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Abstract

In semi-supervised segmentation, capturing meaningful semantic structures from1

unlabeled data is essential. This is particularly challenging in histopathology2

image analysis, where objects are densely distributed. To address this issue, we3

propose a semi-supervised segmentation framework designed to robustly identify4

and preserve relevant topological features. Our method leverages multiple perturbed5

predictions obtained through stochastic dropouts and temporal training snapshots,6

enforcing topological consistency across these varied outputs. This consistency7

mechanism helps distinguish biologically meaningful structures from transient8

and noisy artifacts. A key challenge in this process is to accurately match the9

corresponding topological features across the predictions in the absence of ground10

truth. To overcome this, we introduce a novel matching strategy that integrates11

spatial overlap with global structural alignment, minimizing discrepancies among12

predictions. Extensive experiments demonstrate that our approach effectively13

reduces topological errors, resulting in more robust and accurate segmentations14

essential for reliable downstream analysis.15

1 Introduction16

Accurate segmentation of glands and nuclei in histopathology images is critical for digital pathology,17

significantly influencing diagnosis, prognosis, and treatment planning by enabling precise quan-18

tification of morphological and structural tissue features [6, 34, 22]. Numerous fully-supervised19

segmentation methods [39, 70, 9, 10, 21, 14, 33, 15] have demonstrated substantial success. How-20

ever, densely distributed cellular structures in histopathology images often induce topological errors,21

including false merges or splits, severely impacting clinical reliability. Additionally, fully super-22

vised methods demand extensive annotated datasets, which are costly, time-consuming, and not23

scalable [43, 25]. This limitation motivates exploring semi-supervised learning (SSL) strategies24

capable of leveraging abundant unlabeled data alongside limited annotations.25

Recent SSL approaches have significantly enhanced segmentation accuracy in contexts of limited26

supervision [64, 45, 29–31, 53, 63, 66, 62, 67, 1, 68, 61, 23, 69, 36]. Nevertheless, these methods27

typically do not explicitly target topological errors, resulting in seemingly small segmentation28

errors with consequential significant topological inaccuracies that affect segmentation robustness.29

To explicitly address topological errors, persistent homology [5] offers a rigorous mathematical30

framework that captures and characterizes topological features, such as connected components and31

loops in data across multiple scales. The output, persistence diagram, summarizes these structures as32

dots in a 2D diagram. For each dot, the coordinate difference (y − x) captures the persistence of the33

topological structure across scales. Building upon this mathematical foundation, TopoSemiSeg [57]34

introduces topology-aware constraints into SSL frameworks, utilizing persistent homology to enforce35

topological consistency between teacher and student model predictions. Despite its effectiveness,36
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Figure 1: Intuition of the proposed framework. (a) Colored likelihood maps are coming from the MC
dropout. Connected components consistently matched in at least three predictions retain identical
colors across instances, indicating topological stability; components shown in grey fail to reach this
consensus and are therefore treated as topologically transient. (b) Limitation of TopoSemiSeg [57],
which relies on a fixed persistence threshold (ϕ = 0.7, red dashed line) and therefore overlooks
less-persistent yet meaningful structures (e.g. the violet point). (c) Our method adaptively identifies
relevant topological structures without the need for human-selected thresholds.
TopoSemiSeg mainly relies on a predefined, hand-picked persistence threshold to identify meaningful37

topological structures. Such fixed thresholds are not data-driven, potentially biased, and can exclude38

relevant structures or retain irrelevant ones, as shown in Figure 1.39

To address this issue, we investigate how to identify reliable topological structures from model40

predictions in a robust and adaptive manner, and enforce model consistency over these structures. We41

first revisit the fundamental principles of semi-supervised learning – robustness against perturbations.42

For an image without training label, to identify reliable information, semi-supervised approaches43

typically add perturbations at the input level (i.e., augmentation) and at the model levels (i.e., Monte44

Carlo Dropout). Pixel-level predictions that persist across these perturbations are considered reliable45

and used to self-supervise the model.46

Our main idea is to tightly couple this SSL robustness-against-perturbation principle with topological47

reasoning. Moving beyond pixel-level, we identify topological structures that persist across different48

perturbations. These structures are considered reliable and used to self-supervise the model. This49

idea avoids a hand-picked threshold to determine reliable topological structures, adaptively identifies50

truly relevant structures to enhance model’s topological reasoning power in a SSL setting.51

Building on this idea, we propose a novel SSL segmentation framework employing dual-level topo-52

logical consistency. Our method identifies significant topological features by examining predictions53

generated with different model perturbations. We formulate the structure correspondence task as a54

contrastive learning problem, distinguishing stable features, i.e., those consistently detected across55

multiple predictions, from transient or noisy structures. To identify the stable topological structures,56

we introduce an advanced matching algorithm that integrates spatial overlap, topological persistence,57

and spatial proximity criteria to associate topological structures across diverse predictions reliably.58

As for perturbations, we propose to employ Monte Carlo (MC) dropout perturbations [7]. Meanwhile,59

we stress the importance of a temporal view of SSL. Previous works, such as [26, 28, 41], demonstrate60

that evaluating the predictions in different training snapshots can reveal informative signals for robust61

prediction. Inspired by this, we propose to also compare topological structures across model snapshots62

at different training epochs. By explicitly optimizing for dual-level topological consistency, our63

framework enhances structural coherence within the student model without relying on extensive64

pixel-wise annotations. Our key contributions can be summarized as follows:65

• We propose a novel integration of topological reasoning into the semi-supervised segmentation66

framework to robustly identify and preserve meaningful topological structures.67

• We introduce dual-level topological consistency, measuring structural stability from intra-perturbed68

predictions (MC dropout) and temporal training snapshots, to effectively utilize unlabeled data.69

