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Abstract. In this paper, we propose two closely connected methods to
improve computational efficiency and stability against adversarial per-
turbations on contour recognition tasks: (a) a novel model of an artificial
neuron, a ”strong neuron,” with inherent robustness against adversarial
perturbations and (b) a novel constructive training algorithm that gen-
erates sparse networks with O(1) connections per neuron.

We achieved an impressive 10x reduction (compared with other sparsifi-
cation approaches; 100x when compared with dense networks) in oper-
ations count. State-of-the-art stability against adversarial perturbations
was achieved without any counteradversarial measures, relying on the
robustness of strong neurons alone.

Our network extensively uses unsupervised feature detection, with more
than 95% of operations being performed in its unsupervised parts. Less
than 10.000 supervised FLOPs per class is required to recognize a contour
(digit or traffic sign), which allows us to arrive to the conclusion that
contour recognition is much simpler that was previously thought.

Keywords: Sparse neural networks, unsupervised training, adversarial
robustness

1 Introduction

In recent years, artificial neural networks have achieved impressive results on
all computer vision benchmarks. Interestingly, this progress was made using two
ideas that are many decades old: (1) an artificial neuron with a linear summator
at its core and (2) stochastic gradient descent (SGD) training.

The combination of these ideas was fortuitous, allowing us to fit any de-
cision function, no matter how complex. As a result, neural models surpassed
human-level accuracy. However, we believe (and will justify below) that the very
properties of summators and SGD impede progress in improving two other im-
portant metrics: the sparsity of the neural connections and adversarial stability.

In our work, we propose (1) a novel model of an artificial neuron with inher-
ent robustness against adversarial perturbations and (2) a novel training algo-
rithm that allows us to build extremely sparse networks with O(1) connections
per neuron. With these proposals, we achieved state-of-the-art performance and
adversarial stability on a number of contour recognition benchmarks.
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2 Related Work

Our work touches on several topics: unsupervised feature detection, network
sparsification, and adversarial robustness.

Many approaches to unsupervised feature detection have been proposed. Our
work follows [4] (learning convolution filters by clustering image patches with
k-means). Other notable approaches include autoencoders [1], variational au-
toencoders [14], noise-as-target [2], learning features invariant under particular
transformations [5], and local Hebbian learning [9].

The most popular sparsification strategy is pruning, either via L0/L1 pe-
nalization ([29], [10], [18]) or various explicit pruning strategies ([3], [12], [19]).
Usually about 95-97% of weights are pruned ([27]).

Adversarial robustness is usually addressed via adversarial training ([20], [16],
[25]). One notable approach is to use provable bounds on a network output under
attack [15] for training. Another line of thought is to modify the basics of neural
architecture in order to make it inherently robust (for instance, [17] proposes to
use bounded ReLU).

3 The Novel Artificial Neuron (”Strong Neuron”)

3.1 Contour Recognition = Logical AND + Logical OR

Contour recognition is an important subset of computer vision problems. It is
deeply connected with properties of our world — we live in a universe full of
localized objects with distinctive edges. Many important problems are contour
based: handwritten digit recognition, traffic light detection, traffic sign recogni-
tion and number plate recognition.

There are also non-contour tasks, however — for example, ones that can only
be solved by gathering information from many small cues scattered throughout
an image (e.g., distinguishing a food store from an electronics store).

Contour recognition has interesting mathematical properties: (a) it naturally
leads to [0, 1]-bounded activities; (b) contours are localized and independent
from their surrounding (e.g., a crosswalk sign is a crosswalk sign, even in desert
or rainforest); (c) complex contours can be decomposed into smaller parts, that
are contours too.

