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ABSTRACT

Optical flow estimation is a crucial computer vision task often applied to safety-
critical real-world scenarios like autonomous driving and medical imaging. While
optical flow estimation accuracy has greatly benefited from the emergence of deep
learning, learning-based methods are also known for their lack of generalization
and reliability. However, reliability is paramount when optical flow methods are
employed in the real world, where safety is essential. Furthermore, a deeper un-
derstanding of the robustness and reliability of learning-based optical flow esti-
mation methods is still lacking, hindering the research community from build-
ing methods safe for real-world deployment. Thus we propose FLOWBENCH, a
robustness benchmark and evaluation tool for learning-based optical flow meth-
ods. FLOWBENCH facilitates streamlined research into the reliability of optical
flow methods by benchmarking their robustness to adversarial attacks and out-
of-distribution samples. With FLOWBENCH, we benchmark 91 methods across 3
different datasets under 7 diverse adversarial attacks and 23 established common
corruptions, making it the most comprehensive robustness analysis of optical flow
methods to date. Across this wide range of methods, we consistently find that
methods with state-of-the-art performance on established standard benchmarks
lack reliability and generalization ability. Moreover, we find interesting correla-
tions between performance, reliability, and generalization ability of optical flow
estimation methods, under various lenses such as design choices used, number of
parameters, etc. After acceptance, FLOWBENCH will be open-source and publicly
available, including the weights of all tested models.

1 INTRODUCTION
NEW
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Figure 1: Optical flow estimation methods proposed over time and their reliability and generalization
ability. In all three plots, the y-axis represents error, i.e., lower is better. The error of optical flow
estimation methods on independent and identically distributed data samples (i.i.d.) has decreased
over time, however, their reliability and generalization ability are stagnant if not deteriorating.

The recent growth of Deep Learning (DL) has greatly benefited computer vision, in particular when
considering complex tasks such as the estimation of optical flow fields. In optical flow estimation,
a method is supposed to estimate the movement of every pixel between at least two consecutive
image frames in a subpixel-accurate manner. This task was earlier performed using model-driven
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approaches such as Horn & Schunck (1981) and Lucas & Kanade (1981). However, these methods
have severe limitations leading to suboptimal estimations and, consequently, to the predominant use
of DL to perform the estimations (Dosovitskiy et al., 2015; Ilg et al., 2017; Jahedi et al., 2024b).
The performance of learning-based optical flow estimation methods has improved over the years on
independent and identically distributed data samples (i.i.d.), leading to lower errors on evaluation as
shown by Fig. 1 (left). At the same time, DL-based methods are known to be unreliable (Geirhos
et al., 2018; Prasad, 2022), they tend to learn shortcuts rather than meaningful feature represen-
tations (Geirhos et al., 2020), and can be easily deteriorated even by small corruptions. This can
become a practical threat, as optical flow estimation is highly relevant in safety-critical applications
such as autonomous driving (Capito et al., 2020; Wang et al., 2021), robotic surgery (Rosa et al.,
2019) and others. Thus, before deploying DL-based optical flow estimation methods, assessing their
vulnerability and generalization ability is of paramount importance to gauge their readiness. We ob-
serve in Fig. 1 that over the years, despite improvement in the performance of learning-based optical
flow estimation methods, their reliability and generalization ability are almost unchanged. Had re-
cent research been focused on these factors, the newly proposed methods could have been more
reliable and ready for practical use. Our proposed FLOWBENCH facilitates this study, streamlining
it for future research to utilize.

Many works have highlighted the importance of such a study by reducing model vulnerability (Xu
et al., 2021b; Croce et al., 2023; Agnihotri et al., 2023; Schrodi et al., 2022; Tran et al., 2022;
Grabinski et al., 2022), showing that robustness does follow from high accuracy (Tsipras et al.,
2019; Schmidt et al., 2018; Schmalfuss et al., 2022b) or improving generalization (Hendrycks et al.,
2020; Hoffmann et al., 2021) for various downstream tasks such as image classification, semantic
segmentation, image restoration and others. To facilitate this research, robustness benchmarking
tools and benchmarks like Croce et al. (2021); Jung et al. (2023); Tang et al. (2021) have been
proposed for image classification models. They look into the adversarial and Out-of-Distribution
(OOD) robustness of DL models. However, these works are limited to image classification. A
similar benchmarking tool and comprehensive benchmark for optical flow is amiss.

To bridge this gap, we propose FLOWBENCH that facilitates robustness evaluations of optical flow
models against adversarial attacks and image corruptions for OOD data and provides a unified eval-
uation scheme and streamlined code. Using FLOWBENCH, we benchmark 91 model checkpoints
over 3 commonly used optical flow estimation datasets. These model checkpoints include SotA op-
tical flow estimation methods and evaluation methods including SotA adversarial attacks and image
corruption methods. FLOWBENCH is easy to use and new methods, when proposed, can be easily
integrated to benchmark their performance. This will help researchers build better models that are
not limited to improved performance on identical and independently distributed (i.i.d.) samples and
are less vulnerable to adversarial attacks while generalizing better to image corruptions.

The main contributions of this work are as follows:

• We provide a benchmarking tool FLOWBENCH to evaluate the performance of most DL-
based optical flow estimation methods over different datasets and make 91 checkpoints
over different datasets publicly available for streamlined benchmarking while enabling the
research community to add further checkpoints.

• We benchmark the aforementioned models against SotA and other commonly used adver-
sarial attacks and common corruptions that can be easily queried using FLOWBENCH.

• We perform an in-depth analysis using FLOWBENCH and present interesting findings show-
ing that methods that are SotA on i.i.d. are remarkably less reliable and generalize worse
than other non-SotA methods.

• We analyze correlations between performance, reliability, and generalization abilities of
optical flow estimation methods, under various lenses such as design choices, and the num-
ber of learnable parameters.

• We show that the optimization of white-box adversarial attacks for optical flow estimation
can be performed even without the availability of ground truth predictions, furthering the
scope of study in their reliability.
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2 RELATED WORK

FLOWBENCH is the first robustness benchmarking tool and benchmark for optical flow estimation
methods that unifies adversarial and OOD robustness, taking inspiration from robustness bench-
marks for other vision tasks such as image classification. While several previous works provide
benchmarking tools for optical flow estimation, they only facilitate benchmarking of either adver-
sarial or OOD robustness and are less comprehensive than FLOWBENCH. FLOWBENCH leverages
the individual strengths of prior benchmarking tools, but casts them into a unified and easy-to-use
robustness benchmark. Following, we discuss these related works in detail.

2.1 ROBUSTNESS BENCHMARKING FOR IMAGE CLASSIFICATION METHODS

Goodfellow et al. (2015) proposed the Fast Sign Gradient Method (FGSM) attack which gave rise
to the domain of adversarial attacks on image classification. Complementing adversarial attacks,
Hendrycks & Dietterich (2019) proposed 2D Common Corruptions for image classification tasks
on the CIFAR-100 (Krizhevsky et al., 2009) and ImageNet-1k (Russakovsky et al., 2015) datasets
and their variants. Since then, most adversarial attacks and OOD Robustness works have focused
on image classification tasks, warranting a consolidated benchmarking tool and benchmark for ro-
bustness. In the case of image classification, this gap was filled by multiple works such as Robust-
Bench (Croce et al., 2021) and RobustArts (Tang et al., 2021). Both works make multiple image
classification model checkpoints publicly available, including checkpoints trained for improved ro-
bustness. Moreover, RobustBench is a benchmarking tool that facilitates evaluating both adversarial
and OOD robustness of image classification models. Other similar benchmarking tools exist, like
DeepFool (Moosavi-Dezfooli et al., 2016), Torchattacks (Kim, 2020), and Foolbox (Rauber et al.,
2020). Yet, these are merely benchmarking tools and do not provide a comprehensive benchmark -
they only facilitate evaluating adversarial robustness but not the OOD robustness of the method. As
of now, no benchmarking tool or benchmark exists for optical flow estimation methods’ robustness
evaluations. Thus, we propose FLOWBENCH which enables benchmarking adversarial and OOD ro-
bustness and makes a multitude of model checkpoints available, providing the research community
with the much needed tools.

2.2 BENCHMARKING OPTICAL FLOW ESTIMATION METHODS

Optical flow estimation has been a problem attempted to be solved for a long time. Over time mul-
tiple works have been proposed to streamline research in this direction by providing benchmarking
libraries for i.i.d. performance of proposed methods. Such libraries include mmflow (Contribu-
tors, 2021), ptlflow (Morimitsu, 2021), and Spring (Mehl et al., 2023). These libraries also provide
model checkpoints to facilitate evaluations. Spring, also provides a benchmark but the performance
evaluations are limited to their proposed Spring dataset. Whereas, both mmflow and ptlflow do not
provide a benchmark but enable benchmarking on multiple optical flow datasets such as FlyingTh-
ings3D (Mayer et al., 2016), KITTI2015 (Menze & Geiger, 2015) and MPI Sintel (Butler et al.,
2012). However, the evaluation abilities of these benchmarking tools are limited to i.i.d. data. Thus,
we built FLOWBENCH, using ptlflow and publicly available model checkpoints to extend method
evaluations to adversarial and OOD Robustness consolidating research towards reliability and gen-
eralization ability of optical flow estimation methods. Additionally, FLOWBENCH is the first to
provide a comprehensive benchmark on existing optical flow estimation methods over 3 datasets
and multiple adversarial attacks and image corruptions.

2.3 ADVERSARIAL ATTACKS

As discussed in Sec. 1, DL models tend to learn shortcuts to map data samples from input to target
distribution (Geirhos et al., 2020), leading to the model learning inefficient feature representations.
In their work, Goodfellow et al. (2015) showed that this inefficient learning of feature represen-
tations can be easily exploited. Goodfellow et al. (2015) added noise to the input data samples
which was optimized to increase loss using model information, such that the model was fooled into
making incorrect predictions. This demonstrated the vulnerability and unreliability of model pre-
dictions as the perturbed input samples still appeared semantically similar to the human eye. They
named this attack the Fast Sign Gradient Method (FGSM). This attack led to an increased inter-
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est by the research community to better optimize the noise inspiring multiple other works such as
Basic Iteration method (BIM) (Kurakin et al., 2018), Projected Gradient Descent (PGD) (Kurakin
et al., 2017), Auto-PGD (APGD) (Wong et al., 2020) and CosPGD (Agnihotri et al., 2024) which
were direct extensions to FGSM, and other attacks such as Perturbation-Constrained Flow Attack
(PCFA) (Schmalfuss et al., 2022b) and Adversarial Weather (Schmalfuss et al., 2023), which are
indirect extensions of FGSM.

3 FLOWBENCH USAGE

In the following, we describe the benchmarking tool, FLOWBENCH. It is built using pltflow (Morim-
itsu, 2021), and supports 36 unique architectures (new architectures added to ptlflow over time
are compatible with FLOWBENCH) and distinct datasets, namely FlyingThings3D (Mayer et al.,
2016), KITTI2015 (Menze & Geiger, 2015), MPI Sintel (Butler et al., 2012) (clean and final) and
Spring (Mehl et al., 2023) datasets (please refer Appendix C for additional details on the datasets).
It enables training and evaluations on all aforementioned datasets including evaluations using SotA
adversarial attacks such as CosPGD (Agnihotri et al., 2024) and PCFA (Schmalfuss et al., 2022b),
Adversarial weather (Schmalfuss et al., 2023), and other commonly used adversarial attacks like
BIM (Kurakin et al., 2018), PGD (Kurakin et al., 2017), FGSM (Goodfellow et al., 2015), under
various Lipshitz (lp) norm bounds.

Additionally, it enables evaluations for Out-of-Distribution (OOD) robustness by corrupting the in-
ference samples using 2D Common Corruptions (Hendrycks & Dietterich, 2019) and 3D Common
Corruptions (Kar et al., 2022).

We follow the nomenclature set by RobustBench (Croce et al., 2021) and use “threat model” to de-
fine the kind of evaluation to be performed. When “threat model” is defined to be “None”, the eval-
uation is performed on unperturbed and unaltered images, if the “threat model” is defined to be an
adversarial attack, for example “PGD”, “CosPGD” or “PCFA”, then FLOWBENCH performs an ad-
versarial attack using the user-defined parameters. We elaborate on this in Appendix E.1. Whereas, if
“threat model” is defined to be “2DCommonCorruptions” or “3DCommonCorruptions”, the FLOW-
BENCH performs evaluations after perturbing the images with 2D Common Corruptions and 3D
Common Corruptions respectively. We elaborate on this in Appendix E.2. If the queried evalua-
tion already exists in the benchmark provided by this work, then FLOWBENCH simply retrieves the
evaluations, thus saving computation.

FLOWBENCH enables the use of all the attacks mentioned in Sec. 2.3 to help users better study the
reliability of their optical flow methods. We choose to specifically include these white-box adver-
sarial attacks as they either serve as the common benchmark for adversarial attacks in classification
literature (FGSM, BIM, PGD, APGD) or they are unique attacks proposed specifically for pixel-wise
prediction tasks (CosPGD) and optical flow estimation (PCFA and Adversarial Weather). These at-
tacks can either be Non-targeted which are designed to simply fool the model into making incorrect
predictions, irrespective of what the model eventually predicts, or can be Targeted, where the model
is fooled to make a certain prediction. Most attacks can be, designed to be either Targeted or Non-
targeted, these include, FGSM, BIM, PGD, APGD, CosPGD, and Adversarial Weather. However,
by design, some attacks are limited to being only one of the two, for example, PCFA which is a
targeted attack.

Following we show the basic commands to use FLOWBENCH. We describe each attack and common
corruption supported by FLOWBENCH in detail in Appendix E. Please refer to Appendix G for
details on the arguments and function calls.

