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Abstract

“Sure, I am happy to generate a story for you: Captain Lyra stood at the helm of1

her trusty ship, the Maelstrom’s Fury, gazing out at the endless sea. [...] Lyra’s eyes2

welled up with tears as she realized the bitter truth – she had sacrificed everything3

for fleeting riches, and lost the love of her crew, her family, and herself.” Although4

this story, generated by a large language model, is captivating, one may wonder—5

how would the story have unfolded if the model had chosen “Captain Maeve” as6

the protagonist instead? We cannot know. State-of-the-art large language models7

are stateless—they maintain no internal memory or state. Given a prompt, they8

generate a sequence of tokens as an output using an autoregressive process. As a9

consequence, they cannot reason about counterfactual alternatives to tokens they10

have generated in the past. In this work, our goal is to enhance them with this11

functionality. To this end, we develop a causal model of token generation that12

builds upon the Gumbel-Max structural causal model. Our model allows any large13

language model to perform counterfactual token generation at almost no cost in14

comparison with vanilla token generation, it is embarrassingly simple to implement,15

and it does not require any fine-tuning nor prompt engineering. We implement our16

model on Llama 3 8B-instruct and conduct qualitative and quantitative analyses of17

counterfactually generated text. We conclude with a demonstrative application of18

counterfactual token generation for bias detection, unveiling interesting insights19

about the model of the world constructed by large language models.20

1 Introduction21

Reasoning about “what might have been”, about alternatives to our own past actions, is a landmark22

of human intelligence [1–3]. This type of reasoning, known as counterfactual reasoning, has been23

shown to play a significant role in the ability that humans have to learn from limited past experience24

and improve their decision making skills over time [4–6], it provides the basis for creativity and25

insight [7], and it is tightly connected to the way we attribute causality and responsibility [8–11]. Can26

currently available large language models (LLMs) conduct counterfactual reasoning about alternatives27

to their own outputs? In this work, we argue that they cannot, by design.28

Currently available LLMs are stateless—they maintain no internal memory or state. Given an input29

prompt, they generate a sequence of tokens1 as output using an autoregressive process [12, 13]. At30

each time step, they first use a neural network to map the prompt and the (partial) sequence of tokens31

generated so far to a token distribution. Then, they use a sampler to draw the next token at random32

from the token distribution.2 Finally, they append the next token to the (partial) sequence of tokens,33

and continue until a special end-of-sequence token is sampled. To understand why this autoregressive34

1Tokens are the units that make up text, such as (sub-)words, symbols, and special end-of-sequence tokens.
2Evidence suggests that, if an LLM is forced to output tokens deterministically, its performance worsens [14].
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(a) Original generation (b) Interventional generation
with unmodified input

(c) Interventional generation
with modified input

(d) Counterfactual generation
with modified input

Figure 1: Illustrative examples of autoregressive token generation. In all panels, plain text
indicates the input provided to the LLM and highlighted text indicates the output generated by the
model. Each token in the output sequence is highlighted in a different color to represent the (stochastic)
state of the sampler. Panel (a) shows an LLM’s output to a user’s prompt using vanilla autoregressive
token generation. Panels (b, c) show an LLM’s output to an input comprising a user’s prompt and
an unmodified/modified part of the original output from Panel (a) using vanilla autoregressive token
generation. Panel (d) shows an LLM’s counterfactual output to an input comprising a user’s prompt
and a modified part of the output from Panel (a) using autoregressive token generation augmented
with the Gumbel-Max SCM.