• We develop a novel matching algorithm that integrates spatial overlap, topological persistence, and70

spatial proximity to accurately match topological structures across predictions.71

Through extensive experiments on three widely used histopathology image datasets, our method72

significantly improves the topological accuracy while achieving comparable pixel-wise performance73

with limited annotations.74
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Figure 2: Comparison of our matching with Betti Matching [46] and Wasserstein Matching [17]. We
match two likelihood maps obtained from the same input histopathology patch. The birth critical
points of the matched pairs are highlighted in the same color. Note that Wasserstein Matching gets
most matches wrong, and Betti Matching also gets two matches wrong while pairing biologically
unrelated features when lacking the guidance of the ground truth.

2 Related Works75

Segmentation with Limited Supervision. Semi-supervised learning enhances medical image76

segmentation by effectively utilizing limited labeled data together with abundant unlabeled data. Con-77

sistency regularization approaches, such as the Mean Teacher model [47], ensure stable segmentation78

despite input variations [47, 29, 51, 37, 57]. Pseudo-labeling progressively improves accuracy by79

leveraging confident model predictions on unlabeled data [60, 40, 67] Adversarial training aligns80

segmentation outputs from labeled and unlabeled datasets using discriminator networks [20, 27].81

Additionally, uncertainty estimation methods such as MC dropout and Bayesian neural networks en-82

hance reliability by effectively handling uncertainty during pseudo-label generation [7, 64, 35, 31, 58],83

while entropy minimization is used to reduce prediction uncertainty [11, 3, 54]. Contrastive learning84

strengthens segmentation robustness by training models to differentiate similarities and distinctions85

among data pairs, thereby boosting overall segmentation quality [63, 1, 62, 61].86

Topology-Aware Image Segmentation. Topology-aware methods have been proposed to enforce87

correct topology, like connectivity or correct counts in segmentation tasks [17, 19, 42, 4, 59, 16,88

12, 50, 46, 49, 56, 65, 32]. These methods typically use differentiable loss functions derived from89

topological data analysis tools, including persistent homology [17, 4, 46], discrete Morse theory [19,90

18, 13], topological interactions [12, 2], homotopy warping [16], centerline-based comparisons [42,91

50]. These methods generally rely heavily on precisely annotated labels. Xu et al. [57] proposed92

TopoSemiSeg to combine SSL with topological constraints. Classical persistent homology-based93

segmentation methods rely on Wasserstein matching [17, 57], which compares persistence diagrams94

based solely on feature lifespans. However, this approach may produce ambiguous or incorrect95

correspondences, as illustrated in Figure 2. To alleviate spatial inconsistencies, several methods96

were proposed [46, 52]. Betti Matching [46] embeds predictions and ground truth into a shared97

super-level filtration, ensuring alignment only among overlapping topological features. However, as98

shown Figure 2, it cannot ensure fully correct matching when the ground truth is missing and is too99

sensitive to preserve some transient structures. Our proposed MATCH-Pair could achieve almost100

completely accurate matching without the ground truth.101

3 Methodology102

The motivation of our proposed framework is to identify meaningful topological structures directly103

from perturbed predictions without the ground truth. The main challenge is to accurately match104

corresponding topological structures across multi-facet predictions that often contain substantial105

noise and variability. To overcome this challenge, we introduce MATCH-Pair, a pairwise matching106

algorithm, and MATCH-Global, an extended global matching algorithm, to robustly identify stable107

structures across multiple predictions. Building upon these matching algorithms, we propose dual-108

level topological consistency constraints: intra-topological consistency, enforcing consistency across109

multiple stochastic predictions, and temporal-topological consistency, ensuring stability across110

consecutive training snapshots. These consistency constraints directly optimize the student model,111

enabling it to learn robust segmentation representations from limited labeled data.112

Our method overview is shown in Figure 3. The proposed MATCH framework leverages labeled data113

via supervised loss and unlabeled data through pixel-wise and dual-level topological consistency.114
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In this section, we will start by introducing preliminaries of classic SSL. Next, we will use 3115

subsections to introduce MATCH-Pair, MATCH-Global, and the dual-level topological consistency.116

Preliminaries: SSL training. We address the semi-supervised image segmentation problem by117

leveraging a teacher-student framework, a widely adopted paradigm in semi-supervised learning118

[47]. Let DL = {(xL
i , y

L
i )}

NL
i=1 denote the labeled dataset, where xL

i represents the input image119

and yLi ∈ {0, 1}H×W is the corresponding pixel-wise annotation. Let DU = {xU
j }

NU
j=1 denote the120

unlabeled dataset. In our setting, the number of labeled samples is significantly smaller than the121

number of unlabeled samples, i.e., NL ≪ NU . Our objective is to train a segmentation model fθ,122

parameterized by θ, that accurately predicts segmentation masks using labeled and unlabeled data.123

In this framework, the student model fθs is trained using both supervised and unsupervised losses,124

while the teacher model fθt provides stable targets for the student by being updated as an exponential125

moving average (EMA) of the student’s parameters: θ
(τ+1)
t = αθ

(τ)
t + (1 − α)θ

(τ+1)
s , where α126

controls the update rate. For the supervised loss on labeled data, we employ a combination of127

Dice loss and cross-entropy loss to capture both overlap and pixel-wise discrepancies, Lsup =128

LDice(fθs(x
L), yL) + LCE(fθs(x

L), yL).129

To leverage the unlabeled data, we enforce consistency between the student and teacher predictions.130

