (1)

The d-projection maps the continuous inputs to
nearest neighbor discrete elements, where for each
position l (1 ≤ l ≤ L), one of the possible (and per-
haps most straightforward) methods for interpret-
ing a continuous prompt is defined as a projection

2In our experiments we use the embedding matrix of the
GPT2 family (Radford et al., 2019) which is used for both
mapping input text to their embeddings as well as generating
text in the output layer.
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Figure 2: The general problem setup: Similar to Lester
et al. (2021)’s setup, each prompt (usually a continuous
one) is appended to the given input and fed to a frozen
language model.

onto nearest neighbor representations (Mikolov
et al., 2013; Hashimoto et al., 2016):

d-proj(pc) = [δ1 · · · δl · · · δL] ∈ {0, 1}L×V , (2)

where δl is a one-hot vector corresponding to the
word with the closest (highest dot product) embed-
ding to the l-th position of continuous prompt pc.

These projections are used in the first and last
layer of virtually all modern LMs, such as GPT2.

Solving tasks with continuous prompts. Con-
sider any machine learning model M (typically a
pre-trained model) that takes textual input x and
produces output y. Normally, the parameters of
M are learned so as to optimize behavior on a
task with a dataset D = {(x, y)} of input/output
pairs. In prompt tuning (Lester et al., 2021), one
freezes the parameters of M and instead optimizes
for a prompt p that, when fed in conjunction with
x, makes M produce the desired output y. Thus,
p represents the only learnable parameters in this
method. When p is a discrete prompt with k to-
kens, it can be simply concatenated with x, denoted
p+ x. In our study, p will be a continuous prompt
(of length equal to the embedding of k tokens). We
will concatenate it with the embedding of the input
x. For simplicity and with some abuse of nota-
tion, we use p+ x to denote concatenation in this
continuous case as well.

One can quantify the amount of loss incurred
when using a continuous prompt p as follows:

`(p;D) = Ex,y∼D [loss(M(p+ x), y)] , (3)

Minimizing this loss function (empirical risk mini-
mization) over p recovers a minimum risk continu-

ous prompt for this dataset:

p∗c = arg min
pc∈RL×d

`(pc;Dtrain). (4)

Given this prompt, its generalization to the test data
can be measured in terms of the loss incurred on
the test set: `(p∗c ;Dtest).

3.2 The Waywardness Hypothesis

How should one interpret the resultant continu-
ous prompt p̃c? Empirically, one can easily ver-
ify that such continuous prompts are not unique
(e.g., random initializations lead to different out-
comes). Additionally, the resultant prompts get
projected to seemingly irrelevant discrete elements.
Taking this to an extreme, we hypothesize that next
to the continuous projection c-proj(pd) of any dis-
crete prompt pd, there exists a variety of continuous
prompts pc that trigger responses from model M
that are orthogonal to the intentions described by
the discrete prompt pd. We formalize this idea
as the following hypothesis, where L ∈ N is the
length of the discrete target prompt, M is a prompt-
based model, and D is a dataset for a desired task:

Hypothesis 1 (Prompt Waywardness) For all
L,M,D, there is a small ∆ such that for any
discrete target prompt pd with length L, there
exists a continuous prompt p̃c ∈ RL×d such that:

1.
∣∣`(p̃c;Dtest)− `(p∗c ;Dtest)

∣∣ < ∆, yet
2. d-proj(p̃c) = pd.

In other words, p̃c is nearly as effective at making
M solve the task as the optimal continuous prompt
(Eq.4), and yet it projects to pd. In this statement,
∆ (prompt performance gap relative to the optimal
prompt p∗c) is a function of the prompt length L, the
model M (e.g., its embedding size and depth when
M is transformer based), and inherent properties
of the target dataset D. The analysis in §4.3 will
provide an empirical estimate of this gap ∆̂ as a
function of various parameters like model size and
prompt length.

It is worth emphasizing that the hypothesis is
stated for any task and any set of discrete prompts,
even if they are irrelevant or contradictory.3

3While our focus is on the use of continuous prompts for
solving datasets (one prompt shared among many instances),
one can imagine applications of the same conjecture to special
use cases such as controlled generation (Dathathri et al., 2019)
with one prompt per instance.
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3.3 Finding Wayward Prompts
While the above hypothesis promises the existence
of p̃c, it does not say how to discover them. We
now discuss a practical method for their discovery.