Our insight is that contour recognition is essentially a combination of two
basic operations on low-level features (see Figure 1):

– logical AND (detection), which decomposes high-level features as combina-
tions of several low-level ones, placed at different locations. Say, digit ”5”
can be represented as AND(5TOP ,5BOTTOM )

– logical OR (generalization), which allows detectors to be activated by more
diverse inputs. Say, ”5” can be replaced by more general OR(5,5,5)
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            =                 = [   ∨       ∨ ]  &  [   ∨       ∨ ] ×

Fig. 1. Contour recognition: AND + OR

3.2 What Is Wrong With Linear Summators?

First, standalone summator-based neuron is, in some sense, weak. It does not
perform detailed evaluation of its inputs — all it sees is just their weighted sum, a
position relative to the separating hyperplane. This means that lack of activity
in one channel (absence of some critical feature) can be masked by increased
activities in other channels. We will need a group of neurons working together
in order to make sure that, say, a ”face neuron” cannot be activated by many
repetitions of just one face part. Our point here is not about computational
efficiency, but about the fact that we try to model human intuition about vision
by using elements with counterintuitive properties.

Second, summator-based implementation of the AND/OR logic is very brit-
tle, especially in high-dimensional spaces. The neuron can be set to an arbitrarily
high value (or, alternatively, zeroed) by feeding it with many small activities in
different channels [8].

3.3 Our Proposal

We propose to use f() = min(A,B, . . . ) to implement AND-logic, to use f() =
max(A,B, . . . ) to implement OR-logic and to combine both kinds of logic in a
novel summator-free artificial neuron — ”strong neuron”:

Fstrong = min
(

max
i

(w0,ixi),max
i

(w1,ixi),max
i

(w2,ixi)
)

(1)

The formula above describes a strong neuron with three receptive areas, usu-
ally located at different parts of the input image. Here wk,i ∈ {0, 1} are extremely
sparse binary weights — just O(1) connections per neuron are generated during
training (about 5-10 in most cases). Inputs xi are either initial low-level features
corresponding to small (4x4, 5x5 or 6x6) image patches or medium-level features
(computed by the previous layer of strong neurons).

We call our artificial neuron ”strong” because it has a much more complex
decision boundary than the summator-based neuron. It is not prone to the failure
modes described in the previous subsection: (1) nonlinearities introduced by the
min andmax elements naturally align with human intuitive understanding of the
pattern recognition; (2) the neuron is robust with respect to adversarial attacks
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ReLU

∑

min

maxmax max

dense
connections

sparse
connections

Summator-based neuron Strong neuron

Fig. 2. A summator-based neuron and a strong neuron

Edge modality Color modality

A
B

any choice of A and 
B corresponds to 
some meaningful 
feature

F = A & B

Fig. 3. Strong neurons are interpretable models

— an ε-bounded perturbation of inputs produces exactly ε-bounded perturbation
of outputs.

Figure 3 visualizes several strong neurons generated during the solution of the
German Traffic Sign Recognition Benchmark. One may see that strong neurons
have obvious geometric interpretation. Actually, any (even completely random)
strong neuron with spatially separate input areas corresponds to some meaning-
ful feature. Some of these features are useful for prediction, most of them are
useless — but all of them have obvious geometric meaning. This sharply con-
trasts with the properties of the convolutional filters — convolution with random
coefficients rarely has clear geometric interpretation.

We would like to note here some connection with recent work on adversarial
robustness, [28] and [13], which state that there are two kinds of features in
images — highly predictive ones that are extremely unstable under unnatural
perturbation of input, and less predictive but robust ones. The latter are the
ones that are used by human vision; the former are imperceptible by humans
but are heavily used by adversarially unstable neural networks. In particular, [28]
shows an elegant example of both kinds of features derived from synthetic data.
Viewed from this angle, strong neurons are constrained to a realm of geometric
inference — and robust feature detectors.

4 The Motivation Behind Our Model

In this section, we will show that our artificial neuron model is motivated by
some fundamental considerations, that is, there are some reasonable and intu-
itive requirements that are satisfied by our model — and are not satisfied by
summator-based neurons.

First, we define the L∞-nonexpansive function as one which in a general
N-dimensional case for any N-dimensional input perturbation ∆x satisfies
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|f(x+∆x)− f(x)| ≤ max
i
|∆xi| = ‖∆x‖∞ (2)

The L∞-nonexpansive function has ε-bounded perturbation of the output
under ε-bounded perturbation of its inputs, i.e. it does not accumulate pertur-
bations (compare it with L1-nonexpansivity that, despite ”non” prefix, means
that perturbations are summed up).

