
000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

ECCV

#0006
ECCV

#0006

On sparse connectivity, adversarial robustness,
and a novel model of the artificial neuron

Anonymous ECCV VIPriors workshop submission

Paper ID 0006

Abstract. In this paper, we propose two closely connected methods to
improve computational efficiency and stability against adversarial per-
turbations on contour recognition tasks: (a) a novel model of an artificial
neuron, a ”strong neuron,” with inherent robustness against adversarial
perturbations and (b) a novel constructive training algorithm that gen-
erates sparse networks with O(1) connections per neuron.

We achieved an impressive 10x reduction (compared with other sparsifi-
cation approaches; 100x when compared with dense networks) in oper-
ations count. State-of-the-art stability against adversarial perturbations
was achieved without any counteradversarial measures, relying on the
robustness of strong neurons alone.

Our network extensively uses unsupervised feature detection, with more
than 95% of operations being performed in its unsupervised parts. Less
than 10.000 supervised FLOPs per class is required to recognize a contour
(digit or traffic sign), which allows us to arrive to the conclusion that
contour recognition is much simpler that was previously thought.

Keywords: Sparse neural networks, unsupervised training, adversarial
robustness

1 Introduction

In recent years, artificial neural networks have achieved impressive results on
all computer vision benchmarks. Interestingly, this progress was made using two
ideas that are many decades old: (1) an artificial neuron with a linear summator
at its core and (2) stochastic gradient descent (SGD) training.

The combination of these ideas was fortuitous, allowing us to fit any de-
cision function, no matter how complex. As a result, neural models surpassed
human-level accuracy. However, we believe (and will justify below) that the very
properties of summators and SGD impede progress in improving two other im-
portant metrics: the sparsity of the neural connections and adversarial stability.

In our work, we propose (1) a novel model of an artificial neuron with inher-
ent robustness against adversarial perturbations and (2) a novel training algo-
rithm that allows us to build extremely sparse networks with O(1) connections
per neuron. With these proposals, we achieved state-of-the-art performance and
adversarial stability on a number of contour recognition benchmarks.

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

ECCV

#0006
ECCV

#0006

2 ECCV-20 VIPriors workshop submission ID 0006

2 Related Work

Our work touches on several topics: unsupervised feature detection, network
sparsification, and adversarial robustness.

Many approaches to unsupervised feature detection have been proposed. Our
work follows [4] (learning convolution filters by clustering image patches with
k-means). Other notable approaches include autoencoders [1], variational au-
toencoders [14], noise-as-target [2], learning features invariant under particular
transformations [5], and local Hebbian learning [9].

The most popular sparsification strategy is pruning, either via L0/L1 pe-
nalization ([29], [10], [18]) or various explicit pruning strategies ([3], [12], [19]).
Usually about 95-97% of weights are pruned ([27]).

Adversarial robustness is usually addressed via adversarial training ([20], [16],
[25]). One notable approach is to use provable bounds on a network output under
attack [15] for training. Another line of thought is to modify the basics of neural
architecture in order to make it inherently robust (for instance, [17] proposes to
use bounded ReLU).

3 The Novel Artificial Neuron (”Strong Neuron”)

3.1 Contour Recognition = Logical AND + Logical OR

Contour recognition is an important subset of computer vision problems. It is
deeply connected with properties of our world — we live in a universe full of
localized objects with distinctive edges. Many important problems are contour
based: handwritten digit recognition, traffic light detection, traffic sign recogni-
tion and number plate recognition.

There are also non-contour tasks, however — for example, ones that can only
be solved by gathering information from many small cues scattered throughout
an image (e.g., distinguishing a food store from an electronics store).

Contour recognition has interesting mathematical properties: (a) it naturally
leads to [0, 1]-bounded activities; (b) contours are localized and independent
from their surrounding (e.g., a crosswalk sign is a crosswalk sign, even in desert
or rainforest); (c) complex contours can be decomposed into smaller parts, that
are contours too.