3.1 MODEL ZOO

It is a challenge to find all checkpoints, while training them is a time and compute exhaustive process.
Thus we gather available model checkpoints from various sources such as ptlflow (Morimitsu, 2021)
and mmflow (Contributors, 2021). The trained checkpoints for all models available in FLOWBENCH
can be obtained using the following lines of code:

from flowbench.evals import load_model
model = load_model(model_name='RAFT', dataset='KITTI2015')

4
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Each model checkpoint can be retrieved with the pair of ‘model name’, the name of the model,
and ‘dataset’, the dataset for which the checkpoint was last finetuned. In Appendix F we provide a
complete overview of all the 91 available pairs of model checkpoints and datasets.

3.2 ADVERSARIAL ATTACKS

FLOWBENCH can be used to evaluate models on the discussed adversarial attacks using the follow-
ing lines of code (please refer Appendix G.1 for details regarding the arguments):

from flowbench.evals import evaluate
model, results = evaluate(model_name='RAFT', dataset='KITTI2015',

threat_model='CosPGD', iterations=20, alpha=0.01,
epsilon=8/255, lp_norm='Linf', targeted=True,
optim_wrt='ground_truth', retrieve_existing=True)

3.3 OOD ROBUSTNESS NEW

FLOWBENCH can be used to evaluate models on the 2D and 3D Common Corruptions using the fol-
lowing lines of code, following is an example for the latter (please refer Appendix G.3 (2D Common
Corruptions) and Appendix G.4 (3D Common Corruption) for details regarding the arguments):

from flowbench.evals import evaluate
model, results = evaluate(model_name='RAFT', dataset='KITTI2015',

threat_model='3DCommonCorruption',
severity=3, retrieve_existing=True)

4 METRICS FOR ANALYSIS AT SCALE

Analysis of optical flow estimation methods at the same scale as this work, especially under the lens
of reliability and generalization ability has not been attempted before. The most commonly (Schrodi
et al., 2022; Schmalfuss et al., 2022a; Agnihotri et al., 2024; Dosovitskiy et al., 2015) used metric
for evaluating the performance of a method is calculating the mean End-Point-Error (EPE) between
the predicted optical flow and the ground truth for all pairs of frames in a given dataset. However,
this does not reflect the reliability and generalization ability of the method. Moreover, this work has
performed over 4500 experiments in total, and analyzing the EPE from each experiment would not
lead to a fruitful finding. Thus, we attempt to simplify this with our proposed metrics, the Reliability
Error and Generalization Ability Error.

The objective of any optical flow estimation method is to obtain an EPE of zero or as low as possible.
The larger the EPE, the worse the performance of the method. Most works (Dosovitskiy et al., 2015;
Teed & Deng, 2020; Ilg et al., 2017; Huang et al., 2022) report the mean EPE value over a dataset as
a measure of the method’s performance. For reliability and generalization, we look at the maximum
possible value of mean EPE across attacks over multiple datasets. That is, we ask the question “What
is the worst possible performance of a given method?”. An answer to this question tells us about
the reliability and generalization ability of a method. In the following, we describe the measures for
different scenarios in detail.

4.1 GENERALIZATION ABILITY ERROR NEW

Inspired by multiple works (Croce et al., 2021; Hendrycks et al., 2020; Hoffmann et al., 2021) that
use OOD Robustness of methods for evaluating the generalization ability of the method, even evalu-
ate over every common corruptions, that is 2D Common Corruptions and 3D Common Corruptions
combined. Then, we find the maximum of the mean EPE w.r.t. the ground truth for a given method,
across all corruptions at a given severity and report this as Generalization Ability Error denoted by
GAEseverity level . For example, for severity 3, the measure would be denoted by GAE3. The less
the GAE value, the better the generalization ability of the given optical flow estimation method.
These corruptions perturb the images to cause distributions and domain shifts, such shifts often
confuse the methods into making incorrect predictions.

5
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For calculating GAE, we use all 15 2D Common Corruptions: ‘Gaussian Noise’, Shot Noise’,
‘Impulse Noise’, ‘Defocus Blur’, ‘Frosted Glass Blur’, ‘Motion Blur’, ‘Zoom Blur’, ‘Snow’, ‘Frost’,
‘Fog’, ‘Brightness’, ‘Contrast’, ‘Elastic Transform’, ‘Pixelate’, ‘JPEG Compression’, and eight 3D
Common Corruptions: ‘Color Quantization’, ‘Far Focus’, ‘Fog 3D’, ‘ISO Noise’, ‘Low Light’,
‘Near Focus’, ‘XY Motion Blur’, and ‘Z Motion Blur’. All the common corruptions are at severity
3. Kar et al. (2022) offers more 3D Common Corruptions, however computing them is resource
intensive. Thus, given our limited resources and an overlap in the corruptions between 2D Common
Corruptions and 3D Common Corruptions, we focus on generating 3D Common Corruptions that
might be unique from their 2D counterpart, require fewer sources to generate, and are interesting
from an optical flow estimation perspective. In Appendix A we show that these synthetic common
corruptions can indeed be used as a proxy for possible corruptions when in the wild in the real world.

4.2 RELIABILITY ERROR NEW

An adversarial attack is a perturbation made on the input images to fool a method into changing
its predictions while the input image looks semantically similar to a human observer. Most works
that focus on the reliability of optical flow estimation methods perform adversarial attacks, how-
ever, these works either focus on targeted attacks or on non-targeted attacks, not both at the same
time. The objective of targeted attacks is to optimally perturb the input image such that the method
predictions are changed towards a specifically desired target, for example, a target can be a

−→
0 flow

i.e. attacking so that the flow prediction at all pixels should become zero. Conversely, non-targeted
adversarial attacks do not intend to shift the method’s predictions to a specific target, they simply
intend to fool the method into making any incorrect predictions. To streamline research into the
reliability of these methods, we perform both targeted and non-targeted attacks.

Non-Targeted Attacks. For non-targeted attacks, we measure the EPE w.r.t. the ground truth, in
this case, the higher the EPE value, the worse the performance of the optical flow estimation method.
The notation for this metric is, NAREattack iterations, where NARE stands for Non-targeted Attack
Reliability Error, and the subscript informs the number of attack iterations used for optimizing the
attack. For example, when 20 attack iterations were used to optimize the attack then the metric would
be NARE20. The higher the NARE value, the worse the reliability of the optical flow method.

Targeted Attacks. For targeted attacks, we measure the EPE w.r.t. the target flow, however,
to standardize notations, we report the negative EPE in this case, thus, the higher the value, the
worse the performance of the optical flow estimation method. The notation for this metric is,
TAREtarget

attack iterations, where TARE stands for Targeted Attack Reliability Error and the superscript
informs about the target used (zero vector or negative of the initial flow prediction) and the subscript
informs about the number of attack iterations used for optimizing the attack. For example, when
the target is

−→
0 and 20 attack iterations were used to optimize the attack then the metric would be

TARE
−→
0
20. The higher the TARE value, the worse is the reliability of the optical flow method.

For calculating TARE and NARE values we used BIM, PGD, and CosPGD attack with step size
α=0.01, perturbation budget ϵ = 8

255 under the ℓ∞-norm bound, as targeted and non-targeted attacks
respectively. We use ℓ∞-norm bound as we observe in Appendix H that there is a high correlation
between the performance of optical flow estimation methods when attacked using ℓ∞-norm bounded
attacks and ℓ2-norm bounded attacks. We use 20 attack iterations for calculating TARE and NARE
as we observe in Appendix H , that at a lower number of iterations, the gap in performance of
different optical flow estimation methods is small, thus an in-depth analysis would be difficult, and
we do not go beyond 20 attack iterations as computing each attack step for an adversarial attack is
very expensive, and as shown by Agnihotri et al. (2024) and Schmalfuss et al. (2022b), 20 iterations
are enough to optimize an attack to truly understand the performance of the attacked method.

5 ANALYSIS AND INTERESTING FINDINGS

To demonstrate the potential of FLOWBENCH, we use it to perform multiple analyses which provide
us with a better understanding of many optical flow estimation methods, including novel findings.

6
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Figure 2: Analysing correlations between Targeted and Non-targeted adversarial attacks. A model
is more reliable if it has a low NARM value and a high TARM value.

Following, we discuss the observations made in the comprehensive robustness benchmark created
using FLOWBENCH. Please refer to Appendix C for details on the dataset, Appendix D for additional
implementation details, and Appendix H for additional results from the benchmarking.

5.1 TARGETED V/S NON-TARGETED ADVERSARIAL ATTACKS

We benchmark the performance of all prominent DL-based optical flow estimation methods across
three datasets, namely KITTI2015, MPI Sintel (clean), and MPI Sintel (final) against SotA and com-
monly used adversarial attacks such as BIM, PGD, and CosPGD. Then, we compare the NARE and
TARE values (introduced in Sec. 4.2) and find correlations in their performance. These are reliabil-
ity metrics, higher NARE and TARE values indicates low reliability and vice versa. Please refer to
Appendix D for more implementation details. We observe in Fig. 2 that there is a very high correla-

tion between the TARE
−→
0 and TARE

−→
−f values of every optical flow estimation method. This shows

that evaluating either one of the values can serve as a reliable proxy for the other. We use this finding
in the later analysis. Additionally, in Fig. 2 we observe that most optical flow estimation methods
like ScopeFlow (Bar-Haim & Wolf, 2020), MS-RAFT+ (Jahedi et al., 2024b) and StarFlow (Godet
et al., 2021) are relatively more susceptible to targeted attacks than they are to non-targeted attacks.
On the other hand, some methods are highly susceptible to both and thus very unreliable, these
include SKFlow (Sun et al., 2022), FastFlowNet (Kong et al., 2021), HD3 (Yin et al., 2019) and
some SotA methods like FlowFormer (Huang et al., 2022) and FlowFormer++ (Shi et al., 2023b).
Interestingly, IRR (Hur & Roth, 2019) stands out as the most reliable optical flow estimation method
as it is robust to both targeted and non-targeted adversarial attacks. While ScopeFlow (Bar-Haim &
Wolf, 2020), GMFlowNet (Zhao et al., 2022) and MaskFlowNet (Zhao et al., 2020) are less reliable
than IRR but more reliable than the other methods.

5.2 RELIABILITY V/S GENERALIZATION

Following we analyze if there is a correlation between the reliability and generalization ability of op-
tical flow estimation methods. We observe in Fig. 3, that most methods that have a good performance
also generalize better, however, methods like FlowFormer++, while having good i.i.d. performance
have a relatively poor generalization ability. As observed in Sec. 5.1, HD3 Yin et al. (2019) stands
out as having poor performance and poor generalization ability. Interestingly, as shown by Fig. 3,
there is a correlation between the generalization ability (GAE3 values, introduced in Sec. 4.1, higher
GAE value indicates lower generalization ability) and reliability when measured using non-targeted
adversarial attacks (NARE20 values). Additionally, most methods identified in Sec. 5.1 to be reli-
able, for example, CSFLow, MaskFlowNet also have considerable generalization ability compared
to the other methods. However, IRR which stood out as the most reliable method has low general-
ization abilities. It is interesting to note that CCMR (Jahedi et al., 2024a) offers a good trade-off as
it has reasonably good performance, reliability, and generalization abilities.
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Figure 3: Analysing correlations between reliability and generalization ability of optical flow esti-
mation methods.
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Figure 4: Analyzing correlations between the method family to which the optical flow estimation
method belongs and its corresponding performance, reliability, and generalization ability.

5.3 ANALYZING METHOD FAMILIES NEW

Optical flow estimation methods proposed over the years use different training strategies and ar-
chitecture designs. However, there exist many architectural similarities between the methods, and
based on these most methods can be broadly classified into four method families: FlowNet-family,
PWC-family, RAFT-family, and FlowFormer-family (please refer to Appendix B for detailed justifi-
cations). In Fig. 4 we observe that methods belonging to the FlowFormer-family and RAFT-family
and DIP Zheng et al. (2022) have the best i.i.d. performance, however, given their relatively higher
NARE20 and TARE20 values, some exceeding 100, they appear to not be reliable. Here we ob-
serve that IRR (Hur & Roth, 2019) stands out as one of the most reliable methods under adversarial
attacks. Given that the primary differences between IRR-PWC and other methods from the PWC
family are the classical energy minimization-inspired approach and the use of residual networks to
propose an iterative residual refinement, it makes an interesting finding.

When considering generalization ability under common corruptions, we observe all methods to have
poor performance. Methods such as LLA-Flow Xu et al. (2023b) and HD3 Yin et al. (2019) from the
RAFT-family and PWC-family respectively have GAE3 values over 160! Here, SplatFlow Wang
et al. (2024) stands out, given that the primary difference between SplatFlow and other RAFT-family
methods is the use of splatting for feature matching by SplatFlow, it is an interesting finding.

Additionally, we observe in Fig. 4 that compared to other method families, FlowFormer-family is
very susceptible to targeted adversarial attacks. Given that the FlowFormer family comprises only
transformer-based architectures for optical flow estimation, this is very interesting, as this contradicts
the observations made for transformer-based methods for image classification (Paul & Chen, 2022;
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Figure 5: Analysing correlation between the number of learnable parameters in a DL-based optical
flow estimation method and its performance, reliability, and generalization ability. Colors show the
different optical flow methods while marker styles show the method family to which they belong.
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Figure 6: Performance of interesting optical flow estimation methods under different non-targeted
adversarial attacks optimized using initial flow predictions on the KITTI2015 dataset.