Human vision — and any artificial vision system that is intended to be ro-
bust — has a bounded reaction to bounded perturbations of the input image.
The bounding ratio is not always 1:1 because sometimes we want to amplify
weak signals. Thus, enforcing L∞-nonexpansivity on the entire classifier may
overconstrain it. However, it makes sense to enforce this constraint at least for
some parts of the classifier. One may easily show that both min and max, as
well as their superposition, are L∞-nonexpansive.

The rationale behind our model of the artificial neuron should be obvious
by now — making inference as robust as possible. However, we present an even
more interesting result — the fact that min and max are the only perfectly
stable implementations of AND/OR logic.

One familiar with the history of artificial neural networks may remember
the so-called ”XOR problem” [21] — a problem of fitting the simple four-point
dataset that cannot be separated by the single linear summator. Inspired by
its minimalistic beauty, we formulate two similar problems, which address the
accumulation of perturbations in multilayer networks:

Theorem 1: L∞-nonexpansive AND problem. ∃! f(x, y) = min(x, y) such that
the following holds:

1. f(x, y) is defined for x, y ∈ [0, 1]
2. f(0, 0) = f(0, 1) = f(1, 0) = 0, f(1, 1) = 1
3. a≤A, b≤B =⇒ f(a, b)≤f(A,B) (monotonicity)
4. |f(a+∆a, b+∆b)− f(a, b)| ≤ max(|∆a|, |∆b|)

Theorem 2: L∞-nonexpansive OR problem. ∃! g(x, y) = max(x, y) such that
the following holds:

1. g(x, y) is defined for x, y ∈ [0, 1]
2. g(0, 0) = 0, g(0, 1) = g(1, 0) = g(1, 1) = 1
3. a≤A, b≤B =⇒ g(a, b)≤g(A,B) (monotonicity)
4. |g(a+∆a, b+∆b)− g(a, b)| ≤ max(|∆a|, |∆b|)

Proofs of theorems 1 and 2 can be found in Appendix A (supplementary
materials).

An immediate consequence of these theorems is that it is impossible to im-
plement a robust AND (robust OR) element with just one ReLU neuron — the
best that can be achieved is L1-nonexpansivity, which is not robust. It is possible
to ’emulate’ robust AND/OR logic by performing tricks with many traditional
ReLU neurons (max(a, b) = a+ReLU(b− a), max(a, b, c) = max(a,max(b, c))
and so on), but the result will be just another implementation of min and max
elements.
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5 Contour Engine: Architecture Overview

The key parts of our neural architectures are outlined in Figure 4.

…………..

Input image

unsupervised
feature extraction layer

Column #0

P(class0)

Column #k

P(class-k)

unsupervised feature extraction layer

Strong layer

Strong layer

Shortcut
connections

Multicolumn network

Shallow classifier

Classification column structure

Fig. 4. The Contour Engine network

Strong neurons can perform logical inference on low-level features, but they
cannot produce these features from raw pixel values. Thus, an initial feature
extraction block is essential in order to ”prime” the Contour Engine. This part
of the network is the one that needs the most FLOPs — about 95% of the
floating-point operations are spent in the unsupervised preprocessing.

The next part of our network is organized into many class-specific columns.
Each column starts with sparse contour detection layers (one or two is usually
enough) that combine low-level features in order to produce medium- and high-
level features. Typical column widths are in [50, 800] range. On average, less
than 10.000 FLOPs per class are needed to recognize well-centered medium-
complexity contour (like a digit, letter or traffic sign).

Finally, a shallow nonlinear classifier on top of each column post-processes
the features produced by the robust contour detection stage. In practice, strong
neurons are so good at contour detection that we do not need complex nonlinear
models at this stage — the basic logistic model is enough.