Specifically, the student receives a strongly augmented version of an unlabeled image xU , while the131

teacher processes a weakly augmented version. The pixel-wise consistency loss is defined as the132

cross-entropy between the student and teacher outputs, Lcons = LCE(fθs(As(x
U )), fθt(Aw(x

U ))),133

where As and Aw denote strong and weak augmentations, respectively.134

3.1 MATCH-Pair: Spatial-Aware Pairwise Matching135

Accurate identification of corresponding topological structures between the likelihood maps is136

crucial for robust histopathology image segmentation. We employ persistent homology with a137

super-level set filtration to extract 0-D topological features from likelihood maps, producing138

persistence diagrams that characterize each component by its persistence and critical points. To find139

correspondence between different persistence diagrams, traditional methods based on Wasserstein140

distance emphasize topological persistence without considering spatial relationships, often leading141

to incorrect associations between spatially distant yet similarly persistent features. In contrast,142

approaches based solely on spatial overlap tend to match transient structures of minimal significance143

incorrectly. To address these limitations, we propose MATCH-Pair, a Hungarian overlap-matching144

algorithm that integrates spatial overlap, topological persistence, and spatial proximity. The overall145

pipeline is depicted in Figure 4.146

Figure 3: Overview of the proposed MATCH framework with dual-level topological consistency.
Note that the Lintra and Ltemp are used to directly optimize the parameters of the student model.

Given two likelihood maps lh1, lh2 ∈ [0, 1]H×W , we compute the persistence diagrams:147

Dgm(lhk) = {(bi, di), k ∈ {1, 2} with the persistence persi = |di − bi|. Each persistence148

pair (bi, di) yields a connected spatial region Mi, defined by flood-fill algorithm [44]. This algorithm149

generates a binary mask Mi starting from the birth pixel bi. The region is expanded iteratively to150

neighboring pixels, provided that their likelihood exceeds the threshold 1− di.151
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Figure 4: Pipeline of the MATCH-Pair algorithm between two persistence diagrams.

To compute the relative significance of each structure, the persistence values are normalized to derive152

a weighting factor: wk,i =
persk,i

max
j

persk,j
, k ∈ {1, 2}.153

To evaluate the similarity between spatial masks M1,i and M2,j , a combined metric that integrates154

spatial overlap, normalized persistence weights, and spatial proximity is defined as:155

Sij = w1,i w2,j
|M1,i ∩M2,j |
|M1,i ∪M2,j |

(
1− dij

dmax

)
where dij is the Euclidean distance between birth critical points of the corresponding masks, and dmax156

denotes the maximum distance among all mask pairs. This similarity metric ensures the prioritization157

of spatially close, persistent, and well-overlapping structures.158

A global one-to-one assignment between features from the two maps is obtained via the Hungarian159

algorithm [24], minimizing the cost (defined as the complement of similarity):160

min
πij

∑
i,j

(1− Sij)πij , πij ∈ {0, 1}

Pairs achieving scores above a predefined threshold τprimary constitute valid matches.161

3.2 MATCH-Global: Multi-faceted Global Matching162

While MATCH-Pair addresses an optimal correspondence between two persistence diagrams, many163

practical scenarios often involve multiple stochastic predictions (facets). Finding the corresponding164

topological structures among multiple facets is a challenge. Thus, we extend MATCH-Pair to MATCH-165

Global, a global multi-facet matching approach to link homologous 0-dimensional components166

consistently across all facets, assigning global indices to anatomical or topological structures.167

Given a series of likelihood maps L = {lht}Tt=1, lht ∈ [0, 1]H×W , each generates a persistence168

diagram: Dgmt = {(bt,i, dt,i)}nt
i=1. Each pair (bt,i, dt,i) corresponds to a spatial mask Mt,i, the169

normalized persistence weight wt,i = |dt,i − bt,i| /maxt′,j |dt′,j − bt′,j |, and birth-critical point ct,i.170

Matching is performed sequentially across facets. For each adjacent pair of facets (t, t+ 1) we form171

the weighted overlap matrix:172

S
(t)
ij = wt,i wt+1,jIoU

(
Mt,i,Mt+1,j

)(
1− ∥ct,i−ct+1,j∥2

d
(t)
max

)
with d

(t)
max = maxi,j∥ct,i−ct+1,j∥2 introduces a soft spatial penalty. Optimal assignments are solved173

via the proposed MATCH-Pair algorithm.174

These matches form an undirected graph G = (V, E) with vertices V = {(t, i) | 1 ≤ t ≤ T, 1 ≤175

i ≤ nt}, representing the structures and edges E =
⋃T−1

t=1 E(t) indicating matches. Connected176

components {Ck}Kk=1 of G are identified by breadth-first search, providing globally consistent177

identities: Ck = {(t, i) | mask Mt,i belongs to identity k}.178

Thus, the global multi-facet matching framework integrates pairwise correspondences into globally179

coherent tracks, robustly accommodating missing detections, splits, and merges, thereby ensuring180

topological consistency across multiple facets.181
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3.3 Dual-Level Topological Consistency182