Hoyer et al., 2022) and semantic segmentation (Xie et al., 2021), where they appear to be more
robust. However, this lack of generalization ability can also be attributed to the use of dynamic
positional cost queries by both FlowFormer and FlowFormer++, thus, we require more models to be
proposed in the FlowFormer family to be certain.

5.4 IMPACT OF THE NUMBER OF LEARNABLE PARAMETERS

Many works for classification have shown that Deep Neural Networks with more parameters and
less vulnerable to adversarial attacks and generalize better to common corruptions (Liu et al., 2022;
Ding et al., 2022; Hoffmann et al., 2021). It would be interesting to see if the same holds true for
optical flow estimation methods. Thus, we analyze this in Fig. 5 and observe that while the number
of learnable parameters has an impact on the performance of the methods to some extent (other than
the exceptions of MaskFlowNet and HD3), the same does not hold for reliability and generaliza-
tion ability. Methods such as FlowFormer, FlowFormer++ (FlowFormer-family), and VideoFlow
(RAFT-family) have relatively more parameters than other methods however they are less reliable
and have a poor generalization ability. On the other hand, methods like CSFlow and SplatFlow (both
RAFT-family) have significantly fewer parameters but are more reliable and generalize better than
the other methods.

5.5 OPTIMIZING TARGETED ATTACKS USING INITIAL FLOW PREDICTIONS

Based on the observation in Sec. 5, we identify several interesting methods whose performance
warrants additional analysis and discussion. Following, we discuss our observations in detail.

One of the major limitations of white-box adversarial attacks is that they require access to the ground
truth to optimize the attack (Agnihotri et al., 2024). However, access to the ground truth is not
guaranteed in every scenario. Additionally as discussed by Schmalfuss et al. (2022b), robustness is
a measure of the difference in a model’s prediction on perturbed input w.r.t. the model’s prediction on
clean input samples. Thus, the goal of an attack should be to fool the method into changing its initial
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predictions (predictions when the method is not attacked), independent of the ground truth. Thus, we
attempt to optimize the adversarial attack w.r.t. to the initial flow prediction on the unperturbed input
sample before any attacks, as access to this is almost guaranteed. This helps us ascertain if initial
flow predictions can be used as a proxy to ground truth while optimizing attacks. Thus, in Eq. (4),
Eq. (8), Eq. (9) and there places where applicable Y =Xclean (please refer Appendix E.1). However,
this optimization is only possible for attacks that introduce certain randomness in the initial input
sample, as shown by Eq. (7). This allows for there to exist a non-zero loss between the predictions
on the clean input samples and the perturbed input samples allowing for optimization. We report the
evaluations for CosPGD and PGD attack using the KITTI2015 dataset for 10 interesting methods in
Fig. 6. We choose the optical flow estimation methods on the basis of their performance in Sec. 5
and their performance on i.i.d. samples. For additional evaluation using more models please refer
to Appendix H. We observe in Fig. 6 that there appears a high correlation in the performance of
all considered methods under attack when optimized using the ground truth flow and the initial flow
prediction, Thus, initial flow predictions from methods do serve as a strong proxy to the ground truth
for optimizing attacks. This new finding over a big sample, helps advance study in the reliability of
optical flow methods, even when ground truth predictions are not available.

6 CONCLUSION
NEW

FLOWBENCH is the first robustness benchmarking tool and a novel benchmark for optical flow esti-
mation methods. It currently supports 91 model checkpoints, over distinct datasets, and all relevant
robustness evaluation methods including SotA adversarial attacks and image corruptions. We dis-
cuss the unique features of FLOWBENCH in detail and demonstrate that the library is user-friendly.
Adding new evaluation methods or optical flow estimation methods to FLOWBENCH is easy and
intuitive. In Sec. 5.1, we find that there is a high correlation in the performance of optical flow
estimation methods against targeted attacks using different targets, thus saving compute for future
works as they need to evaluate only against one target. In Sec. 5.2, we observe the methods known
to be SotA on i.i.d. samples are not reliable, and do not generalize well to image corruptions,
demonstrating the gap in current research when considering real-world applications. Additionally,
we observe here that there is no apparent correlation between generalization abilities and the relia-
bility of optical flow estimation methods. In Sec. 5.3, we show that methods from the FlowFormer
family have good i.i.d. performance but are the most unreliable under targeted attacks, also that IRR
stands out to have marginally better reliability. generalization abilities. In Sec. 5.4, we show that,
unlike image classification, increasing the number of learnable parameters does not help increase the
robustness of optical flow estimation methods, however, a couple of RAFT variants have marginally
better generalization abilities even with fewer parameters. These observation helps us conclude that
based on current works, different approaches might be required to attain reliability under attacks and
generalization ability to image corruptions. Lastly, we show that white-box adversarial attacks on
optical flow estimation methods can be independent of the availability of ground truth information,
and can harness the information in the initial flow predictions to optimize attacks, thus overcoming a
huge limitation in the field. Such an in-depth understanding of reliability and generalization abilities
to optical flow estimation methods can only be obtained using our proposed FLOWBENCH. We are
certain that FLOWBENCH will be immensely helpful in gathering more such interesting findings and
its comprehensive and consolidated nature would make things easier for the research community.

Future Work. For optical flow estimation, patch attacks are also interesting and widely stud-
ied (Ranjan et al., 2019; Schrodi et al., 2022; Scheurer et al., 2024). We plan to add such patch
attacks to FLOWBENCH in future iterations. Schmalfuss et al. (2022b) proposed optimizing adver-
sarial noise jointly for the consecutive image frames and also over the entire evaluation set. Only
PCFA supports such optimization regimes in FLOWBENCH, so it would be interesting to extend such
optimization to other adversarial attacks as well. Croce et al. (2021) show that the training methods
used significantly impact the robustness of image classification methods. The same might be true
for optical flow estimation methods, thus robustness evaluations under the lens of different training
setups used would make an interesting extension to the analysis in this work. Lastly, traditional non-
DL-based optical flow estimation methods might be more robust to adversarial attacks than current
DL-based methods. Thus, it would be interesting to study their robustness and hopefully adapt them
to increase the reliability of current methods.
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REPRODUCIBILITY STATEMENT

Every experiment in this work is reproducible and is part of an effort toward open-source work.
FLOWBENCH will be open source and publicly available, including all evaluation logs and model
checkpoint weights. This work intends to help the research community build more reliable and
generalizable optical flow estimation methods such that they are ready for deployment in the real
world even under safety-critical applications. FLOWBENCH is built upon ptlflow and thus any new
model added with ptlflow would most likely be supported by FLOWBENCH as well.

There always exists stochasticity when evaluating adversarial attacks, due to the randomness these
attacks exploit, and when evaluating common corruptions due to different seeds and calculation
approximations made by different python libraries. Therefore, for transparency and reproducibility,
we evaluate different runs on the same seed and different runs of different seeds. We report these
evaluations in Appendix K, using Tab. 2 for adversarial attacks and Tab. 3 for common corruptions,
and observe that the variance is extremely low and the analysis performed in this work still stands.
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FlowBench: A Robustness Benchmark for
Optical Flow Estimation
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Figure 7: Results from work by Anonymous. Here they find a very strong positive correlation
between mean mIoU over the ACDC evaluation dataset (Sakaridis et al., 2021) and mean
mIoU over each 2D Common Corruption (Hendrycks & Dietterich, 2019) over the Cityscapes
dataset (Cordts et al., 2016). All models were trained using the training subset of the Cityscapes
dataset. ACDC is the Adverse Conditions Dataset with Correspondences for Semantic Driving
Scene Understanding captured in similar scenes are cityscapes but under four different domains:
Day/Night, Rain, Snow, and Fog in the wild. ACDC is a community-used baseline for evaluating
the performance of semantic segmentation methods on domain shifts observed in the wild.

– Appendix H.1.6: Evaluations for all models against Adversarial Weather attack, all
four conditions: Fog, Rain, Snow, and Sparks, as targeted (both targets

−→
0 and

−→
−f )

and non-targeted attack.
– Appendix H.2: Evaluations for all models under 2D Common Corruptions and 3D

Common Corruptions at severity 3, for KITTI2015, MPI Sintel (clean) and MPI Sintel
(final) datasets.

• Appendix I: We share the initial prototype of the future website.

• Appendix J: We discuss the limitations of FLOWBENCH.

• Appendix K: We discuss the reproducibility of our evaluations and show that the variance
in metrics is extremely low and our analysis comfortably holds under these variances.

A DO SYNTHETIC CORRUPTIONS REPRESENT THE REAL WORLD?
NEW

In their work Anonymous, they find the correlation between mean mIoU over the ACDC evalua-
tion dataset (Sakaridis et al., 2021) and mean mIoU over each 2D Common Corruption (Hendrycks
& Dietterich, 2019) over the Cityscapes dataset (Cordts et al., 2016). We include Figure 7 from
their work here for ease of understanding. All models were trained using the training subset of the
Cityscapes dataset. ACDC is the Adverse Conditions Dataset with Correspondences for Seman-
tic Driving Scene Understanding captured in similar scenes are cityscapes but under four different
domains: Day/Night, Rain, Snow, and Fog in the wild. ACDC is a community-used baseline for
evaluating the performance of semantic segmentation methods on domain shifts observed in the
wild. They find that there exists a very strong positive correlation between the two. This shows, that
yes, synthetic corruptions can serve as a proxy for the real world. Unfortunately, a similar “in
the wild” captured dataset does not exist for optical flow estimation to evaluate the effect of domain
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shifts on the performance of optical flow methods. However, given that for the task of semantic
segmentation, we find a very high positive correlation between the performance on real-world cor-
ruptions and synthetic corruptions, it is a safe assumption that the same would hold true for optical
flow estimation as well. Thus, in this work, we evaluate against synthetic 2D Common Corrup-
tions (Hendrycks & Dietterich, 2019) and synthetic 3D Common Corruptions (Kar et al., 2022).

B REASONS FOR CATEGORIZING METHODS TO THEIR RESPECTIVE
FAMILIES

NEW

Over the years, various modifications have been proposed for DL-based optical flow estimation
methods. These can be based on the training strategy used or new architectures. However, bar-
ring DIP Zheng et al. (2022) and StarFlow Godet et al. (2021) that appear to have significantly
different architectures, all other optimal flow methods can be categorized into four major families:
FlowNet (Dosovitskiy et al., 2015), PWC (Pyramid, Wrapping, and Cost Volume) (Sun et al., 2018),
RAFT (Teed & Deng, 2020), and FlowFormer (Huang et al., 2022). Following we discuss the rea-
soning for the categorization of each method considered.

B.1 FLOWNET FAMILY NEW

Dosovitskiy et al. (2015) were the first to propose an end-to-end differentiable DL-based architec-
ture for optical flow estimation, FlowNet. Many further works were inspired by FlowNet, making
changes to FlowNet to propose novel optical flow estimation methods. These methods include:

• FlowNet2.0 (Ilg et al., 2017): They improve upon FlowNet by changes to the schedule of
training data usage, using a stacked architecture to include the warping of the second image
with intermediate optical flow, and a sub-network to focus on small displacements.

• LiteFlowNet (Hui et al., 2018): Compared to FlowNet2.0 they use a more effective flow in-
ference approach at each pyramid level through a lightweight cascaded network. They also
use a flow regularization layer to ameliorate the issue of outliers and vague flow boundaries
by using a feature-driven local convolution, and they use feature warping instead of image
warping. They use the same training schedule as FlowNet2.0 but they train their network
stage-wise.

• LiteFlowNet2 (Hui et al., 2020): They improve the accuracy and latency from LiteFlowNet
by making minor architectural changes to LiteFlowNet. They follow the training schedule
of FlowNet2.0 to some extent and perform stage-wise training.

• LiteFlowNet3 (Hui & Loy, 2020): They further improve upon the LiteFlowNet2.0 by
amending each cost vector using an adaptive modulation before the flow decoding to alle-
viate the issue of outliers in the cost volume. Additionally, they replace each potentially
inaccurately predicted optical flow with an accurate one from a near position through a
warping of the flow field. They follow a special training schedule, first training the Lite-
FlowNet2 modules as mentioned in Hui et al. (2020), and then training the entire archi-
tecture again with the LiteFlowNet3 modifications to LiteFlowNet2 following the training
protocol from FlowNet2.0.

B.2 PWC FAMILY NEW

While still using features from different at different scales, warping, and cost volume, Sun et al.
(2018) proposed PWC-Net which with its architectural changes, presented a significant shift in
architectures from the traditional FlowNet. Sun et al. (2018) describe, “PWC-Net uses the current
optical flow estimate to warp the CNN features of the second image. It then uses the warped features
and features of the first image to construct a cost volume, which is processed by a CNN to estimate
the optical flow.” This was faster than FlowNet2.0, easier to train, and significantly outperformed it
on established benchmarks like KITTI2015 (Menze & Geiger, 2015) and MPI Sintel (Butler et al.,
2012). PWC-Net uses a similar training schedule and protocol as FlowNet2.0. Many other works
followed PWC-Net either changing the training strategy or making architectural changes to PWC-
Net to further improve on i.i.d. performance. These methods include:
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• FastFlowNet (Kong et al., 2021): They replace the dual convolution feature pyramid
in PWC-Net with the head enhanced pooling pyramid (HEPP) for enhancing the high-
resolution pyramid feature and reducing model size, then, they propose center dense di-
lated correlation layer (MFC) for constructing compact cost volume while keeping the
large search radius. followed by shuffle block decoders (SBD) at each pyramid level to
regress optical flow with significantly cheaper computation. They follow the same training
protocol mentioned by FlowNet2.0.