We learn a continuous prompt pc using a mod-
ification of the prompt tuning objective of Lester
et al. (2021). Our modification jointly minimizes
the standard downstream task cross-entropy loss
`(.) for the task (Eq.3) and a distance measure
dist(.) between pc and the discrete target prompt
pd ∈ {0, 1}L×V :

`′(pc;D, γ) =`(pc;D) + γ dist(pc, pd) (5)

p̃c = arg min
pc∈RL×d

`′(pc;D, γ), (6)

where pc is the only learnable parameter, and γ is
a hyperparameter.

When γ = 0, the modified objective is reduced
to the standard objective (Eq.4), `′(.) = `(.). We
refer to this case and its resulting prompt p∗c as
the ‘unconstrained’ setting. A large value of γ
will make pc even closer (possibly identical) to
c-proj(pd) but lead to poor accuracy on a target
dataset. Most of the experiments below are con-
ducted via a range of γ values to better understand
the trade off between the two terms in the objective
function. In practice, we find γ = 0.01 to give a
reasonable trade-off regardless of the target dataset
and the choice of pd.

There are at least two natural ways to define the
distance measure dist(pc, pd) between a continu-
ous prompt pc and a discrete target prompt pd, by
converting one so that both are in the same space:

c-dist(pc, pd) =
‖pc − c-proj(pd)‖22

L
(7)

d-dist(pc, pd) = F1
(
d-proj(pc), pd

)
(8)

The first of these places both pc and pd in the contin-
uous space and computes the squared-L2 norm, nor-
malized by the prompt length. This is used in our
training loss (Eq.5) implementation. The second
places both in discrete space (text) and computes
the standard word-level token overlap F1 score.4

This is used during our evaluation.

4 Empirical Support of Waywardness

We empirically investigate the Prompt Wayward-
ness hypothesis (§3.2) using our modification

4Ignoring punctuation marks and articles, and applying
lemmatization.

(§3.3) of the prompt tuning method from Lester
et al. (2021). We show that given an arbitrary
and irrelevant discrete prompt pd, it is possible
to learn a continuous prompt that is mapped to pd
while retaining its accuracy on a given dataset.5

4.1 Setup

Target tasks. Following the setup of Min et al.
(2022), we select a diverse set of 5 classifi-
cation datasets: SST-2 (Socher et al., 2013),
SST-5 (Socher et al., 2013), AGNews (Zhang
et al., 2015), Subj (Pang and Lee, 2004) and
TREC (Voorhees and Tice, 2000). Statistics and
the unconstrained accuracy of each dataset are pro-
vided in Table 1.

Dataset Task |C| Acc

SST-2 Sentiment analysis (movie) 2 92.4
SST-5 Sentiment analysis (movie) 5 50.3
AGNews News classification (topic) 4 88.1
Subj Subjectivity classification 2 90.5
TREC Answer type classification 6 88.0

Table 1: The collection of downstream tasks used in the
experiments (§4.1). |C| indicates the output size (num-
ber of classes); Acc indicates the unconstrained accu-
racy of a prompt tuning method (Lester et al., 2021)
using GPT2 Large, as a reference point.

Discrete Target Projections. We compile two
sets of discrete target prompts: (1) 32 tar-
get prompts for solving tasks from Natural-
Instructions6 dataset (Mishra et al., 2022b) that
are distinct from and intentionally orthogonal to
the end tasks considered here. These were chosen
by excluding discrete target prompts that have high
lexical overlap with other discrete prompts; this
is because we found lexically similar prompts are
often semantically similar even when written for
different subtasks. (2) 30 random sentences from
PILE,7 a large-scale, diverse text corpus used to
pretrain GPT-J, the largest public causal language
model (Wang and Komatsuzaki, 2021). The sam-
pled sentences were drawn from a Poisson distribu-
tion with λ = 14, which makes the average length
of the sentence to be consistent to those in Natural-
Instructions. These sentences are selected to have
little or no token overlap with the true definition of
the target tasks. See Table 3 for a few examples.

