
A Multi-Agent Framework for Enterprise Tool Creation

Purna Chandra Sekhar Vakudavathu1,2*, Kushal Mukherjee2, Jayachandu Bandlamudi2, Renuka
Sindhgatta2, Sameep Mehta2

1Department of Mathematics, Indian Institute of Technology, Delhi
2IBM Research

Abstract
Although LLMs can generate tools for generic domains and
tasks, they struggle with enterprise-related domains that in-
volve proprietary APIs and data schemas. We present Tool-
Smith, a framework for autonomously generating and validat-
ing agent-compatible tools. Given an API specification and a
Tool Specification Requirement (TSR), ToolSmith produces
a tool function and verifies it through a closed-loop process: it
creates natural language (NL) tests and executes the tool in a
secure agent sandbox for validation. For state-changing tools,
ToolSmith confirms outcomes by querying the API with pa-
rameters derived from the NL tests. If the tool fails to produce
the desired output, ToolSmith generates diagnostic feedback
to iteratively regenerate it. By ensuring both functional cor-
rectness and agent compatibility, ToolSmith enables reliable
automation of enterprise workflows. We have also shown an
improved performance of our approach compared to the stan-
dard LATM (LLM as tool maker) baseline on a generated
benchmark dataset.

Introduction
Advances in large language models (LLMs) have enabled
AI agents to perform complex real-world tasks using natu-
ral language instructions (Yao et al. 2023; Liu et al. 2023;
Parisi, Zhao, and Fiedel 2022; Schick et al. 2023). These
agents are increasingly adopted in domains such as enter-
prise automation, customer service, and software engineer-
ing (Masterman et al. 2024).

Agentic systems are enabled with tools that expand an
agent’s ability to interact with its environment. In enter-
prises, these tools often correspond to wrapper services
around APIs1 that encapsulate business functionality and op-
erations. To make agents effective in such settings, it is nec-
essary to construct bespoke tools that combine APIs with
auxiliary code and can be reliably invoked by the agent.

The primary challenge in tool creation lies in ensuring
that the tools are robust, reliable, and secure. Each tool
should be self-contained, functionally accurate, and accom-
panied by comprehensive metadata—encompassing descrip-
tions, inputs, and outputs—to facilitate seamless integration
with the agentic system.

*Work done during an internship at IBM Research.
Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://swagger.io/specification/

We introduce ToolSmith, a framework that leverages the
Langgraph2-based agentic system to generate and validate
enterprise tools. ToolSmith creates tools that incorporate
enterprise APIs and supporting logic, while systematically
testing them for correctness and agent compatibility.

Prior Work
Prior work in tool creation involves two main paradigms,
both of which exhibit critical limitations for enterprise use
cases. The first work is on-the-fly code generation(Qian et al.
2023; Zheng et al. 2024; Wang et al. 2024). In this approach,
the agents generate and execute code when attempting to
respond to a user’s prompt. On-the-fly code generation is
fundamentally insecure, lacking governance over LLM’s ac-
tions, and unreliable, as the code is ephemeral and not val-
idated. The second approach is a more structured paradigm
and is found in frameworks like LATM(Cai et al. 2024). This
process involves the identification of what tools need to be
created and then using separate LLM calls to generate the
tool code and unit tests for the tool. The generated tool is
executed against these unit tests directly as a native func-
tion and validated. This approach exhibits several key limi-
tations that inhibit its usage for enterprise use cases. Domain
Knowledge Gap: The unit test generation lacks knowledge
of proprietary enterprise domains, leading to hallucinated
test cases and unreliable verification (Eghbali and Pradel
2024; Gu et al. 2025; Yu et al. 2025). Native testing: Direct
unit tests only verify the code’s logic in the tool, ignoring vi-
tal tool properties such as well-formed docstrings. (Trilcke
et al. 2025). High-quality docstrings are essential metadata
for agents to work with tools.

Our Contributions
Our key contributions are as follows:

Context Grounded Test Generation: Many API-
wrapped tools require input values that are only available at
runtime (such as valid user IDs or account numbers), which
cannot be fully captured in the API specifications. As a re-
sult, purely LLM-generated test cases may be syntactically
valid but contain irrelevant data values, leading to empty re-
sponses or ‘no results found’ errors. Our framework gener-
ates Natural Language tests by exploring the available data

2https://www.langchain.com/langgraph



Figure 1: ToolSmith Framework

using the APIs within the agentic flow. This grounding of
NL tests ensures that the entities and values used correspond
to what is actually present in the service.

Agent-Centric Verification & State Validation: We in-
troduce a testing process that validates the tool’s logic and
agent-compatible properties (e.g., docstrings) in a sandbox
containing the agent and the target LLM. For state-altering
tools, it confirms outcomes by querying the API with param-
eters grounded in the NL tests.