• DICL (Wang et al., 2020): They improve upon PWC-Net by decoupling the connection
between 2D displacements and learn the matching costs at each 2D displacement hypoth-
esis independently, i.e., displacement-invariant cost learning. They apply the same 2D
convolution-based matching net independently on each 2D displacement hypothesis to
learn a 4D cost volume and avoid learning a 5D feature volume, thus saving computing
resources. They use the same training protocol as PWC-Net and FlowNet2.0, and use the
data augmentations proposed by VCN.

• HD3 (Yin et al., 2019): They adapt a PWC-Net-like architecture for the decomposition of
the discrete probability distribution instead of the feature representations allowing them to
learn probabilistic pixel correspondences in both optical flow and stereo matching. They
decompose the full match density into multiple scales hierarchically and estimate the local
matching distributions at each scale conditioned on the matching and warping at coarser
scales. This allows the local distributions to be composed together to form the global
match density. They essentially follow the same training protocol as FlowNet2.0 while
omitting some hard examples. Additionally, they use ImageNet1k (Russakovsky et al.,
2015)-pre-trained weights for their pyramid feature extractor.

• IRR (Hur & Roth, 2019): They take inspiration from classical energy minimization ap-
proaches, as well as residual networks to propose an iterative residual refinement, they
show that their proposed IRR can be combined with both FlowNets and PWC-Net. In our
work, we consider their adaptation to PWC-Net as that has better i.i.d. performance. They
use the same training procedure as PWC-Net but additionally set out-of-bound pixels (after
applying augmentations the same as those in FlowNet2.0) as occluded.

• MaskFlowNet (Zhao et al., 2020): Zhao et al. (2020) apart their proposed Occlusion-
Aware Feature Matching Module (OFMM) and Asymmetric Occlusion-Aware Feature
Matching Module (AsymOFMM) in PWC-Net and consists to two cascaded subnetworks
for obtaining dual feature pyramids. Their proposed method helps them overcome the am-
biguity caused due to occlusions in images that induce inaccuracies in the flow fields during
warping. They use the same training protocol as IRR-PWC-Net. However, first, they train
the MaskFlowNetS, then keep its weights frozen while training the entire MaskFlowNet.
They use additional data from KITTI2015 and HD1k dataset (Kondermann et al., 2014) for
fine-tuning on MPI-Sintel.

• MaskFlowNetS (Zhao et al., 2020): Proposed as the first stage of MaskFlowNet, Mask-
FlowNetS inherits the network architecture from PWC-Net, but replaces the feature match-
ing modules (FMMs) by their proposed AsymOFMMs. They use the same training proce-
dure as IRR-PWC-Net.

• ScopeFlow (Bar-Haim & Wolf, 2020): Bar-Haim & Wolf (2020) improve upon IRR-PWC-
net by improving the data sampling process while testing the regularization and augmenta-
tions used to mitigate the bias induced by the training protocols. They keep some aspects
of the training protocols from FlowNet2.0 intact while changing a few like cropping, and
regularization at different stages of the multi-phase training.

• VCN Yang & Ramanan (2019): They improve upon the 4D cost volume used by variants
of the PWC family by proposing volumetric encoder-decoder architectures that efficiently
capture large receptive fields, multi-channel cost volumes that capture multi-dimensional
notions of pixel similarities, and separable volumetric filtering that significantly reduces
computation and parameters while preserving i.i.d. performance. They use a very similar
training procedure as FlowNet2.0 and PWC-Net, however, with fewer iterations.
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B.3 RAFT FAMILY NEW

Teed & Deng (2020) proposed Recurrent All-Pairs Field Transforms (RAFT) to extract per-pixel
features to build a multi-scale 4D correlation volume for all pairs of pixels. Here a recurrent unit
is used to perform lookups on these correlation volumes. They use additional data and fine-tuning
compared to FlowNet2.0. RAFT was a significant architectural change from PWC-Nets and inspired
many future works that made modifications to RAFT to further improve i.i.d. performance. These
methods include:

• CCMR (Jahedi et al., 2024a): They propose adapting RAFT to use attention-based mo-
tion grouping concepts for multi-scale optical flow estimation. CCMR first computes
global multi-scale context features and then uses them to guide the actual motion group-
ing. While iterating both steps over all coarse-to-fine scales, Jahedi et al. (2024a) adapt
cross-covariance image transformers to allow for an efficient realization while maintaining
scale-dependent properties. They use a training procedure similar to MS-RAFT+, after the
traditionally followed training procedure of FlowNet2.0, they additionally finetune on a
mixed set from KITTI and Viper dataset (Richter et al., 2017).

• CRAFT (Sui et al., 2022): CRAFT inherits the flow estimation pipeline of RAFT and
revitalizes the correlation volume computation part with two proposed components: the
Semantic Smoothing Transformer on the features from the second frame, and a Cross-
Frame Attention Layer to compute the correlation volume. Sui et al. (2022) propose that
these two components help suppress spurious correlations in the correlation volume. They
use the same training procedure as RAFT.

• CSFlow (Shi et al., 2022): They propose, “Cross Strip Correlation module (CSC) and
Correlation Regression Initialization module (CRI). CSC utilizes a striping operation across
the target image and the attended image to encode global context into correlation volumes
while maintaining high efficiency. CRI is used to maximally exploit the global context for
optical flow initialization”. They take inspiration from RAFT and adapt the multi-layer
GRU from the stereo estimation task to optical flow. They follow a training procedure very
similar to RAFT.

• Flow1D (Xu et al., 2021a): They take inspiration from transformers (Bao et al., 2022) and
propose a 1D attention operation that is first applied in the vertical direction of the target
image, and then a simple 1D correlation in the horizontal direction of the attended image to
achieve 2D correspondence modeling effect. The directions of attention and correlation can
also be exchanged, resulting in two 3D cost volumes that are concatenated for optical flow
regression, where they adopt RAFT’s framework to estimate the optical flow iteratively.
They follow a very similar training procedure to RAFT, however for harder datasets, they
use additional data for fine-tuning.

• GMA (Jiang et al., 2021a): They adapt an RAFT architecture to include their proposed
global motion aggregation (GMA) module, a transformer-based approach to find long-
range dependencies between pixels in the first image, and perform global aggregation on
the corresponding motion features. This modified RAFT architecture with a GMA further
inspired other architectures and works for optical flow estimation. GMA has a very similar
training procedure to RAFT.

• GMFlow (Xu et al., 2022): They adapt RAFT to identify correspondences in image pairs
by comparing their feature similarities. They use transformer-based modules to enhance
extracted features, followed by self-attention modules for feature matching and flow prop-
agation. Their feature extraction and feature upsampling modules are identical to RAFT.
They follow a very similar training procedure to RAFT.

• GMFlowNet (Zhao et al., 2022): They adopt the iterative update operator of RAFT as the
optimization step for their proposed GMFlowNet. They use their proposed patch-based
overlapping attention (POLA) instead of multi-headed self-attention of transformer blocks
to extract large context features to improve the matching step. They follow a very similar
training procedure to RAFT.

• LCV (Khairi et al., 2024): They propose a lightweight module for learnable cost volume
that adds onto RAFT to improve i.i.d. performance. For training, they initialize their
learnable cost volume kernels to be identity and directly load the pre-trained weights from
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RAFT, and then they follow a similar training schedule as RAFT but with significantly
fewer iterations.

• LLA-Flow (Xu et al., 2023b): They propose the local similarity aggregation for 4D cost
volume and present lightweight operations to diminish the impact of outliers caused by lack
of texture. They apply their module on RAFT to improve i.i.d. performance. They follow
a very similar training procedure to RAFT.

• MS-RAFT+ (Jahedi et al., 2024b): MS-RAFT adapted RAFT for combining hierarchical
concepts at multiple scales. MS-RAFT+ builds on top of MS-RAFT by exploiting an addi-
tional finer scale for estimating the flow, which is made feasible using the on-demand cost
computation proposed by RAFT. They follow a very particular training schedule which is
in parts similar to RAFT, however, due to an overhead of a number of learnable parameters,
requires more data and training time.

• MatchFlow (Dong et al., 2023): They propose a different feature matching extractor
(FME) to be used with RAFT and GMA module, this proposed FME is pre-trained on
a different dataset, which allows for increased i.i.d. performance due to better feature ex-
traction and matching. After incorporating the pre-trained FME, the resultant MatchFlow
is trained very similarly to RAFT.

• RapidFlow (Morimitsu et al., 2024a): Inspired by RAFT, Morimitsu et al. (2024a) propose
Recurrent Adaptable Pyramids with Iterative Decoding. They propose a recurrent feature
encoder that uses a single shared block with efficient 1D layers (NeXt1D) to generate fea-
ture pyramids of variable levels. Their decoder is similar to RAFT, with a few changes
inspired by SKFLow (Sun et al., 2022). They follow a very similar training procedure to
RAFT.

• RPKNet (Morimitsu et al., 2024b): They adapt RAFT to use their proposed Partial Kernel
Convolution (PKConv) layers and Separable Large kernels (SLK). PKConv is used to pro-
duce variable multi-scale features with a single shared block, while SLK is used to capture
large context information with low computational cost. They follow a very similar training
procedure to RAFT.

• SCV (Jiang et al., 2021b): They adapt RAFT to use a sparse correlation volume instead of
a dense correlation volume. They follow a very similar training procedure to RAFT.

• SeparableFlow (Zhang et al., 2021): They propose a separable cost volume module, a
drop-in replacement to RAFT’s correlation cost volumes, that uses non-local aggrega-
tion layers to exploit global context cues and prior knowledge, to disambiguate motions
in poorly constrained ambiguous regions. They follow a training procedure the same as
RAFT.

• SKFlow (Sun et al., 2022): They propose using Super Kernels that allow for larger recep-
tive fields allowing it to recover occluded motions. Finally, they use the non-local GMA
module from GMA for optical flow estimations. They follow a similar training procedure
to RAFT.

• SplatFlow (Wang et al., 2024): They essentially propose to use splatting for feature match-
ing in architectures like RAFT and GMA. As SplatFlow is proposed to be a multi-frame
optical flow estimation method, it requires three frames at a time for training as opposed to
the two frames used by RAFT and GMA. We use their modified version with GMA. This
requires first loading the pr-trained weights of GMA as proposed by GMA, freezing them,
and training the GPU prediction and convex upsampling networks introduced by Splat-
flow. Then, all parameters are fine-tuned using dataset-specific finetuning procedures very
similar to RAFT.

• VideoFlow (Shi et al., 2023a): They propose a multi-frame optical flow estimation method
and use the same iterative flow refinement module as other methods in the RAFT fam-
ily, specifically they use the SKBlocks from SKFlow. For feature extractors, they take
inspiration from FlowFormer (Huang et al., 2022) and use ImageNet1k pre-trained Twins-
SVT (Chu et al., 2021). They use three and five-image frames during training while fol-
lowing training procedures slightly similar to RAFT.

• NeuFlow (Zhang et al., 2024): Inspired by GMFlow, they use transformer-based blocks
to implement global cross-attention, however, they use Flash Attention (Dao et al., 2022)
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for slight speed improvements. They use a very similar upsampling module as GMFlow
and RAFT. However, to obtain feature maps with finer details, they directly extract features
from the original images using a CNN block, instead of using features for matching at the
1
16

th and 1
8

th scale like RAFT and GMFlow. They use a very similar training procedure as
RAFT.

B.4 FLOWFORMER FAMILY NEW

Proposed by Huang et al. (2022), FlowFormer marks a significant shift in the architecture of optical
flow estimation methods compared to the RAFT family.

• FlowFormer (Huang et al., 2022): It is a transformer-based neural network architecture
for optical flow estimation. Huang et al. (2022) describe, FlowFormer tokenizes the 4D
cost volume built from an image pair, encodes the cost tokens into a cost memory with
alternate group transformer (AGT) layers in a latent space, and decodes the cost memory
via a recurrent transformer decoder with dynamic positional cost queries. The two-stage
Twins-SVT (Chu et al., 2021) feature extractor is pre-trained on the ImageNet1k dataset.
After that, the training procedure of the entire FlowFormer is similar to RAFT’s training
procedure.

• FlowFormer++ (Shi et al., 2023b): This is built upon FlowFormer to include Masked Cost
Volume Autoencoding (MCVA) to improve the i.i.d. performance of FlowFormer by pre-
training the cost-volume encoder with a mask encoding strategy proposed by them. Flow-
Former++ requires significantly different pre-training, while the training and fine-tuning
procedures are similar to RAFT.

C DATASET DETAILS

FLOWBENCH supports a total of four distinct optical flow datasets. Following, we describe these
datasets in detail.

C.1 FLYINGTHINGS3D

This is a synthetic dataset proposed by Mayer et al. (2016) largely used for training and evaluation of
optical flow estimation methods. This dataset consists of 25000 stereo frames, of everyday objects
such as chairs, tables, cars, etc. flying around in 3D trajectories. The idea behind this dataset is
to have a large volume of trajectories and random movements rather than focus on a real-world
application. In their work, Dosovitskiy et al. (2015) showed models trained on FlyingThings3D can
generalize to a certain extent to other datasets.

C.2 KITTI2015

Proposed by Menze & Geiger (2015), this dataset is focused on the real-world driving scenario.
It contains a total of 400 pairs of image frames, split equally for training and testing. The image
frames were captured in the wild while driving around on the streets of various cities. The ground-
truth labels were obtained by an automated process.

C.3 MPI SINTEL

Proposed by Butler et al. (2012) and Wulff et al. (2012), this dataset is derived from an open-source
animated short film and consists of a total of 1064 synthetic frames for training and 564 synthetic
frames for testing, both at a resolution of 1024 × 436. The intention of this dataset is to enforce
realism while having a dataset at scale. This dataset is provided as two datasets, which are passes
with more transformations and effects on the frames that originally have constant albedo over time,
these passes are,

• MPI Sintel (clean): This is the clean pass that adds some realism to the images by adding
some spectral effects, like illumination, shadows, and smooth shading.
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• MPI Sintel (final): This is the final pass that adds more realism by adding effects such as
blur due to depth and camera focus, blur due to motion and atmospheric effects such as
snow during snow storms, etc.