5Scripts needed to reproduce our results: https://
github.com/Alrope123/prompt-waywardness

6https://instructions.apps.allenai.org
7https://pile.eleuther.ai
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Data pd Task Accuracy (%) Prompt

Source ∆̂ (Acc(p∗c) → Acc(p̃c)) F1 (%)

SST-2
NI 0.7 (92.4 → 91.8) 99.0
PILE 0.5 (92.5 → 92.0) 97.1
Avg 0.6 (92.4 → 91.9) 98.1

SST-5
NI 3.3 (50.2 → 48.5) 95.9
PILE 0.7 (50.5 → 50.2) 92.4
Avg 2.0 (50.3 → 49.3) 94.2

AGNews
NI 1.6 (88.0 → 86.6) 97.4
PILE -0.1 (88.1 → 88.2) 97.5
Avg 0.8 (88.1 → 87.3) 97.4

Subj
NI 2.0 (91.3 → 89.5) 97.3
PILE 0.9 (89.6 → 88.8) 94.4
Avg 1.5 (90.5 → 89.2) 95.9

TREC
NI 3.3 (87.5 → 84.7) 86.5
PILE 1.2 (88.5 → 87.5) 85.6
Avg 2.3 (88.0 → 86.0) 86.1

Table 2: Main Results: Accuracy of solving five clas-
sification datasets, in an unconstrained setting (p∗c ) vs.
constrained by the projection to various irrelevant
pieces of text (p̃c). Optimization is done using γ = 0.01
in the objective function (Eq.5). ∆̂ indicates the rela-
tive accuracy drop (in %) from unconstrained accuracy.
Each reported score (Accuracy and Prompt F1) are
the average over 62 discrete target prompts and 3 ran-
dom seeds. Overall, it is possible to achieve ≥ 94%
prompt F1 with under 2% drop in accuracy.

Evaluation metrics. For all experiments, we re-
port two metrics: (1) the task accuracy8 as well
as (2) prompt F1, the word-level token overlap F1
score computed as in Eq.8, since it easy to interpret
and is commonly used for evaluating the textual
output of models (Rajpurkar et al., 2016).

Models. For evaluation, we use GPT2 (Radford
et al., 2019) an auto-regressive LM which has ex-
tensively been used in many NLP applications. Un-
less otherwise specified, we use a ‘large’ variant
consisting of 774M parameters.

Implementation details. We use a batch size of
8, learning rate 0.01, and 2000 training steps. When
experimenting with a discrete target prompt pd, we
initialize the search for continuous prompts (both
p̃c and p∗c) using c-proj(pd).9 For all experiments,
report accuracy averaged over three random seeds.

8We did not consider alternatives like Macro-F1 because
all datasets are roughly balanced across different classes.

9While this is different from prior work (Lester et al., 2021;
Min et al., 2022) that uses a random subset of the top-5000
vocabs, we find no meaningful differences in an unconstrained
accuracy between two initialization methods.

4.2 Main Results
For each of the 5 tasks T and for each of the 62
discrete target prompts pd, we use the objective
in Eq.5 to find a prompt p̃c such that it solves T
with a high accuracy while, at the same time, hav-
ing a discrete projection that is close to pd. For
comparison, we also train unconstrained prompts
p∗c (γ = 0.0) which solve task T without any pro-
jection constraint. To ensure a fair comparison
between p̃c and p∗c , we ensure that they have the
same size L. In other words, for each p̃c (that has
the same length as pd), we train another p∗c with the
same length. We denote the relative accuracy drop
from p∗c to p̃c as ∆̂.

Table 2 summarizes the results. Across all
datasets, we find that it is possible to learn a contin-
uous prompt pc whose discrete projection is very
close to pd and mostly retains the task accuracy.
There is a trade-off between the task accuracy and
prompt F1, which can be controlled by the choice
of γ (more extensive ablations in the forthcoming
paragraphs (§4.3)). Overall, with γ = 0.01, it is
possible to achieve ≥ 94% prompt F1 with un-
der 2% relative drop in task accuracy. The only
outlier is the TREC dataset where we achieved a
prompt F1 score of 86% for a ∆̂ = 2.3% relative
drop in accuracy. This might be due to the diffi-
culty of learning effective prompts on TREC (also
discussed by Min et al. (2022)).

Example prompts with varying values of prompt
F1 scores are shown in Table 3. A prompt F1 ≥
94% generally indicates one word mismatch with
almost no semantically meaningful difference.

