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Abstract

In semi-supervised segmentation, capturing meaningful semantic structures from
unlabeled data is essential. This is particularly challenging in histopathology
image analysis, where objects are densely distributed. To address this issue, we
propose a semi-supervised segmentation framework designed to robustly identify
and preserve relevant topological features. Our method leverages multiple perturbed
predictions obtained through stochastic dropouts and temporal training snapshots,
enforcing topological consistency across these varied outputs. This consistency
mechanism helps distinguish biologically meaningful structures from transient
and noisy artifacts. A key challenge in this process is to accurately match the
corresponding topological features across the predictions in the absence of ground
truth. To overcome this, we introduce a novel matching strategy that integrates
spatial overlap with global structural alignment, minimizing discrepancies among
predictions. Extensive experiments demonstrate that our approach effectively
reduces topological errors, resulting in more robust and accurate segmentations
essential for reliable downstream analysis.

1 Introduction

Accurate segmentation of glands and nuclei in histopathology images is critical for digital pathology,
significantly influencing diagnosis, prognosis, and treatment planning by enabling precise quan-
tification of morphological and structural tissue features [6, 34, 22]. Numerous fully-supervised
segmentation methods [39, 70,19, [10} 21} [14} 33, [15] have demonstrated substantial success. How-
ever, densely distributed cellular structures in histopathology images often induce topological errors,
including false merges or splits, severely impacting clinical reliability. Additionally, fully super-
vised methods demand extensive annotated datasets, which are costly, time-consuming, and not
scalable [43] 25]]. This limitation motivates exploring semi-supervised learning (SSL) strategies
capable of leveraging abundant unlabeled data alongside limited annotations.

Recent SSL approaches have significantly enhanced segmentation accuracy in contexts of limited
supervision [64, 45, 29431} 1531163, 166! 162, 167, [1, 168, 161, 23, 169, 36]. Nevertheless, these methods
typically do not explicitly target topological errors, resulting in seemingly small segmentation
errors with consequential significant topological inaccuracies that affect segmentation robustness.
To explicitly address topological errors, persistent homology [S]] offers a rigorous mathematical
framework that captures and characterizes topological features, such as connected components and
loops in data across multiple scales. The output, persistence diagram, summarizes these structures as
dots in a 2D diagram. For each dot, the coordinate difference (y — x) captures the persistence of the
topological structure across scales. Building upon this mathematical foundation, TopoSemiSeg [157]]
introduces topology-aware constraints into SSL frameworks, utilizing persistent homology to enforce
topological consistency between teacher and student model predictions. Despite its effectiveness,
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Figure 1: Intuition of the proposed framework. (a) Colored likelihood maps are coming from the MC
dropout. Connected components consistently matched in at least three predictions retain identical
colors across instances, indicating topological stability; components shown in grey fail to reach this
consensus and are therefore treated as topologically transient. (b) Limitation of TopoSemiSeg [57],
which relies on a fixed persistence threshold (¢ = 0.7, red dashed line) and therefore overlooks
less-persistent yet meaningful structures (e.g. the violet point). (c) Our method adaptively identifies
relevant topological structures without the need for human-selected thresholds.

TopoSemiSeg mainly relies on a predefined, hand-picked persistence threshold to identify meaningful
topological structures. Such fixed thresholds are not data-driven, potentially biased, and can exclude
relevant structures or retain irrelevant ones, as shown in Figurem

To address this issue, we investigate how to identify reliable topological structures from model
predictions in a robust and adaptive manner, and enforce model consistency over these structures. We
first revisit the fundamental principles of semi-supervised learning — robustness against perturbations.
For an image without training label, to identify reliable information, semi-supervised approaches
typically add perturbations at the input level (i.e., augmentation) and at the model levels (i.e., Monte
Carlo Dropout). Pixel-level predictions that persist across these perturbations are considered reliable
and used to self-supervise the model.

Our main idea is to tightly couple this SSL robustness-against-perturbation principle with topological
reasoning. Moving beyond pixel-level, we identify topological structures that persist across different
perturbations. These structures are considered reliable and used to self-supervise the model. This
idea avoids a hand-picked threshold to determine reliable topological structures, adaptively identifies
truly relevant structures to enhance model’s topological reasoning power in a SSL setting.