Our insight is that contour recognition is essentially a combination of two
basic operations on low-level features (see Figure 1):

– logical AND (detection), which decomposes high-level features as combina-
tions of several low-level ones, placed at different locations. Say, digit ”5”
can be represented as AND(5TOP ,5BOTTOM)

– logical OR (generalization), which allows detectors to be activated by more
diverse inputs. Say, ”5” can be replaced by more general OR(5,5,5)

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

ECCV

#0006
ECCV

#0006

ECCV-20 VIPriors workshop submission ID 0006 3

 = = [∨ ∨] & [∨ ∨] ×

Fig. 1. Contour recognition: AND + OR

3.2 What Is Wrong With Linear Summators?

First, standalone summator-based neuron is, in some sense, weak. It does not
perform detailed evaluation of its inputs — all it sees is just their weighted sum, a
position relative to the separating hyperplane. This means that lack of activity
in one channel (absence of some critical feature) can be masked by increased
activities in other channels. We will need a group of neurons working together
in order to make sure that, say, a ”face neuron” cannot be activated by many
repetitions of just one face part. Our point here is not about computational
efficiency, but about the fact that we try to model human intuition about vision
by using elements with counterintuitive properties.

Second, summator-based implementation of the AND/OR logic is very brit-
tle, especially in high-dimensional spaces. The neuron can be set to an arbitrarily
high value (or, alternatively, zeroed) by feeding it with many small activities in
different channels [8].

3.3 Our Proposal

We propose to use f() = min(A,B, . . .) to implement AND-logic, to use f() =
max(A,B, . . .) to implement OR-logic and to combine both kinds of logic in a
novel summator-free artificial neuron — ”strong neuron”:

Fstrong = min
(

max
i

(w0,ixi),max
i

(w1,ixi),max
i

(w2,ixi)
)

(1)

The formula above describes a strong neuron with three receptive areas, usu-
ally located at different parts of the input image. Here wk,i ∈ {0, 1} are extremely
sparse binary weights — just O(1) connections per neuron are generated during
training (about 5-10 in most cases). Inputs xi are either initial low-level features
corresponding to small (4x4, 5x5 or 6x6) image patches or medium-level features
(computed by the previous layer of strong neurons).

We call our artificial neuron ”strong” because it has a much more complex
decision boundary than the summator-based neuron. It is not prone to the failure
modes described in the previous subsection: (1) nonlinearities introduced by the
min andmax elements naturally align with human intuitive understanding of the
pattern recognition; (2) the neuron is robust with respect to adversarial attacks

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

ECCV

#0006
ECCV

#0006

4 ECCV-20 VIPriors workshop submission ID 0006

ReLU

∑

min

maxmax max

dense
connections

sparse
connections

Summator-based neuron Strong neuron

Fig. 2. A summator-based neuron and a strong neuron

Edge modality Color modality

A
B

any choice of A and
B corresponds to
some meaningful
feature

F = A & B

Fig. 3. Strong neurons are interpretable models

— an ε-bounded perturbation of inputs produces exactly ε-bounded perturbation
of outputs.

Figure 3 visualizes several strong neurons generated during the solution of the
German Traffic Sign Recognition Benchmark. One may see that strong neurons
have obvious geometric interpretation. Actually, any (even completely random)
strong neuron with spatially separate input areas corresponds to some meaning-
ful feature. Some of these features are useful for prediction, most of them are
useless — but all of them have obvious geometric meaning. This sharply con-
trasts with the properties of the convolutional filters — convolution with random
coefficients rarely has clear geometric interpretation.

We would like to note here some connection with recent work on adversarial
robustness, [28] and [13], which state that there are two kinds of features in
images — highly predictive ones that are extremely unstable under unnatural
perturbation of input, and less predictive but robust ones. The latter are the
ones that are used by human vision; the former are imperceptible by humans
but are heavily used by adversarially unstable neural networks. In particular, [28]
shows an elegant example of both kinds of features derived from synthetic data.
Viewed from this angle, strong neurons are constrained to a realm of geometric
inference — and robust feature detectors.

4 The Motivation Behind Our Model

In this section, we will show that our artificial neuron model is motivated by
some fundamental considerations, that is, there are some reasonable and intu-
itive requirements that are satisfied by our model — and are not satisfied by
summator-based neurons.

First, we define the L∞-nonexpansive function as one which in a general
N-dimensional case for any N-dimensional input perturbation ∆x satisfies

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

ECCV

#0006
ECCV

#0006

ECCV-20 VIPriors workshop submission ID 0006 5

|f(x+∆x)− f(x)| ≤ max
i
|∆xi| = ‖∆x‖∞ (2)

The L∞-nonexpansive function has ε-bounded perturbation of the output
under ε-bounded perturbation of its inputs, i.e. it does not accumulate pertur-
bations (compare it with L1-nonexpansivity that, despite ”non” prefix, means
that perturbations are summed up).