4.3 Further Analysis
Effect of Gamma. Fig. 3 shows the trade-off be-
tween task accuracy and the prompt F1 when vary-
ing γ from 0 to 0.03. As γ increases, the task
accuracy goes down while the prompt F1 increases.
The drop in task accuracy is relatively minor—it
is possible to learn a continuous prompt for which
prompt F1 is near 1.00 and the accuracy drop rela-
tive to the unconstrained accuracy is less than 1%.

Effect of Prompt Length (L). We randomly
sample sentences from The PILE with a con-
straint that its length must be L (chosen from
{4, 7, 14, 28, 56}). The left and the middle parts of
Fig. 4 illustrate the results. We find that when L is
very small (e.g., 4) it is relatively difficult to learn a
continuous prompt pc that is close to pd (F1<60%)
while retaining the task accuracy. This is likely be-
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d-proj(pc) Prompt F1 Acc(p̃c)

Task: AGNews pd: Write down the conclusion you can reach by combining the given Fact 1 and Fact 2.

Write down the conclusion you can reach by combining the given Fact 1 and Fact 2. 100.0 89.2
Write down the conclusion you can reach by combining the given Fact 1. Fact 2. 96.3 88.1
Write down the conclusion you can reach by combining the given Fact 1 Category Fact 2. 92.9 89.0
Write Messi in conclusion you can reach by combining the given Fact 1 and Fact 2. 89.7 88.8

Task: SST-5 pd: “If they have other interests and aims in life it does not necessarily follow that they are passive sheep.”

“If they have other interests and aims in life it does not necessarily follow that they are passive sheep.” 100.0 51.2
“If they have other interests and aims in life it does not necessarily follow that they are terrible sheep.” 94.7 53.6
“If they have other interests and aims in life it does not necessarily follow that they are terrible GoPro.” 89.5 52.3

Task: SST-5 pd: int clamp(int val, int min_val, int max_val) { return std::max(min_val, std::min(max_val, val)); }

int clamp(int val, int min_val, int max_val) { return std::max(min_val, std::min(max_val, val)); } 100.0 50.5
int clamp(int val, int min_val, int max_val) { return std::max(min_val, std::min(max_val terrible val)); } 95.7 52.0
int clamp(int val, int min_val, int max_val) { return std::max(min_val, std::min(max_val terrible val)); This} 91.7 53.3

Table 3: Examples of the target prompts pd and their reconstructions via d-proj(pc) for different ranges of prompt
F1 scores. The first pd is from Natural-Instructions; the rest two are sampled from The PILE. The mismatches with
the original prompt are color-coded.
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Figure 3: The effect of γ on SST-2 and AGNews. Accuracy is the average over 32 discrete target prompts from
Natural Instructions and 3 random seeds. A dotted line indicates unconstrained accuracy p∗c (same as when γ = 0).
Numbers inside parentheses in the y-axis indicate relative drop in accuracy against unconstrained accuracy. There
is a clear trade-off between the task accuracy and the prompt F1.

cause the prompt being too short significantly hurts
the expressivity of the prompt. Nonetheless, when
L is reasonably larger, e.g., 14 (the average length
of in Natural Instructions) or longer, all cases lead
to a continuous prompt with near 1.0 prompt F1
and little accuracy drop.

Effect of Model Size. We vary the size of the
GPT2 models—small, medium, large, and XL—
with 124M, 355M, 774M, and 1.5B parameters,
respectively. Figure 5 (right) reports the result on
SST-2. We find that (1) across different sizes of the
LM, our findings in learning continuous prompts
with the prompt F1 of near 1.0 and little drop in
the accuracy generally hold, and (2) in particular,
the drop in accuracy is more negligible with larger
LMs (0.2% with XL, 0.5–0.7% with medium and
large, 1.2% with small).