process is insufficient to reason counterfactually about alternatives to a previously generated sequence35

of tokens, we will use an illustrative example.36

Consider that we ask an LLM to share its favorite color, as shown in Figure 1a. Had the LLM chosen37

a different color (i.e., purple instead of blue), what would the rest of its output have been? To answer38

such a counterfactual question, we need to implement two actions: (i) modify the (partial) sequence39

of tokens fed to the neural network used by the LLM and (ii) compel the sampler used by the LLM to40

behave exactly as it did in the original generation. Using currently available LLMs, we can readily41

implement the first action, which can be viewed as a causal intervention [15, 16]. We just need to42

replace “blue” with “purple” in the (partial) sequence of tokens fed to the neural network. However,43

we cannot easily implement the second action, because the sampler does not specify how it would44

have behaved after taking the first action while keeping everything else equal. In fact, note that, if we45

provide the (modified) partial sequence up to and including the world “blue” (“purple”) as input to the46

LLM, there is no way to ensure that the LLM will generate an output that matches (the structure of)47

the original output because the (stochastic) state of the sampler is different, as shown in Figures 1b48

and 1c.349

Our contributions. Our key idea is to augment the autoregressive process underpinning an LLM, par-50

ticularly the sampler used in the process, using the Gumbel-Max structural causal model (SCM) [17].51

Under this model, the sampler is defined through a causal mechanism which receives as an input the52

distribution of the next token and a set of Gumbel noise values. Importantly, this causal mechanism53

specifies how the sampler would have behaved under an intervention on the distribution of the next54

token and thus allow us to answer counterfactual questions about a previously generated sequence55

of tokens, as shown in Figure 1d. Along the way, we also introduce an efficient implementation56

of the augmented autoregressive process that can generate counterfactual tokens at almost no cost57

in comparison with vanilla token generation. As a proof of concept, we implement our model on58

Llama 3 8B-instruct, and conduct experiments to qualitatively and quantitatively analyze the simi-59

larity between an LLM’s original output and the one generated via counterfactual token generation.60

Additionally, we demonstrate the use of our methodology for bias detection, unveiling interesting61

insights about the model of the world constructed by large language models.462

Further related work. Our work is most closely related to a line of work on counterfactual text63

generation [18–27]. In this line of work, given pairs of factual statements and interventions over64

these statements, the goal is to generate counterfactual statements that match those made by humans—65

counterfactual statements that are consistent with the underlying model of the world shared by66

humans. To this end, existing methods typically fine-tune an LLM using a dataset comprising factual67

3Note that using the same random seed is not sufficient because the inputs in Figure 1a and Figures 1b and 1c
differ in their number of tokens.

4We will release an open-source implementation of our model upon acceptance of the paper.
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statements, interventions over these statements, and counterfactual statements made by humans.68

In contrast, in our work, our goal is to generate counterfactual statements that are consistent with69

the underlying model of the world constructed by a given LLM [28–31]. In this context, our work70

also relates to a rapidly increasing number of empirical studies assessing the ability of LLMs to71

answer questions that require counterfactual reasoning [32–43]. Here, the LLMs are typically72

evaluated using multiple choice questions about a given set of factual and counterfactual statements.73

However, similarly as in the line of work on counterfactual text generation discussed previously, the74

counterfactual statements are made by humans.75

The Gumbel-max structural causal model has been previously used to enable counterfactual reasoning76

in MDPs [44], temporal point processes [45], and expert predictions [46]. However, to the best of our77

knowledge, it has not been previously used to enable counterfactual reasoning in LLMs.78

2 A Causal Model of Token Generation79

To formally express autoregressive token generation, we adopt (part of) the notation introduced80

by Duetting et al. [47] in a different (non-causal) context. Let V denote the vocabulary (set) of81

tokens available to the LLM, which includes an end-of-sequence token ⊥. Then, we denote by82

V ∗ = V ∪ V 2 ∪ · · · ∪ V K the set of sequences of tokens up to maximum length K, and by ∅ the83

empty token. An LLM takes as input a prompt sequence sq ∈ V ∗ and responds with an output84

sequence s ∈ V ∗. The output sequence is generated using an autoregressive process. At each time85

step i ∈ [K], the LLM first takes as input the concatenation of the prompt sequence sq and the86

