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ABSTRACT

Diffusion-based generative models learn to iteratively transfer unstructured noise
to a complex target distribution as opposed to Generative Adversarial Networks
(GANs) or the decoder of Variational Autoencoders (VAEs) which produce sam-
ples from the target distribution in a single step. Thus, in diffusion models ev-
ery sample is naturally connected to a random trajectory which is a solution to a
learned stochastic differential equation (SDE). Generative models are only con-
cerned with the final state of this trajectory that delivers samples from the desired
distribution. Abstreiter et al. (2021) showed that these stochastic trajectories can
be seen as continuous filters that wash out information along the way. Conse-
quently, there is an intermediate time step at which the preserved information is
optimal for a given downstream task. In this work, we show that a combination
of information content from different time steps gives a strictly better represen-
tation for the downstream task. We introduce an attention and recurrence based
modules that “learn to mix” information content of various time-steps such that
the resultant representation leads to superior performance in downstream tasks.

1 INTRODUCTION

Diffusion-based models (Sohl-Dickstein et al., 2015; Song et al., 2020; 2021; Sajjadi et al., 2018;
Niu et al., 2020; Cai et al., 2020; Chen et al., 2020a; Saremi et al., 2018; Dhariwal & Nichol, 2021;
Luhman & Luhman, 2021; Ho et al., 2021; Mehrjou et al., 2017) are generative models that ap-
ply step-wise perturbations to the samples of the data distribution (eg. CIFAR10), modeled via a
Stochastic Differential Equation (SDE), until convergence to some prior unstructured distribution
(eg. N (0, I)). In contrast to this diffusion process, a score model is learned to approximate the
reverse process that iteratively converges to the data distribution from the prior distribution men-
tioned before. In this work, we follow Abstreiter et al. (2021) which augments such diffusion-based
systems with an encoder for learning a representation that can be used for downstream tasks.

2 BEYOND FIXED REPRESENTATIONS

We first outline how diffusion-based representation learning systems are trained. Given some ex-
ample x0 ∈ Rd which is sampled from the target distribution p0, the diffusion process constructs
the trajectory (xt)t∈[0,1] through the application of an SDE. In this work, we consider the Variance
Exploding SDE (Song et al., 2021) for this diffusion process, defined as

dx = f(x, t) + g(t)dw :=

√
d[σ2(t)]

dt
dw (1)

where w is the standard Wiener process and σ2(·) the noise variance of the diffusion process. This
leads to a closed form distribution of xt conditional on x0 as p0t(xt|x0) = N (xt;x0, [σ

2(t) −
σ2(0)]I). Given this diffusion process modeled through the Variance Exploding SDE, the reverse
SDE takes a similar form but requires the knowledge about the score function, i.e. ∇x log pt(x) for
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Figure 1: Downstream performance of single point based representations (MLP) and full trajectory
based representations (RNN and Tsf) on different datasets for both types of learned encoders: prob-
abilistic (VDRL) and deterministic (DRL).

all t ∈ [0, 1]. A common way to obtain this score function is through the Explicit Score Match-
ing (Hyvärinen & Dayan, 2005) objective,

Ext

[
∥sθ(xt, t)−∇xt log pt(xt)∥2

]
(2)

which suffers from just one hiccup, which is that data about the ground-truth score function is not
available. To solve this problem, Denoising Score Matching (Vincent, 2011) was proposed,

Ex0

[
Ext|x0

[
∥sθ(xt, t)−∇xt

log p0t(xt|x0)∥2
]]

(3)

where the term log p0t(xt|x0) is available due to its closed-form structure. Given that the above
objective cannot be reduced to 0, Abstreiter et al. (2021) proposes the objective

Ex0

[
Ext|x0

[
∥sθ(xt, Eϕ(x0, t), t)−∇xt log p0t(xt|x0)∥2

]]
(4)

where the additional input Eϕ(x0, t) to the score function is obtained from a learned encoder and
provides information about the unperturbed sample that might prove useful for denoising data at time
step t in the diffusion trajectory. Training of this system can lead to the objective being reduced to 0,
thereby providing incentive to the encoder Eϕ(·, t) to learn meaningful representations for each time
t. From this, we obtain a trajectory-based representation (Eϕ(x0, t))t∈[0,1] from each sample x0 as
opposed to just a finite sized representation obtained from typical Autoencoder (Bengio et al., 2013;
Vinyals et al., 2016; Kingma & Welling, 2013; Rezende et al., 2014) and Contrastive Learning (Chen
et al., 2020b; Grill et al., 2020; Caron et al., 2021; Bromley et al., 1993; Chen & He, 2020) based
approaches.

2.1 INFINITE-DIMENSIONAL REPRESENTATION OF FINITE-DIMENSIONAL DATA

Normally in autoencoders or other static representation learning methods, the input data x0 ∈ Rd is
mapped to a single point z ∈ Rc in the code space. However, our proposed algorithm learns a richer
representation where the input x0 is mapped to a curve in Rc instead of a single point through the
encoder Eϕ(·, t). Hence, the learned code is produced by the map x0 → (Eϕ(x0, t))t∈[0,1] where
the infinite-dimensional object (Eϕ(x0, t))t∈[0,1] is the encoding for x0.