Projection onto true task definitions. In all our
results so far in §4, the target projected text was

Data Task Accuracy (%) Prompt

∆̂T (Acc(p∗c) → Acc(p̃c)) F1 (%)

SST-2 1.0 (91.9→ 90.9) 98.5
SST-5 0.9 (51.4 → 50.5) 96.1
AGNews 1.4 (91.8 → 90.4) 95.7
Subj 4.1 (89.8 → 85.6) 100.0
TREC 0.5 (88.6 → 88.1) 99.3

Table 4: Accuracy of solving five classification
datasets, unconstrained setting (p∗c ) vs. constrained by
the projection to the true definition of tasks (p̃c) using
γ = 0.01 in the objective function (Eq.5). Subscript T
in ∆T denotes this being the case for true task defini-
tions. Projecting to the true definition of a task does
not help continuous prompts solve a task.

orthogonal to the tasks being solved. One might
naturally wonder whether there is any benefit in
projecting continuous prompts to the texts that truly
describe the task being solved, i.e., a “true” prompt
for the task. To this end, we manually authored 5
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of p∗c and p̃c increase as a function of prompt length,
however, the gap between them tends to decrease. The
relative accuracy drop is marginal when L is not too
small (e.g., 7 or larger).

“true” prompts for each of the tasks. We then fol-
low the exact same setup used earlier for Table 2 to
fine-tune continuous prompts p̃c for the task while
projecting onto these true task definitions. As be-
fore, we fine-tune unconstrained prompts p∗c of the
same length, without any projection requirement.

By design, p̃c can be no more effective at solving
the task than the unconstrained prompt p∗c (barring
suboptimal search issues), which is what we find
in practice. For completeness, we report detailed
results for “true” target prompts (analogous to Ta-
ble 2) in Table 4.

More interestingly, as shown in Table 5, con-
tinuous prompts that project to “true” target
prompts are no more effective at solving the
task than continuous prompts that project to the
62 irrelevant target prompts considered earlier (Ta-
ble 2). Specifically, the average performance gap
∆ (relative to unconstrained prompts of the same
length) is about the same (≈ 1.5%) for continuous
prompts that map to true task definitions compared
to prompts that map to irrelevant text. This further
bolsters the waywardness hypothesis—continuous
prompts don’t relate to the task being solved.
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Figure 5: The effect of the size of the model—small,
medium, large, and XL—on SST-2. Each point in
the experiment is computed by averaging over 30 ex-
periments each with a different discrete target prompt
from PILE and 3 random seeds. We vary γ =
{0.01, 0.005, 0.003} and choose the one for which
prompt F1 is larger than 0.98. The relative accuracy
drop (gap between the two trends) decreases as mod-
els become larger.

SST-2 SST-5 AGNews Subj TREC Avg

∆̂T 1.0 0.9 1.4 4.1 0.5 1.6
∆̂ 0.6 2.0 0.8 1.5 2.3 1.4

Table 5: Task accuracy gap comparison between un-
constrained prompts and those fine-tuned to project to
a true task definition (∆̂T ) as reported in Table 4. For
comparison, we also show the corresponding perfor-
mance gaps with irrelevant (∆̂) from Table 2. The av-
erage performance gaps are about the same (around
1.5) for true and irrelevant target prompts—further
evidence that continuous prompts don’t relate to the
task being solved.

5 Explaining Waywardness

Here we provide intuitions behind the factors that
enable Prompt Waywardness.

The mapping between continuous and discrete
spaces is not one-to-one. While a discrete tar-
get prompt is mapped to exactly one continuous
prompt (via its embedding, Eq.1; cf. Fig.2), the
reverse is not true. In fact, except for a very small
fraction of unnatural or degenerate edge cases,10

for every target discrete prompt, there are infinitely
many continuous prompts that project back to it
(via Eq.2). While simple counting-based arguments
are insufficient in continuous spaces, we formally
prove (Appendix B) that this property holds for all
nearest-neighbor projections under any metric dis-
tance, and broadly for all but a negligible (measure
zero) portion of possible projection operators.

10Such as using a non-metric distance in nearest-neighbor
mapping, or mapping all of Rd to a single discrete prompt.
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same projections but solve different tasks.

Figure 6: The projection discrete space (Eq.2) induces
a clustering (a Voronoi diagram) of the continuous
space. Each cluster has infinitely many points that get
mapped to the same discrete token.

This intuitively suggests that there is a whole
region of continuous prompts that corresponds to a
fixed discrete representation (Fig.6). The remain-
ing question is, how is this region able to have a
diverse set of prompts that can solve a variety of
tasks? This is addressed next.