After identifying consistent topological structures across multiple facets, we propose dual-level183

topological consistency losses to enhance segmentation reliability and coherence. Specifically, we184

introduce two complementary loss terms: intra-topological consistency, which ensures consistency185

among stochastic predictions from MC dropout realizations [7], and temporal-topological consistency,186

which maintains consistency across consecutive training iterations.187

In both scenarios, topological features are extracted from multiple prediction facets. We then apply188

our proposed MATCH-Global algorithm (see Section 3.2) to classify these topological structures into189

two distinct categories: matched (Cmatch
intra , Cmatch

temp ), representing features consistently identified across190

multiple predictions, and unmatched (Cunmatch
intra , Cunmatch

temp ), denoting features that are inconsistent or191

unstable across predictions. Specifically, matched structures are encouraged toward optimal probabil-192

ity distributions at their birth and death critical points, whereas unmatched structures, indicative of193

prediction uncertainty or instability, are driven toward shorter topological lifespans. Formally, we194

define the associated losses as:195

Lmatch(t, i) =
(
P

(t)
bt,i

)2
+
(
1− P

(t)
dt,i

)2
, Ldiag(t, i) =

(
P

(t)
bt,i

− P
(t)
dt,i

)2
.

where P
(t)
bt,i

and P
(t)
dt,i

represent the predicted probability values at the birth (bt,i) and death (dt,i)196

critical points, respectively, of the i-th topological feature extracted from the t-th prediction.197

The intra-topological consistency loss aggregates these penalties over multiple stochastic predictions198

through MC dropout within each iteration:199

Lintra =
1

Bintra

Bintra∑
b=1

 1

|Cmatch,(b)
intra |

∑
(t,i)∈Cmatch,(b)

intra

Lmatch(t, i) +
1

|Cunmatch,(b)
intra |

∑
(t,i)∈Cunmatch,(b)

intra

Ldiag(t, i)


where Bintra indicates the number of MC dropout predictions within each iteration. Similarly, the200

temporal-topological consistency enforces the constraints across predictions from consecutive training201

snapshots:202

Ltemp =
1

Btemp

Btemp∑
b=1

 1

|Cmatch,(b)
temp |

∑
(t,i)∈Cmatch,(b)

temp

Lmatch(t, i) +
1

|Cunmatch,(b)
temp |

∑
(t,i)∈Cunmatch,(b)

temp

Ldiag(t, i)


where Btemp presents the number of temporal training snapshots. Finally, our dual-level topological203

consistency losses are integrated into the overall training objective alongside the supervised and204

pixel-wise consistency terms:205

Ltotal = Lsup + λconsLcons + λintraLintra + λtempLtemp

where hyperparameters λcons, λintra, and λtemp balance their respective contributions, ensuring the206

model jointly meets pixel-level accuracy and robust topological coherence.207

4 Experiments208

We conduct comprehensive evaluations on three publicly available histopathology image datasets on209

both pixel-wise and topology-wise metrics. We benchmark our method against classic and recent210

state-of-the-art semi-supervised segmentation methods, including MT [47], EM [48], UA-MT [64],211

URPC [31], XNet [68], PMT [8], and TopoSemiSeg [57].212

Implementation Details. The implementation details will be provided in the Supplementary.213

Datasets. We evaluate our proposed method on Colorectal Adenocarcinoma Gland (CRAG) [9],214

Gland Segmentation in Colon Histology Images Challenge (GlaS) [43], and Multi-Organ Nuclei215

Segmentation (MoNuSeg) [25]. More details are provided in the Supplementary.216

Evaluation Metrics. To better evaluate our proposed method, we use pixel-wise metrics including217

Object-level Dice Score (Dice_obj) [55]; topology-wise metrics including Betti Error [17], Betti218

Matching Error [46], and Discrepancy between Intersection and Union (DIU) [32]. More details219

are provided in the Supplementary.220
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Table 1: Quantitative results on three histopathology image datasets. We compare our method with
several state-of-the-art semi-supervised medical image segmentation methods on two settings of 10%
and 20% labeled data. The statistically significant best results are highlighted in bold, while the
second-best are marked with underline.

Dataset Label Ratio (%) Method Pixel-wise Topology-wise

Dice_Obj ↑ BE ↓ BME ↓ DIU ↓

CRAG

10

MT [47] 0.821 ± 0.006 2.238 ± 0.153 62.250 ± 3.127 74.630 ± 2.967
EM [48] 0.789 ± 0.007 2.178 ± 0.147 80.100 ± 3.809 78.210 ± 3.298
UA-MT [64] 0.837 ± 0.005 1.703 ± 0.112 66.450 ± 3.218 65.420 ± 2.847
URPC [64] 0.829 ± 0.005 1.732 ± 0.118 74.600 ± 3.407 68.300 ± 3.004
XNet [68] 0.872 ± 0.004 0.578 ± 0.053 15.050 ± 1.118 55.880 ± 2.516
PMT [8] 0.876 ± 0.004 0.520 ± 0.051 14.200 ± 1.013 57.100 ± 2.638
TopoSemiSeg [57] 0.884 ± 0.002 0.227 ± 0.014 10.475 ± 0.458 49.690 ± 1.947
Ours 0.888 ± 0.002 0.197 ± 0.012 9.175 ± 0.580 45.950 ± 1.880

20

MT [47] 0.858 ± 0.008 2.603 ± 0.161 99.025 ± 3.912 95.215 ± 3.487
EM [48] 0.869 ± 0.006 1.933 ± 0.136 75.225 ± 3.772 63.823 ± 3.139
UA-MT [64] 0.859 ± 0.006 1.822 ± 0.129 70.850 ± 3.586 61.138 ± 2.918
URPC [31] 0.849 ± 0.007 2.489 ± 0.152 99.500 ± 4.085 87.681 ± 3.276
XNet [68] 0.883 ± 0.005 0.422 ± 0.055 10.900 ± 1.127 50.537 ± 2.547
PMT [8] 0.889 ± 0.004 0.460 ± 0.062 11.800 ± 1.203 48.300 ± 2.321
TopoSemiSeg [57] 0.898 ± 0.004 0.226 ± 0.019 8.575 ± 0.736 43.712 ± 1.842
Ours 0.909 ± 0.005 0.188 ± 0.018 7.425 ± 0.570 40.250 ± 1.720