Human vision — and any artificial vision system that is intended to be ro-
bust — has a bounded reaction to bounded perturbations of the input image.
The bounding ratio is not always 1:1 because sometimes we want to amplify
weak signals. Thus, enforcing L∞-nonexpansivity on the entire classifier may
overconstrain it. However, it makes sense to enforce this constraint at least for
some parts of the classifier. One may easily show that both min and max, as
well as their superposition, are L∞-nonexpansive.

The rationale behind our model of the artificial neuron should be obvious
by now — making inference as robust as possible. However, we present an even
more interesting result — the fact that min and max are the only perfectly
stable implementations of AND/OR logic.

One familiar with the history of artificial neural networks may remember
the so-called ”XOR problem” [21] — a problem of fitting the simple four-point
dataset that cannot be separated by the single linear summator. Inspired by
its minimalistic beauty, we formulate two similar problems, which address the
accumulation of perturbations in multilayer networks:

Theorem 1: L∞-nonexpansive AND problem. ∃! f(x, y) = min(x, y) such that
the following holds:

1. f(x, y) is defined for x, y ∈ [0, 1]
2. f(0, 0) = f(0, 1) = f(1, 0) = 0, f(1, 1) = 1
3. a≤A, b≤B =⇒ f(a, b)≤f(A,B) (monotonicity)
4. |f(a+∆a, b+∆b)− f(a, b)| ≤ max(|∆a|, |∆b|)

Theorem 2: L∞-nonexpansive OR problem. ∃! g(x, y) = max(x, y) such that
the following holds:

1. g(x, y) is defined for x, y ∈ [0, 1]
2. g(0, 0) = 0, g(0, 1) = g(1, 0) = g(1, 1) = 1
3. a≤A, b≤B =⇒ g(a, b)≤g(A,B) (monotonicity)
4. |g(a+∆a, b+∆b)− g(a, b)| ≤ max(|∆a|, |∆b|)

Proofs of theorems 1 and 2 can be found in Appendix A (supplementary
materials).

An immediate consequence of these theorems is that it is impossible to im-
plement a robust AND (robust OR) element with just one ReLU neuron — the
best that can be achieved is L1-nonexpansivity, which is not robust. It is possible
to ’emulate’ robust AND/OR logic by performing tricks with many traditional
ReLU neurons (max(a, b) = a+ReLU(b− a), max(a, b, c) = max(a,max(b, c))
and so on), but the result will be just another implementation of min and max
elements.

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

ECCV

#0006
ECCV

#0006

6 ECCV-20 VIPriors workshop submission ID 0006

5 Contour Engine: Architecture Overview

The key parts of our neural architectures are outlined in Figure 4.

…………..

Input image

unsupervised
feature extraction layer

Column #0

P(class0)

Column #k

P(class-k)

unsupervised feature extraction layer

Strong layer

Strong layer

Shortcut
connections

Multicolumn network

Shallow classifier

Classification column structure

Fig. 4. The Contour Engine network

Strong neurons can perform logical inference on low-level features, but they
cannot produce these features from raw pixel values. Thus, an initial feature
extraction block is essential in order to ”prime” the Contour Engine. This part
of the network is the one that needs the most FLOPs — about 95% of the
floating-point operations are spent in the unsupervised preprocessing.

The next part of our network is organized into many class-specific columns.
Each column starts with sparse contour detection layers (one or two is usually
enough) that combine low-level features in order to produce medium- and high-
level features. Typical column widths are in [50, 800] range. On average, less
than 10.000 FLOPs per class are needed to recognize well-centered medium-
complexity contour (like a digit, letter or traffic sign).

Finally, a shallow nonlinear classifier on top of each column post-processes
the features produced by the robust contour detection stage. In practice, strong
neurons are so good at contour detection that we do not need complex nonlinear
models at this stage — the basic logistic model is enough.

The training algorithm includes three distinct, sequential stages:

– training unsupervised feature detector
– training sparse contour detection layers
– training a shallow classifier

We train a feature extraction layer using an unsupervised procedure (running
k-means over image patches; see [4]). Such an approach makes the input layer
independent from label assignment, which allows us to make some interesting
conclusions regarding the asymptotic complexity of the image recognition.

Sparse layers are trained by adding layers and neurons one by one, in a greedy
fashion, fitting new neurons to the current residual. The second important con-
tribution of our work (in addition to the robust artificial neuron) is the heuristic,

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

ECCV

#0006
ECCV

#0006

ECCV-20 VIPriors workshop submission ID 0006 7

which can efficiently fit nonsmooth strong neurons with binarity/sparsity con-
straints on weights.