(partial) output sequence si−1 and generates a distribution over tokens di ∈ ∆(V ). Then, it samples87

the next token ti ∼ di from the distribution di and creates the output sequence si = si−1 ◦ ti, where88

◦ denotes the concatenation of a token or sequence with another sequence. Further, if ti = ⊥, it89

terminates and returns s = si and, otherwise, it continues to the next step i+ 1 in the generation.90

Given any prompt sequence, the above autoregressive process determines what (factual) output91

sequence the LLM generates as a response. However, given a generated output sequence, the above92

process does not determine what counterfactual output sequence the LLM would have generated if93

the prompt sequence, or some of the tokens in the output sequence, had been different. To address this94

limitation, we augment the autoregressive process using a structural causal model (SCM) [15, 16],95

which we denote as M. Our SCM M is defined by the following assignments5:96

S0 = Sq, Di =

{
fD(Si−1) if last(Si−1) ̸= ⊥,

P∅ otherwise
, Ti =

{
fT (Di, Ui) if Di ̸= P∅,

∅ otherwise
,

Si = Si−1 ◦ Ti and S = SK ,

(1)

where Sq and U = (Ui)i∈{1,...,K} are independent exogenous random variables, with Sq ∼ PQ and97

Ui ∼ PU , respectively, fD and fT are given functions, P∅ is the point mass distribution on ∅, and98

last(Si−1) denotes the last token of the sequence Si−1. Here, the function fD is defined by the99

transformer architecture of the LLM and the choice of function fT and distribution PU determines100

the exact mechanism that the LLM’s sampler uses to (stochastically) select the next token Ti. Note101

that, there always exists a pair of fT and PU such that the distribution over tokens Di matches the102

distribution PM(Ti) entailed by M (see Buesing et al. [48], Lemma 2 for a technical argument).103

Moreover, note that, in the SCM M, the output sequence S contains the prompt sequence to lighten104

the notation regarding interventions.105

Under this augmented autoregressive process, given an output sequence S = s and noise values106

U = u, we can generate the counterfactual output sequence the LLM would have generated if the107

prompt sequence, or some of the tokens in the output sequence had been different, deterministically.108

More formally, given an intervention do[Si = s̃], with i ≤ |s|, the counterfactual output sequence109

S = SK can be computed recursively using the following expression:110

Sj =


sj if j < i

s̃ if j = i

Sj−1 ◦ fT (fD(Sj−1), uj) if j > i and last(Sj−1) ̸= ⊥
Sj−1 otherwise.

(2)

5We denote random variables with capital letters and realizations of random variables with lower case letters.
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Note that the key element of this recursive expression for the counterfactual output sequence is the use111

of the same realized noise values uj that were used to generate the factual output sequence s. However,112

without further assumptions, the counterfactual output sequence may be non-identifiable. This is113

because there may be multiple noise distributions PU and functions fT under which PM(Ti) = Di,114

but each pair produces a different counterfactual output sequence—Oberst and Sontag [17] make a115

similar argument in the context of MDPs. In simpler terms, without explicitly modeling the stochastic116

mechanism by which the sampler selects the next token in the factual sequence, it is not possible to117

determine which tokens would have been selected in the counterfactual sequence. Next, we address118

this issue by focusing on the class of Gumbel-Max SCMs to implement an LLM’s sampler.119

3 Counterfactual Token Generation Using Gumbel-Max SCMs120

Under the class of Gumbel-Max SCMs, the function fT that implements the sampling of the next121

token in the SCM M adopts the following functional form [17]:122

fT (Di, Ui) = argmax
t∈V

{logDi,t + Ui,t}, (3)

where Ui,v ∼ Gumbel(0, 1) are independently distributed Gumbel variables. Importantly, this class123

of SCMs has been shown to satisfy a desirable counterfactual stability property that can be intuitively124

expressed as follows. Assume that, at time step i, the augmented autoregressive process sampled125

token ti given di = fD(si). Then, in a counterfactual scenario where Di = d′, it is unlikely that, at126

time step i, the augmented autoregressive process would have sampled a token t′ other than ti—the127

factual one—unless, under the token distribution d′, the relative chance of generating ti decreases128

compared to other tokens. Formally, for any token distribution d′ ∈ ∆(V ) with d′ ̸= di such that129