Autonomous Self-Correction Loop: Upon NL test fail-
ures and validation failures, the framework generates diag-
nostic feedback on the error to guide the regeneration of the
tool code and repeats the verification cycle.

Framework
The ToolSmith Framework, presented in Figure 1, employs
four key agents in an iterative workflow. The process is ini-
tiated by the Tool Generation Agent, which generates the
tool. This tool then enters a verification loop driven by the
NL Test Generation Agent, the Testing & Feedback Agent,
and the Validation Agent.

Tool Generation Agent: This agent takes API specifi-
cation3 and accompanying Tool Specification Requirement
(TSR) as input. Using these two inputs, the agent’s task is
to generate a complete Python function. This function im-
plements the API call and the necessary logic to fulfil the
TSR, such as filtering, aggregating and transforming the
data returned by the API call. The generated Python func-
tion includes a comprehensive, schema-compliant docstring
4. The docstring acts as metadata, ensuring the tool is agent-
compatible by describing its purpose, inputs, and outputs for
agents. This initial, generated tool is then passed on to the
next agents in the framework for testing and validation.

NL Test Generation Agent: The API specification along
with helper API specifications, TSR and the tool doc-
string are provided to this agent. To create grounded, API-
compatible NL tests, this system employs a two-step method
separating the NL test structure from its data. First, the NL

3https://swagger.io/specification/
4https://peps.python.org/pep-0257/#multi-line-docstrings

Test Generation Agent generates the linguistic structure of
the NL test based on the tool’s docstring and TSR, using
placeholders for actual data values. (eg, <USERID>). Sec-
ond, it analyzes the API specification to identify a suitable
data-fetching endpoint to populate the NL tests. Then, it gen-
erates a dynamic code snippet to retrieve the required data
from the backend service.

Testing & Feedback Agent: The API specification, gen-
erated Tool and the NL Test are given to this agent. The
Testing & Feedback Agent classifies whether the generated
tool is state-altering by analyzing its code, the TSR, and
the NL test. This agent orchestrates the agent-centric inte-
gration testing by passing the generated tool and the NL
tests to a Tool Testing Sandbox. In the sandbox, we cre-
ate a ReACT(Yao et al. 2023) style agent with the target
tool and specified LLM using the Langgraph framework.
The ReACT agent then invokes the appropriate tool based
on the NL test as a part of its reasoning process, simulating
real-world execution. This method validates both the tool’s
logic and its agent compatibility. Based on the tool execution
in the sandbox, the Testing & Feedback Agent determines
the next step by following one of three pathways: (1) Self-
Correction: If the tool fails to execute, contains malformed
docstrings, returns an output that violates the API’s response
schema or provides an output inconsistent with the NL tests
parameters, the agent generates diagnostic feedback (eg,
a comment like Tool failed with 404 error, the
endpoint may be incorrect) to guide the Tool Gener-
ation Agent in regeneration of the tool code, repeating the
verification loop. (2) Advance to State-Change Validation:
If the tool executes successfully and is state-altering (e.g., a
POST request), it is passed to the Validation Agent. (3) Suc-
cess: If the tool executes successfully and is fetch-only (e.g.,
a GET request), the process terminates, and the verified tool
is returned.

State-Change Validation Agent: The State-Change Val-
idation Agent acts as the final verifier for tools that modify
system data. After a tool successfully executes in the test
sandbox, this agent is provided with the API specification
and the NL Test. It first combines the API’s semantics with
the parameters from the NL tests. It then generates and exe-



cutes a dynamic code snippet to query the system’s current
state, verifying that it matches the expected outcome. In case
of a validation failure, the agent generates diagnostic feed-
back and guides the framework to regenerate the tool.

Benchmark Dataset
We constructed our dataset using an Enterprise API col-
lection consisting of 55 enterprise APIs, each exposing a
single operation. The APIs are related to sales engagement
(Salesloft5) and vary in complexity with respect to their in-
put and output parameters.

Benchmark Dataset Generation
Tool Specification Requirement generation: We utilized
the API specifications, along with carefully designed
prompts, to guide a Creator LLM (llama46 ) in generating
comprehensive tool specification requirements. For each
API specification, we generated five candidate requests.
These requests were then evaluated and filtered by a
Judge LLM (llama4) based on the following criteria: (i)
alignment with the original API specification, (ii) clarity
and completeness of the request, (iii) correctness of the
target endpoint and its operational status, and (iv) overall
feasibility for tool generation.

Helper APIs collation: Since each API specification in
this collection exposes only one operation, additional helper
APIs were required to validate the generated tools. To iden-
tify suitable helpers, llama4 was prompted to generate
concise (2–3 line) summaries for each of the 55 APIs. These
summaries were then aggregated and combined with the se-
lected tool specification requirement. Using this combined
context, llama4 retrieved the three most relevant helper
APIs whose operations were most likely to support tool val-
idation.