C.4 SPRING

Similar to MPI Sintel, Mehl et al. (2023) proposed a new dataset and benchmark for optical flow
estimation which is much larger than any other dataset before. It consists of frames from the open-
source Blender movie “Spring” and consists of 6000 stereo image pairs from 47 sequences with
SotA visual effects at full HD resolution (1920 × 1080 pixels).

D IMPLEMENTATION DETAILS OF THE BENCHMARK

Following we provide details regarding the experiments done for creating the benchmark used in the
analysis.

Compute Resources. Most experiments were done on a single 40 GB NVIDIA Tesla V100 GPU
each, however, MS-RAFT+, FlowFormer, and FlowFormer++ are more compute-intensive, and thus
80GB NVIDIA A100 GPUs or NVIDIA H100 were used for these models, a single GPU for each
experiment.

Datasets Used. Performing adversarial attacks and OOD robustness evaluations are very ex-
pensive and compute-intensive. Thus, performing evaluation using all model-dataset pairs is not
possible given the limited computing resources at our disposal. Thus, for the benchmark, we only
use KITTI2015, MPI Sintel (clean), and MPI Sintel (final) as these are the most commonly used
datasets for evaluation (Ilg et al., 2017; Huang et al., 2022; Schmalfuss et al., 2022b; Schrodi et al.,
2022; Agnihotri et al., 2024).

Metrics Calculation. In Sec. 4 we introduce three new metrics for better understanding our
analysis, given the large scale of the benchmark created. For calculating TARE and NARE values
we used BIM, PGD, and CosPGD attack with step size α=0.01, perturbation budget ϵ = 8

255 under
the ℓ∞-norm bound, as targeted and non-targeted attacks respectively. We use ℓ∞-norm bound as
we observe in Appendix H that there is a high correlation between the performance of optical flow
estimation methods when attacked using ℓ∞-norm bounded attacks and ℓ2-norm bounded attacks.
We use 20 attack iterations for calculating TARE and NARE as we observe in Appendix H ,
that at a lower number of iterations, the gap in performance of different optical flow estimation
methods is small, thus an in-depth analysis would be difficult, and we do not go beyond 20 attack
iterations as computing each attack step for an adversarial attack is very expensive, and as shown
by Agnihotri et al. (2024) and Schmalfuss et al. (2022b), 20 iterations are enough to optimize an
attack to truly understand the performance of the attacked method. For calculating GAE, we use
all 15 2D Common Corruptions: ‘Gaussian Noise’, Shot Noise’, ‘Impulse Noise’, ‘Defocus Blur’,
‘Frosted Glass Blur’, ‘Motion Blur’, ‘Zoom Blur’, ‘Snow’, ‘Frost’, ‘Fog’, ‘Brightness’, ‘Contrast’,
‘Elastic Transform’, ‘Pixelate’, ‘JPEG Compression’, and eight 3D Common Corruptions: ‘Color
Quantization’, ‘Far Focus’, ‘Fog 3D’, ‘ISO Noise’, ‘Low Light’, ‘Near Focus’, ‘XY Motion Blur’,
and ‘Z Motion Blur’. All the common corruptions are at severity 3. Kar et al. (2022) offers more
3D Common Corruptions, however computing them is resource intensive. Thus, given our limited
resources and an overlap in the corruptions between 2D Common Corruptions and 3D Common
Corruptions, we focus on generating 3D Common Corruptions that might be unique from their 2D
counterpart, require fewer sources to generate, and are interesting from an optical flow estimation
perspective.

Calculating the EPE. EPE is the Euclidean distance between the two vectors, where one vector
is the predicted flow by the optical flow estimation method and the other vector is the ground truth
in case of i.i.d. performance evaluations, non-targeted attacks evaluations, and OOD robustness
evaluations, while it is the target flow vector, in case of targeted attacks. For each dataset, the EPE
value is calculated over all the samples of the evaluation set of the respective dataset and then the
mean EPE value is used as the mean-EPE of the respective method over the respective dataset. NEW
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Other Metrics. Apart from EPE, FLOWBENCH also enables calculating a lot of other interesting
metrics, such as ℓ0, ℓ2, ℓ∞, distance between the perturbations of each image before and after a
threat. Apart from these, in all scenarios, we also capture the outlier error, 1-px error, 3-px error,
5-px error and cosine distance between two vectors. These vectors are the same as that in the case of
EPE calculations. We limited the analysis in this work to use EPE, since it is the most commonly
used metric for evaluation, moreover, most works on optical flow estimation (Agnihotri et al., 2024;
Schmalfuss et al., 2022b; Schrodi et al., 2022; Teed & Deng, 2020; Jahedi et al., 2024b) show a very
high correlation between performance evaluations using different metrics.

Models Used. All available checkpoints, as shown in Tab. 1 for MPI Sintel and KITTI2015
dataset were used for creating the benchmark, except the following four models: Separableflow,
SCV, VCN, Unimatch as due to special operations used in these models, they required specific
libraries which were creating conflicts with all the others models, and as most of these models are
very old and do not have performance close to SotA performance, we did not include them.

Adversarial Weather For generating adversarial weather attacks, we followed the implementa-
tion proposed by Schmalfuss et al. (2023). However, generating this attack is highly compute-
intensive, and thus doing so for all models was not possible. Thus, based on the performance and
reliability of all the models, we identified a few (eight) interesting models and only attacked them
using the four different attacks curtailed within adversarial weather. This was done to demonstrate
the capability of FLOWBENCH to perform this attack. The following are the specifications for the
weather attacks:

• Adversarial Weather: Snow (random snowflakes)

– Number of Particles: 3000
– Number of optimization steps: 750

• Adversarial Weather: Rain (rain streaks of length 0.15 with motion blur )

– Number of Particles: 20
– Number of optimization steps: 750

• Adversarial Weather: Fog (random large less opacity particles)

– Number of Particles: 60
– Number of optimization steps: 750

• Adversarial Weather: Sparks (random red sparks)

– Number of Particles: 3000
– Number of optimization steps: 750

Please note, that these specifications are identical to the optimal ones proposed by Schmalfuss et al.
(2023).

E DESCRIPTION OF FLOWBENCH

Following, we describe the benchmarking tool, FLOWBENCH. It is built using pltflow (Morimitsu,
2021), and supports 36 unique architectures and 4 distinct datasets, namely FlyingThings3D (Mayer
et al., 2016), KITTI2015 (Menze & Geiger, 2015), MPI Sintel (Butler et al., 2012) (clean and fi-
nal) and Spring (Mehl et al., 2023) datasets (please refer Appendix C for additional details on the
datasets). It enables training and evaluations on all aforementioned datasets including evaluations
using SotA adversarial attacks such as CosPGD (Agnihotri et al., 2024) and PCFA (Schmalfuss
et al., 2022b), Adversarial weather (Schmalfuss et al., 2023), and other commonly used adversar-
ial attacks like BIM (Kurakin et al., 2018), PGD (Kurakin et al., 2017), FGSM (Goodfellow et al.,
2015), under various lipshitz (lp) norm bounds.

Additionally, it enables evaluations for Out-of-Distribution (OOD) robustness by corrupting the in-
ference samples using 2D Common Corruptions (Hendrycks & Dietterich, 2019) and 3D Common
Corruptions (Kar et al., 2022).

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

We follow the nomenclature set by RobustBench (Croce et al., 2021) and use “threat model” to
define the kind of evaluation to be performed. When “threat model” is defined to be “None”, the
evaluation is performed on unperturbed and unaltered images, if the “threat model” is defined to
be an adversarial attack, for example “PGD”, “CosPGD” or “PCFA”, then FLOWBENCH performs
an adversarial attack using the user-defined parameters. We elaborate on this in Appendix E.1.
Whereas, if “threat model” is defined to be “2DCommonCorruptions” or “3DCommonCorruptions”,
the FLOWBENCH performs evaluations after perturbing the images with 2D Common Corruptions
and 3D Common Corruptions respectively. We elaborate on this in Appendix E.2.

If the queried evaluation already exists in the benchmark provided by this work, then FLOWBENCH
simply retrieves the evaluations, thus saving computation.

E.1 ADVERSARIAL ATTACKS

FLOWBENCH enables the use of all the attacks mentioned in Sec. 2.3 to help users better study the
reliability of their optical flow methods. We choose to specifically include these white-box adver-
sarial attacks as they either serve as the common benchmark for adversarial attacks in classification
literature (FGSM, BIM, PGD, APGD) or they are unique attacks proposed specifically for pixel-wise
prediction tasks (CosPGD) and optical flow estimation (PCFA and Adversarial Weather). These at-
tacks can either be Non-targeted which are designed to simply fool the model into making incorrect
predictions, irrespective of what the model eventually predicts, or can be Targeted, where the model
is fooled to make a certain prediction. Most attacks can be, designed to be either Targeted or Non-
targeted, these include, FGSM, BIM, PGD, APGD, CosPGD and Adversarial Weather. However, by
design, some attacks are limited to being only one of the two, for example, PCFA which is a targeted
attack. Following, we discuss these attacks in detail and highlight their key differences.

FGSM. Assuming a non-targeted attack, given a model fθ and an unperturbed input sample
Xclean and ground truth label Y , FGSM attack adds noise δ to Xclean as follows,

Xadv = Xclean + α · sign∇XcleanL(fθ(X
clean),Y ), (1)

δ = ϕϵ(Xadv −Xclean), (2)

Xadv = ϕr(Xclean + δ). (3)
Here, L(·) is the loss function (differentiable at least once) which calculates the loss between the
model prediction and ground truth, Y . α is a small value of ϵ that decides the size of the step to
be taken in the direction of the gradient of the loss w.r.t. the input image, which leads to the input
sample being perturbed such that the loss increases. Xadv is the adversarial sample obtained after
perturbing Xclean. To make sure that the perturbed sample is semantically indistinguishable from
the unperturbed clean sample to the human eye, steps from Eq. (2) and Eq. (3) are performed. Here,
function ϕϵ is clipping the δ in ϵ-ball for ℓ∞-norm bounded attacks or the ϵ-projection in other
lp-norm bounded attacks, complying with the ℓ∞-norm or other lp-norm constraints, respectively.
While function ϕr clips the perturbed sample ensuring that it is still within the valid input space.
FGSM, as proposed, is a single step attack. For targeted attacks, Y is the target and α is multiplied
by -1 so that a step is taken to minimize the loss between the model’s prediction and the target
prediction.

BIM. This is the direct extension of FGSM into an iterative attack method. In FGSM, Xclean was
perturbed just once. While in BIM, Xclean is perturbed iteratively for time steps t ∈ [0,T ], such
that t ∈ Z+, where T are the total number of permissible attack iterations. This changes the steps
of the attack from FGSM to the following,

Xadvt+1 = Xadvt + α · sign∇XadvtL(fθ(X
advt),Y ), (4)

δ = ϕϵ(Xadvt+1 −Xclean), (5)

Xadvt+1 = ϕr(Xclean + δ). (6)

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Targeted CosPGD Attack (Target
−→
0 )

Clean Input Initial Prediction Target Flow Perturbed Input Final Prediction

Targeted CosPGD Attack (Target
−→
−f )

Clean Input Initial Prediction Target Flow Perturbed Input Final Prediction

PCFA Attack (Target
−→
−f )

Clean Input Initial Prediction Target Flow Perturbed Input Final Prediction

Non-targetted Adversarial Weather (Snow) Attack
Clean Input Ground Truth Initial Prediction Perturbed Input Final Prediction

Figure 8: Examples of MPI Sintel images perturbed by the mentioned adversarial attacks and the
optical flow predictions using FlowFormer++. These examples are intended to show the versatility
of FLOWBENCH.

Here, at t=0, Xadvt=Xclean.

PGD. Since in BIM, the initial prediction always started from Xclean, the attack required a sig-
nificant amount of steps to optimize the adversarial noise and yet it was not guaranteed that in the
permissible ϵ-bound, Xadvt+1 was far from Xclean. Thus, PGD proposed introducing stochasticity
to ensure random starting points for attack optimization. They achieved this by perturbing Xclean

with U(−ϵ, ϵ), a uniform distribution in [−ϵ, ϵ], before making the first prediction, such that, at t=0

Xadvt = ϕr(Xclean + U(−ϵ, ϵ)). (7)

APGD. Auto-PGD is an effective extension to the PGD attack that effectively scales the step size
α over attack iterations considering the compute budget and the success rate of the attack.

CosPGD. All previously discussed attacks were proposed for the image classification task. Here,
the input sample is a 2D image of resolution H×W, where H and W are the height and width of the
spatial resolution of the sample, respectively. Pixel-wise information is inconsequential for image
classification. This led to the pixel-wise loss L(·) being aggregated to L(·), as follows,

L(fθ(X
advt),Y ) =

1

H×W

∑
i∈H×W

L(fθ(Xadvt)i,Yi). (8)

This aggregation of L(·) fails to account for pixel-wise information available in tasks other than
image classification, such as pixel-wise prediction tasks like Optical Flow estimation. Thus, in their
work Agnihotri et al. (2024) propose an effective extension of the PGD attack that takes pixel-wise
information into account by scaling L(·) by the alignment between the distribution of the predictions
and the distributions of Y before aggregating leading to a better-optimized attack, modifying Eq. (4)
as follows,

Xadvt+1 = Xadvt + α · sign∇Xadvt

∑
i∈H×W

cos
(
ψ(fθ(X

advt)i),Ψ(Yi)
)
· L

(
fθ(X

advt)i,Yi

)
.