Finally, the shallow classifier can be trained by running logistic regression
over the activities of the sparse layers.

6 Training Feature Detection Layer

The purpose of our feature extraction layer is to describe the input image using a
rich dictionary of visual words. The description includes features such as oriented
edges, more complex shapes, colors and gradients, computed at multiple scales
and orientations.

The key point of Coates et al. [4] is that one may achieve surprisingly good
classification performance by processing images with a single convolutional layer
whose filters are trained in an unsupervised manner (k-means on random image
patches). Filters as large as 4x4, 5x5 or 6x6 typically give the best results.

We extend their results (see Figure 5) with:

– separate processing of color-agnostic (shape-sensitive) and color-based fea-
tures by enforcing constraints on filter coefficients

– multiple downsampling levels of the layer outputs (2x and 4x max-pooling
are used together)

– feature detection at multiple scales
– capturing positive and negative phases of filters (as recommended in [24])

contour color

downsample

x2 x4

contour color

downsample

x2 x4

downsample

x2 x4

downsample

x2 x4

2x downsample
Input image Input image

Fig. 5. Multiscale multimodal feature extraction layer

One distinctive trait of our approach to feature detection is high redundancy
of the description produced. Neural architectures with dense connectivity try
to decrease channels count as much as possible due to quadratic dependency
between channels count and coefficients count. However, in our architecture co-
efficients count scales linearly with network width due to the extreme sparsity
of subsequent layers (O(1) connections per neuron). Thus, having a wide and
redundant feature extraction layer puts much less stress on the computational
budget.

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

ECCV

#0006
ECCV

#0006

8 ECCV-20 VIPriors workshop submission ID 0006

7 Training Sparsely Connected Layers

This section discusses the core contribution of our work — the constructive
training of sparsely connected strong neurons.

7.1 The Constructive Training Algorithm

Training networks composed of nonconvex and nonsmooth elements is difficult. It
is especially difficult withmin-based activation functions becausemin function is
extremely nonconvex and makes training prone to stalling in bad local extrema.

Suppose, however, that somehow you can train just one such element to
fit some target function of your choice. How can it help you train a network?
The answer is to build your model incrementally, training new elements to fit
the current residual and adding them one by one (see Figure 6). Every time
you add a neuron to the layer you have to retrain the classifier to obtain new
residuals. By feeding new neurons with outputs of the previous ones we can
generate multilayer network.

Input image

Feature detection layer

Linear classifier

Residual at iteration K

Input image

Feature detection layer

Activity of the new strong neuron

Input image

Feature detection layer

Linear classifier

Residual at iteration K+1

Fig. 6. Incremental training procedure

Similar approaches were investigated many times ([11], [6]). The latter (Cascade-
Correlation architecture) is the one which inspired our own research.

7.2 Training Strong Neurons

In the subsection above, we reduced the problem of training sparse multilayer
networks to training just one neuron with sparse connections:

min
w

∑
i

(N(w,Xi)− yi)2 s.t. sparsity constraints (3)

where w is a weight vector, Xi is an i-th row of the input activities matrix
X (activities of the bottom layer at i-th image), N(w, x) is a neuron output and
yi is a target to fit (in our case, the current residual).

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

ECCV

#0006
ECCV

#0006

ECCV-20 VIPriors workshop submission ID 0006 9

For a three-input strong neuron with binary weights, the formulation above
becomes:

min
w

∑
i

[
min

(
max

j
(w0,j ·Xi,j), max

j
(w1,j ·Xi,j), max

j
(w2,j ·Xi,j)

)
− yi

]2
w0,j , w1,j , w2,j ∈ {0, 1}
‖w0‖0 ≤ k , ‖w1‖0 ≤ k , ‖w2‖0 ≤ k

(4)

The problem (4) is a discrete optimization problem. There is likely no other
way to solve it except for a brute-force search (no obvious reduction to mixed
integer LP/QP). However, we do not need an exact solution — having a good
one is sufficient. Our insight is that there is a simple heuristic that can generate
good strong neurons in a reasonable time.