PM(Ti = ti |Di = d′)

PM(Ti = ti |Di = di)
≥ PM(Ti = t′ |Di = d′)

PM(Ti = t′ |Di = di)
,

it holds that, in the counterfactual scenario where Di = d′, the counterfactual token Ti ̸= t′.130

In addition to solving the non-identifiability issues discussed previously, the use of Gumbel-Max131

SCMs allows for an efficient procedure to sample a sequence of counterfactual tokens with minimal132

additional memory requirements compared to vanilla token generation. We summarize the procedure133

in Algorithm 1 in Appendix A. The algorithm performs the autoregressive computation of Eq. 2134

without storing the values uj for the noise variables that were used during the factual generation,135

which require a large amount of memory. Instead, it stores the state of the random number generator136

used at each time step j ∈ [K] of the factual generation, and it regenerates the values uj on the fly.137

Remarks on implementation aspects of LLMs. In practice, to avoid sampling tokens with very low138

probability, LLMs may not sample directly from the distribution over tokens di at each time step i.139

Instead, a common practice is to sample from a distribution d̂i ∈ ∆(Vi), where d̂i,t ∝ di,t if t ∈ Vi140

and d̂i,t = 0 otherwise, where Vi is either the set of most likely tokens of size k under di—known141

as “top-k” sampling—or the set of most likely tokens whose cumulative probability exceeds a given142

value p under di—known as “top-p” or “nucleus” sampling [14]. We can readily implement top-k143

sampling and top-p sampling in the SCM M by restricting the argmax in Eq. 3 to the respective set144

Vi. However, in general, the resulting model is not guaranteed to satisfy counterfactual stability.145

In all state-of-the-art LLMs, to ensure that the distribution di over tokens at each time step i is a valid146

probability distribution, the final layer in their neural network is a softmax layer. A crucial feature of147

this layer is the temperature parameter, τ , which controls the level of uncertainty in di. Intuitively,148

higher values of τ result in a more uniform distribution, while as τ approaches zero, the distribution149

concentrates increasingly on the most probable next token. In the next section, we perform a series of150

experiments in which we analyze the performance of counterfactual token generation, examining the151

effects of varying temperature values, as well as the application of top-k and top-p sampling.152

4 Experiments153

In this section, we experiment with an implementation of our model on Llama 3 8B-instruct [49], a154

popular open-weights large language model. We start by analyzing the similarity between factual155

and counterfactual text. Further, we demonstrate an application of counterfactual token generation in156

detecting model biases towards demographic groups.6157

6All experiments ran on an internal cluster of machines, each equipped with 24 Intel(R) Xeon(R) 3GHz CPU
cores, 1024GBs of memory and 2 NVIDIA A100 80GB GPUs.
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Figure 2: Comparison between interventional and counterfactual token generation. The panels
show the edit distance between the factual token sequence and the sequence generated by interven-
tional and counterfactual token generation using (a) the Gumbel-Max SCM defined in Eq. 3 and
(b) its top-p and (c) its top-k variant discussed at the end of Section 3, against various values of the
temperature parameter τ , p and k, respectively. In panels (b, c) the temperature parameter is set to
τ = 0.6. In all panels, the edit distance is averaged over 4,000 output sequences, resulting from two
independent interventions per factual sequence, and shaded areas represent 95% confidence intervals.