Building on this idea, we propose a novel SSL segmentation framework employing dual-level topo-
logical consistency. Our method identifies significant topological features by examining predictions
generated with different model perturbations. We formulate the structure correspondence task as a
contrastive learning problem, distinguishing stable features, i.e., those consistently detected across
multiple predictions, from transient or noisy structures. To identify the stable topological structures,
we introduce an advanced matching algorithm that integrates spatial overlap, topological persistence,
and spatial proximity criteria to associate topological structures across diverse predictions reliably.

As for perturbations, we propose to employ Monte Carlo (MC) dropout perturbations [7]. Meanwhile,
we stress the importance of a temporal view of SSL. Previous works, such as [26, 28| |41]], demonstrate
that evaluating the predictions in different training snapshots can reveal informative signals for robust
prediction. Inspired by this, we propose to also compare topological structures across model snapshots
at different training epochs. By explicitly optimizing for dual-level topological consistency, our
framework enhances structural coherence within the student model without relying on extensive
pixel-wise annotations. Our key contributions can be summarized as follows:

* We propose a novel integration of topological reasoning into the semi-supervised segmentation
framework to robustly identify and preserve meaningful topological structures.

* We introduce dual-level topological consistency, measuring structural stability from intra-perturbed
predictions (MC dropout) and temporal training snapshots, to effectively utilize unlabeled data.

* We develop a novel matching algorithm that integrates spatial overlap, topological persistence, and
spatial proximity to accurately match topological structures across predictions.

Through extensive experiments on three widely used histopathology image datasets, our method
significantly improves the topological accuracy while achieving comparable pixel-wise performance
with limited annotations.
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Figure 2: Comparison of our matching with Betti Matching [46]] and Wasserstein Matching [[17]. We
match two likelihood maps obtained from the same input histopathology patch. The birth critical
points of the matched pairs are highlighted in the same color. Note that Wasserstein Matching gets
most matches wrong, and Betti Matching also gets two matches wrong while pairing biologically
unrelated features when lacking the guidance of the ground truth.

2 Related Works

Segmentation with Limited Supervision. Semi-supervised learning enhances medical image
segmentation by effectively utilizing limited labeled data together with abundant unlabeled data. Con-
sistency regularization approaches, such as the Mean Teacher model [47], ensure stable segmentation
despite input variations [47, 29,51} 37, 57]. Pseudo-labeling progressively improves accuracy by
leveraging confident model predictions on unlabeled data [60, 40, 67]] Adversarial training aligns
segmentation outputs from labeled and unlabeled datasets using discriminator networks [20, 27].
Additionally, uncertainty estimation methods such as MC dropout and Bayesian neural networks en-
hance reliability by effectively handling uncertainty during pseudo-label generation [7},164, 35,131} 158]],
while entropy minimization is used to reduce prediction uncertainty [11}[3}/54]. Contrastive learning
strengthens segmentation robustness by training models to differentiate similarities and distinctions
among data pairs, thereby boosting overall segmentation quality [63} 1,162} 61].

Topology-Aware Image Segmentation. Topology-aware methods have been proposed to enforce
correct topology, like connectivity or correct counts in segmentation tasks [[17} [19} 42} 4] [59 [16|
121150, 146, 1491 156/, 165, 132]]. These methods typically use differentiable loss functions derived from
topological data analysis tools, including persistent homology [[17} 4} 46], discrete Morse theory [19]
18, [13]], topological interactions [12} 2l], homotopy warping [16], centerline-based comparisons [42,
50]. These methods generally rely heavily on precisely annotated labels. Xu et al. [57] proposed
TopoSemiSeg to combine SSL with topological constraints. Classical persistent homology-based
segmentation methods rely on Wasserstein matching [[17,57], which compares persistence diagrams
based solely on feature lifespans. However, this approach may produce ambiguous or incorrect
correspondences, as illustrated in Figure 2] To alleviate spatial inconsistencies, several methods
were proposed [46] [52]]. Betti Matching [46] embeds predictions and ground truth into a shared
super-level filtration, ensuring alignment only among overlapping topological features. However, as
shown Figure[2] it cannot ensure fully correct matching when the ground truth is missing and is too
sensitive to preserve some transient structures. Our proposed MATCH-Pair could achieve almost
completely accurate matching without the ground truth.