C

W

H

min

maxmax max

C

W

H

min

maxmax max

C

W

H

min

maxmax max

Fig. 7. Progressive simplification of the optimization problem 4

The original discrete optimization problem has no constraints except for spar-
sity. A max-element can gather information from any element of the input tensor
(see figure 7, left). As a result, we have to evaluate prohibitively large amount of
possible connection structures. For instance, for 15 unit-weight connections to
elements with a 32x32x20 input tensor we have roughly 1058 possible geometries.

It is possible to significantly reduce the configuration count by adding some
additional restrictions on the inter-layer connections. For example, we may im-
pose two additional constraints: (a) require that max-elements are spatially local
(i.e., each element gathers inputs from just one location (x, y) of the input ten-
sor), and (b) require that max-elements feeding data into the same min-element
are located close to each other.

Alternatively — for 1x1xD input tensors with no spatial component — these
restrictions can be reformulated as follows: (a) require that max-elements are
correlationally local (i.e., each element gathers inputs from strongly correlated
channels), and (b) require that max-elements feeding data into the same min-
element are correlated strongly enough.

Having such constraints on the connections of the strong neuron significantly
reduces the number of configurations that must be evaluated to solve the problem
(figure 7, center). In our toy example, the configuration count is reduced from
1058 to just 1018.

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

ECCV

#0006
ECCV

#0006

10 ECCV-20 VIPriors workshop submission ID 0006

We can achieve a further reduction in search complexity through a two-step
search procedure: (1) evaluate all possible ”seed detectors” — strong neurons
with single-input max-elements (AND without OR), and (2) expand the best
seed found — sequentially add connections to its max-elements.

As a result of this improvement (see figure 7, right), the search complexity
for our 32x32x20 example is reduced from 1018 to 109 neural configurations.
However, it is still too costly — each of these configurations requires a full pass
over the entire dataset in order to evaluate the neuron’s performance.

Further improvements can be achieved by assuming the following:

– Good f3 = min(A,B,C) can be found by extending good f2 = min(A,B)
with the best-suited C

– Good f2 = min(A,B) can be found by extending good f1 = A with the
best-suited B

– Good f1 = A can be found by simply evaluating all possible single-input
seed detectors

This improvement finally makes original discrete optimization problem com-
putationally tractable. For example, the complexity of our toy example is reduced
to just 20000 combinations (compare this with the initial 1058 estimate).

Algorithm outline.

1. Setup the initial model (empty with zero output) and a vector of its residuals
over the entire dataset. Select a neuron pool size P (a few hundreds works
in most cases).

2. Competition phase: generate seed detectors and select the winner from the
combined pool:
– Select a set of P promising input features, ”gen-1 seeds,” f1 = A. Some

form of quick and dirty feature selection is usually enough.
– Produce P gen-2 seeds by extending gen-1 seeds f1 = A with such B

that f2 = min(A,B) produces the best linear fit to the current residual.
Only the spatial/correlational neighborhood of f1 is evaluated.

– Produce P gen-3 seeds by extending gen-2 seeds f2 = min(A,B) with
such C that f3 = min(A,B,C) produces the best linear fit to the current
residual. Only the spatial/correlational neighborhood of f1 is evaluated.

3. Generalization phase. Having determined a winning seed detector, sequen-
tially extend its inputs with new max-connections:
– f = min(A,B, ...)
– A −→ max(A)
– max(A) −→ max(A,A2)
– max(A,A2) −→ max(A,A2, A3) and so on

Extending is performed in such a way that the extended detector fits the
residual better than its previous version. Only the spatial/correlational neigh-
borhood of A is investigated. The procedure stops after the maximum num-
ber of connections is formed (good value — 5 connections per max-element)
or when there is no connection that can improve the fit.

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

ECCV

#0006
ECCV

#0006

ECCV-20 VIPriors workshop submission ID 0006 11

4. Add a detector to the model, and update the classifier and residual vec-
tor. Stop after the user-specified amount of detectors is formed. Go to 2
otherwise.

The algorithm above is a batch algorithm — it requires us to keep an entire
dataset in memory and make a full pass over it in order to generate new strong
neurons. The reason for this is that the algorithm has no way of correcting
the neuron structure once it has been added to the model — so, if you train
a suboptimal neuron using a subsample of the entire training set, you will be
unable to improve it later.

This property raises an old question of the balance between network stability
and its plasticity. Networks trained with SGD have high plasticity but zero sta-
bility. Plasticity allows us to use SGD — an algorithm that makes only marginal
improvements in the network being trained — because these small decrements in
the loss function will accumulate over time. At the same time, it impedes cheap
nondestructive retraining — once an image is removed from the training set, it
is quickly forgotten.

