
REGISTER ALLOCATION USING GRAPH
NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

The execution lifecycle of a program goes through various optimizations and code
generation. Register allocation is critical part of optimization phase of compiler.
Graph coloring is one of the NP hard problem and it applies to various applications
such as register allocation. Deep Learning methods has various state-of-art tech-
niques in domains like computer vision, natural language processing. In this pa-
per we propose a solution for register allocation problem of compiler using Deep
Learning networks based on graphs called as graph neural networks (GNN). We
start with basic idea that two connected nodes with temporaries will have different
registers allocated.

1 INTRODUCTION

The compilation of a program goes various phases of optimizations and code generation. Most of
the problems in this phases are NP-hard problems. One of the important and critical part in code
optimization is physical register allocation from intermediate code. Typical intermediate code uses
too many temporary variables for simplification, but it makes complicated when this code has to be
finally translated to assembly using physical register, as these physical register are limited for any
given processor. Execution life cycle of a program is divided into various phases of compilation.
These phases are part in compiler front-end where it includes syntax and semantic analyzer. It also
includes intermediate code representation (one of the most used example is LLVM IR). This code
representation uses an unlimited amount of virtual registers/variables for optimization. Compiler
back-end includes code generation and optimizations. Hence for this phase of generating code, this
must be allocated to either a physical register or the space of memory

With advancement of GPUs and CPUs, the register instructions are executed faster than through
memory process. Optimized use of the registers is very crucial at the time of code generation. It
is important to tell which variables are used in which registers and to find the registers to which
they are used at each phase of basic block. The allocation in basic block must consider the conflicts
in variables used in its execution. The issue in getting the allocation of temporary to the registers
by considering these conflicts is called the register allocation issue (A. V. Aho and J. D. Ullman).
Register allocation is considered as old problem during initial days of compiler when used in original
FORTRAN compiler in the 1950s. Heuristic approaches were used to solve the problem, but a
breakthrough came when register allocation was considered as graph coloring problem by (Chaitin,
1982).

Graph coloring is assignment of color to each node in an undirected graph where no two adjacent
(neighbor) color should have exact color. It can be considered as an optimization problem to find
least number of colors needed to color all the nodes. Similar analogy can be used for register
allocation problem where nodes in the graph are the temporaries used in the basic block and edges
between two nodes indicate that these two temporaries live at the concurrent time. This is known as
the register interference graph (RIG). Register interference graph (RIG) is architecture independent.
Here the constraint is that two temporary variables i.e. nodes can be assigned to same register if and
only if there is no edge between them.

1



Deep Learning has various state-of-art techniques for domains like computer vision, natural lan-
guage processing. One of the models with relational structure into a neural model is graph neural
networks. Graph neural networks (GNN) recently has shown great success due to its representation
of graph structural data. One of the blueprint for GNN is message passing scheme where aggregation
of neighbor feature node is done.

2 RELATED WORK

One of the global approach to solve register allocation was graph coloring allocation. (Chaitin,
1982) initial to publish the register allocating with graph coloring. Briggs et al. [4, 5, and 6] publish
some variation, such that quantity of spilling variables was decreased largely. On the other hand (D.
Bernstein et al.) and (Guei-Yuan Lueh, School of Computer Science, 19), used different approach
for spilling nodes. Approach given by (Chaitin, 1982) was in assembly instructions. The STORE
assembly was after intermediate variable and LOAD assembly before its application. (Peter Bergner
et al.) and (Guei-Yuan Lueh, School of Computer Science, 19) used heuristic approach for placement
of assembly, thus to decrease spill and more use of parallelism. (David Callahan and Brian Koblenz,
1991) gave solution to graph coloring problem by executing the program with segment coloring.
(F. C. Chow and J. L. Hennessy, 2019) gave solution to graph coloring problem by assigning the
registers in function in the basic block where count of variable referred and execution count of basic
block of the program.

Graph neural network had spread in several fields of research. (Franco Scarselli et al., 2009) pro-
posed their GNN model on three versions: connection problems – neighboring group size problem,
labeling problem – classifies the parity of a true/false vector which is assigned to each node and a
main problem of subgraphs identification. (D. Selsamet.al., 2018) Gave a GNN approach to the NP
complete true/false satisfiability problem (SAT) achieved accuracy 85% on SAT instances with 40
variables. Also, model could decode assignment operations even it was trained to output true/false
answer.

3 METHODOLOGY

The main principle of register allocation using graphs is,

Temporary variables t1 and t2 can share the same register if and only if at any point in the
basic block at most one of t1 or t2 is live

3.1 CONSTRUCTING REGISTER INTERFERENCE GRAPH

We need to construct an undirected graph where each node can be considered as temporary variable
and an edge is represented between t1 and t2 if they are live at the same time at some point of
the basic block. Thus register interference graph (RIG) is created where two temporaries can be
allocated to the same register if there is no edge connecting them. With analogy to graph coloring
problem, if RIG is k-colorable then there is a register allocation that uses no more than k registers,
where k is number of machine registers. Consider following case,

2



Above flowchart represents operations that is performed in a basic block using variables a, b, c, d, e,
f. Corresponding register interference graph considering its constraints would be,

This is a 4-coloring graph thus, at least 4 registers would be required for above operations in a basic
block to be performed.