4.1 How similar is counterfactually generated text to the factual one?158

As discussed in Section 3, by using the Gumbel-Max SCM, our approach to counterfactual token159

generation is guaranteed to satisfy the property of counterfactual stability—counterfactual token160

generation “prioritizes” selecting the same tokens Ti that were selected during the factual generation.161

As a consequence, we expect the counterfactual text generated using counterfactual token generation162

to be similar to the factual text. Here, we empirically verify this expectation using a quantitative163

analysis and explore how it is affected by the model parameters. For a qualitative analysis of the164

similarities and differences between factual and counterfactual texts, refer to Appendix B.165

Experimental setup. We first use the implementation of our model on Llama 3 8B-instruct to166

generate (factual) outputs to 2,000 question prompts sourced from the LMSYS Chat 1M dataset [50].167

As a system prompt we use “Keep your replies short and to the point.”. Further, for each factual168

output, we perform two interventions where we replace a randomly selected token ti with a token169

t′ ̸= ti.7 One of the two interventions restricts the choice of ti to the first half of the output sequence170

and the other restricts it to the second half. Then, for each intervened factual output, we feed the171

concatenation of the question prompt and the first part of the intervened factual output up to including172

token t′ as an input to our model and regenerate the second part of the output after token t′ using two173

approaches:174

1. Interventional token generation: it uses vanilla autoregressive token generation, that is, it175

samples new noise values uj for the second part of the output, as shown in Figure 1c.176

2. Counterfactual token generation: it uses Algorithm 1, that is, it reuses the same noise values uj177

used in the factual generation for the second part of the output, as shown in Figure 1d.178

Finally, we measure the lexicographic similarity between the regenerated second part of the output and179

its factual counterpart using their (normalized) Levenshtein edit distance [51]. In our experiments, we180

implement our model using the Gumbel-Max SCM defined in Eq. 3 as well as the top-p Gumbel-Max181

SCM and top-k Gumbel-Max SCM discussed at the end of Section 3.182

Results. Figure 2 summarizes the results, which show that the output sequences generated using183

counterfactual token generation are more similar to the factual sequences (i.e., the edit distance is184

lower) than the output sequences generated using interventional token generation. This suggests that,185

even though the top-p and top-k Gumbel-Max SCMs are not guaranteed to satisfy counterfactual186

stability, in practice, counterfactual token generation under both models do “prioritize” selecting the187

same tokens Ti that were selected during the factual generation.188

4.2 Does counterfactual token generation reveal model biases?189

Common approaches to addressing questions of bias and fairness rely on making counterfactual190

comparisons based on sensitive attributes [52]. For example, would a person’s income have been the191

same if their race or sex were different? In this section, we focus on a census data generation task,192

7To select t′, we set the probability of ti in di to 0, re-scale the values of di and use top-p sampling (p = 0.9).
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(c) Change in occupation
upon intervention on race

Figure 3: Comparison between factual and counterfactual income, education, and occupation.
Panel (a) shows the income of male (female) individuals had they been female (male). Enlarged
points correspond to the median income. Panel (b) shows the average difference in the education
level of individuals of each race had their race been different. Each race is represented with a short
description for visibility; refer to Appendix C for the full descriptions. Panel (c) shows the distribution
shift of occupations among Asian American individuals had they been Black or African American.
Green (red) sections indicate the increase (decrease) in the number of Asian American individuals
that practice each occupation had they been Black or African American. In all experiments, the
temperature parameter is set to τ = 0.8.

and demonstrate the use of counterfactual token generation to investigate potential biases of the LLM193

towards demographic groups.194

Experimental setup. We first use the implementation of our model on Llama 3 8B-instruct to195

generate (factual) census data. To this end, we use the same input prompt three times with different196

seeds (see Appendix C for details), requesting 50 individuals each time. The factual data generated197

by the model consist of 114 fictional individuals including their name, age, sex, citizenship, race,198

ethnicity, marital status, number of children, occupation, income, and education, in this given order.199

For each fictional person, we consider all possible interventions on each of the sensitive attributes of200

sex and race. Then, for each intervention, we concatenate the input prompt with the initial part of the201

output that describes the fictional person (up to and including the intervened sensitive attribute). This202

concatenated input is then used by our model to regenerate the latter part of the output, following203

the intervention, using counterfactual token generation (i.e., Algorithm 1). Finally, we compare the204

factual and counterfactual values of attributes such as income, education and occupation.205