Note that helper API collation was necessary only for the
Salesloft data set, as each API exposes a single endpoint.
In practical enterprise environments, APIs typically provide
multiple endpoints, reducing the need for such a collation.

Through this process, a total of 186 pairs of API-tool
specification requirements were generated. Figure 2 shows
an example benchmark data sample.

We classify the TSR data samples into four classes based
on the tool specification requirement generated. The classi-
fication is as follows:

1. Read-without data fetch: Tool involving read-only re-
quests with inputs that can be generated independently of
the data in the backend system. Example: Create a tool to
retrieve the last five active accounts.

2. Read-with data fetch: Tool involving read-only requests
where the inputs are dependent on the data in the backend
system. Example: Create a tool to fetch meeting details
for a user id. The user id must already exist in the back-
end for the tool to work.
5https://developers.salesloft.com/docs/api/
6https://huggingface.co/meta-llama/Llama-4-Maverick-17B-

128E-Instruct-FP8

Request Type Number of Data Samples
Read-without data fetch 66
Read-with data fetch 80
Write-without data fetch 8
Write-with data fetch 32
Total 186

Table 1: Dataset Composition by Request Type.

{
"api_spec_filename":
"Salesloft_Get_all_cadence_memberships.json",
"Generated TSR": "create a tool to retrieve
cadence membership details, filter by
cadence ID, and count active memberships",
"auth_type": "Bearer",
"Ground Truth API Sequence":
GET /v2/cadence_memberships

}

Figure 2: An example benchmark data sample containing the
API spec filename and TSR.

3. Write-without data fetch: Tool involving write requests
with inputs that can be generated independently of the
data in the backend system. Example: Create a tool to
create a new account in the database.

4. Write-with data fetch: Tool involving write requests
where the inputs are dependent on the data in the backend
system. Example: Create a tool to modify the meeting de-
tails of a user id.

Table 1 represents the composition of the dataset based on
the type of tool specification requirement.

Experimental Setup
We benchmark our proposed framework against the existing
tool creation framework, LATM. Our LATM implementa-
tion follows the setup described in (Cai et al. 2024), em-
ploying two LLMs. The first LLM generates executable tool
code from the provided API specification and Task-Specific
Requirement (TSR). The second LLM uses the generated
code and API specification to produce a corresponding Nat-
ural Language (NL) test. Both outputs—the tool code and
NL test—are evaluated in a Tool Testing Sandbox, where a
ReAct agent executes the tool to determine functional cor-
rectness. We use llama4 for both tool code and NL test
generation, and mistral-small7 as the sandbox ReAct
agent.

For ToolSmith, we input the same API specification and
TSR. If the framework fails to invoke the tool, a full process
re-execution is triggered up to three times. In contrast, when
a generated tool contains internal errors, only the internal
feedback loop is retried, also up to three times. Instances
unresolved after the allotted attempts are marked as failures.
For ToolSmith’s agent models, we use llama4 for tool gen-

7https://huggingface.co/mistralai/Mistral-Small-3.1-24B-
Instruct-2503



LATM (Baseline) ToolSmith (Ours)
Request Type Success Failure Success Failure
Read-without data fetch 39 27 61 5
Read-with data fetch 12 68 68 12
Write-without data fetch 6 2 3 5
Write-with data fetch 0 32 21 11
Total 57 129 153 33

Table 2: Comparison of ToolSmith and LATM frameworks:
Success and Failure Counts by Request Type

eration and Testing & Feedback agents, and gpt-oss8 for
NL Test Generation and Validation agents. As in our LATM
implementation, we use mistral-small as the sandbox
ReAct agent for consistent results.

Results
Table 2 presents a comparative analysis of ToolSmith
and the LATM framework, demonstrating that ToolSmith
achieves a significantly higher success rate across the
dataset.

LATM’s performance degrades significantly in the Read-
with data fetch and Write-with data fetch categories. Lack-
ing the ability to fetch the required backend data, LATM
hallucinates parameters (e.g., user IDs), resulting in a high
volume of execution failures. In many cases, the generated
API calls are syntactically correct but semantically invalid,
as the missing contextual information leads to incorrect pa-
rameter substitution.

ToolSmith, in contrast, handles data-fetching tasks more
effectively and performs reliably across most categories. Its
main weakness is observed in the Write-without data fetch
category, where it exhibits a lower success rate. We at-
tribute these failures to (1) tool-calling errors, where the
model generates incomplete or incorrectly formatted API
requests, and (2) LLM-specific failures, such as empty
or non-executable responses. These issues appear to be
implementation-related rather than fundamental, and could
likely be mitigated through improved prompt engineering,
more robust tool invocation handling, or by adopting better
frontier LLM.