Deep models give immense expressive power to
earlier layers. The deeper a network is, the more
expressivity it has with respect to its inputs (Telgar-
sky, 2016; Raghu et al., 2017). Since continuous
prompts reside just before the first layer, they enjoy
a lot of expressivity. Therefore, no matter how nar-
row the regions corresponding to individual tokens
are (Fig.6), they are extremely powerful in solving
a variety of tasks. Previously in §4.2 we provide an
empirical analysis showing evidence that the effect
of Waywardness is stronger in deeper models.

6 Implications of Prompt Waywardness

We discuss the implications of these findings on
several inter-related lines of research. Note that
all the following statements are valid within the
boundaries of the existing architectures. Moving
beyond these barriers likely requires major innova-
tions in terms of LM architectures or how continu-
ous prompts are optimized.

Faithful interpretation of continuous prompts
is difficult. Given the intuitions behind and em-
pirical support for the Waywardness hypothesis
(§5), faithful discrete interpretations of continu-
ous prompts via common discrete projections (like
nearest-neighbor projection) are unlikely to be ro-
bust based on current approaches. It is an open
question whether there is a better way of inter-
preting continuous prompts with human language,

or whether explaining and interpreting continuous
prompts via human language is inherently impossi-
ble because they lie in completely different spaces.
Future work may investigate more on this topic
in order to improve the interpretability of prompt-
based language models.

Risk of interpreting continuous prompts: con-
cealed adversarial attacks. It is not difficult to
imagine a future where proprietary model develop-
ment is driven by fine-tuned continuous prompts.
In such a world, not addressing the challenges
involved in discrete interpretation of continuous
prompts can lead to harmful (and potentially, ad-
versarial) consequences (Slack et al., 2020; Wallace
et al., 2021), as discussed below.

GPT

continuous
prompt

d- pr oj

Input Output

" Rank t he candi dat es
i gnor i ng t hei r  
r ace or  gender "

benign projection

> >

adversial behavior

Figure 7: Waywardness implies that continuous
prompts can be mapped to seemingly innocuous de-
scriptions while acting maliciously.

We consider the following scenario: a model de-
signer comes up with a set of continuous prompts
that solve a target task (e.g., ranking resumes ac-
cording to each applicant’s qualifications and mer-
its). Whether intentionally or not, such prompts
may maliciously target, for example, a minority
group. To assure their customers, the model de-
signer uses the projection of the prompt that ex-
presses a benign definition for the task, which does
not reveal the true nature of the egregious behavior.
The customers might even evaluate the prompt on
a few instances but not notice this harmful behav-
ior, e.g., when it effects a minority group not in
the evaluation set. In a way, the benign discrete
projections may provide a false sense of security.

Optimizing discrete prompts through contin-
uous prompts can be degenerate. Manually-
written discrete prompts have many nice prop-
erties (Schick and Schütze, 2021; Mishra et al.,
2022a), yet we do not have an efficient algorithmic
way of finding them. One way to operationalize this
is to formulate differentiable objective functions
via LMs like GPT (Radford et al., 2019). Consider
the following problem which is defined in the space
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of continuous embeddings pc ∈ Rd:

max
pc∈Rd

utility︷ ︸︸ ︷
P (D|pc)×

readability︷ ︸︸ ︷
P (d-proj(pc)), (9)

This a joint optimization towards a utility objective
(the extent to which it can solve dataset D) and
a human readability objective. According to the
Waywardness hypothesis, there are pc’s that assign
high mass to the utility term while also mapping to
human interpretable text that is irrelevant (or even
contradictory) to the task solved by the prompt –
hence, degenerate solutions.

The same challenge holds if this optimization
objective, instead of continuous prompts, is refor-
mulated in terms of word probabilities (e.g., similar
to Kumar et al. (2021, Sec 2.2)). This is the case,
since searching in the space of word probabilities
is analogous to a search in embedding spaces.11

In summary, Waywardness presents a challenge
for searching effective discrete prompts via contin-
uous optimization. The recent works have used
additional signals such as domain-specific con-
straints (Qin et al., 2020; Khot et al., 2021; Qin
et al., 2022) to alleviate these challenges. We hope
to see more design innovations in this direction.