100 (Full) Fully-Supervised 0.928 ± 0.002 0.149 ± 0.015 5.650 ± 0.223 29.425 ± 1.782

GlaS

10

MT [47] 0.790 ± 0.005 2.392 ± 0.162 31.125 ± 3.274 76.130 ± 2.965
EM [48] 0.819 ± 0.006 1.431 ± 0.143 19.188 ± 3.846 61.245 ± 3.302
UA-MT [64] 0.845 ± 0.004 2.086 ± 0.117 26.650 ± 3.245 68.025 ± 2.873
URPC [64] 0.849 ± 0.004 1.155 ± 0.123 19.588 ± 3.408 54.832 ± 3.017
XNet [68] 0.874 ± 0.003 0.843 ± 0.051 14.238 ± 1.154 40.912 ± 2.422
PMT [8] 0.872 ± 0.004 0.798 ± 0.052 13.920 ± 1.097 39.850 ± 2.487
TopoSemiSeg [57] 0.878 ± 0.003 0.551 ± 0.014 8.300 ± 0.478 35.845 ± 1.965
Ours 0.884 ± 0.003 0.501 ± 0.023 7.850 ± 0.391 30.525 ± 1.641

20

MT [47] 0.863 ± 0.005 2.126 ± 0.171 29.963 ± 3.987 64.275 ± 3.496
EM [48] 0.865 ± 0.006 1.255 ± 0.138 17.275 ± 3.783 58.673 ± 3.255
UA-MT [64] 0.866 ± 0.005 1.123 ± 0.132 18.038 ± 3.599 53.014 ± 3.069
URPC [31] 0.878 ± 0.004 0.759 ± 0.067 14.350 ± 1.212 42.587 ± 2.601
XNet [68] 0.884 ± 0.004 0.735 ± 0.065 10.188 ± 1.154 35.298 ± 2.328
PMT [8] 0.887 ± 0.003 0.698 ± 0.062 9.980 ± 1.118 34.805 ± 2.271
TopoSemiSeg [57] 0.895 ± 0.003 0.510 ± 0.053 9.825 ± 0.813 30.462 ± 1.978
Ours 0.894 ± 0.004 0.392 ± 0.056 7.925 ± 0.725 26.175 ± 1.633

100 (Full) Fully-Supervised 0.917 ± 0.006 0.273 ± 0.026 6.875 ± 0.276 19.620 ± 0.712

MoNuSeg

10

MT [47] 0.748 ± 0.006 10.210 ± 0.486 292.857 ± 6.542 1526.079 ± 35.842
EM [48] 0.757 ± 0.006 10.339 ± 0.503 257.071 ± 5.445 1319.815 ± 31.784
UA-MT [64] 0.741 ± 0.007 10.227 ± 0.497 255.428 ± 5.983 1316.272 ± 30.216
URPC [64] 0.774 ± 0.004 6.829 ± 0.319 214.428 ± 5.327 1098.372 ± 24.392
XNet [68] 0.762 ± 0.005 7.152 ± 0.338 220.405 ± 4.611 1122.799 ± 25.116
PMT [8] 0.764 ± 0.004 7.515 ± 0.352 227.650 ± 4.805 1210.400 ± 26.954
TopoSemiSeg [57] 0.783 ± 0.003 6.661 ± 0.376 196.357 ± 3.067 1068.401 ± 17.500
Ours 0.785 ± 0.003 5.594 ± 0.361 192.863 ± 1.137 1011.857 ± 12.648

20

MT [47] 0.767 ± 0.005 12.522 ± 0.547 246.786 ± 8.018 1350.751 ± 32.407
EM [48] 0.777 ± 0.006 7.160 ± 0.335 198.571 ± 6.731 1142.661 ± 27.581
UA-MT [64] 0.772 ± 0.007 9.406 ± 0.444 246.857 ± 7.944 1336.684 ± 31.268
URPC [31] 0.779 ± 0.004 5.325 ± 0.254 193.429 ± 6.105 1025.431 ± 23.799
XNet [68] 0.776 ± 0.003 6.750 ± 0.316 198.525 ± 5.421 1117.406 ± 26.014
PMT [8] 0.778 ± 0.006 6.500 ± 0.308 195.125 ± 6.289 1080.476 ± 25.145
TopoSemiSeg [57] 0.793 ± 0.004 5.150 ± 0.145 188.642 ± 3.215 1105.946 ± 18.486
Ours 0.790 ± 0.006 4.930 ± 0.156 179.225 ± 2.383 982.286 ± 14.953

100 (Full) Fully-Supervised 0.817 ± 0.010 2.491 ± 0.460 142.429 ± 4.674 729.017 ± 17.662

4.1 Results221

Uncertainty Throughout the Topological Consistency. As illustrated in Figure 5, our proposed222

MATCH not only produces a robust segmentation result (top, (f)) but also furnishes an informative223

pixel-wise uncertainty map without any uncertainty-specific training objective or doing post hoc224

calibration. Visually, the variance map (bottom, (f)) concentrates along the gland boundaries where225

the four likelihood maps disagree, and these regions coincide almost perfectly with the binary error226

maps (bottom, (b) - (e)). Quantitatively, the Pearson correlation coefficients (PCC) [38] between the227

uncertainty and the error maps are 0.768, 0.728, 0.757, and 0.753 for the four facets, respectively.228

This confirms that the uncertainty is tightly coupled with prediction errors. Hence, reliable uncertainty229
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(a) Original Img / GT (b) lh1/err1 (c) lh2/err2 (d) lh3/err3 (e) lh4/err4 (f) Result / Uncertainty

Figure 5: Qualitative illustration of MC dropout predictions (after the model convergence). Top row:
original patch, the four likelihood maps, and the final segmentation. Bottom row: ground-truth
mask, corresponding error maps, and the pixel-wise variance (uncertainty) map.