Overall, these results indicate that ToolSmith provides a
more reliable framework for autonomous API-based tool-
generation, particularly for tasks requiring access to external
data and services for testing and for validation.

Discussion and Conclusion
This paper proposes ToolSmith, a multi-agent framework
for the autonomous generation and validation of agent-
compatible tools. The framework is designed to accelerate
the adoption of autonomous agents in enterprise workflows
by securely and scalably transforming API specifications
into usable tools. Future work includes benchmarking the
framework to determine the best LLMs to use under cost
constraints. In addition, we plan to analyze frequent patterns

8https://huggingface.co/openai/gpt-oss-120b

in ToolSmith agentic flow traces and optimize the graph to
reduce cost and improve performance.

References
Cai, T.; Wang, X.; Ma, T.; Chen, X.; and Zhou, D. 2024.
Large Language Models as Tool Makers. In The Twelfth
International Conference on Learning Representations.
Eghbali, A.; and Pradel, M. 2024. De-Hallucinator: Miti-
gating LLM Hallucinations in Code Generation Tasks via
Iterative Grounding. arXiv:2401.01701.
Gu, X.; Chen, M.; Lin, Y.; Hu, Y.; Zhang, H.; Wan, C.; Wei,
Z.; Xu, Y.; and Wang, J. 2025. On the Effectiveness of
Large Language Models in Domain-Specific Code Gener-
ation. ACM Trans. Softw. Eng. Methodol., 34(3).
Liu, R.; Wei, J.; Gu, S. S.; Wu, T.-Y.; Vosoughi, S.; Cui,
C.; Zhou, D.; and Dai, A. M. 2023. Mind’s Eye: Grounded
Language Model Reasoning through Simulation. In The
Eleventh International Conference on Learning Represen-
tations.
Masterman, T.; Besen, S.; Sawtell, M.; and Chao, A. 2024.
The Landscape of Emerging AI Agent Architectures for
Reasoning, Planning, and Tool Calling: A Survey. ArXiv,
abs/2404.11584.
Parisi, A.; Zhao, Y.; and Fiedel, N. 2022. TALM: Tool Aug-
mented Language Models. arXiv:2205.12255.
Qian, C.; Han, C.; Fung, Y.; Qin, Y.; Liu, Z.; and Ji, H.
2023. CREATOR: Tool Creation for Disentangling Abstract
and Concrete Reasoning of Large Language Models. In
Bouamor, H.; Pino, J.; and Bali, K., eds., Findings of the
Association for Computational Linguistics: EMNLP 2023,
6922–6939. Singapore: Association for Computational Lin-
guistics.
Schick, T.; Dwivedi-Yu, J.; Dessi, R.; Raileanu, R.; Lomeli,
M.; Hambro, E.; Zettlemoyer, L.; Cancedda, N.; and
Scialom, T. 2023. Toolformer: Language Models Can Teach
Themselves to Use Tools. In Thirty-seventh Conference on
Neural Information Processing Systems.
Trilcke, P.; Börner, I.; Sluyter-Gäthje, H.; Skorinkin, D.; Fis-
cher, F.; and Milling, C. 2025. Agentic DraCor and the Art of
Docstring Engineering: Evaluating MCP-empowered LLM
Usage of the DraCor API. arXiv:2508.13774.
Wang, G.; Xie, Y.; Jiang, Y.; Mandlekar, A.; Xiao, C.;
Zhu, Y.; Fan, L.; and Anandkumar, A. 2024. Voyager: An
Open-Ended Embodied Agent with Large Language Mod-
els. Transactions on Machine Learning Research.
Yao, S.; Zhao, J.; Yu, D.; Du, N.; Shafran, I.; Narasimhan,
K.; and Cao, Y. 2023. ReAct: Synergizing Reasoning and
Acting in Language Models. In International Conference
on Learning Representations (ICLR).
Yu, H.; Chen, T.; Huang, J.; Li, Z.; Ran, D.; Wang, X.; Li,
Y.; Marron, A.; Harel, D.; Xie, Y.; and Xie, T. 2025. DeCon:
Detecting Incorrect Assertions via Postconditions Generated
by a Large Language Model. CoRR, abs/2501.02901.
Zheng, T.; Zhang, G.; Shen, T.; Liu, X.; Lin, B. Y.; Fu, J.;
Chen, W.; and Yue, X. 2024. OpenCodeInterpreter: Inte-
grating Code Generation with Execution and Refinement. In



Ku, L.-W.; Martins, A.; and Srikumar, V., eds., Findings of
the Association for Computational Linguistics: ACL 2024,
12834–12859. Bangkok, Thailand: Association for Compu-
tational Linguistics.