Results. Figure 3 summarizes the results, which reveal several interesting insights. Figure 3a shows206

that, for most male individuals, their generated income would have decreased had they been female,207

whereas, for female individuals, it would have sometimes increased and sometimes decreased had208

they been male. This suggests that the model of the world constructed by the LLM does not only209

present bias but also exhibits inconsistencies in its perceived relationship between a person’s sex and210

income. Figure 3b shows that, for individuals of all (generated) races, there exists at least one other211

race that, had they belonged to it, they would have experienced a significant increase or decrease in212

their education level (refer to Appendix C for the assignment of each education level to a numerical213

value). Finally, Figure 3c shows that, for Asian American individuals, their occupation would have214

shifted from STEM to humanities related occupations had they been Black or African American.215

5 Conclusions216

In this work, we have introduced a methodology that enhances state-of-the-art LLMs with the ability217

to perform counterfactual token generation, allowing them to reason about past alternatives to their218

own outputs. We have experimentally analyzed the similarity between an LLM’s original output219

and the one generated by counterfactual token generation, and we have demonstrated the use of our220

methodology in bias detection. Our work opens many avenues for future work. First, our causal221

model of autoregressive token generation in LLMs crucially relies on the Gumbel-Max SCM. It222

would be interesting to understand the sensitivity of counterfactual token generation to that choice and223

consider alternative SCMs. Moreover, we have showcased our model on a single LLM, namely Llama224

3 8B-instruct. It would be useful to implement our model on other LLMs and use counterfactual225

token generation to compare the underlying models of the world constructed by different LLMs.226
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A Efficient counterfactual token generation using a Gumbel-Max SCM357

ALGORITHM 1: It returns a counterfactual sequence of tokens using a Gumbel-Max SCM
Input: Random number generator states r, factual output sequence s, intervention (i, s̃).
Output: Counterfactual output sequence s′.
for j = 1, . . . ,K do

if j < i then
s′j = sj

else if j = i then
s′j = s̃

else if j > i ∧ last(s′j−1) ̸= ⊥ then
uj = GenGumbel(rj)
d′j,t = fD(s′j)
tj = argmaxt∈V {log d′j,t + uj,t}
s′j = s′j−1 ◦ tj

else
s′j = s′j−1

Return s′K

Algorithm 1 presents an efficient procedure that uses a Gumbel-Max SCM to sample a sequence358

of counterfactual tokens with minimal additional memory requirements compared to vanilla token359

generation. Recall that, to generate the counterfactual output sequence, one needs to use the same360

values uj for the noise variables that were used during the factual generation and then perform361

an autoregressive computation based on Eq. 2. Instead of storing the values uj for all time steps362

j ∈ [K], whose dimensionality matches the size of the vocabulary V , Algorithm 1 employs a363

simple idea: it stores the state of the random number generator rj used at each time step j ∈ [K]364

of the factual generation. Then, during the counterfactual generation, it regenerates the values365

uj = GenGumbel(rj) on the fly. Storing the realized values of the Gumbel variables requires storing366

O(KV ) float values since uj ∈ RV . On the other hand, the states of random number generators367

take values in Nd, where, for instance, d = 16 in pytorch [53]. Thus, our approach requires O(K)368

additional integer memory compared to vanilla token generation.369
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(a) Factual story

(b) Counterfactual story with a modified name for the captain

Figure 4: Example of a factual and a counterfactual story. Panel (a) shows the factual story, as
given by the LLM. Panel (b) shows the story resulting from counterfactual token generation using
Algorithm 1. For the counterfactual generation, we give as input to the LLM the original prompt
along with the first sentence of the factual output (non-highlighted text), modified by replacing “Lyra”
with “Maeve”. Green-highlighted text indicates the part of the output that is identical in both the
factual and counterfactual stories, while red-highlighted text indicates the difference. In both panels,
the temperature parameter is set to τ = 0.9.