Gradients alone are insufficient to reverse en-
gineer a model. Suppose we are given a fixed
(fine-tuned or otherwise) model M (e.g., an open
question-answering model) and an expected output
y from this model (e.g., y =“Joe Biden”). Can
we use gradients with respect to an LM’s output to
find a semantically meaningful input that makes a
frozen model M generate a particular output?

Our findings and the earlier argument about con-
tinuous differentiable optimization suggests this
may not be feasible with current methods. To see
the correspondence to Prompt Waywardness, we
can replace D in Eq.9 with the desired outcome y
and run the optimization over word distributions
(cf. Footnote 11). While gradients can guide to-
wards some input that makes M produce y, their
interpretation is likely unfaithful to the task being
solved by M . In the context of the above example
(M being a QA system), gradients might lead to
inputs maximize the probability assigned to “Joe
Biden”, although this input will likely be neither
fluent nor semantically descriptive of “Joe Biden”.

11 A distribution over words p ∈ [0, 1]V corresponds to
a continuous prompt pc = c-proj(p) which is a weighted
combination of V -many basis vectors (word embeddings) that
form a linear span of Rd.

Nevertheless, as noted earlier, gradients are still
useful when they are applied using domain-specific
constraints. For example, one can find local (word-
level) perturbations that lead to a certain adversarial
outcome, if the perturbations are restricted to well-
defined semantic categories (e.g., “blue” can be
perturbed to any other color name) (Sha, 2020;
Guo et al., 2021; Yuan et al., 2021).

Continuous prompt tuning does not necessi-
tate task-specific initialization. Recent works
on continuous prompt-tuning have shown the ef-
fectiveness of initialization from embeddings of
random common words (Lester et al., 2021; Min
et al., 2022), despite these words being irrelevant
to the task solved by these prompts. This, however,
makes sense given the observations made in this
work regarding the existence of effective prompts
around word embeddings.

7 Conclusion

The prompting literature has seen many paral-
lel developments around continuous and discrete
prompts, as efficient alternatives to fine-tuning
models with tens of millions of parameters. Our
work introduced the Prompt Waywardness hypoth-
esis, which expresses a surprising disconnect be-
tween continuous and discrete prompts: given a
downstream task, for any discrete target prompt
pd, there exists a continuous prompt that projects
to pd while achieving strong performance on the
task. We provided empirical evidence for this hy-
pothesis, studied various parameters around it, and
ended with several implications of this hypothesis.

While our experiments are done on the GPT fam-
ily, we expect our findings to apply to a broader
set of architectures that, in one way or another, use
similar mechanisms for mapping discrete elements
to continuous representations and vice versa. Sim-
ilarly, while our projection to the discrete space
(Eq.2) is a popular operator in the field (cf. Foot-
note 1), the intuition explained in Propositions 1
and 2 of the Appendix suggests similar behavior
for a broad class of projection operators.

Prompt Waywardness identifies challenges for
future progress on algorithmic methods for the dis-
covery of human readable prompts that are faithful
to the task they solve. We hope the observations
made in this work motivate architectural innova-
tions that overcome such challenges and guide fu-
ture steps in the prompting literature.
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Supplementary Material
A Additional Experimental Details

Here we include several experimental details (§4)
that did not fit in the main text. For the experiments
we used A100 GPUs with 40G memory. In terms of
the time GPU time of the experiments, each round
of training and inference for each seed took about
around 6 min. Therefore, the total GPU hours for
our main experiment (Table 2) adds up to 93 hours
(6 mins × 3 seeds × 5 datasets × 62 prompts =
5580 mins).

B The mapping between continuous and
discrete space is not one-to-one

As argued in §5, the mapping between the space of
discrete input and that of word embeddings (Fig.2)
is not a bijection. While a discrete target prompt is
mapped to exactly one continuous prompt (via its
embedding, Eq.1), the reverse is not true: except
for some unnatural or rare cases (as formalized
in the following propositions) there are infinitely
many continuous prompts that project back to a
fixed discrete target prompt (via Eq.2).