3 Methodology

The motivation of our proposed framework is to identify meaningful topological structures directly
from perturbed predictions without the ground truth. The main challenge is to accurately match
corresponding topological structures across multi-facet predictions that often contain substantial
noise and variability. To overcome this challenge, we introduce MATCH-Pair, a pairwise matching
algorithm, and MATCH-Global, an extended global matching algorithm, to robustly identify stable
structures across multiple predictions. Building upon these matching algorithms, we propose dual-
level topological consistency constraints: intra-topological consistency, enforcing consistency across
multiple stochastic predictions, and temporal-topological consistency, ensuring stability across
consecutive training snapshots. These consistency constraints directly optimize the student model,
enabling it to learn robust segmentation representations from limited labeled data.

Our method overview is shown in Figure 3] The proposed MATCH framework leverages labeled data
via supervised loss and unlabeled data through pixel-wise and dual-level topological consistency.
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In this section, we will start by introducing preliminaries of classic SSL. Next, we will use 3
subsections to introduce MATCH-Pair, MATCH-Global, and the dual-level topological consistency.

Preliminaries: SSL training. We address the semi-supervised image segmentation problem by
leveraging a teacher- student framework, a widely adopted paradigm in semi-supervised learning
[@7). Let Dy, = {(zF,y")} Y5 denote the labeled dataset, where x:* represents the input image

and y* € {0, 1}#*W is the corresponding pixel-wise annotation. Let Dy = {x?}jv:l’l denote the
unlabeled dataset. In our setting, the number of labeled samples is significantly smaller than the
number of unlabeled samples, i.e., N < Ny. Our objective is to train a segmentation model fy,
parameterized by 6, that accurately predicts segmentation masks using labeled and unlabeled data.

In this framework, the student model fy_ is trained using both supervised and unsupervised losses,
while the teacher model fy, provides stable targets for the student by being updated as an exponential
moving average (EMA) of the student’s parameters: H,ETH) = 040,57) + (1 - a)GgTH), where o
controls the update rate. For the supervised loss on labeled data, we employ a combination of

Dice loss and cross-entropy loss to capture both overlap and pixel-wise discrepancies, Ly, =
Loice(fo. (@), y") + Leg(fo, (x"), y").

To leverage the unlabeled data, we enforce consistency between the student and teacher predictions.
Specifically, the student receives a strongly augmented version of an unlabeled image =¥, while the
teacher processes a weakly augmented version. The pixel-wise consistency loss is defined as the
cross-entropy between the student and teacher outputs, Leons = Lcg(fa, (As(zY)), fo, (Aw(zY))),
where A, and A,, denote strong and weak augmentations, respectively.

3.1 MATCH-Pair: Spatial-Aware Pairwise Matching

Accurate identification of corresponding topological structures between the likelihood maps is
crucial for robust histopathology image segmentation. We employ persistent homology with a
super-level set filtration to extract 0-D topological features from likelihood maps, producing
persistence diagrams that characterize each component by its persistence and critical points. To find
correspondence between different persistence diagrams, traditional methods based on Wasserstein
distance emphasize topological persistence without considering spatial relationships, often leading
to incorrect associations between spatially distant yet similarly persistent features. In contrast,
approaches based solely on spatial overlap tend to match transient structures of minimal significance
incorrectly. To address these limitations, we propose MATCH-Pair, a Hungarian overlap-matching
algorithm that integrates spatial overlap, topological persistence, and spatial proximity. The overall
pipeline is depicted in Figure

Likelihood

Ag Student Model

fo,
L

! ! lEMA I‘Cums
A, Teacher Model
—_—]
fo, Iterations
B

Figure 3: Overview of the proposed MATCH framework with dual-level topological consistency.
Note that the Linga and Liemp are used to directly optimize the parameters of the student model.

Given two likelihood maps lhq,lhy € [0, 1}H W we compute the persistence diagrams:
Dgm(lhg) = {(b;,d;), k € {1,2} with the persistence pers, = |d; — b;|. Each persistence
pair (b;, d;) yields a connected spatial region M;, defined by flood-fill algorithm [44]]. This algorithm
generates a binary mask M starting from the birth pixel b;. The region is expanded iteratively to
neighboring pixels, provided that their likelihood exceeds the threshold 1 — d;.
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Figure 4: Pipeline of the MATCH-Pair algorithm between two persistence diagrams.