In contrast, our algorithm has zero plasticity — it will not improve the neu-
rons it generated previously — but perfect stability. The drawback of such an
approach is that it is necessary to use an entire training set to generate just one
strong neuron, and this job has to be done in the best way possible. The upside
is that the network never forgets what it learned before. If your task has changed
a bit, you can restart training and add a few new neurons without damaging
previously learned ones.

8 Training Shallow Classifier Layer

Our proposed strong neurons have a rigid piecewise linear output with a fixed
slope, but in order to separate image classes one often needs nonlinearities with
steep slopes in some places and flat spots in other parts of the feature space.
Hence, a separate classifier layer is needed at the top of the network.

One important point to note is that the shallow classifier layer is the only
place in our model where significant adversarial instability is introduced. The
initial feature detection layer is a single layer of convolutions with bounded
coefficients, and thus it has limited adversarial perturbation growth. The sparsely
connected layers of strong neurons do not amplify adversarial perturbations.

As a result, any adversary targeting our model will actually target its last
layer. In effect, this means that we reduced the problem of building a robust
deep classifier to one of building a robust shalow classifier.

Our experimental results show that due to the stability of the bottom layers
and computational power of strong neurons a simple logistic model (linear sum-
mator + logistic function) on top of the network performs well enough in terms
of accuracy and adversarial stability.

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

ECCV

#0006
ECCV

#0006

12 ECCV-20 VIPriors workshop submission ID 0006

9 Experimental Results

9.1 Datasets, Software and Network Architectures

We tested Contour Engine on two popular computer vision benchmarks: Ger-
man Traffic Sign Recognition Benchmark [26] and Street View House Numbers
dataset [22].

Our neural architecture is quite nonstandard, and no present framework can
train such models. Thus, we had to write the training and inference code in
C++ from scratch. The code — an experimental GPL-licensed machine learning
framework with several examples — can be downloaded from the following link:
ANONYMIZED://URL/

We evaluated three versions of the same architecture, listed in Table 1: Con-
tour Engine Micro (ultralightweight version), Contour Engine and Contour En-
gine 800 (ultrawide contour-only version without color block, intended for SVHN
dataset).

We should note that all three architectures have a non-convolutional sparse
part (one that is composed of strong neurons). In theory, the constructive train-
ing algorithm described in section 7 can be applied to convolutional connection
structures (it just needs a bit more coding). However, in this first publication we
decided to limit ourselves to the simplest architecture, which achieves interesting
enough results.

Table 1. Three Contour Engine versions and their parameters

Unsupervised
feature extractor

Classifier
columns

Name
contour
features

color
features

multiscale
processing

KFLOP
width

per class
KFLOP
per class

CE-micro 10x4x4 10x4x4 16x16 162 50 ≈ 1
CE-basic 50x6x6 10x4x4 32x32, 16x16 5075 200 ≈ 7
CE-800 50x6x6 — 32x32, 16x16 4590 800 ≈ 28

9.2 Results

Table 2 examines Contour Engine performance in two categories: (a) ultra-
lightweight networks with sub-megaflop inference cost, and (b) networks with
higher computational budget (and higher accuracy requirements).

Reference results for other architectures are cited from [7] (EffNet, ShuffleNet,
MobileNet), [3] (Targeted Kernel Networks: TSTN, STN), [12] (pruned VGG)
and [23],[3] (Capsule Networks).

The Contour Engine Micro clearly outperforms other lightweight networks
(EffNet, ShuffleNet, MobileNet) by a large margin. It provides superior accuracy
while working under smallest computational budget.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

ECCV

#0006
ECCV

#0006

ECCV-20 VIPriors workshop submission ID 0006 13

Medium-sized Contour Engine also shows impressive results on GTSRB dataset.
We have to note, however, that its test set error at SVHN is somewhat larger
than that of competing approaches. Visual investigation of misclassified exam-
ples shows that it can be attributed to the fact that the SVHN dataset contains
large proportion of misaligned (badly centered) images — convolutional models
better generalize to such images than the nonconvolutional network which we
test here.