Nearest-neighbor projections are arguably natu-
ral, computationally efficient, and useful in prac-
tice. Although we have considered them in the
Euclidean space so far, they can be defined for
an arbitrary distance metric12 m on Rd. As be-
fore, consider an embedding of a lexicon of size
V into Rd and the corresponding one-hot vectors
in {0, 1}V . We call d-proj a nearest-neighbor pro-
jection operator w.r.t. m if it maps each x ∈ Rd to
the one-hot vector in {0, 1}V that corresponds to
the lexicon item whose embedding is closest to x
under metric m (breaking ties arbitrarily).
Proposition 1 Every nearest-neighbor projec-
tion operator, under any metric, maps infinitely
many elements of Rd, forming one or more con-
tinuous subspaces, to every one-hot vector in
{0, 1}V .

A proof is included in Appendix B.1. In effect,
the projection operators induce a clustering of the
space of continuous prompts Rd×L into regions
that have the same discrete projection (Fig.6).

The infinite-to-one mapping aspect is not limited
to the class of nearest-neighbor projection opera-
tors. It is rather an inherent property of the interac-
tion between continuous and discrete spaces, and

12https://en.wikipedia.org/wiki/Metric_
(mathematics)

holds for a broader family consisting of all but a
negligible portion of possible projection operators:

Proposition 2 Let D denote the space of all pro-
jection operators that map Rd to one-hot vectors
in {0, 1}V . Let d-proj be a random projection
drawn uniformly from D. Then, with probability
1, d-proj maps infinite elements of Rd to every
one-hot vector in {0, 1}V .

B.1 Proofs
Proof of Prop. 1: Let ci ∈ Rd for i ∈
{1, . . . , V } be fixed vectors (denoting the em-
bedding of words in a lexicon of size V ). Let
ei ∈ {0, 1}V denote the one-hot vector with 1 in
the i-th position and 0 elsewhere. Since d-proj is a
nearest-neighbor projection operator w.r.t. m, by
definition it maps x ∈ Rd to ei whenever x is clos-
est to ci, i.e., i = arg minj m(x, cj) (breaking ties
arbitrarily).

Let Si ⊆ Rd denote the pre-image of ei, i.e.,
the elements that the nearest-neighbor projection
d-proj maps to the i-th one-hot vector. By defini-
tion, ci ∈ Si. Let d′ = minj m(ci, cj) > 0 denote
the distance of ci to the nearest cj w.r.t. the metric
m. Consider the subspace Ci = {x | m(x, ci) <
d′/2}. By design, we have Ci ⊆ Si. Further, mov-
ing x by some small distance ε (w.r.t. m) to another
point x′ changes its distance to ci only by at most
ε (by the triangle inequality property of m). This
implies that if ε is chosen to be small enough such
that m(x, ci) + ε < d′/2, then x′ must also be in
Ci. In other words, if x ∈ Ci, then, for a small
enough ε, the entire ε-neighborhood of x is also in
Ci. It follows that Ci is an open subset of Rd and
thus contains infinitely many elements forming a
continuous subspace. Hence Si, which contains
Ci,e.g. also has infinite elements in one or more
continuous subspaces. �

Proof of Prop. 2: For simplicity, assume V =
2. A projection operator d-proj ∈ D can then be
fully characterized by the subset S ⊆ Rd that it
maps to any one arbitrarily chosen one-hot vector.
Choosing d-proj uniformly at random from D thus
amounts to choosing the subset S uniformly at
random from Rd. We show that the probability of
choosing an S such that |S| is finite, is 0. (The
same argument applies to |R \ S| being finite.)

To see this, let Si denote the set of all (finite)
subsets of Rd that have size exactly i. First, ob-
serve that the probability of choosing an S that
lies in S0 ∪ S1 (i.e., a subset of Rd that has at

12

https://en.wikipedia.org/wiki/Metric_(mathematics)
https://en.wikipedia.org/wiki/Metric_(mathematics)


most 1 element) is 0; this is a degenerate case in
the underlying continuous probability space. Sec-
ond, for any i ≥ 2, Si has the same “size” (in
the measure theoretic sense) as S1, because one
can construct an injective map from either one
to the other—which follows from the fact that
they both have the same cardinality as the set R.13

Lastly, the space S of all finite subsets of Rd is the
countable union ∪iSi of disjoint sets. Therefore,
Pr[S ∈ S] =

∑
i Pr[S ∈ Si] = 0. �

13This can be proved using the rules of cardinal multiplica-
tion applied to Si viewed as (a subset of) the Cartesian product
of S1 with itself, i times.
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