The training algorithm includes three distinct, sequential stages:

– training unsupervised feature detector
– training sparse contour detection layers
– training a shallow classifier

We train a feature extraction layer using an unsupervised procedure (running
k-means over image patches; see [4]). Such an approach makes the input layer
independent from label assignment, which allows us to make some interesting
conclusions regarding the asymptotic complexity of the image recognition.

Sparse layers are trained by adding layers and neurons one by one, in a greedy
fashion, fitting new neurons to the current residual. The second important con-
tribution of our work (in addition to the robust artificial neuron) is the heuristic,
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which can efficiently fit nonsmooth strong neurons with binarity/sparsity con-
straints on weights.

Finally, the shallow classifier can be trained by running logistic regression
over the activities of the sparse layers.

6 Training Feature Detection Layer

The purpose of our feature extraction layer is to describe the input image using a
rich dictionary of visual words. The description includes features such as oriented
edges, more complex shapes, colors and gradients, computed at multiple scales
and orientations.

The key point of Coates et al. [4] is that one may achieve surprisingly good
classification performance by processing images with a single convolutional layer
whose filters are trained in an unsupervised manner (k-means on random image
patches). Filters as large as 4x4, 5x5 or 6x6 typically give the best results.

We extend their results (see Figure 5) with:

– separate processing of color-agnostic (shape-sensitive) and color-based fea-
tures by enforcing constraints on filter coefficients

– multiple downsampling levels of the layer outputs (2x and 4x max-pooling
are used together)

– feature detection at multiple scales
– capturing positive and negative phases of filters (as recommended in [24])

contour color

downsample

x2 x4

contour color

downsample

x2 x4

downsample

x2 x4

downsample

x2 x4

2x downsample
Input image Input image

Fig. 5. Multiscale multimodal feature extraction layer

One distinctive trait of our approach to feature detection is high redundancy
of the description produced. Neural architectures with dense connectivity try
to decrease channels count as much as possible due to quadratic dependency
between channels count and coefficients count. However, in our architecture co-
efficients count scales linearly with network width due to the extreme sparsity
of subsequent layers (O(1) connections per neuron). Thus, having a wide and
redundant feature extraction layer puts much less stress on the computational
budget.
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7 Training Sparsely Connected Layers

This section discusses the core contribution of our work — the constructive
training of sparsely connected strong neurons.

7.1 The Constructive Training Algorithm

Training networks composed of nonconvex and nonsmooth elements is difficult. It
is especially difficult withmin-based activation functions becausemin function is
extremely nonconvex and makes training prone to stalling in bad local extrema.

Suppose, however, that somehow you can train just one such element to
fit some target function of your choice. How can it help you train a network?
The answer is to build your model incrementally, training new elements to fit
the current residual and adding them one by one (see Figure 6). Every time
you add a neuron to the layer you have to retrain the classifier to obtain new
residuals. By feeding new neurons with outputs of the previous ones we can
generate multilayer network.

Input image

Feature detection layer

Linear classifier

Residual at iteration K

Input image

Feature detection layer

Activity of the new strong neuron

Input image

Feature detection layer

Linear classifier

Residual at iteration K+1

Fig. 6. Incremental training procedure

Similar approaches were investigated many times ([11], [6]). The latter (Cascade-
Correlation architecture) is the one which inspired our own research.

7.2 Training Strong Neurons

In the subsection above, we reduced the problem of training sparse multilayer
networks to training just one neuron with sparse connections:

min
w

∑
i

(N(w,Xi)− yi)2 s.t. sparsity constraints (3)

where w is a weight vector, Xi is an i-th row of the input activities matrix
X (activities of the bottom layer at i-th image), N(w, x) is a neuron output and
yi is a target to fit (in our case, the current residual).
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For a three-input strong neuron with binary weights, the formulation above
becomes:

min
w

∑
i

[
min

(
max

j
(w0,j ·Xi,j), max

j
(w1,j ·Xi,j), max

j
(w2,j ·Xi,j)

)
− yi

]2
w0,j , w1,j , w2,j ∈ {0, 1}
‖w0‖0 ≤ k , ‖w1‖0 ≤ k , ‖w2‖0 ≤ k

(4)

The problem (4) is a discrete optimization problem. There is likely no other
way to solve it except for a brute-force search (no obvious reduction to mixed
integer LP/QP). However, we do not need an exact solution — having a good
one is sufficient. Our insight is that there is a simple heuristic that can generate
good strong neurons in a reasonable time.