Table 2. FLOPs vs Accuracy at GTSRB and SVHN datasets. Results are ordered by
FLOP count (ascending)

Network FLOP Error Network FLOP Error
GTSRB, lightweight SVHN, lightweight

CE-micro 0.2M 6.7% CE-micro 0.2M 10.1%
EffNet small 0.3M 8.2% EffNet small 0.5M 11.5%
ShuffleNet 0.5M 11.0% ShuffleNet 0.7M 17.3%
MobileNet v1 sml 0.5M 11.9% MobileNet v1 sml 0.8M 14.4%
MobileNet v2 sml 0.7M 9.3% MobileNet v2 med 1.2M 13.3%
MobileNet v2 med 1.1M 7.2% MobileNet v2 big 2.1M 12.8%

GTSRB SVHN
CE-basic 5.3M 1.6% CE-800 4.8M 4.8%
TSTN 55.7M 1.5% CapsNet 41.3M 4.3%
STN 145.0M 1.5% VGG-16 pruned 210.0M 3.9%
VGG-16 pruned 522.9M 1.2%

Table 3. Adversarial stability at SVHN dataset. Results are ordered by attack success
rate (ASR).

ε = 0.01 ε = 0.02 ε = 0.03
Defense ASR Defense ASR Defense ASR
no protection 83.4% no protection 96.4% no protection 98.6%
Wong 33.7% Wong 58.9% IAT 52.8%
CE-800 18.9% ATDA 46.8% CE-800 46.4%

CE-800 29.7%

Finally, we tested the adversarial stability of the Contour Engine 800 network
trained on the SVHN dataset (with clean test set error equal to 4.8%). We used
a powerful PGD attack (iterated FGSM with 20 iterations and backtracking line
search) with the perturbation L∞-norm bounded by ε = 0.01, ε = 0.02 and
ε = 0.03.

Table 3 compares the attack success rate with reference values from three
independent works ([15] for Wong defense, [25] for Adversarial Training with
Domain Adaptation, [16] for Interpolated Adversarial Training).

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

ECCV
#0006

ECCV
#0006

14 ECCV-20 VIPriors workshop submission ID 0006

It can be seen that an unprotected network can be successfully attacked in
83% cases with a perturbation as small as 0.01. Different kinds of adversarial
protection (when used on traditional summator-based networks) significantly
reduce the attack success rate. However, in all cases Contour Engine outperforms
these results without any special counter-adversarial measures.

10 Summary

In this work, we have proposed a novel model of the artificial neuron — the strong
neuron — which can separate classes with decision boundaries more complex
than hyperplanes and which is resistant to adversarial perturbations of its inputs.
We proved that our proposal is a fundamental and well-motivated change and
that the constituent elements of our strong neuron, min/max units, are the
only robust implementations of the AND/OR logic. We also proposed a novel
training algorithm that can generate sparse networks with O(1) connections per
strong neuron, a result that far surpasses any present advances in neural network
sparsification.

State-of-the-art efficiency (inference cost) is achieved on GTSRB and SVHN
benchmarks. We also achieved state-of-the-art results in terms of stability against
adversarial attacks on SVHN — without any kind of adversarial training —
which surpassed much more sophisticated defenses.

One more interesting result is related to our decision to separate unsupervised
feature detection and supervised classification. We found that Contour Engine
spends most of the inference time in the unsupervised preprocessor — less than
10.000 FLOP per class is used by the supervised part of the network (one which
is composed of strong neurons). This result suggests that contour recognition is
much simpler than was previously thought!

References

1. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training
of deep networks. In: IN NIPS. MIT Press (2007)

2. Bojanowski, P., Joulin, A.: Unsupervised learning by predicting noise (2017)
3. Chitta, K.: Targeted kernel networks: Faster convolutions with attentive regular-

ization. CoRR abs/1806.00523 (2018), http://arxiv.org/abs/1806.00523
4. Coates, A., Lee, H.: An analysis of single-layer networks in unsupervised feature

learning. Journal of Machine Learning Research - Proceedings Track 15, 215–223
(01 2011)

5. Dosovitskiy, A., Springenberg, J., Riedmiller, M., Brox, T.: Discriminative
unsupervised feature learning with exemplar convolutional neural networks.
IEEE Transactions on Pattern Analysis and Machine Intelligence 1 (06 2014).
https://doi.org/10.1109/TPAMI.2015.2496141

6. Fahlman, S.E., Lebiere, C.: The Cascade-Correlation Learning Architecture, p.
524–532. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1990)

7. Freeman, I., Roese-Koerner, L., Kummert, A.: Effnet: An efficient structure for
convolutional neural networks. In: 2018 25th IEEE International Conference on
Image Processing (ICIP). pp. 6–10 (2018)