The learned code is at least as good as static codes in terms of separation induced among the codes.
Consider two input samples x0 and x′

0, hence we have:
∥Eϕ(x0, 0)− Eϕ(x

′
0, 0)∥ ≤ sup

t∈[0,1]

∥Eϕ(x0, t)− Eϕ(x
′
0, t)∥ (5)

which implies that the downstream task can at least recover the separation provided by finite-
dimensional codes from the infinite-dimensional code by looking for the maximum separation along
the representation trajectory.

A downstream task can leverage this rich encoding in various ways. Consider the classification task
where we want to find a mapping f : Rd → {0, 1} from input data to the label space. Instead of
giving x0 as the input to f , we define f : H → {0, 1} where the input to the classifier is the whole
trajectory (Eϕ(x0, t))t∈[0,1]. Thus, the classifier can now use RNN and Transformer models to make
use of the information content of the entire trajectories.
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Figure 2: Normalized Mutual Information between different points on the trajectory. Cell (i, j)
demonstrates the normalized mutual information, estimated with the MINE algorithm, between the
representations at time t = i and t = j.

3 EXPERIMENTS

We first train two kinds of diffusion-based generative model as outlined in Abstreiter et al. (2021),
based on probabilistic (VDRL) and deterministic (DRL) encoders respectively. After training, the
encoder model is kept fixed. For all our downstream experiments, we use this trained encoder to
obtain the trajectory based representation for each of the samples. While the trajectories lie in
a continuous domain [0, 1], we sample it at a regular intervals with length 0.1. This leads to a
discretization of the trajectory, which is then used for various analysis as outlined below.

3.1 DOWNSTREAM PERFORMANCE REVEALS BENEFITS OF TRAJECTORY INFORMATION

To understand the benefits of utilizing the trajectory-based representations, we train standard Multi-
Layer Perceptron (MLP) models at different points on the trajectory and compare it with Re-
current Neural Network (RNN) (Hochreiter & Schmidhuber, 1997; Cho et al., 2014) and Trans-
former (Vaswani et al., 2017) based models that are able to aggregate information from different
parts of the trajectory.

We evaluate the MLP, RNN and Transformer based downstream models on diffusion systems with
both probabilistic encoders (VDRL) and also non-probabilistic ones (DRL). In Figure 1, we see the
performance of these different setups for the following datasets: CIFAR10 (Krizhevsky et al., a),
CIFAR100 (Krizhevsky et al., b) and Mini-ImageNet (Vinyals et al., 2016). We typically see that
RNN and Transformer based models perform better than even the peaks obtained by the MLP sys-
tems. This shows that there is no single point on the trajectory that encapsulates all the information
stored in the trajectory, and thus utilizing the whole trajectory as opposed to individual points leads
to an improvement in performance.

3.2 MUTUAL INFORMATION REVEALS DIFFERENCES ALONG THE TRAJECTORY

In an effort to understand whether different parts of the trajectory based representation actually
contain different types of information about the sample, we evaluate the mutual information between
the representations at various points in the trajectory. We use the MINE algorithm (Belghazi et al.,
2018) to estimate the mutual information between the representations at any two different points
in the trajectory. Through this algorithm, we compute and analyse a normalized version of the
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Figure 3: Attention Scores provided to different points on the trajectories, which are obtained from
diffusion based representation learning systems with probabilistic encoders (VDRL; top row) and
with deterministic encoders (DRL; bottom row) across the following datasets (a) Left: CIFAR10,
(b) Middle: CIFAR100, and (c) Right: Mini-Imagenet.

mutual information, defined as NMI(X;Y) := I(X;Y)/
√

H(X)H(Y) where I(· ; ·) is the standard
Mutual Information function (Cover, 1999) and H(·) is the entropy function.

Figure 2 illustrates the normalized mutual information between representations at different parts of
the trajectory across three different datasets: CIFAR10, CIFAR100 and Mini-ImageNet as well as
two different types of models: VDRL and DRL, where the former uses a probabilistic encoder and
the latter doesn’t. We see large normalized mutual information values near the principal diagonal and
small values that are away from it, demonstrating that nearby representations on the trajectory are
similar whereas distant points in the trajectory are considerably different. This shows that different
parts of the trajectory learn to encode different kinds of information.

3.3 ATTENTION REVEALS RELEVANCE OF DIFFERENT PARTS OF THE TRAJECTORY

To complement the analysis in Sections 3.1 and 3.2, we train a single-layered Transformer model
for downstream prediction, which comes from a learned embedding that queries information from
different parts of the trajectory. Through the analysis of the attention scores at different points in the
trajectory, we realize that the middle parts of the trajectory are the most important, as illustrated in
the high attention scores around t = 0.5 in Figure 3.

This is in line with the performance results in Figure 1 which also shows that amongst the single-
point MLP-based systems, the best downstream performance is reached near the middle of the tra-
jectory.

4 CONCLUSION

Through our analysis, we realize that the encoder Eϕ(·, t) actually learns different kinds of informa-
tion at different time-steps t. Typically the mid-points of the trajectory are the most important for
downstream classification tasks but we uncover that using the whole trajectory, which is a discretiza-
tion of an infinite-dimensional object, is much better than just singular points on it. What kind of
semantic information is encoded in the different parts of the trajectories? Can we leverage the full
infinite-dimensional object without heuristic based discretizations? Our aim is to not only analyze
the nature of information encoded in different parts of these trajectories but also leverage them for
downstream tasks without heuristic discretizations.
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