To compute the relative significance of each structure, the persistence values are normalized to derive
. . . — persy, ;
a weighting factor: wy, ; = ngkj, ke {1,2}.
p ;
To evaluate the similarity between spatial masks M ; and M> ;, a combined metric that integrates
spatial overlap, normalized persistence weights, and spatial proximity is defined as:

|M1 i n M2 | dl i
S,,:wl.u&.’i*] 1— J

‘ t My U My
where d;; is the Euclidean distance between birth critical points of the corresponding masks, and dyax

denotes the maximum distance among all mask pairs. This similarity metric ensures the prioritization
of spatially close, persistent, and well-overlapping structures.

dmax

A global one-to-one assignment between features from the two maps is obtained via the Hungarian
algorithm [24]], minimizing the cost (defined as the complement of similarity):

IQIJHZ(l = Sij) mij, - mi; € {0,1}
i,
Pairs achieving scores above a predefined threshold 7 imary constitute valid matches.

3.2 MATCH-GIlobal: Multi-faceted Global Matching

While MATCH-Pair addresses an optimal correspondence between two persistence diagrams, many
practical scenarios often involve multiple stochastic predictions (facets). Finding the corresponding
topological structures among multiple facets is a challenge. Thus, we extend MATCH-Pair to MATCH-
Global, a global multi-facet matching approach to link homologous 0-dimensional components
consistently across all facets, assigning global indices to anatomical or topological structures.

Given a series of likelihood maps £ = {lh;}L_ |, Ih; € [0,1]H*W each generates a persistence
diagram: Dgm, = {(b,,d;;)};,. Each pair (b, d; ;) corresponds to a spatial mask M, ;, the
normalized persistence weight w; ; = |d;; — by ;| /maxy j |dy_; — by _;|, and birth-critical point ¢ ;.

Matching is performed sequentially across facets. For each adjacent pair of facets (¢,¢ + 1) we form
the weighted overlap matrix:

Si(]t') = Wt,i Wt—&-l:jIOU(Mt,iy Mt+1,j) (1 - ‘|Ct’i_<cﬁ+l’j‘|2)

t
dmax

with d\hy = max; ;||¢; — ce41,5||2 introduces a soft spatial penalty. Optimal assignments are solved
via the proposed MATCH-Pair algorithm.

These matches form an undirected graph G = (V, £) with vertices V = {(¢,4) | 1 <t < T, 1 <
1 < my}, representing the structures and edges £ = tT;ll £® indicating matches. Connected
components {Ck}le of G are identified by breadth-first search, providing globally consistent
identities: Cy, = {(t,¢) | mask M, ; belongs to identity k}.

Thus, the global multi-facet matching framework integrates pairwise correspondences into globally

coherent tracks, robustly accommodating missing detections, splits, and merges, thereby ensuring
topological consistency across multiple facets.
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3.3 Dual-Level Topological Consistency

After identifying consistent topological structures across multiple facets, we propose dual-level
topological consistency losses to enhance segmentation reliability and coherence. Specifically, we
introduce two complementary loss terms: intra-topological consistency, which ensures consistency
among stochastic predictions from MC dropout realizations [7]], and temporal-topological consistency,
which maintains consistency across consecutive training iterations.

In both scenarios, topological features are extracted from multiple prediction facets. We then apply
our proposed MATCH-Global algorithm (see Section[3.2) to classify these topological structures into

two distinct categories: matched (Cn¢h, C{;‘;‘l‘gh) representing features consistently identified across

multiple predictions, and unmatched (Clhmach, C{,‘;}{{I‘,Mh) denoting features that are inconsistent or
unstable across predictions. Specifically, matched structures are encouraged toward optimal probabil-
ity distributions at their birth and death critical points, whereas unmatched structures, indicative of
prediction uncertainty or instability, are driven toward shorter topological lifespans. Formally, we

define the associated losses as:
. 2 2 . 2
Lowen(t8) = ()" + (1= PID)., Lawe(td) = (P — Py))”
where Pb(tt)i and Péf)i represent the predicted probability values at the birth (b; ;) and death (dy ;)
critical points, respectively, of the i-th topological feature extracted from the ¢-th prediction.