C

W

H

min

maxmax max

C

W

H

min

maxmax max

C

W

H

min

maxmax max

Fig. 7. Progressive simplification of the optimization problem 4

The original discrete optimization problem has no constraints except for spar-
sity. A max-element can gather information from any element of the input tensor
(see figure 7, left). As a result, we have to evaluate prohibitively large amount of
possible connection structures. For instance, for 15 unit-weight connections to
elements with a 32x32x20 input tensor we have roughly 1058 possible geometries.

It is possible to significantly reduce the configuration count by adding some
additional restrictions on the inter-layer connections. For example, we may im-
pose two additional constraints: (a) require that max-elements are spatially local
(i.e., each element gathers inputs from just one location (x, y) of the input ten-
sor), and (b) require that max-elements feeding data into the same min-element
are located close to each other.

Alternatively — for 1x1xD input tensors with no spatial component — these
restrictions can be reformulated as follows: (a) require that max-elements are
correlationally local (i.e., each element gathers inputs from strongly correlated
channels), and (b) require that max-elements feeding data into the same min-
element are correlated strongly enough.

Having such constraints on the connections of the strong neuron significantly
reduces the number of configurations that must be evaluated to solve the problem
(figure 7, center). In our toy example, the configuration count is reduced from
1058 to just 1018.
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We can achieve a further reduction in search complexity through a two-step
search procedure: (1) evaluate all possible ”seed detectors” — strong neurons
with single-input max-elements (AND without OR), and (2) expand the best
seed found — sequentially add connections to its max-elements.

As a result of this improvement (see figure 7, right), the search complexity
for our 32x32x20 example is reduced from 1018 to 109 neural configurations.
However, it is still too costly — each of these configurations requires a full pass
over the entire dataset in order to evaluate the neuron’s performance.

Further improvements can be achieved by assuming the following:

– Good f3 = min(A,B,C) can be found by extending good f2 = min(A,B)
with the best-suited C

– Good f2 = min(A,B) can be found by extending good f1 = A with the
best-suited B

– Good f1 = A can be found by simply evaluating all possible single-input
seed detectors

This improvement finally makes original discrete optimization problem com-
putationally tractable. For example, the complexity of our toy example is reduced
to just 20000 combinations (compare this with the initial 1058 estimate).

Algorithm outline.

1. Setup the initial model (empty with zero output) and a vector of its residuals
over the entire dataset. Select a neuron pool size P (a few hundreds works
in most cases).

2. Competition phase: generate seed detectors and select the winner from the
combined pool:
– Select a set of P promising input features, ”gen-1 seeds,” f1 = A. Some

form of quick and dirty feature selection is usually enough.
– Produce P gen-2 seeds by extending gen-1 seeds f1 = A with such B

that f2 = min(A,B) produces the best linear fit to the current residual.
Only the spatial/correlational neighborhood of f1 is evaluated.

– Produce P gen-3 seeds by extending gen-2 seeds f2 = min(A,B) with
such C that f3 = min(A,B,C) produces the best linear fit to the current
residual. Only the spatial/correlational neighborhood of f1 is evaluated.

3. Generalization phase. Having determined a winning seed detector, sequen-
tially extend its inputs with new max-connections:
– f = min(A,B, ...)
– A −→ max(A)
– max(A) −→ max(A,A2)
– max(A,A2) −→ max(A,A2, A3) and so on

Extending is performed in such a way that the extended detector fits the
residual better than its previous version. Only the spatial/correlational neigh-
borhood of A is investigated. The procedure stops after the maximum num-
ber of connections is formed (good value — 5 connections per max-element)
or when there is no connection that can improve the fit.
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4. Add a detector to the model, and update the classifier and residual vec-
tor. Stop after the user-specified amount of detectors is formed. Go to 2
otherwise.