(9)
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Where, functions ψ and Ψ are used to obtain the distribution over the predictions and Yi, respec-
tively, and the function cos calculates the cosine similarity between the two distributions. CosPGD
is the unified SotA adversarial attack for pixel-wise prediction tasks.

PCFA. Recently proposed by Schmalfuss et al. (2022b), is the SotA targeted adversarial at-
tack specifically designed for optical flow estimation. It optimizes the input perturbation δ =
Xadvt − Xclean within a given l2 bound to obtain a given target flow Y targ. Mathematically,
PCFA transforms the constrained optimization problem to find the most destructive perturbation un-
der an l2 constraint ε2 into an unconstrained optimization problem by adding a term that penalizes
deviations from the l2 constraint:

Xadvt+1 = Xadvt +argmin
δ̂

(L(fθ(Xadvt),Y targ)+µ ·ReLU(∥δ̂∥22− (ε2
√
2×H ×W )2)) (10)

Here, L(·) is a generic loss function, like EPE or cosine distance. The penalty scaling parameter µ
influences how severely deviations from the per-pixel l2 bound ε2 are penalized. The optimization
problem argmin

δ̂

(·) is solved with an L-BFGS optimizer.

Adversarial Weather. Unlike the previous attacks which introduced per-pixel modifications, ad-
versarial weather Schmalfuss et al. (2023; 2022a) attacks optical flow methods through optimizing
the motion trajectories of rendered weather particles P like snow flakes, rain drops or fog clouds.
The particle trajectories are modelled as positions P = {P1,P2} in the two frames I1, I2. Con-
sequently, Xadv(P ) is generated by differentiably rendering the particles with their respective 3D
positions to the 2D images. The update step optimizes the particle positions to achieve a certain
target flow Y targ while simultaneously limiting the position offset size δP t = P init − P t:

Xadv(P t+1) = Xadv
(
P t + α · ∇P t

(
EPE(fθ(Xadv(P t)),Y targ) +

∑
I∈1,2

βI
|P|

∑
j∈P

∥δj
P t

I
∥22

djI

))
.

(11)
Here, β balances the two optimization goals of reaching the target flow and limiting trajectory off-
sets. The allowed trajectory offsets are further scaled with the particle depth d in the scene, to
generate visually pleasing results.

Fig. 8, shows adversarial examples created using the SotA attacks and how they affect the model
predictions.

E.2 OUT-OF-DISTRIBUTION ROBUSTNESS

While adversarial attacks help explore vulnerabilities of inefficient feature representations learned by
a model, another important aspect of reliability is generalization ability. Especially, generalization
to previously unseen samples or samples from significantly shifted distributions compared to the
distribution of the samples seen while learning model parameters. As one cannot cover all possible
scenarios during model training, a certain degree of generalization ability is expected from models.
However, multiple works (Hendrycks & Dietterich, 2019; Kar et al., 2022; Hoffmann et al., 2021)
showed that models are surprisingly less robust to distribution shifts, even those that can be caused
by commonly occurring phenomena such as weather changes, lighting changes, etc. This makes the
study of Out-of-Distribution (OOD) robustness an interesting avenue for research. Thus, to facilitate
the study of robustness to such commonly occurring corruptions, FLOWBENCH enables evaluating
against prominent image corruption methods. Following, we describe these methods in detail.

2D Common Corruptions. Hendrycks & Dietterich (2019) propose introducing distribution shift
in the input samples by perturbing images with a total of 15 synthetic corruptions that could occur
in the real world. These corruptions include weather phenomena such as fog, and frost, digital
corruptions such as jpeg compression, pixelation, and different kinds of blurs like motion, and zoom
blur, and noise corruptions such as Gaussian and shot noise amongst others corruption types. Each
of these corruptions can perturb the image at 5 different severity levels between 1 and 5. The final
performance of the model is the mean of the model’s performance on all the corruptions, such that

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025
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Low Light Near Focus XY-Motion blur Z-Motion Blur

Figure 9: Examples of images from KITTI2015 corrupted using 3D Common Corruptions for eval-
uation of OOD robustness.

every corruption is used to perturb each image in the evaluation dataset. Since these corruptions are
applied to a 2D image, they are collectively termed 2D Common Corruptions.

3D Common Corruptions. Since the real world is 3D, Kar et al. (2022) extend 2D Common
Corruptions to formulate more realistic-looking corruptions by leveraging depth information (syn-
thetic depth information when real depth is not readily available) and luminescence angles. They
name these image corruptions as 3D Common Corruptions. Fig. 9, shows examples of KITTI2015
images corrupted using 3D Common Corruptions.

F MODEL ZOO

The trained checkpoints for all models available in FLOWBENCH can be obtained using the follow-
ing lines of code:

from flowbench.evals import load_model
model = load_model(model_name='RAFT', dataset='KITTI2015')

Each model checkpoint can be retrieved with the pair of ‘model name’, the name of the model,
and ‘dataset’, the dataset for which the checkpoint was last fine-tuned. In Table 1, we provide a
comprehensive look-up table for all ‘model name’ and ‘dataset’ pairs for which trained checkpoints
are available in FlowBench. NEW

G FLOWBENCH USAGE DETAILS

Following we provide a detailed description of the evaluation functions and their arguments provided
in FlowBench.

G.1 ADVERSARIAL ATTACKS

To evaluate a model for a given dataset, on an attack, the following lines of code are required.

from flowbench.evals import evaluate
model, results = evaluate(model_name='RAFT', dataset='KITTI2015',

threat_model='CosPGD', iterations=20, alpha=0.01,
epsilon=8/255, lp_norm='Linf', targeted=True,
optim_wrt='ground_truth', retrieve_existing=True)

The argument description is as follows:

• ‘model name’ is the name of the optical flow estimation method to be used, given as a
string.

• ‘dataset’ is the name of the dataset to be used also given as a string.

• ‘threat model’ is the name of the adversarial attack to be used, given as a string.

• ‘iterations’ are the number of attack iterations, given as an integer.
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Table 1: Overview of all available model checkpoints (model X, trained for dataset Y) in FLOW-
BENCH.

Model
Dataset

Method Family TimeFlyingThings3D KITTI2015 MPI Sintel
(Mayer et al., 2016) (Menze & Geiger, 2015) (Butler et al., 2012)

CCMR (Jahedi et al., 2024a) ✗ ✓ ✓ RAFT January 2024
CRAFT (Sui et al., 2022) ✓ ✓ ✓ RAFT March 2022
CSFlow (Shi et al., 2022) ✓ ✓ ✗ RAFT February 2022
DICL (Wang et al., 2020) ✓ ✓ ✓ PWC October 2020
DIP (Zheng et al., 2022) ✓ ✓ ✓ Deep Inverse Patchmatch April 2022
FastFlowNet (Kong et al., 2021) ✓ ✓ ✓ PWC March 2021
Flow1D (Xu et al., 2021a) ✓ ✓ ✓ RAFT April 2021
FlowFormer (Huang et al., 2022) ✓ ✓ ✓ FlowFormer March 2022
FlowFormer++ (Shi et al., 2023b) ✓ ✓ ✓ FlowFormer March 2023
FlowNet2.0 (Ilg et al., 2017) ✓ ✗ ✗ FlowNet December 2016
GMA (Jiang et al., 2021a) ✓ ✓ ✓ RAFT April 2021
GMFlow (Xu et al., 2022) ✓ ✓ ✓ RAFT November 2021
GMFlowNet (Zhao et al., 2022) ✓ ✓ ✓ RAFT March 2022
HD3 (Yin et al., 2019) ✓ ✓ ✓ PWC December 2018
IRR (Hur & Roth, 2019) ✓ ✓ ✓ PWC April 2019
LCV (Khairi et al., 2024) ✓ ✗ ✗ RAFT July 2020
LiteFlowNet (Hui et al., 2018) ✓ ✓ ✓ FlowNet May 2018
LiteFlowNet2 (Hui et al., 2020) ✗ ✓ ✓ FlowNet February 2020
LiteFlowNet3 (Hui & Loy, 2020) ✗ ✓ ✓ FlowNet July 2020
LLA-Flow (Xu et al., 2023b) ✓ ✓ ✓ RAFT April 2023
MaskFlowNetS (Zhao et al., 2020) ✓ ✗ ✓ PWC March 2023
MaskFlowNet (Zhao et al., 2020) ✗ ✓ ✓ PWC March 2023
MS-RAFT+ (Jahedi et al., 2024b) ✓ ✓ ✓ RAFT October 2022
MatchFlow (Dong et al., 2023) ✓ ✓ ✓ RAFT March 2023
NeuFlow (Zhang et al., 2024) ✗ ✗ ✓ FlowNet March 2024
PWC-Net (Sun et al., 2018) ✓ ✗ ✓ PWC September 2017
RapidFlow (Morimitsu et al., 2024a) ✓ ✓ ✓ RAFT May 2024
RAFT (Teed & Deng, 2020) ✓ ✓ ✓ RAFT March 2020
RPKNet (Morimitsu et al., 2024b) ✓ ✓ ✓ RAFT March 2024
ScopeFlow (Bar-Haim & Wolf, 2020) ✓ ✓ ✓ PWC February 2020
SCV (Jiang et al., 2021b) ✓ ✓ ✓ RAFT April 2021
SeparableFlow (Zhang et al., 2021) ✓ ✓ ✓ RAFT October 2021
SKFlow (Sun et al., 2022) ✓ ✓ ✓ RAFT November 2022
SplatFlow (Wang et al., 2024) ✗ ✓ ✗ RAFT January, 2024
StarFlow (Godet et al., 2021) ✓ ✓ ✓ SSRFlow July 2020
Unimatch (Xu et al., 2023a) ✓ ✗ ✗ RAFT November 2022
VCN (Yang & Ramanan, 2019) ✓ ✗ ✗ PWC December 2019
VideoFlow (Shi et al., 2023a) ✓ ✓ ✓ RAFT March 2023

• ‘epsilon’ is the permissible perturbation budget ϵ given a floating point (float).
• ‘alpha’ is the step size of the attack, α, given as a floating point (float).
• ‘lp norm’ is the Lipschitz continuity norm (lp-norm) to be used for bounding the perturba-

tion, possible options are ‘Linf’ and ‘L2’ given as a string.
• ‘targeted’ is a boolean flag that decides if the attack must be targeted or not. If tar-

geted=‘True’, then by default the target is
−→
0 , passed as target=‘zero’, this can be changed

to negative of the initial flow by passing target=‘negative’.
• ‘optim wrt’ decides wrt what attack should be optimized, available choices are

‘ground truth’ and ‘initial flow’ as string. Please note, this only works well with attacks
that utilize Eq. (7).

• ‘retrieve existing’ is a boolean flag, which when set to ‘True’ will retrieve the evaluation
from the benchmark if the queried evaluation exists in the benchmark provided by this
work, else FLOWBENCH will perform the evaluation. If the ‘retrieve existing’ boolean
flag is set to ‘False’ then FLOWBENCH will perform the evaluation even if the queried
evaluation exists in the provided benchmark.

G.2 ADVERSARIAL WEATHER

As an attack, adversarial weather works slightly different compared to other adversarial attacks, thus
we additionally mention the commands for using adversarial weather.

from flowbench.evals import evaluate
model, results = evaluate(model_name='RAFT', dataset='KITTI2015',

threat_model='Adversarial_Weather', weather=`snow',
num_particles=10000, targeted=True,
retrieve_existing=True)

The argument description is as follows:
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• ‘model name’ is the name of the optical flow estimation method to be used, given as a
string.

• ‘dataset’ is the name of the dataset to be used also given as a string.
• ‘threat model’ is the name of the adversarial attack to be used, given as a string.
• ‘weather’ is the name of the weather condition in adversarial weather attack to be used,

given as a string, options include ‘snow’, ‘fog’, ‘rain’ and ‘sparks’.
• ‘num particles’ is the number of particles per frame to be used, given as a integer.
• ‘targeted’ is a boolean flag that decides if the attack must be targeted or not. If tar-

geted=‘True’, then by default the target is
−→
0 , passed as target=‘zero’, this can be changed

to negative of the initial flow by passing target=‘negative’.
• ‘optim wrt’ decides wrt what attack should be optimized, available choices are

‘ground truth’ and ‘initial flow’ as string. Please note, this only works well with attacks
that utilize Eq. (7).

• ‘retrieve existing’ is a boolean flag, which when set to ‘True’ will retrieve the evaluation
from the benchmark if the queried evaluation exists in the benchmark provided by this
work, else FLOWBENCH will perform the evaluation. If the ‘retrieve existing’ boolean
flag is set to ‘False’ then FLOWBENCH will perform the evaluation even if the queried
evaluation exists in the provided benchmark.

G.3 2D COMMON CORRUPTIONS

To evaluate a model for a given dataset, with 2D Common Corruptions, the following lines of code
are required.

from flowbench.evals import evaluate
model, results = evaluate(model_name='RAFT', dataset='KITTI2015',

threat_model='2DCommonCorruption',
severity=3, retrieve_existing=True)

The argument description is as follows:

• ‘model name’ is the name of the optical flow estimation method to be used, given as a
string.

• ‘dataset’ is the name of the dataset to be used also given as a string.
• ‘threat model’ is the name of the common corruption to be used, given as a string.
• ‘severity’ is the severity of the corruption, given as an integer between 1 and 5 (both inclu-

sive).
• ‘retrieve existing’ is a boolean flag, which when set to ‘True’ will retrieve the evaluation

from the benchmark if the queried evaluation exists in the benchmark provided by this
work, else FLOWBENCH will perform the evaluation. If the ‘retrieve existing’ boolean
flag is set to ‘False’ then FLOWBENCH will perform the evaluation even if the queried
evaluation exists in the provided benchmark.