The intra-topological consistency loss aggregates these penalties over multiple stochastic predictions
through MC dropout within each iteration:

, 1 Bintra 1 . iy 1 . hy
Intra — Bin Z Cmdtnh ,(b) Z malch( ’Z) + Cunmatch,(b) Z dlag( ’Z)
mira 1y | intra ‘ (¢, Z)EC:::}‘ () | intra I (t, z)EC‘;"":““h »(b)

where Biyy, indicates the number of MC dropout predictions within each iteration. Similarly, the
temporal-topological consistency enforces the constraints across predictions from consecutive training
snapshots:

1 ] 1 .
|cmatch. (b)) by ‘Cmm“(t’lHW Y Lawgltyd)

b=1 | temp | (¢, )EC"]M ,(b) | temp | (t,i)eClL:;r':;Mh’(b)

where Bienp presents the number of temporal training snapshots. Finally, our dual-level topological
consistency losses are integrated into the overall training objective alongside the supervised and
pixel-wise consistency terms:

Elotal = Esup + Aconsﬁcons + )\imraﬁimra + Atempﬁtemp

where hyperparameters Acons, Aintra» a0d Aemp balance their respective contributions, ensuring the
model jointly meets pixel-level accuracy and robust topological coherence.

4 Experiments

We conduct comprehensive evaluations on three publicly available histopathology image datasets on
both pixel-wise and topology-wise metrics. We benchmark our method against classic and recent
state-of-the-art semi-supervised segmentation methods, including MT [47]], EM [48], UA-MT [64],
URPC [31], XNet [68], PMT [8]], and TopoSemiSeg [57].

Implementation Details. The implementation details will be provided in the Supplementary.

Datasets. We evaluate our proposed method on Colorectal Adenocarcinoma Gland (CRAG) [9]],
Gland Segmentation in Colon Histology Images Challenge (GlaS) [43], and Multi-Organ Nuclei
Segmentation (MoNuSeg) [25]. More details are provided in the Supplementary.

Evaluation Metrics. To better evaluate our proposed method, we use pixel-wise metrics including
Object-level Dice Score (Dice_obj) [55]]; topology-wise metrics including Betti Error [17], Betti
Matching Error [46], and Discrepancy between Intersection and Union (DIU) [32]. More details
are provided in the Supplementary.
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Table 1: Quantitative results on three histopathology image datasets. We compare our method with
several state-of-the-art semi-supervised medical image segmentation methods on two settings of 10%
and 20% labeled data. The statistically significant best results are highlighted in bold, while the
second-best are marked with underline.