The algorithm above is a batch algorithm — it requires us to keep an entire
dataset in memory and make a full pass over it in order to generate new strong
neurons. The reason for this is that the algorithm has no way of correcting
the neuron structure once it has been added to the model — so, if you train
a suboptimal neuron using a subsample of the entire training set, you will be
unable to improve it later.

This property raises an old question of the balance between network stability
and its plasticity. Networks trained with SGD have high plasticity but zero sta-
bility. Plasticity allows us to use SGD — an algorithm that makes only marginal
improvements in the network being trained — because these small decrements in
the loss function will accumulate over time. At the same time, it impedes cheap
nondestructive retraining — once an image is removed from the training set, it
is quickly forgotten.

In contrast, our algorithm has zero plasticity — it will not improve the neu-
rons it generated previously — but perfect stability. The drawback of such an
approach is that it is necessary to use an entire training set to generate just one
strong neuron, and this job has to be done in the best way possible. The upside
is that the network never forgets what it learned before. If your task has changed
a bit, you can restart training and add a few new neurons without damaging
previously learned ones.

8 Training Shallow Classifier Layer

Our proposed strong neurons have a rigid piecewise linear output with a fixed
slope, but in order to separate image classes one often needs nonlinearities with
steep slopes in some places and flat spots in other parts of the feature space.
Hence, a separate classifier layer is needed at the top of the network.

One important point to note is that the shallow classifier layer is the only
place in our model where significant adversarial instability is introduced. The
initial feature detection layer is a single layer of convolutions with bounded
coefficients, and thus it has limited adversarial perturbation growth. The sparsely
connected layers of strong neurons do not amplify adversarial perturbations.

As a result, any adversary targeting our model will actually target its last
layer. In effect, this means that we reduced the problem of building a robust
deep classifier to one of building a robust shalow classifier.

Our experimental results show that due to the stability of the bottom layers
and computational power of strong neurons a simple logistic model (linear sum-
mator + logistic function) on top of the network performs well enough in terms
of accuracy and adversarial stability.
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9 Experimental Results

9.1 Datasets, Software and Network Architectures

We tested Contour Engine on two popular computer vision benchmarks: Ger-
man Traffic Sign Recognition Benchmark [26] and Street View House Numbers
dataset [22].

Our neural architecture is quite nonstandard, and no present framework can
train such models. Thus, we had to write the training and inference code in
C++ from scratch. The code — an experimental GPL-licensed machine learning
framework with several examples — can be downloaded from the following link:
ANONYMIZED://URL/

We evaluated three versions of the same architecture, listed in Table 1: Con-
tour Engine Micro (ultralightweight version), Contour Engine and Contour En-
gine 800 (ultrawide contour-only version without color block, intended for SVHN
dataset).

We should note that all three architectures have a non-convolutional sparse
part (one that is composed of strong neurons). In theory, the constructive train-
ing algorithm described in section 7 can be applied to convolutional connection
structures (it just needs a bit more coding). However, in this first publication we
decided to limit ourselves to the simplest architecture, which achieves interesting
enough results.

Table 1. Three Contour Engine versions and their parameters

Unsupervised
feature extractor

Classifier
columns

Name
contour
features

color
features

multiscale
processing

KFLOP
width

per class
KFLOP
per class

CE-micro 10x4x4 10x4x4 16x16 162 50 ≈ 1
CE-basic 50x6x6 10x4x4 32x32, 16x16 5075 200 ≈ 7
CE-800 50x6x6 — 32x32, 16x16 4590 800 ≈ 28

9.2 Results

Table 2 examines Contour Engine performance in two categories: (a) ultra-
lightweight networks with sub-megaflop inference cost, and (b) networks with
higher computational budget (and higher accuracy requirements).

Reference results for other architectures are cited from [7] (EffNet, ShuffleNet,
MobileNet), [3] (Targeted Kernel Networks: TSTN, STN), [12] (pruned VGG)
and [23],[3] (Capsule Networks).