B How would the story have unfolded for “Captain Maeve”?370

As discussed in Sections 3 and 4.1, due to the property of counterfactual stability, we expect the371

counterfactual text generated using counterfactual token generation to be similar to the factual text.372

Here, we investigate this qualitatively through an anecdotal example of story generation.373

We use the implementation of our model on Llama 3 8B-instruct with the system prompt “Be creative374

and keep your response as short as possible.” and a query prompt “Tell me a fantasy story about375

a captain. The story should have either a happy or a sad ending.” Figure 4a shows the (factual)376

generated story about Captain Lyra, her ship the Maelstrom’s Fury, and her quest to find a treasure on377

the Golden Isle. We use the original prompt along with part of the factual output (i.e., the first sentence378

of the story) as input to the model, modifying the protagonist’s name from “Lyra” to “Maeve”. We379

then use counterfactual token generation to regenerate the rest of the output.380

The counterfactually generated story shown in Figure 4b reveals several interesting insights. As381

expected, due to the counterfactual stability property of the Gumbel-Max SCM and the minor nature382

of changing the protagonist’s name, the initial part of the counterfactual output remains identical to383

the factual output. Although one may expect this to apply for the rest of the counterfactual output,384

thinking that the protagonist’s name would be irrelevant to the narrative of this particular story, this is385

not the case. Perhaps surprisingly, the use of “Maeve” instead of “Lyra” results in a partially different386

output, illustrating that the LLM’s probability distributions over next tokens are sensitive even to387

minor changes. In Figure 5, we also observe differences between the factual and counterfactual388

outputs resulting from other seemingly irrelevant interventions, such as changing the name of the389

ship, removing the adjective “trusty” or replacing the word “sea” with “blue”.390
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(a) Factual story

(b) Counterfactual story with a modified name for the ship

(c) Factual story

(d) Counterfactual story with a modified word

(e) Factual story

(f) Counterfactual story with a removed word

Figure 5: Comparison between the factual story and counterfactual variants. Panels (a, b, c)
show the same factual story as in Figure 4. Panels (b, d, f) show the story resulting from various
interventions. In each case, the first sentence (non-highlighted text) is provided as input to the LLM,
with the word(s) in bold (or left empty) representing the intervention. The remainder of the output
is regenerated using counterfactual token generation. Text highlighted in green indicates identical
content in both the factual and counterfactual stories, while text highlighted in red indicates the
differences.
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Figure 6: The prompt used for census data generation.

C Additional details on the experimental setup of Section 4.2391

In this section, we provide additional details about the census generation experiment discussed in392

Section 4.2. Figure 6 shows the complete system and user prompts used to generate the census393

data. For race and ethnicity, we instructed our model, through the system prompt, to select values394

among those reported in the latest (2020) US Census. We used this prompt three times with different395

seeds. Despite our request for 50 individuals per generation, the LLM only generated 34, 39 and 41396

individuals each time, resulting in a total of 114 individuals. Table 1 contains the full descriptions of397

the race attribute values, of which shortened versions were used in Figure 3b. Finally, Table 2 lists398

the numerical values assigned to the (categorical) education attribute values, used to compute the399

difference in education level shown in Figure 3b.400

Table 1: Short and full description of all races
Short Full

Native American Indian or Alaska Native
Asian Asian American
African Black or African American
Hawaiian Native Hawaiian or Other Pacific Islander
Other/2+ Other or Two or more races (multiracial)
White White American

Table 2: Numerical value assigned to each (categorical) value of the education attribute
Education Numerical Value

High School Diploma 1
High school diploma 1
Associate’s degree 2
Some college 2
Bachelor’s degree 3
Master’s degree 4
Ph.D. 5
Law Degree 5
Law degree 5
Juris Doctor 5
Medical Degree 5
Medical degree 5
Dental degree 5
Dentistry degree 5
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