Dataset  Label Ratio (%) Method Pixel-wise Topology-wise
Dice_Obj BE | BME | DIU |
MT [&7) 0.821 + 0.006 2238 +0.153 62250 +3.127 74630 + 2.967
EM [48] 0.789 + 0.007 2178 +0.147  80.100+3.809 78210 + 3.298
UA-MT [64] 0.837 + 0.005 1703 £0.112 66450 + 3218 65420 + 2.847
" URPC [64] 0.829 + 0.005 1732 £0.118 74600 + 3407  68.300 + 3.004
XNet [68] 0.872 + 0.004 0578 £0.053 15050+ 1118 55880 2516
PMT [8] 0.876 + 0.004 05200051 14200+ 1.013  57.100 + 2.638
TopoSemiSeg [57]  0.884 -+ 0.002 022740014 10475+ 0458  49.690 + 1.947
Ours 0.888 = 0.002 0197+ 0012 9.175+:0.580  45.950 - 1.880
CRAG MT [&7) 0.858 + 0.008 2603 +0.161  99.025+3912 95215 + 3.487
EM [48] 0.869 + 0.006 19330136 7522543772 63.823 + 3.139
UA-MT (641 0.859 + 0.006 18224 0.129 70850 +3.586  61.138 + 2.918
" URPC [31] 0.849 + 0.007 2489+ 0152 99500 +4.085  87.681 + 3276
XNet [68] 0.883 + 0.005 042240055 10900+ 1.127 50537 + 2.547
PMT [8] 0.889 + 0.004 0460+ 0062  11.800+ 1203 48300 + 2.321
TopoSemiSeg [57]  0.898 + 0.004 0226 £0019 857540736 43712+ 1.842
Ours 0.909 =+ 0.005 0.188 £0.018 742510570  40.250 = 1.720
100 (Full)  Fully-Supervised  0.928 + 0.002 0149+ 0015 5650 +0223 29425+ 1.782
MT [&7] 0.790 + 0.005 230240162 31.125+3274  76.130 + 2.965
EM [48] 0.819 + 0.006 1431 £0.143 19188+ 3.846 61245 + 3302
UA-MT [64] 0.845 + 0.004 2086+ 0.117 26650+ 3245  68.025 + 2.873
" URPC [64] 0.849 + 0.004 115540123 19588+ 3.408  54.832 + 3.017
XNet [68] 0.874 + 0.003 0843 £0051 14238+ 1154 40912 + 2422
PMT (8] 0.872 + 0.004 0798+ 0052 13920+ 1.097  39.850 + 2.487
TopoSemiSeg [57]  0.878 + 0.003 0551+ 0014 83000478 35845+ 1.965
Ours 0.884 = 0.003 0.501 £ 0.023 7850 £ 0391  30.525 & 1641
Glas MT (7] 0.863 + 0.005 2126 £ 0171  29.963 + 3987  64.275 + 3.496
EM [48] 0.865 + 0.006 1255+ 0138 17275+3783  58.673 + 3.255
UA-MT (641 0.866 + 0.005 112340132 1803843599 53014+ 3.069
" URPC [31] 0.878 + 0.004 07590067 14350+ 1212  42.587 +2.601
XNet [68] 0.884 + 0.004 0735 +0065 10188+ 1.154 35298 +2.328
PMT [§] 0.887 + 0.003 0698 +0.062 9980+ 1.118 34805 + 2271
TopoSemiSeg [57]  0.895 + 0.003 0510 £0053 9825+0813  30.462+ 1.978
Ours 0.894 + 0.004 0392 £0.056 7925+ 0725  26.175+ 1.633
100 (Full)  Fully-Supervised 0917 + 0.006 027340026  6875+0276  19.620 = 0.712
MT [&7) 0748 +0.006 10210 + 0486 292.857 + 6.542  1526.079 + 35.842
EM [48) 0757 +0.006 10339+ 0.503 257.071 + 5445 1319.815 + 31.784
UA-MT (641 0741 £ 0007 10227 +0497 255428 +5.983 1316272 + 30216
" URPC [64] 0.774 + 0.004 6.820+ 0319 214428 + 5327  1098.372 + 24.392
XNet [68] 0.762 + 0.005 715240338 220405+ 4611 1122799 + 25.116
PMT (8] 0.764 + 0.004 751540352  227.650 +4.805 1210400 + 26.954
TopoSemiSeg [57]  0.783 + 0.003 6.661 +0.376 196357 +3.067 1068401 + 17.500
Ours 0.785 + 0.003 559410361 192.863+ 1137 1011.857 + 12.648
MoNuSeg MT [7] 0767 £0.005 12522+ 0547 246786 + 8018 1350.751 + 32.407
EM [48] 0.777 + 0.006 7160 £0.335  198.571 + 6731 1142661 + 27.581
UA-MT [64] 0.772 + 0.007 0406+ 0.444  246.857 +7.944  1336.684 + 31268
" URPC [31] 0.779 + 0.004 5.325+0254 193429+ 6105 1025431 + 23.799
XNet [68! 0.776 + 0.003 6750+ 0316  198.525 + 5421  1117.406 + 26014
PMT [8] 0.778 + 0.006 6.500+0.308  195.125 + 6289  1080.476 + 25.145
TopoSemiSeg [57]  0.793 -+ 0.004 5150+ 0.145  188.642 3215 1105.946 + 18.486
Ours 0.790 + 0.006 4930 £0.156 179.225 +2.383 982.286 & 14.953
100 (Full)  Fully-Supervised 0817 + 0.010 2491 + 0460 142420 + 4674 729017 + 17.662