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

ECCV
#0006

ECCV
#0006

ECCV-20 VIPriors workshop submission ID 0006 15

8. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. CoRR abs/1412.6572 (2015)

9. Grinberg, L., Hopfield, J.J., Krotov, D.: Local unsupervised learning for image
analysis. ArXiv abs/1908.08993 (2019)

10. Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M.A., Dally, W.J.:
Eie: Efficient inference engine on compressed deep neural network. In: Pro-
ceedings of the 43rd International Symposium on Computer Architecture. p.
243–254. ISCA ’16, IEEE Press (2016). https://doi.org/10.1109/ISCA.2016.30,
https://doi.org/10.1109/ISCA.2016.30

11. Hettinger, C., Christensen, T., Ehlert, B., Humpherys, J., Jarvis, T., Wade, S.:
Forward thinking: Building and training neural networks one layer at a time. Arxiv
(06 2017)

12. Hu, Y., Sun, S., Li, J., Wang, X., Gu, Q.: A novel channel pruning
method for deep neural network compression. CoRR abs/1805.11394 (2018),
http://arxiv.org/abs/1805.11394

13. Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B., Madry, A.: Adversarial
examples are not bugs, they are features. In: NeurIPS (2019)

14. Kingma, D., Welling, M.: Auto-encoding variational bayes. ICLR (12 2013)

15. Kolter, J.Z., Wong, E.: Provable defenses against adversarial examples via the
convex outer adversarial polytope. In: ICML (2018)

16. Lamb, A., Verma, V., Kannala, J., Bengio, Y.: Interpolated adversarial
training: Achieving robust neural networks without sacrificing too much ac-
curacy. In: Proceedings of the 12th ACM Workshop on Artificial Intelli-
gence and Security. p. 95–103. AISec’19, Association for Computing Ma-
chinery, New York, NY, USA (2019). https://doi.org/10.1145/3338501.3357369,
https://doi.org/10.1145/3338501.3357369

17. Liew, S.S., Khalil-Hani, M., Bakhteri, R.: Bounded activation functions
for enhanced training stability of deep neural networks on visual pat-
tern recognition problems. Neurocomputing 216, 718–734 (09 2016).
https://doi.org/10.1016/j.neucom.2016.08.037

18. Louizos, C., Welling, M., Kingma, D.P.: Learning sparse neural networks through
l0 regularization. ArXiv abs/1712.01312 (2018)

19. Ma, X., Guo, F.M., Niu, W., Lin, X., Tang, J., Ma, K., Rén, B., Wang, Y.: Pconv:
The missing but desirable sparsity in dnn weight pruning for real-time execution
on mobile devices. ArXiv abs/1909.05073 (2020)

20. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. ArXiv abs/1706.06083 (2017)

21. Minsky, M., Papert, S.: Perceptrons - an introduction to computational geometry
(1969)

22. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.: Reading digits in natural
images with unsupervised feature learning. NIPS (01 2011)

23. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. ArXiv
abs/1710.09829 (2017)

24. Shang, W., Sohn, K., Almeida, D., Lee, H.: Understanding and improving convolu-
tional neural networks via concatenated rectified linear units. In: Proceedings of the
33rd International Conference on International Conference on Machine Learning -
Volume 48. p. 2217–2225. ICML’16, JMLR.org (2016)

25. Song, C., He, K., Wang, L., Hopcroft, J.E.: Improving the generalization of adver-
sarial training with domain adaptation. ArXiv abs/1810.00740 (2019)

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

ECCV

#0006
ECCV

#0006

16 ECCV-20 VIPriors workshop submission ID 0006

26. Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: Man vs. computer: Benchmark-
ing machine learning algorithms for traffic sign recognition. Neural networks : the
official journal of the International Neural Network Society 32, 323–32 (02 2012).
https://doi.org/10.1016/j.neunet.2012.02.016

27. Sun, F., Qin, M., Zhang, T., Liu, L., Chen, Y.K., Xie, Y.: Computation on sparse
neural networks: an inspiration for future hardware. ArXiv abs/2004.11946
(2020)

28. Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., Madry, A.: Robustness may
be at odds with accuracy. arXiv: Machine Learning (2019)

29. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in deep
neural networks. In: Proceedings of the 30th International Conference on Neural
Information Processing Systems. p. 2082–2090. NIPS’16, Curran Associates Inc.,
Red Hook, NY, USA (2016)