FLOWBENCH supports the following 2D Common Corruption: ‘gaussian noise’, shot noise’, ‘im-
pulse noise’, ‘defocus blur’, ‘frosted glass blur’, ‘motion blur’, ‘zoom blur’, ‘snow’, ‘frost’, ‘fog’,
‘brightness’, ‘contrast’, ‘elastic’, ‘pixelate’, ‘jpeg’. For the evaluation, FLOWBENCH will evaluate
the model on the validation images from the respective dataset corrupted using each of the afore-
mentioned corruptions for the given severity, and then report the mean performance over all of them.

G.4 3D COMMON CORRUPTIONS

To evaluate a model for a given dataset, with 3D Common Corruptions, the following lines of code
are required.

from flowbench.evals import evaluate
model, results = evaluate(model_name='RAFT', dataset='KITTI2015',
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threat_model='3DCommonCorruption',
severity=3, retrieve_existing=True)

The argument description is as follows:

• ‘model name’ is the name of the optical flow estimation method to be used, given as a
string.

• ‘dataset’ is the name of the dataset to be used also given as a string.

• ‘threat model’ is the name of the common corruption to be used, given as a string.

• ‘severity’ is the severity of the corruption, given as an integer between 1 and 5 (both inclu-
sive).

• ‘retrieve existing’ is a boolean flag, which when set to ‘True’ will retrieve the evaluation
from the benchmark if the queried evaluation exists in the benchmark provided by this
work, else FLOWBENCH will perform the evaluation. If the ‘retrieve existing’ boolean
flag is set to ‘False’ then FLOWBENCH will perform the evaluation even if the queried
evaluation exists in the provided benchmark.

FLOWBENCH supports the following 3D Common Corruption: ‘color quant’, ‘far focus’, ‘fog 3d’,
‘iso noise’, ‘low light’, ‘near focus’, ‘xy motion blur’, and ‘z motion blur’. For the evaluation,
FLOWBENCH will evaluate the model on the validation images from the respective dataset cor-
rupted using each of the aforementioned corruptions for the given severity, and then report the mean
performance over all of them.

H ADDITIONAL RESULTS

Following we include additional results from the benchmark made using FLOWBENCH.

H.1 ADVERSARIAL ATTACKS

Here we report additional results for all adversarial attacks.

H.1.1 FGSM ATTACK
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Figure 10: Evaluations for non-targeted FGSM attack under ℓ∞-norm bound using the KITTI2015
dataset. The attack was optimized w.r.t. the ground truth predictions.

Here we report the evaluations using FGSM attack, both as targeted (both targets:
−→
0 and

−→
−f ) and

non-targeted attacks optimized under the ℓ∞-norm bound and the ℓ2-norm bound. For ℓ∞-norm
bound, perturbation budget ϵ = 8

255 , while for ℓ2-norm bound, perturbation budget ϵ = 64
255 .

Attack evaluations include Fig. 10, Fig. 11, Fig. 12, Fig. 13, Fig. 14, Fig. 15, Fig. 16, Fig. 17, Fig. 18,
Fig. 19, Fig. 20, Fig. 21, Fig. 22, Fig. 23, and Fig. 24.
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Figure 11: Evaluations for targeted FGSM attack with target
−→
0 under ℓ∞-norm bound using the

KITTI2015 dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 12: Evaluations for targeted FGSM attack with target
−→
0 under ℓ2-norm bound using the

KITTI2015 dataset. The attack was optimized w.r.t. the ground truth predictions.

H.1.2 BIM ATTACK

Here we report the evaluations using BIM attack, both as targeted (both targets:
−→
0 and

−→
−f ) and non-

targeted attacks optimized under the ℓ∞-norm bound and the ℓ2-norm bound over multiple attack
iterations. For ℓ∞-norm bound, perturbation budget ϵ = 8

255 , and step size α=0.01, while for ℓ2-
norm bound, perturbation budget ϵ = 64

255 and step size α=0.1. Attack evaluations include Fig. 25,
Fig. 26, Fig. 27, Fig. 28, Fig. 29, Fig. 30, Fig. 31, Fig. 32, Fig. 33, Fig. 34, Fig. 35, Fig. 36, Fig. 37,
Fig. 38, and Fig. 39.

H.1.3 PGD ATTACK

Here we report the evaluations using PGD attack, both as targeted (both targets:
−→
0 and

−→
−f ) and

non-targeted attacks optimized under the ℓ∞-norm bound and the ℓ2-norm bound over multiple
attack iterations. For ℓ∞-norm bound, perturbation budget ϵ = 8

255 , and step size α=0.01, while
for ℓ2-norm bound, perturbation budget ϵ = 64

255 and step size α=0.1. Attack evaluations include
Fig. 40, Fig. 41, Fig. 42, Fig. 43, Fig. 44, Fig. 45, Fig. 46, Fig. 47, Fig. 48, Fig. 49, Fig. 50, Fig. 51,
Fig. 52, Fig. 53, and Fig. 54.
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Figure 13: Evaluations for targeted FGSM attack with target
−→
−f under ℓ∞-norm bound using the

KITTI2015 dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 14: Evaluations for targeted FGSM attack with target
−→
−f under ℓ2-norm bound using the

KITTI2015 dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 15: Evaluations for non-targeted FGSM attack under ℓ∞-norm bound using the MPI Sintel
(clean) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 16: Evaluations for targeted FGSM attack with target
−→
0 under ℓ∞-norm bound using the

MPI Sintel (clean) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 17: Evaluations for targeted FGSM attack with target
−→
0 under ℓ2-norm bound using the MPI

Sintel (clean) dataset. The attack was optimized w.r.t. the ground truth predictions.

0.000 0.005 0.010 0.015 0.020 0.025 0.030
Epsilon

0

2

4

6

8

10

12

14

E
PE

 w
.r.

t. 
G

ro
un

d 
Tr

ut
h

Sintel-Clean - FGSM - Negative-Target - L

Model
CCMR
CRAFT
DICL-Flow
DIP
FastFlownet
Flow1D
FlowFormer

FlowFormer++
GMA
GMFlow
HD3
LiteFlowNet
LiteFlowNet2

LiteFlowNet3
LLA-Flow
MaskFlownet
MS-RAFT+
PWCNet
RAFT

RAPIDFlow
RPKNet
ScopeFlow
SKFlow
STaRFlow
VideoFlow

0.000 0.005 0.010 0.015 0.020 0.025 0.030
Epsilon

22

24

26

28

30

E
PE

 w
.r.

t. 
Ta

rg
et

 F
lo

w

Sintel-Clean - FGSM - Negative-Target - L

Model
CCMR
CRAFT
DICL-Flow
DIP
FastFlownet
Flow1D
FlowFormer

FlowFormer++
GMA
GMFlow
HD3
LiteFlowNet
LiteFlowNet2

LiteFlowNet3
LLA-Flow
MaskFlownet
MS-RAFT+
PWCNet
RAFT

RAPIDFlow
RPKNet
ScopeFlow
SKFlow
STaRFlow
VideoFlow

Figure 18: Evaluations for targeted FGSM attack with target
−→
−f under ℓ∞-norm bound using the

MPI Sintel (clean) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 19: Evaluations for targeted FGSM attack with target
−→
−f under ℓ2-norm bound using the

MPI Sintel (clean) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 20: Evaluations for non-targeted FGSM attack under ℓ∞-norm bound using the MPI Sintel
(final) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 21: Evaluations for targeted FGSM attack with target
−→
0 under ℓ∞-norm bound using the

MPI Sintel (final) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 22: Evaluations for targeted FGSM attack with target
−→
0 under ℓ2-norm bound using the MPI

Sintel (final) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 23: Evaluations for targeted FGSM attack with target
−→
−f under ℓ∞-norm bound using the

MPI Sintel (final) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 24: Evaluations for targeted FGSM attack with target
−→
−f under ℓ2-norm bound using the

MPI Sintel (final) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 25: Evaluations for non-targeted BIM attack under ℓ∞-norm bound using the KITTI2015
dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 26: Evaluations for targeted BIM attack with target
−→
0 under ℓ∞-norm bound using the

KITTI2015 dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 27: Evaluations for targeted BIM attack with target
−→
0 under ℓ2-norm bound using the

KITTI2015 dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 28: Evaluations for targeted BIM attack with target
−→
−f under ℓ∞-norm bound using the

KITTI2015 dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 29: Evaluations for targeted BIM attack with target
−→
−f under ℓ2-norm bound using the

KITTI2015 dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 30: Evaluations for non-targeted BIM attack under ℓ∞-norm bound using the MPI Sintel
(clean) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 31: Evaluations for targeted BIM attack with target
−→
0 under ℓ∞-norm bound using the MPI

Sintel (clean) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 32: Evaluations for targeted BIM attack with target
−→
0 under ℓ2-norm bound using the MPI

Sintel (clean) dataset. The attack was optimized w.r.t. the ground truth predictions.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Num. of Attack Iterations

15

20

25

30

E
PE

 w
.r.

t. 
Ta

rg
et

 F
lo

w

Model
CCMR
CRAFT
DICL-Flow
DIP
FastFlownet
Flow1D
FlowFormer

FlowFormer++
GMA
GMFlow
HD3
LiteFlowNet
LiteFlowNet2

LiteFlowNet3
LLA-Flow
MaskFlownet
MS-RAFT+
PWCNet
RAFT

RAPIDFlow
RPKNet
ScopeFlow
SKFlow
STaRFlow
VideoFlow

Sintel-Clean - BIM - Negative Target - L

Figure 33: Evaluations for targeted BIM attack with target
−→
−f under ℓ∞-norm bound using the MPI

Sintel (clean) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 34: Evaluations for targeted BIM attack with target
−→
−f under ℓ2-norm bound using the MPI

Sintel (clean) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 35: Evaluations for non-targeted BIM attack under ℓ∞-norm bound using the MPI Sintel
(final) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 36: Evaluations for targeted BIM attack with target
−→
0 under ℓ∞-norm bound using the MPI

Sintel (final) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 37: Evaluations for targeted BIM attack with target
−→
0 under ℓ2-norm bound using the MPI

Sintel (final) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 38: Evaluations for targeted BIM attack with target
−→
−f under ℓ∞-norm bound using the MPI

Sintel (final) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 39: Evaluations for targeted BIM attack with target
−→
−f under ℓ2-norm bound using the MPI

Sintel (final) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 40: Evaluations for non-targeted PGD attack under ℓ∞-norm bound using the KITTI2015
dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 41: Evaluations for targeted PGD attack with target
−→
0 under ℓ∞-norm bound using the

KITTI2015 dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 42: Evaluations for targeted PGD attack with target
−→
0 under ℓ2-norm bound using the

KITTI2015 dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 43: Evaluations for targeted PGD attack with target
−→
−f under ℓ∞-norm bound using the

KITTI2015 dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 44: Evaluations for targeted PGD attack with target
−→
−f under ℓ2-norm bound using the

KITTI2015 dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 45: Evaluations for non-targeted PGD attack under ℓ∞-norm bound using the MPI Sintel
(clean) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 46: Evaluations for targeted PGD attack with target
−→
0 under ℓ∞-norm bound using the MPI

Sintel (clean) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 47: Evaluations for targeted PGD attack with target
−→
0 under ℓ2-norm bound using the MPI

Sintel (clean) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 48: Evaluations for targeted PGD attack with target
−→
−f under ℓ∞-norm bound using the MPI

Sintel (clean) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 49: Evaluations for targeted PGD attack with target
−→
−f under ℓ2-norm bound using the MPI

Sintel (clean) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 50: Evaluations for non-targeted PGD attack under ℓ∞-norm bound using the MPI Sintel
(final) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 51: Evaluations for targeted PGD attack with target
−→
0 under ℓ∞-norm bound using the MPI

Sintel (final) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 52: Evaluations for targeted PGD attack with target
−→
0 under ℓ2-norm bound using the MPI

Sintel (final) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 53: Evaluations for targeted PGD attack with target
−→
−f under ℓ∞-norm bound using the MPI

Sintel (final) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 54: Evaluations for targeted PGD attack with target
−→
−f under ℓ2-norm bound using the MPI

Sintel (final) dataset. The attack was optimized w.r.t. the ground truth predictions.
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H.1.4 COSPGD ATTACK
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Figure 55: Evaluations for non-targeted CosPGD attack under ℓ∞-norm bound using the KITTI2015
dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 56: Evaluations for targeted CosPGD attack with target
−→
0 under ℓ∞-norm bound using the

KITTI2015 dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 57: Evaluations for targeted CosPGD attack with target
−→
0 under ℓ2-norm bound using the

KITTI2015 dataset. The attack was optimized w.r.t. the ground truth predictions.

Here we report the evaluations using CosPGD attack, both as targeted (both targets:
−→
0 and

−→
−f )

and non-targeted attacks optimized under the ℓ∞-norm bound and the ℓ2-norm bound over multiple
attack iterations. For ℓ∞-norm bound, perturbation budget ϵ = 8

255 , and step size α=0.01, while
for ℓ2-norm bound, perturbation budget ϵ = 64

255 and step size α=0.1. Attack evaluations include
Fig. 55, Fig. 56, Fig. 57, Fig. 58, Fig. 59, Fig. 60, Fig. 61, Fig. 62, Fig. 63, Fig. 64, Fig. 65, Fig. 66,
Fig. 67, Fig. 68, and Fig. 69.
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Figure 58: Evaluations for targeted CosPGD attack with target
−→
−f under ℓ∞-norm bound using the

KITTI2015 dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 59: Evaluations for targeted CosPGD attack with target
−→
−f under ℓ2-norm bound using the

KITTI2015 dataset. The attack was optimized w.r.t. the ground truth predictions.