3.2 CORRELATING RIG WITH GNN

GNNs have been applied to solve a set of graph-related problems, and a few attempts have been
made for the graph coloring problem. However, GNNs are designed generally as a node embedding
scheme, which has a totally different objective from the register allocation context. GNNs often
map connected nodes into similar node embedding’s while the heuristics for register allocation is to
assign the connected nodes to registers. While iterations of message passing, adjacent information
of node embedding’s are refined. These filtered messages goes through aggregation function to
update for the nodes. Recurrent Neural Network (RNN) is used to compute embedding update for
the nodes.

3



4 MODEL

4.1 IMPLEMENTATION

Given a graph G = (V, E) and register RϵN | R>2 each register is assigned with any initial value ϵRr

over a uniform distribution, Rt=0[i] U(0, 1) | for all i ϵ R and each node is set to the same embedding
value ϵRv sampled from a normal distribution.

Following the procedure of (M. Prates, P. Avelar, H. Lemos, L. Lamb, and M. Vardi, 2018) and (H.
Lemos, M. Prates, P. Avelar and L. Lamb, 2019), this random initial embedding will be a trained
parameter learned by the model. Node-to-node adjacency matrix MVV for communication among
neighboring vertices and node-to-register adjacency matrix MVR for communication among vertices
and registers, connecting every register to all nodes hence, no existing information is obtained for
model and any node can be designated to any register available.

Further, adjacent nodes and registers synchronize and change their embedding value through-out
pmax message passing epoch. Hence resulting node embedding value are resolved by a Multi-
layer Perceptron (MLP) which outputs a probability with respect to the model’s prediction for the
answer to the decision version of problem: “does the graph G accept an R-registers?” Below is the
pseudocode for the model,

According to GNN algorithm, node and register embedding is updated with its hidden states. Mes-
sage functions implemented with MLP are passed to the model Rmsg: R translates register embed-
ding’s to message to update node function and vice versa for V msg.

4.2 TRAINING METHODOLOGY

We trained these GNN model (MLP and RNN) using Stochastic Gradient Descent algorithm imple-
mented with help of TensorFlow Adam optimizer. For training, the input is a set of 10,000 samples
of adjacency matrix of RIGs provided in a .csv file. Hence for full adjacency matrix usability, we
need to add the adjacency vector for each node one by one. The output consists of booleans with
highest value of 100 steps. Output was 1 register number per node. The optimized output received
in the training sample is confirmed against the registers allotted by the model during each epoch.

4



The Multilayer Perceptron (MLP) as a consequence for computing message are three layered (64,
64, 64) with ReLU nonlinear activation function for every layers except for the linear acti-vation
for output layer. The RNNs are the only LSTM cells with normalization layer and ReLU activation
function. Here pmax value was 32 times message passing steps.

5 RESULT AND CONCLUSION

Dataset was divided to batch normalization. We achieved 80% of accuracy over 16 batches of 1,000
epochs. In this approach solution we tried to show how GNN models can be used for register
allocation problem in compiler domain. This approach can also be used for new path of resource
allocation for GNN which is still in developing phase.

Spilling of registers is also a phenomenon that needs to be considered in register allocation. This
can be the point for future work of the model.

6 REFERENCES

A. V. Aho and J. D. Ullman. Principles of Compiler Design. Addison-Wesley, 19.
G. J. Chaitin, (1982). Register allocation and Spilling via Graph Coloring. Proceedings of the 1982
SIGPLAN Symposium on Compiler construction - SIGPLAN ’82.
M. Prates, P. Avelar, H. Lemos, L. Lamb, and M. Vardi (2018), Learning to solve NP-complete
problems - a graph neural network for decision TSP arXiv preprint arXiv:1809.02721, 2018.
Preston Briggs, Keith D. Cooper, and Linda Torczon. Rematerialization. ACM SIGPLAN Notices,
pages 311–321, pages 275–284 1
Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to Graph Coloring Register
Allocation. ACM Transactions on Programming Languages and Systems, pages 428–455, 19
D. Bernstein, D. Q. Goldin, M. C. Golumbici, H. Krawczykand Y. Mansour, I. Nahshon, and R. Y.
Pinter. Spill Code Minimization Techniques for Optimizing Compilers. ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 258–263,
Guei-Yuan Lueh. Issues in Register Allocation by Graph Coloring. Technical Report CMU-CS-96-
171, School of Computer Science, 19.
F. C. Chow and J. L. Hennessy (2019). The Priority-based Coloring Approach to Register Alloca-
tion. ACM Transactions on Programming Languages and Systems, pages 501–536, 19.
David Callahan and Brian Koblenz (1991). Register Allocation Via Hierarchical Graph Coloring.
Conference on Programming Language Design and Implementation, pages 192–203
Peter Bergner, Peter Dahl, David Engebretsen, and Matthew T. O’Keefe. Spill Code Minimization
Via Interference Region Spilling. SIGPLAN Conference on Programming Language Design and
Implementation, pages 287–295
D. Selsam, M. Lamm, B. Bunz, P. Liang, L. de Moura, and D. Dill, (2018) Learning a sat solver
from single-bit supervision, arXiv preprint arXiv:1802.03685, 2018.
H. Lemos, M. Prates, P. Avelar and L. Lamb, (2019) Graph Colouring Meets Deep Learning: Ef-
fective Graph Neural Network Models for Combinatorial Problems, 2019 IEEE 31st International
Conference on Tools with Artificial Intelligence (ICTAI), 2019, pp. 879-885, doi: 10.1109/IC-
TAI.2019.00125.
Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.,
(2009) The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80,
2009.

5


	Introduction
	Related Work
	Methodology
	Constructing Register Interference Graph
	Correlating RIG with GNN

	Model
	Implementation
	Training Methodology

	Result And Conclusion
	References