(a) Image (b) GT (c) MT (d) EM (e) UA-MT (f) URPC (g) XNet (h) PMT (i) TopoSemi (j) Ours

Figure 6: Qualitative results for semi-supervised methods on 10% and 20% labeled data. Rows 1-2
correspond to CRAG dataset, rows 3-4 correspond to GlaS dataset. From left to right: (a) raw image,
(b) ground-truth mask, (c) to (i) present the 7 baselines. (j) indicates the results of our method. The
regions prone to topological errors are highlighted in red boxes.

estimation and the attendant suppression of spurious structures emerge naturally as a by-product of230

the proposed consistency mechanism, with no additional supervision or model modification required.231

Quantitative Results. As shown in Table 1, across the three histopathology image datasets, our232

proposed method consistently achieves superior performance compared to state-of-the-art semi-233

supervised segmentation methods, under both 10% and 20% labeled data settings. Specifically, our234

method yields higher topology-wise accuracy with comparable pixel-wise performance. These results235

collectively illustrate that our framework effectively leverages limited annotations to achieve robust236

segmentation accuracy and enhanced topological fidelity.237

Qualitative Results. We provide the qualitative results in Figure 6. The qualitative comparison238

highlights that our proposed method consistently outperforms other semi-supervised methods in239

preserving accurate glandular structures and topology across various histopathology samples. The240

comparative methods exhibit notable topological errors, including fragmentation, merging, and241

boundary leakage, as indicated by the red boxes. In contrast, our method effectively mitigates these242

errors, demonstrating superior robustness in maintaining topological integrity and accurate boundary243

delineation, thereby underscoring its effectiveness for precise medical image analysis tasks.244

4.2 Ablation Study245

To comprehensively explore the robustness and efficacy of our proposed strategy, hyperparameter-246

selection, and experimental settings, we conduct the ablation experiments on the CRAG dataset using247

20% labeled data.248

Ablation Study on Matching Algorithm. To validate the effectiveness of our proposed matching249

algorithm, we compare it against established alternatives, including Wasserstein Matching [17] and250
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Table 2: Quantitative comparison of matching strategies (left) and the contribution of IoU and spatial-
proximity cues (right).

(a) Ablation study on matching algorithms.

Matching Pixel-wise Topology-wise

Dice_obj ↑ BE ↓ BME ↓ DIU ↓

Wasser. [17] 0.864 ± 0.007 0.423 ± 0.026 9.647 ± 0.846 58.592 ± 2.574
Betti [46] 0.889 ± 0.005 0.237 ± 0.021 8.216 ± 0.717 44.157 ± 2.146
Ours 0.909 ± 0.005 0.188 ± 0.018 7.425 ± 0.570 40.250 ± 1.720

(b) Effect of IoU & spatial-proximity (SP).

IoU SP Pixel-wise Topology-wise

Dice_obj ↑ BE ↓ BME ↓ DIU ↓

✓ ✗ 0.890 ± 0.005 0.233 ± 0.020 8.300 ± 0.650 43.750 ± 2.100
✗ ✓ 0.882 ± 0.006 0.247 ± 0.022 9.600 ± 0.680 46.200 ± 2.250
✓ ✓ 0.909 ± 0.005 0.188 ± 0.018 7.425 ± 0.570 40.250 ± 1.720

Betti-Matching [46]. As shown in Table 2a, our algorithm consistently achieves superior performance251

in both pixel- and topology-wise metrics. Specifically, Wasserstein Matching, relying exclusively on252

persistence values without spatial information, exhibits the worst results. Although Betti-Matching253

incorporates spatial context, it still performs suboptimally compared to our method.254

Ablation Study on IoU and Spatial Proximity (SP). To validate the effectiveness of the individual255

items of our matching cost, we conduct the ablation study on IoU and spatial proximity. The results256

in Table 2b quantitatively substantiate the complementary roles of the IoU and the spatial proximity257

factor in our Hungarian assignment cost. Removing either the proximity or the overlap item could258

degrade the performance. Overlap by itself cannot fully distinguish spatially adjacent structures.259

These results demonstrate that both items are necessary to achieve topologically-accurate matching.260

Sensitivity Analysis on Bintra and Btemp. We further analyzed the sensitivity of our method to261

the number of MC dropout samples Bintra and temporal training snapshots Btemp. Table 3a shows262

that employing too few facets yields unreliable estimation of topological consistency, resulting in263

suboptimal segmentation performance. Conversely, increasing the number of facets beyond an optimal264

point introduces redundant information and additional variability, degrading model performance.265

Therefore, 4 is the optimal number that strikes a practical balance, ensuring the best performance266

while remaining computationally efficient.267

Table 3: Ablation studies of dual-level topological consistency.(a) varies the number of MC-dropout /
temporal facets; (b) studies the contribution of intra- and temporal-topological consistency.

(a) Influence of Bintra and Btemp.