4.1 Results

Uncertainty Throughout the Topological Consistency. As illustrated in Figure 5] our proposed
MATCH not only produces a robust segmentation result (top, (f)) but also furnishes an informative
pixel-wise uncertainty map without any uncertainty-specific training objective or doing post hoc
calibration. Visually, the variance map (bottom, (f)) concentrates along the gland boundaries where
the four likelihood maps disagree, and these regions coincide almost perfectly with the binary error
maps (bottom, (b) - (e)). Quantitatively, the Pearson correlation coefficients (PCC) [38] between the
uncertainty and the error maps are 0.768, 0.728, 0.757, and 0.753 for the four facets, respectively.
This confirms that the uncertainty is tightly coupled with prediction errors. Hence, reliable uncertainty
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Figure 5: Qualitative illustration of MC dropout predictions (after the model convergence). Top row:
original patch, the four likelihood maps, and the final segmentation. Bottom row: ground-truth
mask, corresponding error maps, and the plxel wise variance (uncertamty) map.
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Figure 6: Qualitative results for semi-supervised methods on 10% and 20% labeled data. Rows 1-2
correspond to CRAG dataset, rows 3-4 correspond to GlaS dataset. From left to right: (a) raw image,
(b) ground-truth mask, (c) to (i) present the 7 baselines. (j) indicates the results of our method. The
regions prone to topological errors are highlighted in red boxes.

estimation and the attendant suppression of spurious structures emerge naturally as a by-product of
the proposed consistency mechanism, with no additional supervision or model modification required.

Quantitative Results. As shown in Table [I] across the three histopathology image datasets, our
proposed method consistently achieves superior performance compared to state-of-the-art semi-
supervised segmentation methods, under both 10% and 20% labeled data settings. Specifically, our
method yields higher topology-wise accuracy with comparable pixel-wise performance. These results
collectively illustrate that our framework effectively leverages limited annotations to achieve robust
segmentation accuracy and enhanced topological fidelity.

Qualitative Results. We provide the qualitative results in Figure[6] The qualitative comparison
highlights that our proposed method consistently outperforms other semi-supervised methods in
preserving accurate glandular structures and topology across various histopathology samples. The
comparative methods exhibit notable topological errors, including fragmentation, merging, and
boundary leakage, as indicated by the red boxes. In contrast, our method effectively mitigates these
errors, demonstrating superior robustness in maintaining topological integrity and accurate boundary
delineation, thereby underscoring its effectiveness for precise medical image analysis tasks.

4.2 Ablation Study

To comprehensively explore the robustness and efficacy of our proposed strategy, hyperparameter-
selection, and experimental settings, we conduct the ablation experiments on the CRAG dataset using
20% labeled data.

Ablation Study on Matching Algorithm. To validate the effectiveness of our proposed matching
algorithm, we compare it against established alternatives, including Wasserstein Matching [[17]] and
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Table 2: Quantitative comparison of matching strategies (left) and the contribution of IoU and spatial-
proximity cues (right).

(a) Ablation study on matching algorithms. (b) Effect of ToU & spatial-proximity (SP).
Matching Pixel-wise Topology-wise IoU SP Pixel-wise Topology-wise
Dice_obj 1 BE | BME | DIU | Dice_obj 1 BE BME | DIU |
Wasser. [17] 0.864 & 0.007 0.423 % 0.026 9.647 % 0.846 58.592 & 2.574 VX 08900005 0.233 = 0.020 8.300 = 0.650 43.750 & 2.100
Betti [46] 0889 & 0.005 0.237 = 0.021 8.216 % 0.717 44.157 = 2.146 X/ 08820006 0.247 % 0.022 9.600 & 0.680 46.200 % 2.250
Ours 0.909 £ 0.005 0.188 =+ 0.018 7.425 + 0.570 40.250 =+ 1.720 v/ 0909+ 0.005 0.188 £ 0.018 7.425 + 0.570 40.250 & 1.720

Betti-Matching [46]]. As shown in Table[2a] our algorithm consistently achieves superior performance
in both pixel- and topology-wise metrics. Specifically, Wasserstein Matching, relying exclusively on
persistence values without spatial information, exhibits the worst results. Although Betti-Matching
incorporates spatial context, it still performs suboptimally compared to our method.