H.1.5 PCFA ATTACK

Here we report the evaluations using PCFA attack, as targeted (both targets:
−→
0 and

−→
−f ) optimized

under the ℓ2-norm bound over multiple attack iterations. Here the perturbation budget ϵ = 0.05 and
step size α = 1e− 7. Attack evaluations include Fig. 70 and Fig. 71.

H.1.6 ADVERSARIAL WEATHER ATTACK

Here we report the evaluations using different Adversarial Weather, both as targeted (both targets:
−→
0

and
−→
−f ) and non-targeted attacks. Attack evaluations include Fig. 72, Fig. 73, Fig. 74 and Fig. 75.

H.2 COMMON CORRUPTIONS OVERVIEW

Following we provide an overview of the performance over all corruptions. This is reported in
Fig. 76.

H.3 2D COMMON CORRUPTIONS

Here we report evaluations using different 2D common corruptions over all considered datasets.
OOD Robustness evaluations with 2D Common Corruptions include Fig. 77, Fig. 78 and Fig. 79.

H.4 3D COMMON CORRUPTIONS

Here we report evaluations using different considered 3D common corruptions over all considered
datasets. OOD Robustness evaluations with 3D Common Corruptions include Fig. 80, Fig. 81 and
Fig. 82.

50



2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Num. of Attack Iterations

0

100

200

300

E
PE

 w
.r.

t. 
G

ro
un

d 
Tr

ut
h

Model
CCMR
CRAFT
DICL-Flow
DIP
FastFlownet
Flow1D
FlowFormer

FlowFormer++
GMA
GMFlow
HD3
LiteFlowNet
LiteFlowNet2

LiteFlowNet3
LLA-Flow
MaskFlownet
MS-RAFT+
PWCNet
RAFT

RAPIDFlow
RPKNet
ScopeFlow
SKFlow
STaRFlow
VideoFlow

Sintel-Clean - CosPGD - Untargeted - L

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Num. of Attack Iterations

2

4

6

E
PE

 w
.r.

t. 
G

ro
un

d 
Tr

ut
h

Model
CCMR
CRAFT
DICL-Flow
DIP
FastFlownet
Flow1D
FlowFormer

FlowFormer++
GMA
GMFlow
HD3
LiteFlowNet
LiteFlowNet2

LiteFlowNet3
LLA-Flow
MaskFlownet
MS-RAFT+
PWCNet
RAFT

RAPIDFlow
RPKNet
ScopeFlow
SKFlow
STaRFlow
VideoFlow

Sintel-Clean - CosPGD - Untargeted - L2

Figure 60: Evaluations for non-targeted CosPGD attack under ℓ∞-norm bound using the MPI Sintel
(clean) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 61: Evaluations for targeted CosPGD attack with target
−→
0 under ℓ∞-norm bound using the

MPI Sintel (clean) dataset. The attack was optimized w.r.t. the ground truth predictions.

I INITIAL PROTOTYPE OF THE FUTURE WEBSITE
NEW

In Figure 83 we share a screenshot from our prototype website currently under work, that would
help better understand the metrics. In this screenshot, the methods are ranked based on their EPE
w.r.t. the ground truth flow under non-targeted CosPGD attack at 20 attack iterations under the ℓ∞-
norm bound (lower means the method is more robust) evaluated using the KITTI2015 dataset. We
are currently designing it to make the numbers and column headings better visible to the users, and
the users can dynamically rank these based on any of the columns. We will host the website after
acceptance.

J LIMITATIONS

Benchmarking optical flow estimation methods is a compute and labor-intensive endeavor. Thus,
best utilizing available resources we use FLOWBENCH to benchmark a limited number of set-
tings. The benchmarking tool itself offers significantly more combinations that can be benchmarked.
Nonetheless, the benchmark provided is comprehensive and instills interest to further utilize FLOW-
BENCH.

K REPRODUCIBILITY OF EVALUATIONS
NEW

There always exists stochasticity when evaluating adversarial attacks, due to the randomness these
attacks exploit, and also common corruptions due to variations in seeds and calculation approxima-
tions made by various python libraries. Therefore, for transparency and reproducibility, we evaluate
different runs on the same seed and different runs of different seeds. We report these evaluations
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Figure 62: Evaluations for targeted CosPGD attack with target
−→
0 under ℓ2-norm bound using the

MPI Sintel (clean) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 63: Evaluations for targeted CosPGD attack with target
−→
−f under ℓ∞-norm bound using the

MPI Sintel (clean) dataset. The attack was optimized w.r.t. the ground truth predictions.

here, using Tab. 2 for adversarial attacks and Tab. 3 for common corruptions, and observe that the
variance is extremely low and the analysis performed in this work still stands.

To ensure the reproducibility of our adversarial attack evaluations we repeat experiments in two
ways: first, three different runs with the same seed, and second, one run each for three different
seeds. We observe very minute variations in results in both cases which can be attributed to cal-
culation approximations made by different libraries such as pytorch (Paszke et al., 2019). Due to
the compute-hungry nature of these evaluations, we limit them to using one method: RAFT on the
KITTI2015 dataset, and the attack used is CosPGD. We evaluate multiple settings: different ℓp-norm
bounds, different attack optimization methods (optimizing w.r.t. ground truth flow and optimizing
w.r.t. initial flow prediction.), and for targeted attacks, two different targets. The attack settings are
consistent with the paper.
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Figure 64: Evaluations for targeted CosPGD attack with target
−→
−f under ℓ2-norm bound using the

MPI Sintel (clean) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 65: Evaluations for non-targeted CosPGD attack under ℓ∞-norm bound using the MPI Sintel
(final) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 66: Evaluations for targeted CosPGD attack with target
−→
0 under ℓ∞-norm bound using the

MPI Sintel (final) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 67: Evaluations for targeted CosPGD attack with target
−→
0 under ℓ2-norm bound using the

MPI Sintel (final) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 68: Evaluations for targeted CosPGD attack with target
−→
−f under ℓ∞-norm bound using the

MPI Sintel (final) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 69: Evaluations for targeted CosPGD attack with target
−→
−f under ℓ2-norm bound using the

MPI Sintel (final) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 70: Evaluating all optical flow estimation methods against PCFA attack with target
−→
0 over

multiple attack iterations.
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Figure 71: Evaluating all optical flow estimation methods against PCFA attack with target
−→
−f over

multiple attack iterations.
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Figure 72: Evaluations for Adversarial Weather attack with Fog optimized as an non-targeted attack
(left), and targeted attack with targets

−→
0 (center) and

−→
−f (right).
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Figure 73: Evaluations for Adversarial Weather attack with Rain optimized as an non-targeted attack
(left), and targeted attack with targets

−→
0 (center) and

−→
−f (right).
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Figure 74: Evaluations for Adversarial Weather attack with Snow optimized as an non-targeted
attack (left), and targeted attack with targets

−→
0 (center) and

−→
−f (right).
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Figure 75: Evaluations for Adversarial Weather attack with Sparks optimized as an non-targeted
attack (left), and targeted attack with targets

−→
0 (center) and

−→
−f (right).
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Figure 76: Performance of various optical flow estimation methods after corruptions on the
KITTI2015 dataset.
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Figure 77: Evaluating optical flow estimation methods against all 2D Common Corruptions on the
KITTI2015 dataset.
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Figure 78: Evaluating optical flow estimation methods against all 2D Common Corruptions on the
MPI Sintel (clean) dataset.
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Figure 79: Evaluating optical flow estimation methods against all 2D Common Corruptions on the
MPI Sintel (final) dataset.
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Figure 80: Evaluating optical flow estimation methods against the considered 3D Common Corrup-
tions on the KITTI2015 dataset.
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Figure 81: Evaluating optical flow estimation methods against the considered 3D Common Corrup-
tions on the MPI Sintel (clean) dataset.
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Figure 82: Evaluating optical flow estimation methods against the considered 3D Common Corrup-
tions on the MPI Sintel (final) dataset.

Figure 83: A share a screenshot from our prototype website currently under works, that would help
better understand the metrics. In this screenshot, the methods are ranked based on their EPE w.r.t.
the ground truth flow under non-targeted CosPGD attack at 20 attack iterations under the ℓ∞-norm
bound (lower means the method is more robust) evaluated using the KITTI2015 dataset. We are
currently designing it to make the numbers and column headings better visible to the users, and the
users can dynamically rank these based on any of the columns.
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Table 2: To ensure reproducibility of our adversarial attack evaluations we repeat experiments in
two ways: first, three different runs with the same seed, and second, one run each for three different
seeds. We observe very minute variations in results in both cases which can be attributed to cal-
culation approximations made by different libraries such as pytorch (Paszke et al., 2019). Due to
the compute-hungry nature of these evaluations, we limit them to using one method: RAFT on the
KITTI2015 dataset, and the attack used is CosPGD. We evaluate multiple settings: different ℓp-norm
bounds, different attack optimization methods (optimizing w.r.t. ground truth flow and optimizing
w.r.t. initial flow prediction.), and for targeted attacks, two different targets. The attack settings are
consistent with the paper. Target ‘None’ means the attack was Non-targeted.

ℓp-norm bound Target Attack Optimized w.r.t. EPE px3 error
mean ± std mean ± std

Three different runs on the same seed

ℓ∞-norm None Ground Truth Flow 119.504 ± 2.95E+0 0.078 ± 6.76E-3
ℓ∞-norm

−→
−f Ground Truth Flow 45.357 ± 4.26E-1 0.200 ± 7.84E-4

ℓ∞-norm
−→
0 Ground Truth Flow 10.674 ± 2.74E-1 0.647 ± 1.06E-2

ℓ2-norm None Ground Truth Flow 0.644 ± 2.72E-6 0.968 ± 3.38E-6
ℓ2-norm

−→
−f Ground Truth Flow 73.454 ± 3.12E-5 0.129 ± 2.86E-7

ℓ2-norm
−→
0 Ground Truth Flow 36.724 ± 2.11E-5 0.170 ± 4.41E-7

ℓ2-norm None Initial Flow Pred 0.643 ± 7.74E-6 0.968 ± 1.49E-6

One run each using three different seeds

ℓ∞-norm None Ground Truth Flow 119.692 ± 1.75E+0 0.077 ± 4.27E-3
ℓ∞-norm

−→
−f Ground Truth Flow 45.149 ± 9.16E-1 0.202 ± 1.65E-3

ℓ∞-norm
−→
0 Ground Truth Flow 11.016 ± 4.91E-1 0.625 ± 9.90E-3

ℓ2-norm None Ground Truth Flow 0.644 ± 7.46E-6 0.968 ± 6.05E-6
ℓ2-norm

−→
−f Ground Truth Flow 73.454 ± 1.15E-4 0.129 ± 1.85E-7

ℓ2-norm
−→
0 Ground Truth Flow 36.724 ± 1.10E-4 0.170 ± 7.92E-7

ℓ2-norm None Initial Flow Pred 0.643 ± 1.44E-4 0.968 ± 1.55E-5
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Table 3: To ensure reproducibility of our Common Corruptions evaluations we repeat experiments in
two ways: first, three different runs with the same seed, and second, one run each for three different
seeds. We observe extremely minute variations in results which can be attributed to differences in
seeds and calculation approximations made by the Python libraries. Due to the compute-hungry
nature of these evaluations, we limit them to using one method: RAFT on the KITTI2015 dataset,
and all the fifteen 2D Common Corruptions.

2D Common Corruption Name EPE px3 error
mean ± std mean ± std

Three different runs on the same seed

brightness 1.235 ± 0.000 0.935 ± 0.000
contrast 1.187 ± 0.000 0.938 ± 0.000

defocus blur 2.026 ± 0.000 0.899 ± 0.000
elastic transform 1.043 ± 0.000 0.954 ± 0.000

fog 1.221 ± 0.000 0.936 ± 0.000
frost 29.640 ± 0.000 0.383 ± 0.000

gaussian noise 5.931 ± 0.000 0.732 ± 0.000
glass blur 2.409 ± 0.000 0.861 ± 0.000

impulse noise 6.098 ± 0.220 0.736 ± 0.002
jpeg compression 1.942 ± 0.000 0.892 ± 0.000

motion blur 5.515 ± 0.000 0.549 ± 0.000
pixelate 0.785 ± 0.000 0.960 ± 0.000

shot noise 4.435 ± 0.000 0.780 ± 0.000
snow 41.974 ± 0.000 0.354 ± 0.000

zoom blur 4.808 ± 0.000 0.746 ± 0.000

One run each using three different seeds

brightness 1.235 ± 0.000 0.935 ± 0.000
contrast 1.187 ± 0.000 0.938 ± 0.000

defocus blur 2.026 ± 0.000 0.899 ± 0.000
elastic transform 1.041 ± 0.009 0.953 ± 0.001

fog 1.282 ± 0.076 0.937 ± 0.001
frost 28.783 ± 0.827 0.391 ± 0.019

gaussian noise 5.877 ± 0.026 0.735 ± 0.001
glass blur 2.532 ± 0.105 0.859 ± 0.002

impulse noise 5.856 ± 0.067 0.737 ± 0.002
jpeg compression 1.942 ± 0.000 0.892 ± 0.000

motion blur 4.135 ± 0.141 0.565 ± 0.010
pixelate 0.785 ± 0.000 0.960 ± 0.000

shot noise 4.336 ± 0.143 0.781 ± 0.004
snow 42.984 ± 4.786 0.362 ± 0.007

zoom blur 4.808 ± 0.000 0.746 ± 0.000
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