Bintra Btemp
Pixel-wise Topology-wise

Dice_obj ↑ BE ↓ BME ↓ DIU ↓

2 2 0.878 ± 0.010 0.255 ± 0.025 9.350 ± 0.620 48.600 ± 2.300
3 3 0.892 ± 0.007 0.214 ± 0.020 8.105 ± 0.600 44.105 ± 2.050
5 5 0.872 ± 0.011 0.275 ± 0.023 10.050 ± 0.630 54.250 ± 2.253
4 4 0.909 ± 0.005 0.188 ± 0.018 7.425 ± 0.570 40.250 ± 1.720

(b) Efficacy of Lintra and Ltemp.

Lintra Ltemp
Pixel-wise Topology-wise

Dice_obj ↑ BE ↓ BME ↓ DIU ↓

✗ ✗ 0.862 ± 0.011 0.460 ± 0.022 11.680 ± 0.610 59.930 ± 2.150
✓ ✗ 0.898 ± 0.006 0.215 ± 0.020 7.920 ± 0.590 44.750 ± 1.970
✗ ✓ 0.882 ± 0.008 0.238 ± 0.031 8.540 ± 0.450 45.310 ± 2.040
✓ ✓ 0.909 ± 0.005 0.188 ± 0.018 7.425 ± 0.570 40.250 ± 1.720

Ablation Study on Loss Components. To evaluate the contributions of individual loss terms in268

our dual-level topological consistency framework, we conduct experiments selectively enabling or269

disabling the Lintra and Ltemp. As presented in Table 3b, each loss individually improves the pixel-270

and topology-wise performance compared to the baseline without these constraints. Combining both271

losses achieves the strongest overall performance, confirming that Lintra and Ltemp complement each272

other by addressing different sources of topological inaccuracies—stochastic noise within single273

facets and structural inconsistencies across training iterations.274

5 Conclusion275

In this paper, we introduced a semi-supervised segmentation framework designed to identify and276

preserve significant topological features from histopathology images with limited labeled data. By277

enforcing dual-level topological consistency across stochastic predictions from Monte Carlo dropout278

and temporal training snapshots, our method effectively differentiates stable biological structures from279

transient artifacts. Our proposed MATCH-Global algorithm addresses the key challenge of accurately280

matching topological features across multiple facets by combining spatial overlap, topological281

persistence, and spatial proximity. Experimental results demonstrate that our approach significantly282

enhances segmentation robustness and reduces topological errors, highlighting its potential for reliable283

downstream analyses in digital pathology.284
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paper) is recommended, but including URLs to data and code is permitted.579

6. Experimental setting/details580

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-581

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the582

results?583

Answer: [Yes]584

Justification: Some ablation studies are provided in the main paper and the rest of training585

and test details is provided in the Supplementary.586

Guidelines:587

• The answer NA means that the paper does not include experiments.588

• The experimental setting should be presented in the core of the paper to a level of detail589

that is necessary to appreciate the results and make sense of them.590

• The full details can be provided either with the code, in appendix, or as supplemental591

material.592

7. Experiment statistical significance593

Question: Does the paper report error bars suitably and correctly defined or other appropriate594

information about the statistical significance of the experiments?595

Answer: [Yes]596

Justification: This paper reports error bars suitably and correctly defined.597

Guidelines:598

• The answer NA means that the paper does not include experiments.599

• The authors should answer "Yes" if the results are accompanied by error bars, confi-600

dence intervals, or statistical significance tests, at least for the experiments that support601

the main claims of the paper.602

• The factors of variability that the error bars are capturing should be clearly stated (for603

example, train/test split, initialization, random drawing of some parameter, or overall604

run with given experimental conditions).605

• The method for calculating the error bars should be explained (closed form formula,606

call to a library function, bootstrap, etc.)607

• The assumptions made should be given (e.g., Normally distributed errors).608
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• It should be clear whether the error bar is the standard deviation or the standard error609

of the mean.610

• It is OK to report 1-sigma error bars, but one should state it. The authors should611

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis612

of Normality of errors is not verified.613

• For asymmetric distributions, the authors should be careful not to show in tables or614

figures symmetric error bars that would yield results that are out of range (e.g. negative615

error rates).616

• If error bars are reported in tables or plots, The authors should explain in the text how617

they were calculated and reference the corresponding figures or tables in the text.618

8. Experiments compute resources619

Question: For each experiment, does the paper provide sufficient information on the com-620

puter resources (type of compute workers, memory, time of execution) needed to reproduce621

the experiments?622

Answer: [Yes]623

Justification: We include the GPU usage, learning rate, batch size, etc., in the Supplementary.624

Guidelines:625

• The answer NA means that the paper does not include experiments.626

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,627

or cloud provider, including relevant memory and storage.628

• The paper should provide the amount of compute required for each of the individual629

experimental runs as well as estimate the total compute.630

• The paper should disclose whether the full research project required more compute631

than the experiments reported in the paper (e.g., preliminary or failed experiments that632

didn’t make it into the paper).633

9. Code of ethics634

Question: Does the research conducted in the paper conform, in every respect, with the635

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?636

Answer: [Yes]637

Justification: The research conducted in the paper conforms with the NeurIPS Code of638

Ethics in every respect.639

Guidelines:640

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.641

• If the authors answer No, they should explain the special circumstances that require a642

deviation from the Code of Ethics.643

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-644

eration due to laws or regulations in their jurisdiction).645

10. Broader impacts646

Question: Does the paper discuss both potential positive societal impacts and negative647

societal impacts of the work performed?648

Answer: [Yes]649

Justification: The discussion of both potential positive societal impacts and negative societal650

impacts of the work performed is provided in the Supplementary.651

Guidelines:652

• The answer NA means that there is no societal impact of the work performed.653

• If the authors answer NA or No, they should explain why their work has no societal654

impact or why the paper does not address societal impact.655

• Examples of negative societal impacts include potential malicious or unintended uses656