The Contour Engine Micro clearly outperforms other lightweight networks
(EffNet, ShuffleNet, MobileNet) by a large margin. It provides superior accuracy
while working under smallest computational budget.
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Medium-sized Contour Engine also shows impressive results on GTSRB dataset.
We have to note, however, that its test set error at SVHN is somewhat larger
than that of competing approaches. Visual investigation of misclassified exam-
ples shows that it can be attributed to the fact that the SVHN dataset contains
large proportion of misaligned (badly centered) images — convolutional models
better generalize to such images than the nonconvolutional network which we
test here.

Table 2. FLOPs vs Accuracy at GTSRB and SVHN datasets. Results are ordered by
FLOP count (ascending)

Network FLOP Error Network FLOP Error
GTSRB, lightweight SVHN, lightweight

CE-micro 0.2M 6.7% CE-micro 0.2M 10.1%
EffNet small 0.3M 8.2% EffNet small 0.5M 11.5%
ShuffleNet 0.5M 11.0% ShuffleNet 0.7M 17.3%
MobileNet v1 sml 0.5M 11.9% MobileNet v1 sml 0.8M 14.4%
MobileNet v2 sml 0.7M 9.3% MobileNet v2 med 1.2M 13.3%
MobileNet v2 med 1.1M 7.2% MobileNet v2 big 2.1M 12.8%

GTSRB SVHN
CE-basic 5.3M 1.6% CE-800 4.8M 4.8%
TSTN 55.7M 1.5% CapsNet 41.3M 4.3%
STN 145.0M 1.5% VGG-16 pruned 210.0M 3.9%
VGG-16 pruned 522.9M 1.2%

Table 3. Adversarial stability at SVHN dataset. Results are ordered by attack success
rate (ASR).

ε = 0.01 ε = 0.02 ε = 0.03
Defense ASR Defense ASR Defense ASR
no protection 83.4% no protection 96.4% no protection 98.6%
Wong 33.7% Wong 58.9% IAT 52.8%
CE-800 18.9% ATDA 46.8% CE-800 46.4%

CE-800 29.7%

Finally, we tested the adversarial stability of the Contour Engine 800 network
trained on the SVHN dataset (with clean test set error equal to 4.8%). We used
a powerful PGD attack (iterated FGSM with 20 iterations and backtracking line
search) with the perturbation L∞-norm bounded by ε = 0.01, ε = 0.02 and
ε = 0.03.

Table 3 compares the attack success rate with reference values from three
independent works ([15] for Wong defense, [25] for Adversarial Training with
Domain Adaptation, [16] for Interpolated Adversarial Training).
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It can be seen that an unprotected network can be successfully attacked in
83% cases with a perturbation as small as 0.01. Different kinds of adversarial
protection (when used on traditional summator-based networks) significantly
reduce the attack success rate. However, in all cases Contour Engine outperforms
these results without any special counter-adversarial measures.

10 Summary

In this work, we have proposed a novel model of the artificial neuron — the strong
neuron — which can separate classes with decision boundaries more complex
than hyperplanes and which is resistant to adversarial perturbations of its inputs.
We proved that our proposal is a fundamental and well-motivated change and
that the constituent elements of our strong neuron, min/max units, are the
only robust implementations of the AND/OR logic. We also proposed a novel
training algorithm that can generate sparse networks with O(1) connections per
strong neuron, a result that far surpasses any present advances in neural network
sparsification.

State-of-the-art efficiency (inference cost) is achieved on GTSRB and SVHN
benchmarks. We also achieved state-of-the-art results in terms of stability against
adversarial attacks on SVHN — without any kind of adversarial training —
which surpassed much more sophisticated defenses.

One more interesting result is related to our decision to separate unsupervised
feature detection and supervised classification. We found that Contour Engine
spends most of the inference time in the unsupervised preprocessor — less than
10.000 FLOP per class is used by the supervised part of the network (one which
is composed of strong neurons). This result suggests that contour recognition is
much simpler than was previously thought!
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