Ablation Study on IoU and Spatial Proximity (SP). To validate the effectiveness of the individual
items of our matching cost, we conduct the ablation study on IoU and spatial proximity. The results
in Table [2b] quantitatively substantiate the complementary roles of the IoU and the spatial proximity
factor in our Hungarian assignment cost. Removing either the proximity or the overlap item could
degrade the performance. Overlap by itself cannot fully distinguish spatially adjacent structures.
These results demonstrate that both items are necessary to achieve topologically-accurate matching.

Sensitivity Analysis on Biygra and Beemp. We further analyzed the sensitivity of our method to
the number of MC dropout samples Bjy, and temporal training snapshots Biemp. Table |3al shows
that employing too few facets yields unreliable estimation of topological consistency, resulting in
suboptimal segmentation performance. Conversely, increasing the number of facets beyond an optimal
point introduces redundant information and additional variability, degrading model performance.
Therefore, 4 is the optimal number that strikes a practical balance, ensuring the best performance
while remaining computationally efficient.

Table 3: Ablation studies of dual-level topological consistency.(a) varies the number of MC-dropout /
temporal facets; (b) studies the contribution of intra- and temporal-topological consistency.

(a) Influence of Binyra and Biemp. (b) Efficacy of Linra and Liemp.
Pixel-wise Topology-wise Pixel-wise Topology-wise
Binra Bremp pology Linra Ltemp pology
Dice_obj 1 BE | BME | DIU | Dice_obj 1 BE | BME | DIU |

0.878 = 0.010 0.255 £ 0.025 9.350 % 0.620 48.600 + 2.300
0.892 + 0.007 0.214 £ 0.020 8.105 %= 0.600 44.105 + 2.050
0.872 £ 0.011 0.275 £ 0.02310.050 +£ 0.63054.250 + 2.253
0.909 + 0.005 0.188 £ 0.018 7.425 + 0.570 40.250 + 1.720

0.862 = 0.011 0.460 £ 0.022 11.680 £ 0.61059.930 £ 2.150
0.898 = 0.006 0.215 = 0.020 7.920 % 0.590 44.750 £ 1.970
0.882 = 0.008 0.238 = 0.031 8.540 % 0.450 45.310 £ 2.040
0.909 + 0.005 0.188 £ 0.018 7.425 + 0.570 40.250 £ 1.720

= W
B W
XX
NN % %

Ablation Study on Loss Components. To evaluate the contributions of individual loss terms in
our dual-level topological consistency framework, we conduct experiments selectively enabling or
disabling the Liyra and Liemp. As presented in Table each loss individually improves the pixel-
and topology-wise performance compared to the baseline without these constraints. Combining both
losses achieves the strongest overall performance, confirming that Lipy, and Liemp complement each
other by addressing different sources of topological inaccuracies—stochastic noise within single
facets and structural inconsistencies across training iterations.

5 Conclusion

In this paper, we introduced a semi-supervised segmentation framework designed to identify and
preserve significant topological features from histopathology images with limited labeled data. By
enforcing dual-level topological consistency across stochastic predictions from Monte Carlo dropout
and temporal training snapshots, our method effectively differentiates stable biological structures from
transient artifacts. Our proposed MATCH-Global algorithm addresses the key challenge of accurately
matching topological features across multiple facets by combining spatial overlap, topological
persistence, and spatial proximity. Experimental results demonstrate that our approach significantly
enhances segmentation robustness and reduces topological errors, highlighting its potential for reliable
downstream analyses in digital pathology.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The main claims of our paper are well reflected in the abstract and introduction.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitation of this work is discussed in the Supplementary.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Justification: This work does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: The implementation details are provided in the Supplementary.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:
Justification: We will provide the code upon acceptance.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Some ablation studies are provided in the main paper and the rest of training
and test details is provided in the Supplementary.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: This paper reports error bars suitably and correctly defined.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

16


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

609
610

611
612
613

614
615
616

617
618
619

620
621
622

623

624

625

626

627
628

629
630

631
632
633

634

635
636

637

638
639

640

641
642

644
645

646

647
648

649

650
651

653

654
655

656

658
659

8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We include the GPU usage, learning rate, batch size, etc., in the Supplementary.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics in every respect.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The discussion of both potential positive societal impacts and negative societal
impacts of the work performed is provided in the Supplementary.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This work doesn’t pose such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets used in the paper are properly credited
and the license and terms of use explicitly mentioned and properly respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This work does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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