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations657

(e.g., deployment of technologies that could make decisions that unfairly impact specific658

groups), privacy considerations, and security considerations.659
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• The conference expects that many papers will be foundational research and not tied660

to particular applications, let alone deployments. However, if there is a direct path to661

any negative applications, the authors should point it out. For example, it is legitimate662

to point out that an improvement in the quality of generative models could be used to663

generate deepfakes for disinformation. On the other hand, it is not needed to point out664

that a generic algorithm for optimizing neural networks could enable people to train665

models that generate Deepfakes faster.666

• The authors should consider possible harms that could arise when the technology is667

being used as intended and functioning correctly, harms that could arise when the668

technology is being used as intended but gives incorrect results, and harms following669

from (intentional or unintentional) misuse of the technology.670

• If there are negative societal impacts, the authors could also discuss possible mitigation671

strategies (e.g., gated release of models, providing defenses in addition to attacks,672

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from673

feedback over time, improving the efficiency and accessibility of ML).674

11. Safeguards675

Question: Does the paper describe safeguards that have been put in place for responsible676

release of data or models that have a high risk for misuse (e.g., pretrained language models,677

image generators, or scraped datasets)?678

Answer: [NA]679

Justification: This work doesn’t pose such risks.680

Guidelines:681

• The answer NA means that the paper poses no such risks.682

• Released models that have a high risk for misuse or dual-use should be released with683

necessary safeguards to allow for controlled use of the model, for example by requiring684

that users adhere to usage guidelines or restrictions to access the model or implementing685

safety filters.686

• Datasets that have been scraped from the Internet could pose safety risks. The authors687

should describe how they avoided releasing unsafe images.688

• We recognize that providing effective safeguards is challenging, and many papers do689

not require this, but we encourage authors to take this into account and make a best690

faith effort.691

12. Licenses for existing assets692

Question: Are the creators or original owners of assets (e.g., code, data, models), used in693

the paper, properly credited and are the license and terms of use explicitly mentioned and694

properly respected?695

Answer: [Yes]696

Justification: The creators or original owners of assets used in the paper are properly credited697

and the license and terms of use explicitly mentioned and properly respected.698

Guidelines:699

• The answer NA means that the paper does not use existing assets.700

• The authors should cite the original paper that produced the code package or dataset.701

• The authors should state which version of the asset is used and, if possible, include a702

URL.703

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.704

• For scraped data from a particular source (e.g., website), the copyright and terms of705

service of that source should be provided.706

• If assets are released, the license, copyright information, and terms of use in the707

package should be provided. For popular datasets, paperswithcode.com/datasets708

has curated licenses for some datasets. Their licensing guide can help determine the709

license of a dataset.710

• For existing datasets that are re-packaged, both the original license and the license of711

the derived asset (if it has changed) should be provided.712
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• If this information is not available online, the authors are encouraged to reach out to713

the asset’s creators.714

13. New assets715

Question: Are new assets introduced in the paper well documented and is the documentation716

provided alongside the assets?717

Answer: [NA]718

Justification: This work does not release new assets.719

Guidelines:720

• The answer NA means that the paper does not release new assets.721

• Researchers should communicate the details of the dataset/code/model as part of their722

submissions via structured templates. This includes details about training, license,723

limitations, etc.724

• The paper should discuss whether and how consent was obtained from people whose725

asset is used.726

• At submission time, remember to anonymize your assets (if applicable). You can either727

create an anonymized URL or include an anonymized zip file.728

14. Crowdsourcing and research with human subjects729

Question: For crowdsourcing experiments and research with human subjects, does the paper730

include the full text of instructions given to participants and screenshots, if applicable, as731

well as details about compensation (if any)?732

Answer: [NA]733

Justification: This work does not involve crowdsourcing nor research with human subjects.734

Guidelines:735

• The answer NA means that the paper does not involve crowdsourcing nor research with736

human subjects.737

• Including this information in the supplemental material is fine, but if the main contribu-738

tion of the paper involves human subjects, then as much detail as possible should be739

included in the main paper.740

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,741

or other labor should be paid at least the minimum wage in the country of the data742

collector.743

15. Institutional review board (IRB) approvals or equivalent for research with human744

subjects745

Question: Does the paper describe potential risks incurred by study participants, whether746

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)747

approvals (or an equivalent approval/review based on the requirements of your country or748

institution) were obtained?749

Answer: [NA]750

Justification: This work does not involve crowdsourcing nor research with human subjects.751

Guidelines:752

• The answer NA means that the paper does not involve crowdsourcing nor research with753

human subjects.754

• Depending on the country in which research is conducted, IRB approval (or equivalent)755

may be required for any human subjects research. If you obtained IRB approval, you756

should clearly state this in the paper.757

• We recognize that the procedures for this may vary significantly between institutions758

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the759

guidelines for their institution.760

• For initial submissions, do not include any information that would break anonymity (if761

applicable), such as the institution conducting the review.762

16. Declaration of LLM usage763
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Question: Does the paper describe the usage of LLMs if it is an important, original, or764

non-standard component of the core methods in this research? Note that if the LLM is used765

only for writing, editing, or formatting purposes and does not impact the core methodology,766

scientific rigorousness, or originality of the research, declaration is not required.767

Answer: [NA]768

Justification: The core method development in this research does not involve LLMs as any769

important, original, or non-standard components.770

Guidelines:771

• The answer NA means that the core method development in this research does not772

involve LLMs as any important, original, or non-standard components.773

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)774

for what should or should not be described.775
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